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NON-DEGENERACY OF MULTI-BUBBLING SOLUTIONS FOR THE
PRESCRIBED SCALAR CURVATURE EQUATIONS AND
APPLICATIONS

YUXIA GUO, MONICA MUSSO, SHUANGJIE PENG AND SHUSEN YAN

ABSTRACT. We consider the following prescribed scalar curvature equations in RY

~Au=K(y)u® !, u>0 mnRY, we DVHRY), (0.1)
where K (r) is a positive function, 2* = % We first prove a non-degeneracy result

for the positive multi-bubbling solutions constructed in [26] by using the local Pohozaev
identities. Then we use this non-degeneracy result to glue together bubbles with different
concentration rate to obtain new solutions.

1. INTRODUCTION

It is well known that by using the stereo-graphic projection, the prescribed scalar cur-
vature problem on SV can be changed to the following equation:

—Au=Kyu*', u>0 inRY wue D"}RY). (1.1)

Here 2* = ]\2,—% and N > 3. In the last three decades, enormous efforts have been devoted
to the study of (1.1). We refer the readers to [1]-[11], [16]-[27] and the references therein.
If K(y) is radial, infinitely many non-radial solutions are constructed in [26] for

~Au=K(y)u* ™, u>0 inRY, wuec D"¥R"Y), (1.2)

under the following assumption on K (7):
(K): There are 1o > 0 and ¢y > 0, such that

K(r) = K(ro) — co(r —r0)> + O(|r —rol®), 7€ (rg — 0,70+ 9). (1.3)

Without loss of generality, we may assume that K (rq) = 1. Let us briefly discuss the main
results in [26].
It is well known ( see [2, 25] ) that all solutions to the following problem

~Au=v""" u>0 inRY, ue D"RY) (1.4)

are given by
N-—2
C 2
U u(y) = B v, ¢ €RY, u>0, (1.5)
1+ p?ly —2P) =
where cy is a constant depending on N. Let k£ be an integer number and consider the
vertices of a regular polygon with & edges in the (y1, yo)-plane given by

20j — 1 20j — 1
2 = U - >7T,rsin—1(]k )W,()), =1,k

T = (7" Ccos
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where 0 denotes the zero vector in RV=2 and r € [rg — §,r¢ +d]. For any point y € RV, we
set y = (y,vy"), v € R?, ' € RN2, Define

Hsz{u:uis even in y,,h =2,--- , N,

rsin(f + 27U) y”)}

2
u(rcosf,rsinb,y") = u(r cos(d + u ’

)
and

k
Z Ux] o

7j=1
where 1 > 0 is large. For a function v € H, N D?(RY), we introduce the norm |jul|, as

follows:
N72

D) -1
u *: su ul\y )
Jull- = sup Ju ( = —)

1+uw—x|

where 7 is any fixed number in ( %— 1+ 0) 6 > 0 is a small constant. The result obtained
in [26] states the following:

Theorem A. Suppose that K(r) satisfies (K) and N > 5. Then there is an integer
ko > 0, such that for any integer k > ko, (1.2) has a solution uy of the form

U = WTk,/ik (y) + W,

where wy, € Hy N DY(RY), and as k — 400, |ry, — ro| = O(P—Liﬂ—g), [ ~ kN
k

1
Hwﬂh==0(;5$)
for some o > 0.

The solutions predicted in Theorem A are obtained by gluing together a very large
number of basic profiles (1.5) centered at the vertices of a regular polygon with a large
number of edges, and scaled with a parameter y that, as k is taken large, diverges to +oo.
The main term W,, #k( ) of the solution wu; depends on y” radially. To obtain a solution
which depends on y” radially, we can carry out the reduction procedure in the following

space
DI’Q(RN) N {u s is even in yo; u(y',y") = u(y/, |y"]),

2my 2
u(rcosf,rsinb, y") = u(r cos(d + %) rsin(f + Zﬂ) y”)},

to ensure that the error term wy, also depends on y” radially.

A direct consequence of the proof in [13], together with the estimates in section 2, is that
the solution satisfying the conditions in Theorem A is unique. In particular, such solution
must be radial in y”-variable.

Of course, we can also find a solution with n-bubbles, whose centers lie near the circle
ly| = 7o in the (ys3,ys4)-plane. The question we want to discuss in this paper is whether
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these two solutions can be glued together to give rise to a new type of solutions. In other
words, we are interested in finding a new solution to (1.1) whose shape is, at main order,

k n
ur Y Uppt > Upas (1.6)
j=1 i=1

for k and n large integers, where
2(j — D
k
2(j —1 2(j —1
(J )”,tsm (—Dm
n n

x; = (7’ CoS , T sin

pj:<0707tcos aov"'v())v j:17"'7n7

and r and t are close to 9. Equation (1.1) is the Euler-Lagrange equation associated to
the energy functional

2%

rw =3 [ v =5 [ K@l

Thus, roughly speaking, a function of the form (1.6) is an approximate solution to (1.1)
provided that the radii r, ¢ and the parameters p and A\ are such that

k n
IO Usyut Y Upa) ~0.
j=1 Jj=1

Having in mind that g, A — oo, and r,t ~ rq, one easily gets that

I(i Up o+ i Upj,g
= P

By | B s Bk 7? By | B 3 (1.7)
:(kj—Fn)A—i—kZ(?—f‘ﬁ(uTo—T) — ,uN_Q >+I€O<#2+U+E(MT’0—T) )
By B 9 B37’LN72 B B, 3
(5 + 3O =07 = S5 +10(5ms + 30— 07°),

where A = 3 [on [VUo1? — 55 [en Ugy, Bi, Bz and By are some positive constants, and
o > 0 is a small constant. Observe now that, if n >> k, then the two terms in (1.7) are of
different order, which makes it complicated to find a critical point for I. Therefore, it is
very difficult to use a reduction argument to construct solutions of the form (1.6). In fact,
this approach has been successfully used in [22] (see also [12] and [23]) to construct finite
energy sign-changing solutions in the case K(y) = 1, namely

—Au = |ul* 2u, in RY u e DY?(RY).

In this paper, we propose an alternative approach and we consider the above problem
from completely different point of view. Recall that our aim is to glue n-bubbles, whose
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centers lie in the circle |y| = 7 in the (y3, y4)-plane to the k-bubbling solution uy described
in Theorem A. The linear operator for such problem is

Qe = 06— (2~ DEW)(u+ Y 0,0) €
j=1

Away from the points p;, the operator (),, can be approximated by the linearized operator
around uyg, defined by:

Lyé = —A& — (2" = DK (y)uy €. (1.8)
The new approach we propose is to build the solution with k-bubbles in the (y;, y2)-plane
and n-bubbles in the (ys,y4)-plane as a perturbation of the solution with the k-bubbles
in the (y1,y2)-plane. In order to do so, an essential step is to understand the spectral
properties of the liner operator L, and study its invertibility in some suitable space.

The main result of this paper is the following.

Theorem 1.1. Assume N > 5. Suppose that K(y) satisfies (K) and
1
AK — (AK + §(AK),)T‘ #0 atr=r.
Let £ € H,N DY2(RY) be a solution of L& = 0. Then & = 0.

A direct consequence of Theorem 1.1 is the following result for the existence of new
solutions.

Theorem 1.2. Suppose that K(r) satisfies the assumptions in Theorem 1.1 and N > 7.
Let uy, be a solution in Theorem A and k > 0 is a large even number. Then there is an
integer ng > 0, depending on k, such that for any even number n > ny, (1.2) has a solution
of the form (1.6) for some t, — 1o and X\, ~ nN=i |

Local uniqueness of single bubbling solutions for elliptic problems with critical growth
was first studied in [14] by using a degree-counting method, while in [13, 15|, the au-
thors used the local Pohozaev identities to deal with the local uniqueness problem for
multi-bubbling solutions. The use of the local Pohozaev identities not only simplifies the
estimates, but it also makes it possible to study the local uniqueness of solutions with
large numbers of bubbles. It is well known that the non-degeneracy of the solution and
the uniqueness of such solution are two very closely related problems. In this paper, we
shall show that the local Pohozaev identities also play an important role in the study of
the non-degeneracy of the multi-bubbling solutions.

This paper is organized as follows. In section 2, we shall prove the main theorem by
using the local Pohozaev identities. As an application of this main result, new solutions
for (1.2) are constructed in section 3.

2. THE NON-DEGENERACY OF THE SOLUTIONS

Let
—Au = K(|ylu? ", (2.1)
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and
—A¢ = (2" - 1)K (|y|)w
Assume that  is a smooth domain in RY. We have the following identities.

Lemma 2.1. It holds

du € IE Ou / / 3
- a. - o Vu, V&, — K( v
a0 OV Oy; aq Ov 0y; 8Q< £) (lyhu” ¢

:_/UQ*—158K(’3J|>
Q Oy ’

and

1;24aVK<> ~ o)

= [ K(yhu* "¢y — x0)
o
0 0
[ ey - s+ [ Sy~ [ (Vu VO a)
o0 o0 o0N
N -2 N—2 9
T 6—*"7ri/ “ou

Proof. Proof of (2.3). We have
9
/ ( Auayz = Ag)ay)
_ § .y, Ou
= [ K (5 2= e e,

It is easy to check that

«_q O . -~
[ R (55 4 = e
_ o(u* ") _ -1, 0K (ly]) 21y
= [ ™5 == [ [ (e e

y; 9]
o€ ou
—A —A
/Q< "oy, * Qﬁyi)
S T ST
o0 OV Oy Jo Oy; 0ui0y;  Jaq Ov Dy~ Jq Oy; 0y;dy;
__/ (9u8§ %aqu/a(auag)
00 OV 0y Joq Ov Oy; dy; \y; Oy;
ou 0& 0& Ou

= — - —|— VU, Vf Vi-
a0 3” ayz aq OV Oy; aQ< >

Moreover,

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)
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So we have proved (2.3).
Proof of (2.4). We have

[ (~8u(Vey =20 + (-20)(Tu,y — a0)

(2.8)
/ K () (w2 €y — o) + (27 = D 2(Vu,y — o).
It is easy to see that
KD (s Ty = ) + (2 = D (Vo y — )
— [ K1),y - w0 )
= [ Ko ey — )~ [ TR @y ) - N [ Ky,
00 Q o
where v is the outward unit normal of 02 at y € 9. Moreover,
/Q<_AU<V§7 y—xo) + (—A(Vu,y — xo))
0 O, 0%
== 698u<V§y o) + au ,y x0>—|—/<Vu V§)
23
_ , ay(VU y — o) + ay] <V yj ZE0> —I—/Q<Vu, V§> (2.10)
_ Ou 3
=/ 5, V&Y — 20) = - 5, (VY — +/89<vu,vg><y,y_%>
- N Vu,VE).
+2=N) [ (Vu.vE)
We also have
> [ Kl e = [ (~eau+u(-29)
) ’ (2.11)

ou 0¢
= Vu.VE) — 7 i)
2/Q< o €> /39537/ aﬂuaV,

<Vu V) = K (|y)u? *15+ ! 5— +3 L 85. (2.12)
ov 81/

Thus, the result follows.

which gives
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We will use the results of Lemma 2.1 to establish a fine estimate on the k-bubbling
solution of (1.2) uy obtained in Theorem A. We define the norms as

-1
>N22+r> |

N72

k
Jull. = sup Juy)l(3

yERN o 1+ uk|y — Tgj

and
¢ vy 1
M B
e = sup 17 ()] ( )
yeRN le (1+ pukly — way) 2+
where xy; = (1 cos @,rk sin @,O). Here 7 is any fixed number in (N—:;l, 1+46),
6 > 0 is a small constant. With such choice, noting g ~ k%, we find
k ’T
> Sehec
= uklxk,] Tra|)T prlld
Let
— (y/a O) Tk,j ™
Q‘:{yz(y',y")€R2xRN 2:< , ’]>ZCOS—}.
! '] |kl k
We define the linear operator
Li§ = —A& — (2" = DK (|yl)ui €. (2.13)

First, we prove the following lemma.

Lemma 2.2. There exists a constant C > 0 such that

N-2

k 2
Hy
lur(y)| < C
‘ ;(1+Nk|

for all y e RY.

Y — Tg,j )N_Q’

N —

Proof. Let @x(y) = p, ° ug(y;'y). Then

N

—Ady = K ty)ag
We have

. 1 1 N9t
g (y) = /RN WK(Mklz)ui '(2) dz.
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By Theorem A, we find

R
k 2% 1

= ( )

o S e
<C ( ) -
o e |Z—y|N 2;<1+\z_xk ) F e R ; rwﬂ

k

1

SC (N+2)(t—71) ?

Tty — @)

where %y, ; = gy ;, and 71 € (N ,7). Noting that
N—2+7_ N (N +2)(r—m7) _ N—2+T+4(T—T1) - N_2+7'
2 ! N -2 2 N -2 2 ’

we can continue this process to prove the result.

U

We now prove Theorem 1.1, arguing by contradiction. Suppose that there are k,, — +o0,
satisfying ||&,.]|« = 1, and

Ly, &m = 0. (2.14)
Let
¢ -85 -1
Em(Y) = ty,, * Em (b, ¥ + Tk 1): (2.15)
Lemma 2.3. It holds
Em = botho + b1, (2.16)
uniformly in C*(Bg(0)) for any R > 0, where by and by are some constants,
8U0 u (‘9Uo 1 .
= : i = : 5 — 17 ceey N

Proof. In view of ]fm\ < C, we may assume that &, — & in Cioe(RN). Then ¢ satisfies

—AE= (2" = 1DU* 7%, inRY, (2.17)
which gives
N
¢ = Zbi@yi' (2.18)
=0

Since &, is even in y;, 1 =2,--- , N, it holds b; =0,7=2,--- | N.
O
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We decompose

koU

Ll ,j Mkm

—bm $kaMkm+bm _|_*7
Em( 0. ke ]Zl D, 1mhg,, ]Zl or Em

where £, satisfies

UQ*—l akam JoHkm 5 U2*—1 ankm JorHkm 5
RN Lk ,jHkm 8#1@ RN Tk, j Hkm
m

It follows from Lemma 2.3 that by ,, and b, ,, are bounded.

Lemma 2.4. It holds
1€l < Crg ™,

where o > 0 s a small constant.
Proof. 1t is easy to see that
Ly, &, = — A&, — (2" = DK (Jy)ui, 26,
k
. i oU,, . L oU,,
— — (2" = D) (K(Jy]) - 1)uZ 2 Z (bo,mukm —5;k P by g )

: or
J=1

k
* oU,, . U,
S U ) g it ),

km
Similar to the proof of Lemma 2.5 in [26], we can prove

k
e oU,, . oU,, .
2% -2 kadﬂu‘km -1 mka’“’km
[ ot = 202 D (o, gt ] =it

‘= - or

2*71
S(ETERY ZUMMM

Without loss of generahty, we assume y € (2. Now we have

k
- y ouU. oU.
2% -2 2% _9 Lhm,1rHkm -1 Thopy, 1skkym,
L N | T |
i=1 m

ok

< CM—l 0'

sk

<CU2 —2

Loy, 17/'Lk:m ka JoHkm

N+2

.,
(14 pty, |y — T

<C

)3T 4 ) T

N+2

Clu“krj —1—0
g N 2
(14 ptio |y — Tppn|) 2 17
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and

_ oU,,, . oU,,, .
2 2 *— Lk, g 1Hkm - Lhm,jHkm
(5 ) =022 ) i gt g )|

k km
2% _9 2% -2
<Y (U2 + O Vi)™ ) Ui
=2 =2
k 2
= Tl 15k 4— A1 |7 Thm,jokkm
s (1 + |y — @hp1])" 52
N+2
Cpy,? ,ufl o
g
T (L o [y — T ]) 2
So we have proved
k km
252 2% _9 2 e[
) V22 Y (i, Pt g Pt
H Zl((lzl ka,zu“‘km) Ll ,jsHkm O’m'ukm al’tkm l’n'ukm ar %
</,L71 o2

It is also easy to prove

k

= bm . oU,, . oU,, .
*— 2 2 T m,J> m - z m,J? m
H Z (uZm - Z g ) (bo’mukm (;,Uk] o b, k@rj - )
j=1 "

k%

Fm 2%—2
SH(Z kamdn“’km) ka”* < CHU)k H < CIU/_l U
=1

Moreover, from

U2*71 aU‘ka ]7Mkm€ U2*71 aUmkm,jhu‘km * 0
RN Loy, j s Mkm, aﬂkm RN Lk, j o Hkm or m )

and Lemma 2.2, we can prove that there exists p > 0, such that

[k &l v = PlIE 5

Thus, the result follows.

Lemma 2.5. If AK — (AK + $(AK)')r # 0 at r = rg, then

Em — 0 (2.19)
uniformly in C*(Bg(0)) for any R > 0
Proof. Step 1. Recall that
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/ O .
Qj:{y:(y’7y”)€R2 x RN=2. <(y, ) xk’]>ZCOSE}.

17 |2l k
To prove by, — 0, we apply the identities in Lemma 2.1 in the domain ;:
Oug,,, Om / 0&m Ouy, 2% —1
— ——— — -+ Vg, , VEn v — K(|ly|)uy —&ny
/89 v Oy a0, OV Oy 391< ; > ' o (Iv]) Fom '
:_/ 2% *1§maK<|yD
(o)) O

(2.20)
Now we estimate the left hand side of (2.20). By the symmetry, =0 and 85’” =0

on 0. So

8uk 85nl &/n 8€nzauk J/
— T — —_— =+ Vv , V&
/891 dv  Oy; IOl ov Oy, 691< Ui VS >V1

— K(lyhui, " &mmn
a0,

(2.21)
:/ <Vukm,V§m>V1—/ K(|y|)uz;_1§mu1
o0 o
. 2% —1
=— sm—< <Vukm,V§m> K(|y|)ug m)
km/ o0 o0
Combining (2.21) and (2.20), we obtain
sink—(/ (Vag,,, Vém) — / K(ly)ui, m>
(2.22)

:/ 2—1§ 8K(|y|)
Q " 3y1

To estimate the left hand side in (2.22), we use (2.4) in €. Using the symmetry, we
obtain

| VR W),y = )
. (2.23)

— [ Kyl ety — vn) - /8 (Vur, . V) ry — 2s).
Q1

Pl
On 09y, it holds (v,y) =0,

(v, T, 1) = —sin T

K
Thus, (2.23) becomes
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/Q 6 (V)5 k)

_ (2.24)
=sin— ([ K(yDuf e — [ (Vun, VEn)).
m o0 o001
Combining (2.22) and (2.24), we obtain
. 0K .
| e 2 [ e (TG — ) (2.25)
Ql yl Q1
Since VK (xy,,,1) = O(||zk,, 1| — ro|) = O(p, %), and
9% _1 N;2 2% -1
/ Uk, 5m:/ </% ukm(:“’k Y+ T )) Em
B )y, 10k,
. _N-2 2.26
= [ O (ot b s, T i+ ,0) + Ot P2
R
=0 (1, ),
where (Q)a, . =4y 0ty 4 Tp,0 € Qi ), we find
1, 9K(y)
wr e
/Ql & oy
*_ OK(y) aK($k 1) 2
— 2*—1 " . ™ 0] 2—20
/Ql uk‘m 5 ( ayl ayl >+ (lukm )
o 2*—1 m, - 2 m, - o
—/Ql (0 §m<<V—ay1 'Y $km,1> <V —3311 (Y = Thp1)s Y ifkm,1>
Oy = wh,al?) ) + O *)
- OK (zy,,1) Y OK (zy,,1) ¥y Yy
= | U (bomto + bim v = v?
/RN (Bomto +brnt) << oy 7Mkm> 2< OYr by My,
+O(p ™)
OAK (z,, 1)
K”(:L‘k 1)b 1 2% _1 8—m’bm,0/ *_ _
— ™ m, U Y1 U2 1 2 O 2—0o
TR wller—?N/iim o Yolyl” + O(pg,. %)
(2.27)

On the other hand, we have
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/Q W2 (VE (), — i)
_ /Q W 1 (VI (y) — VE (21,01),y — T1) + O 27)
:/ up, e (V2K (21,,1) (Y = Thp1) Y — Tip1) + O(p1277) (2.28)
Q1

= /N U ! (bomto + bimthr) (VK (@)1 s i y) + O(127°)
R

_ b(),mAK(l‘ka)

e " U olyl? + O, > 7).
km

Therefore, (2.27) and (2.28) give

/ UQ*_1¢0|ZU|2 OAK Ty 1)
K// —— Pm,o/ 1
bma = = = ( (f\f’"’l) Yoo+ O( 755 (229)
P K" (1,0 0) | UF b b
RN
Step 2. Next, we use (2.4) to obtain
/ N up (VK (y), y) =0, (2.30)
R
which gives
/ up (VK (y),y) = 0. (2.31)
951

On the other hand, proceeding as in the proof of (2.26), we find

/Q ui;’1§m<vf(($km,1)y Y)

:/ Ui;71§m<VK($km,1)7y—%km,ﬁ +/ Ui:lfm<VK($km,1)7ka,1>
951

951
=0(u27%).
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So from (2.29),

/Q up (VK (y),y)
:/Q uz;_lgm(VK(y) — VK (xg,1),y) + O(HEZ_J)
:/Q uz;_lfm(VQK(kayl)(y — Tp 1), Y) + O(uzj_”)

= / L UZ T (bomto + bumtor) (VK (@) i, U 1 8+ 1) + O30
R

b mAK X m * _ *__
== 5 - 1)/ U? 1¢0|y|2+b1,mﬂki/ U 1 (V2K (@,1)Ys Thp 1 )
N,ukm RN RN
+ O(N_2_U) (2.32)
km
bo m AK (g, . _ .
=2 N 5 i 1)/ U? 1¢o|y|2+b1,m,uk1K"(SBkm,1)|$km,1’/ U* My
/“Lkm RN RN
+ O (277
N/,Lim RN
OAK (,, 1)
_ <K”(37km,1) 1 8lec 1 ) / U2*—1w0‘y|2|$km,1|b0,m
N 2N RN /,Lim
+ O (277
Since AK — (AK + 3(AK)')r # 0 at r = rg, we find
bo,m = O(Ni;,ll) = o(1).
S0 by = 0(1).
O
Proof of Theorem 1.1. We have
% 1 *
) = (@ = 1) [ s K (el ) () 239
By [2 = Yl

Now we estimate
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[ @t

b s
<C|[&ml« / 222 Y Fin _
‘ j=1 (]- + ,ukm|Z — kaJDT""e
N-—2
02
<Cllel. Z I
+ e, [y — ka,j’)TJﬁw’
for some 6 > 0. So we obtam
b =
s
|€m(y)| < CkaH =1 (I+pkp, Y=k, 5) N2 19
km N2 N2
My, i,
j=1 (I [y—r 4 )T =1 (1+ukm|y—ka,j\)¥”

Since &y — 0 in By, -1 (2k,, ;) and [|&n]l« = 1, we know that

[6m (y)|

N-2
S

m
o

1 (o, [Y =Ty, ]\)

. . . . N m
attains its maximum in RY \ UJ:lBRNE,fL (xk,, ;). Thus

[1€mll« < o(D)1&mll+-

So [[€mll« — 0 as m — 4o00. This is a contradiction to ||&, ||« = 1.

3. PROOF OF THE MAIN RESULT

Let ug be the k-bubbling solutions in Theorem A, where k > 0 is a large even integer.

Since k is even, wy is even in each y;, 7 = 1,--- ,N. Moreover, v is radial in y” =
(y?n U >yN)-
Let n > k be a large even integer. Set
2(7—1 2(7—1
= <0,0,tcos U )W,tsin U M,O), j =1, ,n,
n n

where t is close to ryg.
Define

Xs:{u w € Hg,uiseven iny,,h=1,--- | N,
21y

=)}

2m
w(y1, Y2, tcos B, tsin 0, y*) = u(yy, ya, t cos(d + —‘7) tsin(6 +

Here y* = (ys, -+ ,Yn).
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Let

(0707y3ay4707'”70) p_]>

‘DJ = {y = (ylay37y47y*) S RQ X RQ X RN_4 : < ’
(3, ya)| D)l

> CcoS —

3

Note that both u; and Z?Zl Up, . belong to X, while u and Z?Zl Uy, are separated

from each other. We aim to construct a solution for (1.2) of the form

u:uk%—ZUpj,,\%—f,

Jj=1

where ¢ € X is a small perturbed term.
We define the linear operator

Qnf = —AE— (27 — 1)K(|y|)(uk + Z Upj,)\)Q*_% § € X,.
j=1

We can regard @),¢ as a function in X, such that

(Qué,0) = /R (Veve— 2 = DE(yD (e + Y Upa) 60), & o€ X..
j=1

Let
8Upj A 8UpM

7.1 = A =Tk Zo =
7,1 87’ y ) ) s vy 7,2 a)\

Let h, € X,. Consider

2 n
ann - hn + z Qp 5 Z Zj,i7
i=1 j=1
&n € X,
/ UpN2Zii6n =0, i=1,2, j=1,---,n,
RN
for some constants a,,;, depending on &,,.
Lemma 3.1. Assume that &, solve (3.3). If ||hy||pr2 — 0, then ||| pre — 0.

Proof. For simplicity, we will use ||u|| to denote ||u||p1.2.

(3.1)

(3.2)

We argue by contradiction. Suppose that there are p,, ;, A,, h, and &,, satisfying (3.3),
A = +00, |||l = 0 and ||&,]| > ¢ > 0. We may assume ||&,[|?> = n. Then ||h,||> = o(n).

First, we estimate a,;. We have

2 n
Z Qni Z /RN U;;J_-?)\Zj,izl,l = (Qnén — T, Z11).
=1 j=1
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It holds

(s Zva) = [ Vho Y VZ1i(2 + puyj)

Dy sy

:O((/D1 |th!2>é/Dl<’éVZu(z + D)

where 7(l) = 1if [ =1, while 7(l) = —1if [ = 2.
On the other hand,

n 2% -2
[ Qutzu= =0 [ (U3 =KD (et V) )6
j=1

In view of

) = o0,

C

ur(y)| < 5=
(1+ [yhN—
we can prove

[ ez =o([ el 3" 12tz + )]
RN Dy j=1

_ 2% —2 /\7% _ 7(1)
O( |£7’L| (1 +)\n|y —pn71|)N—2—T> — 0()\71 )

As a result,

Qng’nzl,l
RN

=(2" - 1) / (U233, = KD (X Upyr)” )00+ o)
j=1

=2 - 1) /D (U223, = KD Unsn)™ )6 2 Zualz + pug) + oY)
j=1

j=1
—o(ATD).

Moreover, it holds
3 / UZR 232 = N (A (1)
j=17R

for some constant A # 0. So we have proved a,; = o(A, ™).
From [, Uzn ;’QnZ &, = 0, it is easy to prove that

N

)\n 5 <>\ y+pn]) 07 in Hlloc(RN)'



18 YUXIA GUO, MONICA MUSSO, SHUANGJIE PENG AND SHUSEN YAN

Moreover, since %ﬁgn is bounded in D*?(R"), we can assume that

1
%@ — ¢, weakly in DY?(RY),

and

1
—¢&, = &, strongly in L2 _(RM).

vn
Thus, & satisfies
SAE - (2~ DE(lyuZ 2 =0, inRY,
By Theorem 1.1, £ = 0. Therefore,

/ Uk+ZUPnJ 2*_2 n

- 2% -2
_/ (uk + Z Upn,j)\n> 5721 + o(n)
RN\(Br(0)U(U7_1 B, ~1(Pn.5)) j=1

n
2% 9
—n / (e + 3 Uy yn) 7262 4 o).
Di\(Br(O)U(U}_ Bpss ~1(Pn.3)) j=1
For y € Dy, it holds
En: Uy s (y) = Uy () + 207 O !
pn,'7>\n y - Pn,h)\n y + n < N—2—7'>.
j:1 ! (1 +)‘n|y_pn,1|)

Therefore, using (3.4), we obtain

2*—2
/ W+Z%w %
DIN(BR(0)U(UF1 B g1 (Pn.j)))

< | (4 U2, )68
Di\(Br(0)U(U}_

Byt ()
)\u
2 2% -2
v () @
DI\(BR(O)U(UL ) N Anly = poa )N

=o(1).

We also have

R)\ 1(pnj

<hnv §n> = O(TL),

(3 2nes) =00

and
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So we obtain

[ vel

:O</RN (Uk +§Upn,j7>\n>2*2&%> + <hn;€n> + /RN éanz<é Zj,i>§n>

=o(n).

This is a contradiction.

g

From now on, we assume that N > 7. We want to construct a solution u for (1.2) with

u:uk%—ZUpM\%—w,

j=1

where w € X is a small perturbed term, satisfying
/ Uy Zjw=0, j=1,--,n1=1.2
RN

Then w satisfies

where
- -l 2% 1 - 2% 1
b= K (e + D Upn) = Klhuf = = DU (3.6)
j=1 j=1
and

2% —1

Ral®) =K () (e + 3" U+ €)= Ko (w4 3 0y0)
o § o = (3.7)
=@ = DK (e 3 Una) €

We have the following estimate for ||,]|.

Lemma 3.2. There is a small o > 0, such that

Cvn
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Proof. Write

|y’ < we + Z Up], 2 -1 ui*71 . (Z Upj,)\)2*_1>

+ QU T =D U
j=1

J=1

K(yl) = 1) (3 Up0)*

::Jl + JQ + Jg.
Fory € DN B, _4(p1), we have
U S CUpl,)\.
So for any 6, 0 € (0,1),

n

|J1] SO(Z Upj)\)z*_Quk + u,z -1

J=1

<OU2 A U +Uk +C(2Upj7>\)2*72uk
j=2

2*—2..9
Up17

gCU§3“9+CX§:U@A)

j=2

Take 0 = 2(N 2) + 01, where #; > 0 is small. Then Y2 _]\2]:‘;)(]\[_2) > N. Thus
1

25240 220\ 15 2+ 2
— 2¥ 1 *
/ U252+ g(/ Ui ) (/ o)
DiNB 1 (p1) DinB _ 1 (p1) D,

A2 A2

C NF _ Cnitw
Sm(/ Els > Smﬂcbﬂ
A Dy )\

Cn-2tw Cn~
= <NMJWH_ 1UHM
/\ +1— ALt

if 6; > 0 is small.
For y € Dy, we have

" %
> Uy < E:
= ”A_G+Aw—m (N=2)(A-m1) Mp—p1 —2m

C)\T
(1+/\|y p1|)( 2)(1-m1)’
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where 7 = (]QV 24)2 Hence

n

(Z UPM)Q*

Jj=2

Thus

-2

21

»

A2

Um_c((

9
/ |w§ﬂ% Up.a
DiNB 1 (pl
A2

/\T

2*

SC(/DIHBA%(M) <(
S;Q%EQLW

Cn~z
< ol

L+ Aly — p|)(N=20=m)

)

2*>21* _ C

1

N
A ;2(1_2(1*71))_

if #; > 0 is small. So we have proved

/ | Ji¢| = ”/
Ui (Dijk_% (ps)) DinB

~1
A2

For y e RN\ U, (D; N B (pj)), we have

Thus

i Upj7,\ S C’uk

Jj=1

9
2

(p1)

2* —2+6
1—{—)\|y p1|)( 2)(1- Tl)) '

Take 6 = ﬁ(zgjfl) -4+ 81), where 6; > 0 is small. Then 2 “2ON-2)(Am) o

N+2

(2% —2+0)

(S o)

(), o)

Cnz
19] < Sllol

1| <CuZ 2 Z Upa+ (O Upa)" ™
=1 i=1

. n C n
<Cuj Y Upr < — > Uy
F 2 U S e 2

For N > 7,

nlel<c [ 30,00
/RN\U;?_I(DJ-OB)\_%(pj))‘ el RNZ i

<o < S22 1o,
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For y € Dy, we have

n

> Urst < Cury? Z Up,
=2

7j=2

and

U, <
2 U STy =l 2 i, — pu 307

j=2
< C)\¥ (nN72)1_9
—(1+)\|y_p1|)(N—2)9 AV-2 ’

As a result,
ON7 nN=2\1-6
(1+ Ay —p |)4+N—29()\N—2> , Y€ DL

Therefore, for any 6 > 0 satisfying 6 > it holds

[ 12l :”/Dl 1)

|Jo] <

2(N 2)’

L* 1 onNT2\1-0
<o (55)  lol

N-—-2 1

Note that A ~ n~=1. Take § = +91, where 6 > 0 is small. Then 1—60 = 1+ %5 —6.
This gives

17% n 1-0 17% 1
no 2 ( ) <Cn 2 209

< Cy\/nn~ < C\/n

SR A

It is also easy to check

[ o= [ o < S o)

Cnl=2 Cvn
<O g < S,

We also need the following lemma.

Lemma 3.3.
IR ()| < Clg|mnt =12,
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Moreover,

IRa(&1) = Ra(@)ll < C 61" 720 4 g -2 g, — &)

Proof. The proof of this lemma is standard and can be found in [26]. Thus we omit it. [

We consider the following problem:

Qnn = ln +R(§n)+zamz G

=1

on € X, (3.8)
/N U;T;ZJ,lgn = 0, j: 17 , M, | = 1’2
R
Using Lemmas 3.1, 3.2 and 3.3, we can prove the following proposition in a standard
way.

Proposition 3.4. There is an integer ng > 0, such that for each n > ng and (t,\) € (ro —
3, 70+ 0) X [Aonlnn, \inlnn] , (3.8) has a solution &, for some constants a, ;. Moreover,
&, is a CY map from (1o — 6, ro +98) X [Nonlnn, \ynlnn] to X, and

Cy/n
HgTLH S )\1+0'

for some o > 0.

Define .
I(u) = —/ |Dul? — —
2 RN
Let
F(t,\) = I(uk +) Upn+ gn).
j:l
To obtain a solution of the form wu; + Z" ;A 1 &n, we just need to find a critical point

N— 2

for F(t, )\) in [7’0 — (5, To + 5] [)\QTLN 4 )\1 T]
Proof of Theorem 1.2. We have

F(t, A (uk + Z U, ) + nO /\21+U). (3.9)

On the other hand,

n

1(uk+]z:UW> :](Zn:U >+Iuk +;;/RNK YT,

J=1

1 " .
_§ RNK’:IA <uk+ZUpJ,\ _(ZUPJ',A)Q _uz)
j=1

(3.10)
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[ Kt 0,0 = 0(z).

For y e RV \ U, (D; N B

It is easy to check

4 (pj)), we have

‘(u’“ + Z UPM\)Q* —up - (Z UPJ’»/\)Q
= =

<Cul ! Z Up,n + O Z UpM)z* < Cud ! Z Up, -

Jj=1 j=1 =
K ‘ T U ) 2 U
/RN\U;?_I(D-OB 1 )) (Iy) (uk Z:; pw}‘) Uy — (Z pJ,A)
2*—1
<o [ 473 0= 0(32)

7j=1

As a result,

(pj

We also have

/n (D'ﬁB 1(p-)) ‘y| (uk+ZUp1 _Ui* - (ZUPJ"/\)Q*>
S A

j=1 ]21
* - 2%
:n/ K(ly|) (uk+ZUp] - _(ZUPM) )
DiNB 1 (p1) j=1
A2
It holds
1
/ Ky = 0(<).
DiNB 7;(]31) )\2
A2
and
n 2* n 2*
/ Kl + 32U )” = (32 Uy, )
DinB 1 (p1) j=1 j=1
A 2
<C/ U, )" !
DiNB _%( Z P
A
Nt2
<C/ (UZ*‘l + g )
— DInB 4 (o) P1,A (1+)\|y p |)2 —1)(N—-2)(1—71)
C
S)\%?
where 7, = =4

27
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So we have proved

I<uk+iUw> (ZUPJ >—|—Iuk)+0( o). (3.11)

=

Combining (3.9) and (3.11), and proceeding as in [26], we obtain

F(t,\) (Z Up,a) + ) + 10 (551)

By, By BsnN—2 3.12
+ ”O<Az+lg ~z (Ao —1) )
where A = 5 [pn VU, 12 = fRN 01, Bi, By and Bj3 are some positive constants, and

oc>01sa small constant.

Now to find a critical point for F(¢,\), we just need to proceed exactly as in [26]. O
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