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 

Abstract— It is of great industrial interest and academic 

importance to investigate current harmonics impacts on AC losses 

of superconductors, especially in large scale power devices. 

However, only effect of amplitude of in-phase current harmonics 

on AC loss has been studied in literatures. We numerically 

characterized nonsinusoidal AC loss of superconducting tape 

carrying harmonic currents with orders below 20th versus phase 

angles. A drastic AC loss variation was found when phase angle 

was considered for harmonic components. We observed that 

different harmonic orders show different AC loss profile versus 

phase angle. 

  

Index Terms— AC loss, Harmonic phase angle, HTS tapes, 

Nonsinusoidal current. 

I. INTRODUCTION 

UPERCONDUCTIVITY is a key technology for modernizing 

large scale power components, since high temperature 

superconducting (HTS) devices will bring many advantages 

over their conventional counterparts, such as higher efficiency, 

less energy consumption, compactness, lighter weight, and 

lower loss. HTS technology helps manufacture transformers, 

cables, motors, and generators with higher current density, and 

higher power to weight ratio and torque to weight ratio [1-4].  

AC loss in HTS windings is one of the most critical aspects 

to consider during R&D stage for any large scale HTS electric 

application. AC loss, as a source of heat load, is closely linked 

with the thermal load and efficiency of cryogenic cooling 

system, which adjusts and maintains the operating temperature 

of HTS components [5-6]. It is vital to accurately estimate AC 

losses in HTS devices under real operating conditions for 

designing efficient and reliable cooling system.  

Nowadays, AC/DC converters and nonlinear loads are 

widely used in power grids, industries, and also in different 

transportation systems, including aerospace, railway, and naval 

applications [7-8]. Current harmonics, therefore, are inevitably 

produced inside power system, with different harmonic orders, 

amplitudes, and phase angles as compared to the sinusoidal 
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current waveform at fundamental frequency. Thus, it is 

important to precisely calculate AC losses in superconducting 

devices under nonsinusoidal condition. A number of previous 

literatures reported the nonsinusoidal AC loss analysis of HTS 

tapes under current harmonics at different harmonic orders, 

different amplitudes and total harmonic distortions (THDs) [9-

15]. However, researchers merely considered the in-phase 

harmonic current with fundamental current, and effect of phase 

angle of harmonic current on AC loss behavior needs to be 

addressed.  

In this paper, AC transport loss in a typical HTS tape carrying 

distorted current was modeled by H-formulation in COMSOL 

Multiphysics. The nonsinusoidal AC loss was calculated at 

different carrying current levels, current harmonic amplitudes, 

THDs, and different harmonic phase angles. All odd harmonic 

orders below 20th were considered in this work.  

II. NUMERICAL CALCULATION METHOD 

All calculations were realized using a 2D model in COMSOL 

Multiphysics based on H-formulation [16-18]. Maxwell 

equations, Ohms law, and constitutive law were combined to 

solve the electromagnetic problem in a HTS tape carrying 

harmonic currents, as follows:  

∇ × E = - ∂𝑩 ∂𝑡⁄                                    (1) 

∇ × H = J                                         (2) 

E = ρ J                                           (3) 

B = 𝜇0 𝜇𝑟 H                                       (4) 

𝑬 = 𝐸0 (𝑱 𝐽c⁄ )𝒏                                    (5) 

where, E is electric field, B is magnetic flux density, H is 

magnetic field, J is current density, ρ is resistivity, μ0 is 

permeability of free space, μr is relative permeability, E0 = 1 

μV/cm, Jc is critical current density, and n is power law index.  

The governing equation for solving this electromagnetic 

problem is expressed as follows [16-18]: 
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∂(𝜇0 𝜇𝑟 H) ∂𝑡⁄  + ∇ × (ρ ∇ × H ) = 0                  (6) 

The AC loss Q in the domain Ω is derived as [16-18]: 

Q = 2 ∫  ∫ 𝑬 ·  J  dΩ 𝑑𝑡
𝑆

  𝑇

 𝑇/2
                       (7) 

where S and T are the cross section of tape and period of one 

cycle of applied current, respectively. The AC loss is calculated 

by the integral of power density in the second half cycle, 

knowing that it is from the second half cycle that the 

magnetization process reaches a steady state. 

Table I lists the specifications of the HTS tape used in this 

paper [19-20]. The nonsinusoidal current considered here is 

composed of fundamental current component, and a 

superimposed current harmonic with order k = {3, 5, 7, 9, 11, 

13, 15, 17, 19}. THD is defined as the distortion level of 

transport current by each harmonic current component: 

𝑇𝐻𝐷𝑘 = 𝐼ℎ𝑘/𝐼ℎ1                            (8) 

where THDk = {0.1, 0.2, 0.3, 0.4, and 0.5}. 𝐼ℎ𝑘 is amplitude of 

each current harmonic, and Ih1 represents the amplitude of 

fundamental current harmonic; here, Ih1 was expressed as:  

𝐼ℎ1 =  𝑖𝑚 ∙ 𝐼c                                                    (9) 

where Ic is the critical current of tape and im = {0.1, 0.2, 0.3, 0.4, 

and 0.5}, indicating 10% to 50% of tape Ic. 

To study the effect of phase angle of current harmonics on 

AC loss, the initial phase angle of fundamental current was kept 

as 0° in the calculation, whilst phase angle of each current 

harmonic, φk was varied from 0° to 360° (i.e., 0 to 2π) and 

simulated by every 10°. The instantaneous applied 

nonsinusoidal current, inonsin(t) is formulated as follows: 

𝑖nonsin(𝑡) = 𝐼ℎ1sin(𝜔𝑡) + 𝑇HD𝑘 ∙ 𝐼ℎ1 ∙ sin(𝑘𝜔𝑡 + 𝜑𝑘) (10) 

where 𝜔 = 2π𝑓 and f = 50 Hz. 

III. HARMONIC AC LOSS IN HTS TAPE CARRYING CURRENT 

WITH LOW ORDER HARMONICS  

A. Effect of harmonic phase angle on AC losses  

Figs. 1(a)-(c) report AC losses in HTS tape carrying 

nonsinusoidal current which is distorted by the 3rd, 5th, and 7th 

harmonics, respectively, illustrated against the phase angle φ of 

current harmonic ranging from 0° to 360°, at identical THD = 

0.2, with im varies from 0.2 to 0.5. As it is shown in Figs. 1(a)-

(c), nonsinusoidal AC loss curves is symmetrical at φ = 180°, 

when the current is distorted by the 3rd, the 5th, and the 7th 

harmonic orders with different phase angles.  

At a given phase angle and harmonic order, nonsinusoidal 

AC loss increases with the increase of im, when the current is 

distorted by the 3rd, the 5th or the 7th harmonic. This is due to 

stronger perpendicular magnetic field caused by higher im, as 

explained in [14]. 

Nonsinusoidal AC loss reaches the minimum at φ = 0° and 

the maximum at φ = 180°, in Fig. 1(a) and (c), when tape carries 

current with the 3rd and the 7th harmonic, at a given im and THD 

= 0.2. When 0°< φ < 180°, AC loss increases with the increase 

of φ. The AC loss curve for the 5th harmonic order in Fig. 1(b)  

TABLE I 

SPECIFICATIONS OF HTS TAPE 

Parameter Value Unit 

Thickness of superconducting layer (tsc) 1 µm 

Width of tape (wtape) 3 mm 
Critical current density (Jc0) @ 77 K 1 MA/cm2 

E-J power law factor (n) 25 --- 

 

 
Fig. 1. AC losses in HTS tape carrying distorted current with different im, 

plotted against phase angle φ of current harmonics: the 3rd, the 5th, and the 7th 

harmonics at THDk = 0.2. 
 

is opposite to the trend for the 3rd, and 7th orders, i.e. 

nonsinusoidal AC losses reach the minimum and maximum at 

φ = 180° and 0°, respectively. 

In Figs. 1(b) and (c), nonsinusoidal AC loss is always higher 

than sinusoidal AC loss, when current is distorted with the 5th 

and the 7th harmonic at any phase angle and at fixed THD = 0.2. 

Nonsinusoidal AC loss in Fig. 1(a), however, is higher than 

sinusoidal AC loss, when 50°< φ3 < 310° while it is smaller than 

sinusoidal AC loss, when φ3 < 50° or φ3 > 310°. This is due to 

the fact that superimposing a current harmonic to the sinusoidal 

current alters the current waveform, and thus, either strengthens 

or weakens the peak value of total resultant nonsinusoidal 

current.  

Fig. 2 shows four nonsinusoidal current waveforms distorted 

by the 3rd harmonic when THD3 = 0.2, at φ3 = 0°, 30°, 90°, and 

180°. The sinusoidal current waveform was plotted as well in 

per-unit, as a guideline. The maximum peak of waveforms  
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Fig. 2. Nonsinusoidal current waveforms with the 3rd harmonic at THD3 = 0.2, 

and different phase angles, φ = 0°, 30°, 90°, and 180°, plotted together with 

sinusoidal current waveform in per-unit scale  

 

follows a relation, Imax, φ3 = 0 < Imax, φ3 = 30  < Imax, sine  <Imax, φ3 = 90  

< Imax, φ3 = 180. It is noticed that higher nonsinusoidal AC loss 

occurs at phase angle which leads to higher current peak. 

B. Effect of THD on harmonic AC losses  

Fig. 3(a)-(c) show the nonsinusoidal AC losses in HTS tape 

carrying distorted current with the 3rd, the 5th, and the 7th 

harmonics, at im = 0.3 and φ ranges from 0° to 180°, plotted 

versus THD values. Here, only 0° < φ < 180° was considered, 

due to the aforementioned symmetry in results.  

An interesting phenomenon was observed in Fig. 3(a), that 

when 0° ≤ φ3 ≤ 60°, there exists a minimum AC loss value at a 

specific THD. This minimum occurs at THD3 = 0.2 for φ3 = 0°, 

which agrees with the finding in our previous paper [14]; at φ3 

= 30°, the minimum loss occurs at THD = 0.1. This shows that 

with the increase of φ3, this minimum loss displaces towards 

lower THDs. Actually, it is inferred that when φ3 is low, there 

will be always such a minimum AC loss value at a certain THD 

level. When 60° < φ3 < 300°, AC loss monotonically increases 

with the increase of THD.  

At φ5 = 180° in Fig. 3(b), nonsinusoidal AC loss reduces first 

as THD5 increases from 0; then there appears a minimum AC 

loss when THD5 is around 0.1; after a certain THD5, AC loss 

monotonically increases with the increase of THD5. When φ5 < 

150°, AC loss monotonically increases versus THD. In Fig. 

3(c), however, nonsinusoidal AC loss value monotonically 

increases with increase of THD7, at any phase angle.  

An overview of Figs. 3(a)-(c) was drawn that, the AC loss 

curves versus THD at different phase angles are much more 

scattered for the 3rd harmonics while it is less scattered in case 

of the 7th harmonics. This indicates at a given THD level, 

nonsinusoidal AC loss result in HTS tape get less affected by 

the phase angle of the 7th harmonic order than the 3rd.  

IV. HARMONIC AC LOSS IN HTS TAPE WITH CURRENT 

HARMONIC ORDER BELOW 20TH 

In many large scale power applications, higher order 

harmonics appear in current waveform. For most of these cases, 

especially for grid connected devices, current harmonics below 

1 kHz (below the 20th order), must be considered. It should be  

 
Fig. 3. AC losses in HTS tape carrying distorted current with the 3rd, the 5th, and 

the 7th harmonics plotted against different THDs, at im = 0.3 and different φ 

 

mentioned that the phase angle of the harmonics is practically 

found by applying Fourier Transform to the time domain 

current waveforms, and is not an independent parameter.  

Fig. 4 shows the nonsinusoidal AC losses in HTS tape 

carrying current harmonics with orders below the 20th, plotted 

versus phase angle at im = 0.5 and THDi = 0.3, and compared 

with sinusoidal AC loss results. It was observed that AC losses 

in tape carrying harmonic current with harmonic order of {5, 7, 

9, 11, 13, 15, 17, 19}, are much higher than the sinusoidal AC 

loss at any phase angle. However, AC loss in tape carrying the 

3rd harmonic is lower than sinusoidal AC loss, when 0° < φ3 < 

25° and 335° < φ3 < 360°; whilst AC loss is higher than 

sinusoidal loss when 25° < φ3 < 335°.  

It is found that the maximum nonsinusoidal AC loss in HTS 

tape appears at φ = 180° for harmonic order k = {3, 7, 11, 15, 

19}, and at φ = 0° for harmonic order k = {5, 9, 13, 17}. On the 

contrary, the minimum nonsinusoidal AC loss in HTS tape 

appears at φ = 0° for k = {3, 7, 11, 15, 19}, and at φ = 180° for 

harmonic order k = {5, 9, 13, 17}. Assuming k = (2m-1), where 

m = {2, 3, 4,…}, the maximum AC loss occurs at φ = 0° if m is 

an odd number, and at φ = 180° if m is an even number. 

It was also observed in Fig. 4, as the harmonic order increases, 

nonsinusoidal AC losses in HTS tape converge towards a 

constant value, although the phase angle varies. It indicates AC 

loss gets insusceptible to phase angle at higher harmonic orders. 

This phenomenon is further illustrated in Fig. 5, which shows  
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Fig. 4. Calculated harmonic AC losses in HTS tape carrying current harmonics 
below 20th, plotted against phase angle, at im = 0.5 and THDi = 0.2. 

 

 
Fig. 5. The variation of ratio of nonsinusoidal AC loss in respect to sinusoidal 

one for harmonic orders below 1 kHz at im = 0.5 and THDi = 0.3.  

 

the ηmax = Qmax,hk / Qsine, ratio of the maximum nonsinusoidal 

AC loss under each harmonic order, Qmax,hk, to sinusoidal AC 

loss value, Qsine, at im = 0.5 and THD = 0.3, where k = {3, 5, 7, 

9, 11, 13, 15, 17, 19}. As shown in Fig. 5, ηmax decreases from 

around 3 to 2.55, when harmonic order increases from 3 to 19. 

Fig. 4 and the exponential fit in Fig. 5, clearly show that when 

the harmonic order exceeds 15, Qmax,hk and ηmax tends to get 

constant. This is to say, at higher harmonic orders, the 

maximum nonsinusoidal AC loss is less dependent on harmonic 

order. The loss ratio for higher order harmonics tends to be 

about 2.537 based on curve fitting data in Fig. 5, indicating the 

dependency of AC loss of HTS tape to phase angle as well as 

the harmonic order itself reduces at higher order harmonics. 

   This is a very important finding for thermal load estimation 

in cooling system design (especially considering existing 

technology of cryocoolers with penalty factors of about 15 at 

77 K, and 100 at 20 K respectively) [5-6], since it reduces the 

design complexity when it comes to AC loss calculation for 

final heat load estimation. In addition, it simplifies the 

nonsinusoidal AC loss calculation task, when one considers a 

wide range of harmonics in superconducting windings. 

Nonsinusoidal AC loss could be predicted by a constant value 

for higher order harmonics above 1 kHz, even as a pessimistic 

design. The argument is at higher order harmonics, though the  

 
Fig. 6. Applied nonsinusoidal current containing harmonic orders below 20th at 
im= 0.5, THDi=0.3, and phase angle correspondent to the maximum AC loss. 

 

TABLE II 
HARMONIC SPECTRUM OF DISTORTED CURRENT WAVEFORM 

Harmonic order Amplitude (%) Phase angle (°) 

1st  100 - 26 

5th  25 - 94 
7th  17 - 67 

11th  9 - 67 

13th  5 - 46 
THD % 32 

 
TABLE III 

THE RESULTS OF AC LOSS CALCULATION FOR DISTORTED CURRENT SPECTRUM 

Scenario no. AC loss (J/m/cycle) 

#1 Scenario 4.78 E-6 

#2 Scenario 7.69 E-6 

#3 Scenario  1.55 E-5 
Loss ratio (#2 to #1 Scenario) 1.61 

Loss ratio (#3 to #2 Scenario) 2.02 

Loss ratio (#3 to #1 Scenario) 3.24 

 

number of peaks in each cycle of applied current increases, the 

waveform of currents gets more similarly distorted as depicted 

in Fig. 6. At higher order harmonics, the distorted waveforms 

are modulated very rapidly and converging towards same peak. 

In other words, the harmonic current becomes a ripple on the 

fundamental waveform rather than a huge change in waveform 

itself. 

V. EFFECT OF PHASE ANGLE OF HARMONICS IN A DISTORTED 

CURRENT SPECTRUM ON AC LOSS 

This section demonstrates how AC loss results could be 

affected, if the phase angle of current harmonics is not well 

considered. Three scenarios were chosen and compared to 

achieve this goal: #1) pure sinusoidal current. #2) a current 

harmonic spectrum, but all harmonic orders are in-phase with 

fundamental order. #3) a current harmonic spectrum 

considering phase angle of each individual harmonic order.  

For this purpose, a real current spectrum was considered. 

Table II shows the harmonic spectrum of a transformer current 

waveform which supplies plug-in electric vehicle chargers [21]. 

This current harmonic spectrum was applied to the HTS tape 

under the three aforementioned scenarios, and the sinusoidal 

and nonsinusoidal AC losses were calculated and reported in 
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Table III. As it can be seen from Table III, nonsinusoidal AC 

loss of both #2 and #3 scenarios when current is distorted is 

much higher than sinusoidal AC loss. In addition, with/without 

considering the harmonic phase angle, AC loss increases by 

3.24 and 2.02 times of that of sinusoidal value. It is found that 

conventional harmonic analysis modeling approach without 

considering phase angle of each harmonic order leads to a 

tremendous underestimation of AC loss value, and as a 

consequence, underestimation of heat load for cooling system. 

VI. CONCLUSION 

In this work, we numerically investigated the AC loss 

characterization in HTS tape carrying harmonic currents with 

orders below 20th, considering the phase angles φ varies from 0 

to 2π, based on H-formulation in COMSOL Multiphysics. 

Effect of harmonic amplitude and THD on AC loss behavior 

were also considered. The conclusions are summarized as 

follows:  

1) Different phase angles change the maximum amplitude of 

the resultant nonsinusoidal current. When the maximum 

amplitude of the resultant current is bigger, nonsinusoidal AC 

loss in HTS tape is higher in that corresponding phase angle. 

2) The nonsinusoidal AC loss might be lower than that of 

sinusoidal, when the phase angle falls in a certain range.  

3) In case of nonsinusoidal current with 3rd harmonics, with 

the increase of φ3, the minimum loss displaces towards lower 

THDs. But meeting this minimum is also phase angle 

dependent. 

4) Assuming the harmonic order k = (2m-1), where k <20 and 

m = {2, 3, 4, 5, 6, 7, 8, 9, 10}, at a given harmonic amplitude 

and im, the maximum nonsinusoidal AC loss appears at φ = 180° 

if m is an even number, and at φ = 0° if m is an odd number, 

when HTS tape carrying a single current harmonic component.  

5) At higher current harmonic orders, nonsinusoidal AC loss 

is less phase angle dependent, compared to lower orders. It 

indicates AC loss gets unsusceptible to phase angle at higher 

harmonic order.  

This study investigates the effect of harmonic phase angle, 

harmonic orders up to the 19th, and harmonic amplitude on AC 

losses of HTS coated conductor, when the current contains one 

harmonic component, and also builds a fundamental 

understanding on the influencing aspects of nonsinusoidal AC 

loss. In the future, we will carry out the AC loss investigation 

of current spectrum which consists of multiple harmonic 

components.  
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