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Abstract: We present a simple and robust implementation of the phase field fracture method in
Abaqus. Unlike previous works, only a user material (UMAT) subroutine is used. This is achieved by
exploiting the analogy between the phase field balance equation and heat transfer, which avoids the
need for a user element mesh and enables taking advantage of Abaqus’ in-built features. A unified
theoretical framework and its implementation are presented, suitable for any arbitrary choice of
crack density function and fracture driving force. Specifically, the framework is exemplified with the
so-called AT1, AT2 and phase field-cohesive zone models (PF-CZM). Both staggered and monolithic
solution schemes are handled. We demonstrate the potential and robustness of this new implemen-
tation by addressing several paradigmatic 2D and 3D boundary value problems. The numerical
examples show how the current implementation can be used to reproduce numerical and experi-
mental results from the literature, and efficiently capture advanced features such as complex crack
trajectories, crack nucleation from arbitrary sites and contact problems. The code developed is made
freely available.

Keywords: Abaqus; phase field fracture; finite element analysis; UMAT; fracture mechanics

1. Introduction

Variational phase field methods for fracture are enjoying a notable success [1,2].
Among many others, applications include shape memory alloys [3], glass laminates [4,5],
hydrogen-embrittled alloys [6,7], dynamic fracture [8,9], fiber-reinforced composites [10–13],
functionally graded materials [14–16], fatigue crack growth [17,18], and masonry struc-
tures [19]. The key to the success of the phase field paradigm in fracture mechanics is
arguably three-fold. First, the phase field paradigm can override the computational chal-
lenges associated with direct tracking of the evolving solid-crack interface. The interface
is made spatially diffuse by using an auxiliary variable, the phase field φ, which varies
smoothly between the solid and crack phases and evolves based on a suitable governing
equation. Such a paradigm has also opened new horizons in the modelling of other interfa-
cial problems such as microstructural evolution [20] or corrosion [21]. Secondly, phase field
modelling has provided a suitable platform for the simple yet rigorous fracture thermo-
dynamics principles first presented by Griffith [22]. This energy-based approach enables
overcoming the issues associated with local approaches based on stress intensity factors,
such as the need for ad hoc criteria for determining the crack propagation direction [23,24].
Thirdly, phase field fracture modelling has shown to be very compelling and robust from a
computational viewpoint. Advanced fracture features such as complex crack trajectories,
crack branching, nucleation, and merging can be captured in arbitrary geometries and
dimensions, and on the original finite element mesh (see, e.g., [25–28]). Also, computations
can be conducted in a Backward Euler setting without the convergence issues observed
when using other computational fracture methods. One reason behind this robustness
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is the flexibility introduced by solving the phase field, a damage-like variable, indepen-
dently from the deformation problem. So-called staggered solution schemes have been
presented to exploit this flexibility by computing sequentially the displacement and phase
field solutions [29], avoiding computationally demanding phenomena such as snap-backs.

The success of phase field modelling has been, not surprisingly, accompanied by a
vast literature devoted to the development of open-source codes and finite element im-
plementations of variational phase field methods for fracture. These works have been
aimed at both commercial finite element packages, such as COMSOL [30], and open-source
platforms like FEniCS [31]. The development of phase field fracture implementations in the
commercial package Abaqus has received particular attention [32–38], due to its popularity
in the solid mechanics community. However, these works require the use of multiple
user subroutines, most often including a user element (UEL) subroutine. Abaqus’ in-built
elements cannot be employed due to the need for solving for the phase field φ as a nodal
degree-of-freedom. Having to adopt a user-defined finite element carries multiple limita-
tions; namely post-processing requires the use of a dummy mesh or ad hoc scripts, and most
in-built features of Abaqus cannot be exploited, as the software suite is effectively used as
a solver. In this work, we overcome these limitations by presenting a new implementation
that only requires the use of a user material (UMAT) subroutine. The simple yet robust
implementation presented is achieved by taking advantage of the analogy between the
phase field evolution equation and heat transfer. This not only greatly simplifies the use of
Abaqus for conducting phase field fracture studies but also enables taking advantage of
the many in-built features provided by this commercial package. In addition, we present
a generalized theoretical and numerical framework that encapsulates what are arguably
the three most popular phase field fracture models presented to date: (i) the so-called AT2
model [24], based on the Ambrosio and Tortorelli regularization of the Mumford-Shah
functional [39], (ii) the AT1 model [40], which includes an elastic phase in the damage
response, and (iii) the phase field-cohesive zone model PF-CZM [41,42], aimed at providing
an explicit connection to the material strength. Our framework also includes two strain
energy decompositions to prevent damage in compressive states: the spectral split [29] and
the volumetric-deviatoric one [43]—both available in the context of anisotropic and hybrid
formulations [44]. Moreover, the implementation can use both monolithic and staggered
solution schemes, enhancing its robustness. Two example codes are provided with this
work (www.empaneda.com/codes), both capable of handling 2D and 3D analyses without
any modification. One is a simple 33-line code, which showcases the simplicity of this
approach by adopting the most widely used constitutive choices (AT2, no split). The other
one is an extended version, with all the features mentioned above, aimed at providing a
unified implementation for phase field fracture. To the authors’ knowledge, the present
work provides the simplest Abaqus implementation of the phase field fracture method.

The remainder of this manuscript is organised as follows. In Section 2 we provide
a generalised formulation for phase field fracture, which can accommodate a myriad of
constitutive choices. This is exemplified with the AT2, AT1 and CZ-PFM models. Then,
in Section 3, the details of the finite element implementation are presented, including the
analogy with heat transfer and the particularities of the Abaqus usage. The potential
of the implementation presented is showcased in Section 4, where several boundary
value problems of particular interest are addressed. Specifically, (i) a three-point bending
test, to compare with the results obtained with other numerical methods; (ii) a concrete
single-edge notched beam, to compare with experimental data; (iii) a notched plate with
a hole, to simulate complex crack paths, merging and nucleation; and (iv) a 3D gear,
where cracking occurs due to contact between the teeth. Finally, concluding remarks are
given in Section 5.

2. A Generalised Formulation for Phase Field Fracture

In this section, we formulate our generalised formulation, suitable for arbitrary con-
stitutive choices of crack density function and fracture driving force. Consider an elastic

www.empaneda.com/codes
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body occupying an arbitrary domain Ω ⊂ IRn (n ∈ [1, 2, 3]), with an external boundary
∂Ω ⊂ IRn−1 with outwards unit normal n.

2.1. Kinematics

The primary kinematic variables are the displacement field vector u and the damage
phase field φ. In this work, we limit our attention to small strains and isothermal conditions.
Consequently, the strain tensor ε reads

ε =
1
2

(
∇uT +∇u

)
. (1)

The nucleation and growth of cracks are described by using a smooth continuous
scalar phase field φ ∈ [0; 1]. The phase field describes the degree of damage, being φ = 0
when the material point is in its intact state and φ = 1 when the material point is fully
broken. Since φ is smooth and continuous, discrete cracks are represented in a diffuse
manner. The smearing of cracks is controlled by a phase field length scale `. The aim of
this diffuse representation is to introduce, over a discontinuous surface Γ, the following
approximation of the fracture energy [24]:

Φ =
∫

Γ
Gc dS ≈

∫
Ω

Gcγ(φ,∇φ)dV, for `→ 0, (2)

where γ is the so-called crack surface density functional and Gc is the material tough-
ness [22,45]. This approximation circumvents the need to track discrete crack surfaces, a
well-known challenge in computational fracture mechanics.

2.2. Principle of Virtual Work. Balance of Forces

Now, we shall derive the balance equations for the coupled deformation-fracture
system using the principle of virtual work. The Cauchy stress σ is introduced, which is
work conjugate to the strains ε. Also, a traction T is defined on the boundary of the solid
∂Ω, work conjugate to the displacements u. Regarding fracture, we introduce a scalar
stress-like quantity ω, which is work conjugate to the phase field φ, and a phase field micro-
stress vector ξ that is work conjugate to the gradient of the phase field ∇φ. The phase
field is assumed to be driven solely by the solution to the displacement problem. Thus,
no external traction is associated with φ. In the absence of body forces, the principle of
virtual work reads: ∫

Ω

{
σ : δε + ωδφ + ξ · δ∇φ

}
dV =

∫
∂Ω

(T · δu)dS (3)

where δ denotes a virtual quantity. This equation must hold for an arbitrary domain Ω and
for any kinematically admissible variations of the virtual quantities. Thus, by application
of the Gauss divergence theorem, the local force balances are given by:

∇ · σ = 0

∇ · ξ−ω = 0
in Ω, (4)

with natural boundary conditions:

σ · n = T

ξ · n = 0
on ∂Ω. (5)

2.3. Constitutive Theory

The constitutive theory is presented in a generalised fashion, and the AT1 [40], AT2 [24]
and PF-CZM [41,42] models are then derived as special cases. The total potential energy of
the solid reads,

W(ε(u), φ, ∇φ) = ψ(ε(u), g(φ)) + ϕ(φ, ∇φ) (6)
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where ψ is the elastic strain energy density and ϕ is the fracture energy density. The former
diminishes with increasing damage through the degradation function g(φ), which must
fulfill the following conditions:

g(0) = 1, g(1) = 0, g′(φ) ≤ 0 for 0 ≤ φ ≤ 1 . (7)

We proceed to formulate the fracture energy density as,

ϕ(φ, ∇φ) = Gcγ(φ,∇φ) = Gc
1

4cw`

(
w(φ) + `2|∇φ|2

)
. (8)

where ` is the phase field length scale and w(φ) is the geometric crack function. The latter
must fulfill the following conditions:

w(0) = 0, w(1) = 1, w′(φ) ≥ 0 for 0 ≤ φ ≤ 1 . (9)

Also, cw is a scaling constant, related to the so-called geometric crack function:

cw =
∫ 1

0

√
w(ζ)dζ . (10)

Damage is driven by the elastic energy stored in the solid, as characterized by the
undamaged elastic strain energy density ψ0. To prevent cracking under compressive strain
states, the driving force for fracture can be decomposed into active ψ+

0 and inactive ψ−0
parts. Accordingly, the elastic strain energy density can be defined as [46]:

ψ(ε(u), g(φ)) = ψ+(ε(u), φ) + ψ−0 (ε(u)) = g(φ)ψ+
0 (ε(u)) + ψ−0 (ε(u)) (11)

Also, damage is an irreversible process: φ̇ ≥ 0. To enforce irreversibility, a history field
variableH is introduced, which must satisfy the Karush–Kuhn–Tucker (KKT) conditions:

ψ+
0 −H ≤ 0, Ḣ ≥ 0, Ḣ(ψ+

0 −H) = 0 . (12)

Accordingly, for a current time t, over a total time τ, the history field can be defined as,

H = maxt∈[0,τ]ψ
+
0 (t) . (13)

Consequently, the total potential energy of the solid (6) can be re-formulated as,

W = g(φ)H+
Gc

4cw

(
1
`

w(φ) + `|∇φ|2
)

(14)

Now we proceed to derive, in a generalised fashion, the fracture micro-stress variables
ω and ξ. The scalar micro-stress ω is defined as:

ω =
∂W
∂φ

= g′(φ)H+
Gc

4cw`
w′(φ) , (15)

while the phase field micro-stress vector ξ reads,

ξ =
∂W

∂∇φ
=

`

2cw
Gc∇φ . (16)

Inserting these into the phase field balance Equation (4b), one reaches the following
phase field evolution law:

Gc

2cw

(
w′(φ)

2`
− `∇2φ

)
+ g′(φ)H = 0 (17)
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We shall now make specific constitutive choices, particularising the framework to the
so-called AT2, AT1 and PF-CZM models.

Degradation function g(φ). Both AT2 and AT1 models were originally formulated using a
quadratic degradation function:

g(φ) = (1− φ)2 + κ (18)

where κ is a small, positive-valued constant that is introduced to prevent ill-conditioning
when φ = 1. A value of κ = 1× 10−7 is adopted throughout this work. Alternatively,
the PF-CZM model typically uses the following degradation function,

g(φ) =
(1− φ)d

(1− φ)d + aφ(1 + bφ)
, (19)

with,

a =
4EGc

π` f 2
t

, (20)

where E denotes Young’s modulus and ft is the tensile strength of the material. The choices
of b and d depend on the softening law employed. Two commonly used softening laws are
the linear one, with b = −0.5 and d = 2, and the exponential one, with b = 2(5/3) − 3 and
d = 2.5.

Dissipation function. The dissipation function is governed by the magnitude of w and,
consequently, cw. For the AT2 model: w(φ) = φ2 and c = 1/2. Since w′(0) = 0, this choice
implies a vanishing threshold for damage. An initial, damage-free linear elastic branch
is introduced in the AT1 model, with the choices w(φ) = φ and c = 2/3. Finally, in the
PF-CZM case we have w(φ) = 2φ− φ2 and c = π/4.

Fracture driving force ψ+
0 . The variationally consistent approach, as proposed in the original

AT2 model, is often referred to as the isotropic formulation:

ψ+
0 (ε) =

1
2

ε : C0 : ε =
1
2

λtr2(ε) + µtr(ε2) , ψ−0 (ε) = 0 . (21)

where C0 is the undamaged elastic stiffness tensor and λ and µ are the Lamé parameters.
In the context of the AT1 and AT2 models, damage under compression is prevented by
decomposing the strain energy density following typically two approaches. One is the
so-called volumetric-deviatoric split, proposed by Amor et al. [43], which reads

ψ+
0 (ε) =

1
2

K〈tr(ε)〉2+ + µ
(
ε′ : ε′

)
, ψ−0 (ε) =

1
2

K〈tr(ε)〉2− . (22)

Here, K is the bulk modulus, 〈a〉± = (a± |a|)/2, and ε′ = ε− tr(ε)I/3. The second one is
the so-called spectral decomposition, proposed by Miehe et al. [46], which builds upon the
spectral decomposition of the strain tensor ε± = ∑3

a=1〈ε I〉±nI ⊗ nI , with ε I and nI being,
respectively, the strain principal strains and principal strain directions (with I = 1, 2, 3).
The strain energy decomposition then reads [46]:

ψ±0 (ε) =
1
2

λ〈tr(ε)〉2± + µtr
[(

ε±
)2
]

(23)

The split can be applied not only to the phase field balance law but also to the balance
of linear momentum. Considering the split only in the phase field balance (17) is typically
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referred to as the hybrid approach [44]. Alternatively, an anisotropic formulation can be used,
such that the damaged version of the stress tensor σ is computed as,

σ(u, φ) = g(φ)
∂ψ+

0 (ε)

∂ε
+

∂ψ−0 (ε)

∂ε
. (24)

On the other hand, in the PF-CZM model the driving force for fracture is defined as [41]:

ψ+
0 =

〈σ1〉2+
2E

, (25)

with the other term of the split being given by,

ψ−0 =
1

2E

[
σ1〈σ1〉− + σ2

2 + σ2
3 − 2ν(σ2σ3 + σ1σ3 + σ1σ2)

]
, (26)

where ν is Poisson’s ratio and σi are the principal stresses, with σ1 being the maximum
principal (undamaged) stress. The variational consistency is lost but the failure surface of
concrete under dominant tension can be well captured [41]. This formulation is only used
with the hybrid approach.

In addition, it is important to note that for the AT1 and PF-CZM models there is a
minimum value of the fracture driving force, which we denote asHmin. This is needed as
otherwise φ ≤ 0, as can be observed by setting φ = 0 and solving the balance Equation (17).
The magnitude ofHmin is then given by the solution of (17) forH under φ = 0. For the AT1
case: Hmin = 3Gc/(16`); while for the PF-CZM model: Hmin = 2Gc/(πa`) = f 2

t /(2E).

3. Finite Element Implementation

We proceed to present our finite element model. The unified phase field fracture
theory presented in Section 2 is numerically implemented in Abaqus using only a user
material (UMAT) subroutine; i.e., at the integration point level. This is achieved by taking
advantage of the similitude between the heat transfer law and the Helmholtz-type phase
field balance equation. The analogy between heat transfer and phase field fracture is
described in Section 3.1, while the specific details of the Abaqus implementation are given
in Section 3.2. The present implementation does not require the coding of residual and
stiffness matrix terms; however, these are provided in Appendix A for completeness.

3.1. Heat Transfer Analogy

Consider a solid with thermal conductivity k, specific heat cp and density ρ. In the
presence of a heat source r, the evolution of the temperature field T in time t is given by
the following balance law:

k∇2T − ρcp
∂T
∂t

= −r , (27)

Under steady-state conditions the ∂T/∂t term vanishes and Equation (27) is reduced to,

k∇2T = −r (28)

Now, rearrange the phase field evolution law (17) as,

∇2φ =
g′(φ)H2cw

`Gc
+

w′(φ)
2`2 . (29)

Equations (28) and (29) are analogous upon considering the temperature to be equiva-
lent to the phase field T ≡ φ, assuming a unit thermal conductivity k = 1, and defining the
following heat flux due to internal heat generation,

r = − g′(φ)H2cw

`Gc
− w′(φ)

2`2 . (30)
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Finally, we also define the rate of change of heat flux (r) with temperature (T ≡ φ),

∂r
∂φ

= − g′′(φ)H2cw

`Gc
− w′′(φ)

2`2 , (31)

as required for the computation of the Jacobian matrix.

3.2. Abaqus Particularities

The analogy between heat transfer and phase field fracture lays the grounds for a
straightforward implementation of variational phase field fracture models in Abaqus.
Only a user material (UMAT) subroutine is needed, as it is possible to define within
the UMAT a volumetric heat generation source (30) and its variation with respect to the
temperature (31). It must be noted that a recent version of Abaqus should be used, as the
UMAT volumetric heat generation option does not function properly for versions older
than 2020. The alternative for versions 2019 or older is to combine the UMAT with a heat
flux (HETVAL) subroutine [38].

Abaqus’ in-built displacement-temperature elements can be used, significantly facil-
itating model development. The same process as for a standard Abaqus model can be
followed, with a few exceptions. The user should employ an analysis step of the type
coupled temperature-displacement, with a steady-state response. Also, one should define
as material properties the thermal conductivity k, the density ρ and the specific heat cp,
all of them with a value of unity. To avoid editing the UMAT subroutine, the mechanical
and fracture properties are provided as mechanical constants in the user material definition.
Also, one should define a zero-temperature initial condition T(t = 0) = 0 ∀ x. No other
pre-processing or post-processing steps are needed, everything can be done within the
Abaqus/CAE graphical user interface, and the phase field solution can be visualized by
plotting the nodal solution temperature (NT11). Inside of the UMAT, the material Jacobian
C0 and the Cauchy stress σ0 are computed from the strain tensor. The current (undamaged)
stress-strain state is used to determine the driving force for fracture,H. Both C0 and σ0 are
degraded using the current value of the phase field φ (temperature), which is passed to the
subroutine by Abaqus, such that C = g(φ)C0 and σ = g(φ)σ0. Finally,H and φ are used to
compute r (30) and ∂r/∂φ (31), defined as the volumetric heat generation and its derivative
with respect to the temperature. In its simplest form, the code requires only 33 lines.

The implementation also accommodates both monolithic and staggered schemes, en-
abling convergence even in computationally demanding problems. We choose not to
define the non-diagonal, coupling terms of the displacement-phase field stiffness matrix;
i.e., Kuφ = Kφu = 0. This makes the stiffness matrix symmetric. By default, Abaqus
assumes a non-symmetric system for coupled displacement-temperature analyses but one
can configure the solver to deal with a symmetric system by using the separated solution
technique. The current values of the phase field (temperature) and displacement solutions
are provided to the subroutine, so they can used to update the relevant variables (C0, σ, r
and ∂r/∂φ), such that the deformation and fracture problems are solved in a simultaneous
(monolithic) manner. Conversely, one can use solution dependent state variables (SDVs) to
store and use the history field of the previous incrementHt, effectively freezing its value
during the iterative procedure taking place for the current load increment. This is known
as a single-pass staggered solution scheme. Although single-pass staggered schemes are
very robust, unconditional stability no longer holds and one should conduct a sensitivity
analysis to ensure that the load increments employed are sufficiently small. Robustness and
unconditional stability can be achieved by using quasi-Newton methods [47,48], but such
option is not currently available in Abaqus for coupled temperature-displacement analyses.
Independently of the solution scheme, it is known that phase field fracture analyses can
achieve convergence after many iterations [48,49]. Thus, the solution controls are modified
to enable this (see the example input file provided in www.empaneda.com/codes).

www.empaneda.com/codes
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4. Results

We address several paradigmatic boundary value problems to showcase the various
features of the implementation, as well as its robustness and potential. First, we use
the PF-CZM model to simulate fracture in a three-point bending experiment and compare
the results with those obtained by Wells and Sluys [50] using an enriched cohesive zone
model. Secondly, we model mixed-mode fracture in a concrete beam to compare the crack
trajectories predicted by the AT2 model to those observed experimentally [51]. Thirdly,
cracking in a mortar plate with an eccentric hole is simulated to benchmark our predictions
with the numerical and experimental results of Ambati et al. [44]. Finally, the AT1 model
is used in a 3D analysis of crack nucleation and growth resulting from the interaction
between two gears.

4.1. Three-Point Bending Test

First, we follow the work by Wells and Sluys [50] and model the failure of a beam
subjected to three-point bending. In their analysis, Wells and Sluys combined the concepts
of cohesive zone modelling and partition of unity, using an exponential traction-separation
law [50]. To establish a direct comparison, we choose to adopt the so-called phase field-
cohesive zone model (PF-CZM) [41,42] using the exponential degradation function.

The geometry, dimensions and boundary conditions are shown in Figure 1a. A
vertical displacement of 1.5 mm is applied at the top of the beam, at a horizontal distance
of 5 mm to each of the supports. No initial crack is defined in the beam. Following
Ref. [50], the mechanical behaviour of the beam is characterized by a Young’s modulus of
E = 100 MPa and a Poisson’s ratio of ν = 0, while the fracture behaviour is characterized
by a tensile strength of ft = 1 MPa and a toughness of Gc = 0.1 N/mm. Recall that in the
PF-CZM model the material strength is explicitly incorporated into the constitutive response
and, as a consequence, results become largely insensitive to the choice of phase field length
scale, which is here assumed to be ` = 0.1 mm. The model is discretised using 4-node
coupled temperature-displacement plane strain elements (CPE4T in Abaqus notation).
As shown in Figure 1b, the mesh is refined in the center of the beam, where the crack is
expected to nucleate and grow. The characteristic element is at least five times smaller
than the phase field length scale and the total number of elements equals 5820. Results are
computed using the monolithic scheme.
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u=1.5 mm

3 mm

5 mm 5 mm

(a)

(b)

(c)

0.0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.0 

φ

Figure 1. Three-point bending test: (a) geometry, dimensions and boundary conditions, (b) finite
element mesh, and (c) phase field contour at the end of the analysis.

In agreement with expectations and with the results by Wells and Sluys [50], a crack
nucleates at the bottom of the beam, in the center of the beam axis. The crack then
propagates in a straight manner until reaching the top, as shown in Figure 1c. The resulting
force versus displacement response reveals a quantitative agreement with the predictions
by Wells and Sluys [50]—see Figure 2.
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0 0.5 1 1.5

Displacement (mm)

0
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1
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rc
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(N
)

Present

Wells & Sluys (2001)

Figure 2. Three-point bending test: force versus displacement response. The results obtained with
the present phase field fracture framework are compared with the results computed by Wells and
Sluys [50] using an enriched cohesive zone model.

4.2. Mixed-Mode Fracture of a Single-Edge Notched Concrete Beam

We proceed to model the failure of a concrete beam containing a notch. The aim is to
compare the predictions obtained with the AT2 model with the experimental observations
by Schalangen [51]. Schalangen subjected a concrete beam to the loading configuration
shown in Figure 3. The beam is supported at four locations, and each support is connected
to a girder beam through a rod. The cross-sections of the outer rods are smaller than those
of the inner rods, to ensure an equal elongation. The load is applied to the center of the
girder beams and then transferred through the rods to the concrete beam. The resulting
fracture is stable and mixed-mode.

Inner Rod

Outer Rod

Figure 3. Mixed-mode fracture of a concrete beam: experimental testing configuration, following
Ref. [51].
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The geometry and boundary conditions of our finite element model aim at mimicking
the experimental configuration, see Figure 4a. Two rigid beams are defined, tied to the
reference points RP1 and RP2, where the boundary conditions are applied. Both girder
beams can rotate around their reference points. The steel rods and supports are modelled
and assigned a Young’s modulus E = 210 GPa and a Poisson’s ratio equal to ν = 0.3.
The cross-section of the inner rods equals 1000 mm2 while the cross-section of the outer
rods is taken to be ten times smaller, in agreement with the experimental configuration.
As shown in Figure 4a, both horizontal and vertical displacements are constrained at the
reference point RP1, while RP2 has its horizontal displacement constrained but is subjected
to a vertical displacement of 0.5 mm.

Fracture is simulated using the AT2 model. To prevent failure of elements under com-
pression, the strain energy density is divided into tensile and compressive parts employing
the strain spectral decomposition proposed by Miehe et al. [29], using the anisotropic formu-
lation (24). The material properties of the concrete beam are taken to be: Young’s modulus
E = 35 GPa, Poisson’s ratio ν = 0.2, and toughness Gc = 0.1 N/mm. The phase field
length scale is assumed to be equal to ` = 2 mm and, consequently, the characteristic size
of the elements along the potential crack propagation region equals 0.5 mm (see Figure 4b).
The rods are modelled using truss elements, while the concrete beam is discretised with
a total of 28,265 linear quadrilateral coupled temperature-displacement plane strain ele-
ments. The results obtained are presented in Figure 5. Both experimental (Figure 5a) and
numerical (Figure 5b) results are shown. A very good agreement can be observed, with the
crack initiating in both cases at the right corner of the notch and deflecting, following a
very similar trajectory, towards the right side of the bottom support.

ux=0

uy=0

uy=0.5 mm

ux=0

100

440

220

180

20

5

10

20

20 180 40 180

Beam

Beam

Inner Rod

Inner Rod

Outer Rod

Outer Rod

Concrete

Steel

RP1

RP2

(a)

(b)

Figure 4. Mixed-mode fracture of a concrete beam: (a) geometry, dimensions (in mm) and boundary
conditions, and (b) finite element mesh.
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φ

Figure 5. Mixed-mode fracture of a concrete beam: (a) Experimental crack patterns [51], and (b)
predicted crack trajectory, as given by the phase field contour.

4.3. Notched Plate with an Eccentric Hole

In this case study, we demonstrate the capabilities of the framework in capturing the
interaction of cracks with other defects, and in predicting crack nucleation from arbitrary
sites. This is achieved by using the monolithic scheme and without observing convergence
issues. Specifically, we chose to model the failure of a mortar plate, which has been
experimentally and numerically investigated by Ambati et al. [44]. As shown in Figure 6a,
the plate contains a 10 mm notch and an eccentric hole of 10 mm radius. Mimicking the
experimental setup, the plate contains two loading pin holes; the bottom one is fixed in
both vertical and horizontal directions, while a vertical displacement of 2 mm is applied
to the top one. The material properties are E = 5982 MPa, ν = 0.22, ` = 0.25 mm and
Gc = 2.28 N/mm. The AT2 phase field model is considered, with no split applied to
the strain energy density. We discretise the plate with 56,252 linear plane stress coupled
displacement-thermal elements (CPS4T, in Abaqus notation). The characteristic element
length in the regions surrounding the notch and the hole is five times smaller than the
phase field length scale.

The results obtained, in terms of the crack trajectory, are shown in Figure 6. A very
good agreement with the experimental observations is attained (Figure 6b). As shown in
Figure 6c, the crack starts from the notch tip and deflects towards the hole. The location of
the point of interaction between the hole and the crack originating from the notch appears
to be the same for experiments and simulations. Upon increasing the applied load, a new
crack eventually nucleates from the right side of the hole, and propagates until reaching
the end of the plate. The resulting force versus displacement response is shown in Figure 7,
where various images of the crack path have been superimposed to facilitate interpretation.
The curve exhibits a linear behaviour until crack nucleation occurs (u ≈ 0.28 mm), when a
sudden drop in the load carrying capacity is observed. The interaction between the crack
and the hole induces mixed-mode conditions and crack deflection, which is reflected in
the force versus displacement curve. Once the crack has reached the hole, the applied
displacement can be further increased without a drop in the load. This is observed until
the nucleation of the second crack, which leads to the complete failure of the plate.
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Figure 6. Notched plate with an eccentric hole: (a) geometry, dimensions (in mm) and boundary
conditions, (b) experimental observation [44], and predicted phase field φ contours at (c) u = 0.4 mm
and (d) u = 2 mm.
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Figure 7. Notched plate with an eccentric hole: force versus displacement curve, with several
snapshots of several cracking events superimposed.

4.4. 3D Analysis of Cracking Due to the Contact Interaction between Two Gears

Finally, we proceed to showcase the abilities of the model in simulating complex
3D boundary value problems, involving advanced features such as contact. It should be
emphasized that the same subroutine is used for both 2D and 3D analyses as the implemen-
tation is conducted at the integration point level. We chose to simulate the nucleation and
growth of cracks in the teeth of two interacting gears, a problem of important technological
relevance. The geometries of the two gears are shown in Figure 8, with dimensions given
in mm. The circular pitch equals 8 mm, the pressure angle is 20◦ and both the clearance
and the backlash equal 0.05 mm. Both gears have a thickness of 3 mm. The boundary
conditions are also depicted in Figure 8. The inner hole of each gear is tied to the gear
center point. The center of the small, right gear is subjected to a rotation of 1 radian, while a
linear rotational spring is considered at the center of the large, left gear. The stiffness of the
rotational spring is 7× 106 N·mm/rad.

ux = 0

uy = 0

R = 1 rad

D = 6

D = 3

D = 50.93

D = 56.02

D = 30.56 
D = 35.65

40.74 

ux = 0

uy = 0
rotational spring

Figure 8. Cracking in interacting gears: geometry, dimensions (in mm) and boundary conditions.
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The modelling requires a non-linear geometrical analysis and the use of a contact
algorithm to simulate the interaction between the gear teeth. Frictionless contact is assumed
for the tangential contact behaviour, which is enforced by making the Lagrangian multiplier
equal to zero. The normal contact behaviour is considered to be a hard contact with a
surface-to-surface interaction. The penetration of the slave surface into the master surface
is minimised under hard contact conditions. The normal contact constraint is enforced
through a Lagrangian multiplier. The material properties read E = 210 GPa, ν = 0.3,
` = 0.25 mm, and Gc = 2.7 N/mm. Fracture is predicted using the AT1 model and no
split is used for the strain energy density. The model is discretised with more than 120,000
three-dimensional coupled temperature-displacement brick elements. The results obtained
are shown in Figure 9, in terms of phase field φ contours. Cracking initiates from the root
of one of the teeth from the smaller gear and propagates towards the opposite root until
the rupture of the gear teeth.

(a)

(b) (c) (d)

0.0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.0 

φ

Figure 9. Cracking in interacting gears: phase field contours, (a) overall view at an advanced stage of
cracking, and detail at (b) 0.028 + 2× 10−7 rad, (c) 0.028 + 5× 10−7 rad and (d) 0.028 + 9× 10−7 rad.

5. Conclusions

We have presented a unified Abaqus implementation of the phase field fracture
method. Unlike previous works, our implementation requires only one user subrou-
tine, of the user material type (UMAT). This enables avoiding the use of user elements,
with the associated complications in pre- and post-processing, as well as exploiting most
Abaqus’ in-built features. The implementation is compact, requiring only 33 lines of
code in its simpler form, and can be used indistinctly for 2D and 3D problems. It is
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also robust, as both staggered and monolithic solution schemes have been incorporated.
Moreover, the implementation can accommodate any constitutive choice of phase field
model. We present a unified theoretical framework that resembles the code, and par-
ticularize it to three of the most widely used phase field models: AT1, AT2 and PF-CZM.
In addition, several strain energy splits are considered, in the framework of both hybrid
and anisotropic formulations.

We have demonstrated the robustness and capabilities of the framework presented by
addressing several boundary value problems of particular interest. First, we showed that
the PF-CZM version leads to an excellent agreement with the enriched cohesive zone model
analysis by Wells and Sluys [50] of crack nucleation and growth in a beam subjected to three-
point bending. Secondly, we validated the crack trajectories predicted by the AT2 model
with the experimental observations by Schalangen [51] on a concrete beam exhibiting mixed-
mode fracture. Thirdly, we simulated the failure of a mortar plate with an eccentric hole to
showcase the capabilities of the framework in capturing the interaction between cracks
and other defects, as well as the nucleation of secondary cracks. The simulations agree
qualitatively and quantitatively with the results obtained by Ambati et al. [44]. Finally, we
used the AT1 version to model cracking due to the interaction between gears to showcase the
capabilities of the model in dealing with 3D problems incorporating complex computational
features, such as contact and geometric non-linearity. The codes developed have been
made freely available, with examples and documentation at www.empaneda.com/codes.
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Appendix A. Weak Formulation and Finite Element Implementation

The heat transfer analogy enables implementing the phase field fracture method in
Abaqus using only an integration point level user subroutine. Thus, the definition of the
element stiffness matrix Ke and the element residual vector Re are carried out by Abaqus
internally. However, both are provided here for the sake of completeness. Consider the
principle of virtual work presented in Section 2. Decoupling the deformation and fracture
problems, the weak form reads,∫

Ω

{[
g(φ) + κ

]
σ0 : δε

}
dV = 0 . (A1)

∫
Ω

{
g′(φ)δφH+

1
2cw

Gc

[
1
2`

w′(φ)δφ− `∇φ∇δφ

]}
dV = 0 . (A2)

Now let us proceed with the finite element discretisation. Adopting Voig notation, the
nodal variables for the displacement field û, and the phase field φ̂ are interpolated as:

u =
m

∑
i=1

Niûi, φ =
m

∑
i=1

Niφ̂i , (A3)

where Ni is the shape function associated with node i and Ni is the shape function matrix,
a diagonal matrix with Ni in the diagonal terms. Also, m is the total number of nodes per

www.empaneda.com/codes
www.empaneda.com/codes
www.empaneda.com/codes
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element such that ûi =
{

ux, uy, uz
}T and φ̂i respectively denote the displacement and

phase field at node i. Consequently, the associated gradient quantities can be discretised
using the corresponding B-matrices, containing the derivative of the shape functions,
such that:

ε =
m

∑
i=1

Bu
i ûi, ∇φ =

m

∑
i=1

Biφ̂i . (A4)

Considering the discretisation (A3)–(A4), we derive the residuals for each primal
kinematic variable as:

Ru
i =

∫
Ω

{
[g(φ) + κ](Bu

i )
Tσ0

}
dV , (A5)

Rφ
i =

∫
Ω

{
g′(φ)NiH+

Gc

2cw`

[
w′(φ)

2
Ni + `2 (Bi)

T∇φ

]}
dV . (A6)

Finally, the consistent tangent stiffness matrices K are obtained by differentiating the
residuals with respect to the incremental nodal variables as follows:

Ku
ij =

∂Ru
i

∂uj
=
∫

Ω

{
[g(φ) + κ](Bu

i )
TC0 Bu

j

}
dV , (A7)

Kφ
ij =

∂Rφ
i

∂φj
=
∫

Ω

{(
g′′(φ)H+

Gc

4cw`
w′′(φ)

)
Ni Nj +

Gc`

2cw
BT

i Bj

}
dV , (A8)
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