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Abstract: 21 

Metal-modified carbon materials have been widely used for fluoride removal, but the 22 

traditional impregnation by soaking method suffers from low loading of metals and substantial 23 

use of chemicals. This study proposed a new approach to prepare zirconium modified activated 24 

carbon fibres (Zr-ACF) by a drop-coating method. Using the same amount of chemicals, the 25 

drop-coating method yielded a 5.5 times higher fluoride adsorption capacity than the soaking 26 

method due to more effective loading of Zr(IV) onto ACF. The effects of various preparation 27 

conditions, including the addition of a complexing agent (oxalic acid) and Zr/ACF mass ratio (0-28 

1), were investigated. Zr-ACF prepared by drop-coating was characterised by SEM and BET, 29 

and the functional groups involved in the anchoring of Zr(IV) on ACF and the adsorption of 30 

fluoride onto Zr-ACF were identified by FTIR and XPS. Adsorption experiments at pH between 31 

3 and 11 revealed that ion exchange and electrostatic attraction were the main adsorption 32 

mechanisms at different pH levels. Co-existing anions such as CO3
2−, HCO3

− and Cl− had an 33 

insignificant negative impact (<5%) on fluoride adsorption capacity while SO4
2− decreased 34 

fluoride adsorption capacity by 11.5%. The adsorption kinetics followed the pseudo-second-35 

order model. The adsorption isotherms followed the Langmuir isotherm model with a maximum 36 

fluoride adsorption capacity of 28.50 mg/L at 25 °C, which was higher than other carbon-based 37 

materials in the literature. The remarkable improvement of adsorption capacity and reduced 38 

chemical consumption demonstrate that Zr-ACF prepared by drop-coating is a promising 39 

adsorbent for fluoride removal. 40 

 41 
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1. Introduction 44 

Fluorine is abundant in the natural environment and can be accumulated in the human 45 

body via food and water (Akuno et al., 2019). A low concentration of fluoride in water (< 1 46 

mg/L) is beneficial for preventing dental caries and tooth decay (Petersen and Ogawa, 2016). 47 

Conversely, long-time ingestion of high concentrations of fluoride causes many health problems 48 

such as dental and skeletal fluorosis (Ali et al., 2016), lower intelligence of children (Green et al., 49 

2019) and bone cancer (Crnosija et al., 2019). The World Health Organization (WHO) 50 

recommends a fluoride guideline value in drinking water of 1.5 mg/L (World Health 51 

Organization, 2017). Globally, more than 200 million people suffer from excess fluoride in 52 

drinking water, particularly in developing countries such as Kenya (Malago et al., 2017), 53 

Tanzania (Fawell et al., 2006), India (Mukherjee and Singh, 2018; Ali et al., 2019), Iran (Amini 54 

et al., 2016; Dehghani et al., 2019; Yousefi et al., 2019) and China (Wang et al., 2019; Zhang et 55 

al., 2020).  56 

Adsorption is one of the most used methods for defluoridation due to its simple operation,  57 

low energy consumption, and low cost, compared with other methods such as ion exchange 58 

(Sundaram and Meenakshi, 2009), coagulation (He et al., 2016; Gan et al., 2019), flocculation 59 

(Wang et al., 2013), precipitation (Lu and Liu, 2010), reverse osmosis (Shen and Schäfer, 2015; 60 

Owusu-Agyeman et al., 2019) and electrodialysis (Grzegorzek and Majewska-Nowak, 2016). 61 

Carbon-based adsorbents with high surface area and low-cost precursor sources, including 62 

activated carbon (Talat et al., 2018), carbon nanotubes (Ansari et al., 2011), and activated carbon 63 
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fibre (ACF) (Bhaumik and Mondal, 2015), have attracted great attention in recent years. But the 64 

physical interactions between these carbon adsorbents and fluoride are still weak which restricts 65 

their adsorption capacity. Metal oxides and hydroxides have been used to modify carbon 66 

adsorbents, which can not only increase surface area but also enhance the interactions with 67 

fluoride. Successful examples include lanthanum (La) modified granular activated carbon (GAC) 68 

(Vences-Alvarez et al., 2015), zirconium (Zr) modified GAC (Velazquez-Jimenez et al., 2013), 69 

Zr modified powdered activated carbon (PAC) (Mullick and Neogi, 2018), aluminium (Al) and 70 

cerium (Ce) modified GAC (Kalidindi et al., 2016), and titanium (Ti) modified PAC (Li et al., 71 

2018). 72 

Impregnation by soaking is a well-established method to modify the carbon-based 73 

adsorbents. After impregnation by soaking, the specific surface area of adsorbents can increase 74 

up to 10 times (García-Sánchez et al., 2016) and their defluoridation capacities also rise 75 

(Daifullah et al., 2007; Nie et al., 2012). However, the amount of metal oxides and hydroxides 76 

used in the soaking method is far more than what is required, which may lead to the formation of 77 

metallic crystals that are unevenly distributed in the pores and cause channel blockage 78 

(Velazquez-Jimenez et al., 2013). This is why the adsorption capacity is not proportional to the 79 

amount of metal used, especially in a high concentration soaking solution. To solve this problem, 80 

researchers proposed to use complexing agents such as oxalic acid, citric acid, and malic acid 81 

(Wang et al., 2011; Velazquez-Jimenez et al., 2013) to improve metal dispersion and control the 82 

growth of nucleation. But such extra consumption of chemicals results in significant waste and is 83 

against the goal of Green Chemistry.  84 

Drop-coating is another impregnation method which applies a thin layer of a solution 85 

dropwise to the surface of the sample and allows it to evaporate. To achieve the same level of 86 
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impregnation, the drop-coating method consumes much fewer chemicals and water than the 87 

soaking method, thus having a lower process mass intensity (PMI) (Welton, 2015). In recent 88 

years, this method has been successfully applied in acoustic chemical sensor arrays (Li, 2011) 89 

and enhanced Raman spectroscopy (Halvorson et al., 2011).  90 

This research adopted the drop-coating method to modify ACF with Zr. ACF was 91 

preferably used over other carbon-based materials because of its larger surface area, more 92 

uniform micropore size distribution and fabric form for ease of handling (Saha and Grappe, 93 

2017). Zr was chosen due to its strong and selective affinity towards fluoride (Górski et al., 94 

2005). Various preparation parameters including the addition of complexing agents and Zr/ACF 95 

mass ratio were optimized. Zr-ACF was systematically characterised by SEM, BET, FTIR and 96 

XPS. The effects of solution pH and co-existing anions on the defluoridation process were 97 

researched and the possible fluoride adsorption mechanisms were proposed. Adsorption kinetics, 98 

isotherms, and thermodynamics were also studied. 99 

 100 

2. Materials and methods 101 

2.1. Materials and chemicals    102 

The commercial knitted ACF, FLEXZORB FM50K, was obtained from Chemviron 103 

Carbon Cloth Division, UK. Zirconium(IV) dichloride oxide octahydrate (ZrOCl2·8H2O), oxalic 104 

acid (OA), sodium fluoride (NaF), sodium chloride (NaCl), sodium bicarbonate (NaHCO3), 105 

sodium carbonate (Na2CO3), sodium sulphate (Na2SO4), potassium chloride (KCl), sodium 106 

hydroxide (NaOH), hydrochloric acid (HCl), and nitric acid (HNO3) were purchased from Fisher 107 
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Scientific, UK. All the chemicals were of analytical grade. Deionized (DI) water was produced 108 

by PURELAB Chorus, ELGA, UK. 109 

2.2. Preparation of adsorbents 110 

Pre-treatment. The as-received ACF was cleaned with 5 M HNO3 and was repeatedly 111 

rinsed with DI water until the pH of the washing liquid was close to 7. Afterwards, ACF was 112 

dried in an oven at 105 ºC for 12 h before use.  113 

Impregnation. The Zr-ACF adsorbents were prepared by two wet impregnation methods, 114 

namely soaking and drop-coating. The soaking method was modified from a previous study 115 

which used OA as the complexing agent (Velazquez-Jimenez et al., 2013). Briefly, 0.1 g of ACF 116 

was sheared to the desired size fragment (0.4-0.6 cm) and was soaked into 10 mL of Zr(IV) 117 

solution (Zr/ACF mass ratio = 1). The Zr-ACF suspension was stirred for 1 h and then was 118 

mixed with 10 mL of OA solution (Zr/OA mass ratio = 1.5) and stirred for another 1 h. The solid 119 

Zr-ACF was collected by filtration, washed with DI water, and dried at 105 ºC for 12 h. For 120 

comparison purposes, Zr-ACF that did not contain OA was prepared by soaking 0.1 g of ACF 121 

into 20 mL of Zr(IV) solution (Zr/ACF mass ratio = 1) for 2 h.  122 

The drop-coating method used Zr(IV) solutions with a much smaller volume. Briefly, 0.1 123 

g of ACF was uniformly drop-coated with 2 mL of Zr(IV) solution (Zr/ACF mass ratio = 0.2-1) 124 

and was dried in the oven at 105 ºC for 12 h. Subsequently, Zr-ACF was drop-coated with 4 mL 125 

of OA solution (Zr/OA mass ratio = 1.5) and was dried again in the oven at 105 ºC for 12 h. For 126 

comparison purposes, Zr-ACF that did not contain OA was prepared by drop-coating 0.1 g of 127 

ACF with 2 mL of Zr(IV) solution (Zr/ACF mass ratio = 0.2-1). To ensure that the impregnated 128 
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Zr(IV) does not leak from Zr-ACF, some Zr-ACF samples were washed with DI water after 129 

drying and their adsorption capacities were compared to the unwashed Zr-ACF.  130 

2.3. Characterization techniques     131 

The surface morphology of ACF and Zr-ACF was observed by a scanning electron 132 

microscope (SEM) (JSM-6480LV, JEOL, Japan). Nitrogen adsorption-desorption isotherms 133 

were performed at 77 K using a 3Flex Surface Characterization Analyzer (Micromeritics, USA). 134 

The specific surface area was calculated from the BET theory and the pore size distribution and 135 

pore volume were calculated using the Horvath-Kawazoe model. Fourier-transform infrared 136 

spectroscopy (FTIR) analysis was conducted using a Frontier FTIR spectrometer (PerkinElmer, 137 

USA) with KBr pellets. The FTIR spectra were recorded with 32 scans at a resolution of 4 cm-1. 138 

X-ray photoelectron spectroscopy (XPS) measurements were performed by an AXIS Ultra DLD 139 

system (Kratos, UK) using monochromatic Al Ka X-ray source operating at 120 W. XPS data 140 

were analysed using CasaXPS (v2.3.19 rev 1.1l) after subtraction of a Shirley background. The 141 

pH value at the point of zero charge (pHPZC) was determined by the batch equilibration technique 142 

(Shen et al., 2018). A solution of 0.1 M KCl was prepared and its initial pH was adjusted 143 

between 3 and 11 by using 0.1 M HCl/NaOH solution. 200 mg of Zr-ACF was added to 100 mL 144 

of KCl solution and the suspension was stirred at 298 K for 24 h until the pH stabilized. The final 145 

pH was measured and the difference between initial and final pH (pHinitial-pHfinal) was plotted 146 

against the initial pH. The pHPZC was obtained from the intersection point of the plot. The 147 

speciation of fluoride in NaF solution was calculated by using Visual MINTEQ version 3.1 148 

(KTH, Sweden).  149 
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2.4. Adsorption experiments  150 

The adsorption of fluoride onto Zr-ACF was carried out in batch adsorption experiments. 151 

Fluoride stock solution of 200 mg/L was prepared by dissolving 0.221g of NaF in 500 mL of DI 152 

water. Other fluoride solutions were made by subsequent dilutions of the stock solution. A fixed 153 

Zr-ACF dose of 2 g/L was used in all experiments. 154 

In a typical adsorption experiment, 200 mg of Zr-ACF was added to 100 mL of 20 mg/L 155 

fluoride solution and stirred on the hotplate at 400 rpm and 25 ºC. At regular intervals, 5 mL of 156 

the suspension was withdrawn and centrifugated by a benchtop centrifuge (Medifuge, Thermo 157 

Scientific, UK). The fluoride concentration in the supernatant was determined by a pH/ion meter 158 

coupled with a fluoride ion-selective electrode (S220 and perfectION, Mettler Toledo, USA). 159 

Before measurement, the sample was mixed with an equal volume of the total ionic strength 160 

adjustment buffer (TISAB II) solution to minimize the effects of complexions and solution pH. 161 

The adsorption capacity of Zr-ACF (𝑞𝑡, mg/g) was calculated from Equation (1) (Dehghani et al., 162 

2017): 163 

 164 

𝑞𝑡 =
(𝐶0 − 𝐶𝑡)𝑉

𝑚
                                                                                                                                           (1) 165 

                                                                                                                                       166 

where 𝐶0 and 𝐶𝑡 are the initial and present fluoride concentrations (mg/L), 𝑉 is the volume of the 167 

solution (mL), and 𝑚 is the mass of the adsorbent used (g).  168 

To investigate the effect of solution pH on adsorption capacity, the initial pH of the 169 

fluoride solution was adjusted from 3 to 11 (increment by 2) by using 1 mM HCl or 1 mM 170 

NaOH solution. The final pH after fluoride adsorption was also measured. To study the effect of 171 
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co-existing anions, solutions containing 20 mg/L of fluoride and 20 mg/L of another anion 172 

(chloride, bicarbonate, carbonate, and sulphate) were prepared. The methods and equations to 173 

determine the adsorption kinetics, isotherms and thermodynamics were included in the 174 

Supplementary Information. All the experiments were done in triplicate and the average values 175 

of the results were used for data analysis. 176 

 177 

3. Results and discussion 178 

3.1. Optimization of the preparation methods 179 

3.1.1. Different impregnation methods 180 

When comparing the effectiveness of different impregnation methods, only the adsorbents 181 

with the same Zr/ACF and Zr/OA mass ratios were used. The fluoride adsorption capacities of 182 

Zr-ACF prepared by different impregnation methods are shown in Figure 1(A). It can be seen 183 

that the drop-coating method yielded a 𝑞𝑒 of 8.69 mg/g without OA, and 7.38 mg/g with OA. 184 

These values were 5.5 and 3.7 times higher than those of the soaking method, respectively. 185 

Besides, water-washed Zr-ACF and unwashed Zr-ACF showed the same level of fluoride 186 

adsorption capacity, which indicates that the impregnated Zr(IV) did not leak into aqueous 187 

solutions. Given the fact that both impregnation methods consumed the same amount of 188 

chemicals, the superior fluoride adsorption capacity of drop-coating was due to more effective 189 

loading of Zr(IV) onto ACF. Specifically, the drop-coating method took advantage of higher 190 

Zr(IV) concentrations (because of smaller solution volume) and repeated dropwise 191 

impregnations. Therefore, to achieve the same level of defluoridation performance, the drop-192 



10 

 

coating method consumes much fewer chemicals and water and has a much lower PMI than the 193 

soaking method.  194 

Notably, the addition of OA had opposite effects on fluoride adsorption in the drop-coating 195 

and the soaking methods. Zr(IV) species can interact with −OH from OA to form zirconium 196 

oxalate complexes. The formation of these complexes reduces the number of available binding 197 

sites in Zr(IV) for attracting fluoride. This is why the adsorption capacity of Zr-ACF dropped 198 

after OA was added in the drop-coating method. Moreover, the high local concentration of OA 199 

could reach a supersaturation level and thus the formed complexes could precipitate and cause 200 

pore blockage of Zr-ACF. 201 

In the soaking method, on the contrary, the adsorption capacity of Zr-ACF had a slight 202 

increase after OA was added, which is consistent with a previous study (Velazquez-Jimenez et 203 

al., 2013). This is because the zirconium oxalate complexes prevented the aggregation of Zr 204 

particles in the solution due to steric effects and electrostatic repulsion, thus improving the 205 

distribution of Zr on the surface of ACF (Velazquez-Jimenez et al., 2013). Since the soaking 206 

method had a very low Zr loading, such improvement outweighed the loss of binding sites.  207 

The results revealed that the drop-coating method without OA was the best impregnation 208 

method. In the following experiments, only Zr-ACF prepared by drop-coating without OA was 209 

used.  210 
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 211 

Figure 1: (A) Effect of impregnation method on fluoride adsorption capacity of Zr-ACF and (B) 212 

effect of Zr/ACF mass ratio on fluoride adsorption capacity of Zr-ACF (20 mg/L F−, 2 g/L Zr-213 

ACF, pH 7, 25 ºC) 214 

3.1.2. Different Zr/ACF mass ratios 215 

As shown in Figure 1(B), the adsorption capacity of Zr-ACF increased gradually with the 216 

increase of Zr/ACF mass ratio at the beginning and then reached the highest point (9.02 mg/g) 217 

when Zr/ACF mass ratio was 0.6, which was 5.8 times higher than that of the original ACF (1.54 218 

mg/g). The amount of Zr(IV) loaded on the surface of ACF surface rose, and thus the binding 219 

sites for fluoride increased. As the Zr/ACF mass ratio increased further, the fluoride adsorption 220 

capacity declined slightly and remained relatively stable when the Zr/ACF mass ratio reached to 221 

1. The moderate decrease might be because a high concentration of Zr(IV) is unfavourable to 222 

form a uniform distribution in the channel of ACF, resulting in channel blockage (Velazquez-223 

Jimenez et al., 2013). Although the adsorption capacity of Zr-ACF at the Zr/ACF mass ratio of 1 224 

(8.69 mg/g) was slightly higher than that at the mass ratio of 0.8 (8.61 mg/g), such minor 225 

improvement might be because the detached Zr(IV) species reacts with fluoride and forms 226 
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complexes in solution. Considering the trade-off between adsorption capacity and chemical 227 

consumption, a moderate Zr/ACF mass ratio of 0.6 was chosen as the fixed mass ratio for further 228 

study.  229 

3.2. Characterization of Zr-ACF prepared by drop-coating 230 

3.2.1. Morphology  231 

The surface morphology of original ACF, Zr-ACF before and after fluoride adsorption 232 

was analysed using SEM as shown in Figure S1. It can be seen that the porous surface of ACF 233 

was uneven and rough which is due to the large pores of ACF. There were grooves and gaps 234 

between long carbon fibres. After ACF was modified by Zr, its surface became smooth and the 235 

porous structure disappeared, which is because the large pores of ACF were loaded with Zr. 236 

After Zr-ACF was saturated by fluoride, the surface of Zr-ACF became even smoother, 237 

suggesting that the Zr-F complexes might block the channel of Zr-ACF. 238 

3.2.2.  Surface area and pore size distribution   239 

The summary of BET surface area and Horvath-Kawazoe pore volume is shown in Table S1. 240 

After drop-coating with Zr, the BET surface area of ACF increased moderately from 1108.60 to 241 

1178.96 m²/g. After adsorption of fluoride, the BET surface area of Zr-ACF decreased 242 

dramatically to 768.54 m²/g. The Horvath-Kawazoe pore volume followed the same trend, which 243 

increased from 0.43 to 0.46 cm3/g after ACF was modified by Zr, and then declined to 0.31 244 

cm3/g after fluoride adsorption. As shown in Figure S2, the original ACF displayed a 245 

monomodal pore size distribution with the peak at 0.6 nm, which indicates that ACF belongs to 246 

microporous materials (Rouquerol et al., 1994). When the ACF was modified by Zr, the pore 247 

size distribution became bimodal, with a larger peak at about 0.5 nm and a smaller peak at about 248 
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0.6 nm. After fluoride adsorption, the pore size distribution was still bimodal but the pore 249 

volumes at two peaks were reduced by almost 50%, which suggests that these micropores 250 

contribute most to the adsorption capacity of Zr-ACF. 251 

3.3. Spectroscopic evidence for Zr anchoring on ACF and fluoride adsorption onto Zr-ACF 252 

3.3.1. FTIR analysis 253 

FTIR spectra of ACF, Zr-ACF before and after fluoride adsorption were investigated to 254 

illustrate the change of surface functional groups (Figure 2). For ACF, the broad peak centred at 255 

3441 cm-1 is due to stretching of −OH groups in adsorbed water (Yu et al., 2018). The peak at 256 

1635 cm-1 is the stretching of C=O bonds of −COOH groups. The peaks at 2331 and 2350 cm-1 257 

are due to the presence of atmospheric CO2 on the ACF surface. 258 

For Zr-ACF, the broad −OH peak was blue-shifted due to the formation of Zr−OH groups 259 

(Bollino et al., 2017). The C=O bonds had a slight shift because Zr(IV) species interacts with 260 

−COOH groups through electrostatic interactions to form C−O−Zr bonds (Velazquez-Jimenez et 261 

al., 2013). The peak at 1160 cm-1 is due to the combined effects of Zr−OH and C−O groups, as 262 

the double bond in −COOH group breaks down and forms new bonds with Zr(IV). The peaks at 263 

1060 cm-1 may be associated with the vibration of Zr=O bonds (Mullick and Neogi, 2018). The 264 

broad peaks between 980 and 845 cm-1 represent a combination of Zr−O and Zr−OH bonds 265 

(Velazquez-Jimenez, 2014). The peaks between 718 and 660 cm-1 are due to the bending of 266 

Zr−OH bonds, formed from combining with −OH groups on ACF surface (Yakout and Hassan, 267 

2014). The small peaks at 491 cm-1 can also be attributed to Zr−O bonds (Vitanov et al., 2014). 268 

For Zr-ACF after fluoride adsorption, the −OH peak had a lower intensity than that before 269 

fluoride adsorption, which indicates that −OH groups played a role in the fluoride adsorption 270 
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process. The C=O peak was further shifted to 1670 cm-1 due to the interaction between Zr on the 271 

C−O−Zr bond and F−. The broad peaks between 980 and 845 cm-1 are of a greater intensity 272 

compared to that before fluoride adsorption which may suggest additional absorption by Zr−O 273 

bonds in ZrOF2 formations (Gong et al., 2012). Small peaks between 600 and 524 cm-1 may be 274 

due to stretching of Zr−F bonds (Gong et al., 2012).  275 

 276 

 277 

Figure 2: FTIR spectra of original ACF, Zr-ACF before and after fluoride adsorption 278 

3.3.2. XPS analysis 279 

XPS analysis was conducted to seek out the probable Zr(IV) structure formed during the 280 

drop-coating process and the way that fluoride interacts with the metal complex. XPS spectra in 281 

the C 1s region are demonstrated in Figure 3(A), (B) and (C) representing original ACF, Zr-ACF 282 

before and after fluoride adsorption, respectively. For all the three samples, the highest intensity 283 

peak is at 284.6 eV, which is attributed to sp2 C=C bonds. The broad asymmetric tail towards 284 



15 

 

increasing binding energy indicates a high concentration of sp2 carbon in the samples. All 285 

samples showed peaks for C=O and O−C=O bonds at 287.9 eV and 288.9 eV, respectively.  286 

From ACF to Zr-ACF, the peak associated with sp3 carbon bonding was shifted from 286.0 287 

to 284.9 eV and was at a higher intensity, suggesting that carbon atoms on the surface of ACF 288 

undergo sp3 hybridisation to form bonds with Zr(IV). Modifying the surface with the less 289 

electronegative element Zr increases the electronc density around the base element and decreases 290 

the binding energy (Tardio and Cumpson, 2018). After Zr-ACF was saturated by fluoride, the 291 

intensity of the O−C=O peak at 288.9 eV declined noticeably. Such change is due to the 292 

interaction between Zr on the C−O−Zr bond and F, which was also revealed by the FTIR spectra. 293 

Figure 3(D) shows the XPS spectra in the Zr 3d region corrected to C 1s region. The 294 

doublet peaks at 182.7 eV and 185.1 eV correspond to Zr−OH bonds in Zr 3d5/2 and Zr 3d3/2 295 

regions, respectively (Gondal et al., 2018). Both the peaks were shifted by 0.1 eV towards higher 296 

binding energies after fluoride adsorption. The shift indicates the formation of Zr−F bonds 297 

because F is the most electronegative element and thus the binding energy of Zr−F is higher than 298 

that of Zr−OH bond (Velazquez-Jimenez et al., 2013). The FTIR and XPS analysis identified the 299 

main functional groups involved in both the anchoring of Zr(IV) on ACF and the adsorption of 300 

fluoride onto Zr-ACF.  301 
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 302 

Figure 3: XPS spectra in the C 1s region for (A) ACF, (B) Zr-ACF, (C) Zr-ACF after fluoride 303 

adsorption, (D) the Zr 3d region for Zr-ACF before and after fluoride adsorption 304 

3.4. Adsorption mechanisms at different pH levels 305 

The initial pH of the solution plays a critical role in the adsorption process because it 306 

changes the surface charge properties of both adsorbent and adsorbate (Sairam Sundaram et al., 307 

2008). As a result, various adsorption mechanisms will occur and affect adsorption behaviours at 308 

different pH levels. The surface charge of Zr-ACF was characterized by pHPZC which was found 309 

to be 5.6 (Figure S3). The speciation of fluoride was characterized by the acid dissociation 310 

constant pKa which is 3.2 (Figure S4). Hence the entire pH range of 3-11 can be distinctly 311 

divided into three zones by pHPZC and pKa (Figure 4(A)): in Zone 1 (pH < 3.2), Zr-ACF is 312 
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positively charged while more than 50% of F species exists as hydrofluoric acid (HF) with no 313 

charge; in Zone 2 (3.2 <  pH < 5.6), Zr-ACF is still positively charged whereas the majority of F 314 

species becomes F−; in Zone 3 (pH > 5.6), Zr-ACF becomes negatively charged and F− is also 315 

negatively charged.  316 

As illustrated in Figure 4(A), 𝑞𝑒  increased moderately from Zone 1 to Zone 2 and 317 

decreased substantially from Zone 2 to Zone 3. For the experiment in Zone 1, the solution pH 318 

increased after fluoride adsorption (Table S2), indicating that fluoride adsorption onto Zr-ACF is 319 

primarily the result of ion exchange between F− and OH−. As discussed in Section 3.3, the 320 

surfaces of Zr-ACF are covered with −OH groups. In the ion exchange process, these −OH 321 

groups are replaced by F−, and new Zr−F covalent bonds are formed between Zr(IV) species 322 

(Lewis acid) and F− (Lewis base) (Wu et al., 2020). The electrostatic attraction between Zr-ACF 323 

and partially dissociated F− may also account for the adsorption.  324 

For the experiment in Zone 2, the pH had a smaller increase after fluoride adsorption 325 

(Table S2), which means ion exchange still contributes to the adsorption process but to a lesser 326 

extent. Instead, the strong electrostatic attraction between Zr-ACF and fully dissociated F− 327 

becomes the principal adsorption mechanism. The maximum 𝑞𝑒 of 9.85 mg/g was observed at 328 

pH 5 because pH 5 was the nearest to the pHPZC of 5.6. 329 

For the experiments in Zone 3, the final pH values were always lower than the initial 330 

values (Table S2). This indicates that excessive OH− in the solution competes with F− for binding 331 

sites on Zr-ACF, which is not beneficial for the ion exchange process. Furthermore, electrostatic 332 

forces between Zr-ACF and F− change from electrostatic attraction to electrostatic repulsion. 333 

Therefore, 𝑞𝑒 decreased dramatically from Zone 2 to Zone 3.  334 
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 335 

Figure 4: (A) Effect of initial pH on the adsorption capacity of Zr-ACF (20 mg/L F−, 2 g/L Zr-336 

ACF, 25 ºC); (B) effect of co-existing anions on fluoride adsorption capacity (20 mg/L F−, 2 g/L 337 

Zr-ACF, pH 7, 25 ºC); (C) adsorption kinetics of fluoride onto Zr-ACF at different fluoride 338 

concentrations (2 g/L Zr-ACF, pH 7, 25 ºC); (D) adsorption isotherms of fluoride onto Zr-ACF 339 

at different temperatures (2 g/L Zr-ACF, pH 7) 340 

3.5. Effect of co-existing anions 341 

Natural waters contain various anions which may interfere with the fluoride adsorption 342 

process. As shown in Figure 4(B), the uptake of fluoride by Zr-ACF was affected by co-existing 343 

anions in the following order: SO4
2− > CO3

2− > HCO3
− > Cl−. Three anions (Cl−, HCO3

− and 344 
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CO3
2−) had an insignificant negative impact on 𝑞𝑒, which decreased by 1.5%, 1.9% and 4.2%, 345 

respectively. It should be noted that some researchers reported that HCO3
− inhibited the 346 

adsorption of fluoride because it had a buffering effect on the solution pH (Kumar et al., 2009; 347 

Shen et al., 2018).  348 

By contrast, 𝑞𝑒  decreased by 11.5% in the presence of SO4
2−. This is perhaps because 349 

SO4
2− has more negative charges and is a stronger Lewis base than F− (Daifullah et al., 2007); so 350 

it can be more strongly attracted to Lewis acid sites on Zr-ACF surface. Moreover, F− and SO4
2− 351 

tend to form inner-sphere complexes with binding surfaces, while other anions such as Cl− and 352 

CO3
2− generally form outer-sphere complexes (Kumar et al., 2011; Wu et al., 2020). Inner-sphere 353 

complexation involves a much stronger interaction than outer-sphere complexation. This 354 

provides a strong driving force to adsorb F− from other anions except for SO4
2−. 355 

3.6. Adsorption kinetics, isotherms, and thermodynamics  356 

Adsorption kinetics identify the required equilibrium time for an adsorption process (Tran 357 

et al., 2017). As shown in Figure 4(C), fluoride adsorption by Zr-ACF was most rapid in the first 358 

30 minutes with more than 50% of the initial fluoride concentration were removed. Such rapid 359 

adsorption rate is due to the initial steep concentration gradient between the solution and the 360 

surface of Zr-ACF as well as the large number of vacant pores (Zhang et al., 2018). The 361 

adsorption rate then decreased gradually until the equilibrium was reached after 360 min. The 362 

kinetics data were fitted to the pseudo-first-order (PFO) and the pseudo-second-order (PSO) 363 

models (Figure 4(C)). The equations of the models are provided in the Supplementary 364 

Information. The kinetic parameters, together with the standard deviation SD and the coefficient 365 

of determination R2, are listed in Table S3. It can be seen that the PSO model had a higher R2 366 
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(>0.995) and a lower SD than the PFO model under all three fluoride concentrations. Therefore, 367 

the PSO model is more suitable for the description of the adsorption kinetics of fluoride onto Zr-368 

ACF. These results are consistent with the adsorption of fluoride onto other adsorbents, such as 369 

activated carbon and aluminium hydroxide (Gai et al., 2015; Mullick and Neogi, 2018).  370 

Adsorption isotherms describe the equilibrium relationship between the adsorbate and the 371 

adsorbent (Tran et al., 2017; Dehghani et al., 2018). As shown in Figure 4(D), the adsorption 372 

capacity of Zr-ACF at equilibrium increased with the increasing temperature, which indicates the 373 

endothermic nature of the adsorption process. The experimental data were fitted to four widely 374 

used isotherm models, namely the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich 375 

(D-R) models. The descriptions of the four models, including their nonlinear equations, are 376 

included in the Supplementary Information. The fitting curves of the four models are shown in 377 

Figure 4(D) and the isotherms parameters and the coefficient of determination R2 are given in 378 

Table S4. Among the four models, the Langmuir model was found to be best fitted to the 379 

experimental data as the R2 values of the Langmuir model (varied from 0.985 to 0.997) are 380 

invariably higher than those of other models at every temperature. This suggests that the fluoride 381 

adsorption process is monolayer molecular adsorption and it occurs homogeneously on the 382 

surface of Zr-ACF (Langmuir, 1918). The separation factor (𝑅𝐿) of the Langmuir model, which 383 

indicates the favourability of the adsorption process, was calculated and shown in Figure S5. The 384 

value of 𝑅𝐿  can be either irreversible (𝑅𝐿  = 0), favourable (0 < 𝑅𝐿  < 1), linear (𝑅𝐿  = 1), or 385 

unfavourable (𝑅𝐿 > 1) (Weber and Chakravorti, 1974). The 𝑅𝐿 values at all three temperatures 386 

were always below 0.25, indicating that the adsorption process was extremely favourable.  387 

Table S5 compares the Langmuir maximum adsorption capacity (𝑞𝑚) of various carbon-388 

based adsorbents for fluoride removal. The 𝑞𝑚 of Zr-ACF prepared in this study was 28.50 mg/g 389 



21 

 

when the adsorbent dose was 2 g/L, the pH was 7 and the temperature was 25 °C. Apparently, 390 

Zr-ACF exhibits superior performance over other carbon-based adsorbents reported in the 391 

literature.  392 

Adsorption thermodynamics indicate the feasibility of the adsorption processes. The 393 

values of the thermodynamic parameters are shown in Table S6. The negative values of  ∆𝐺° at 394 

all three temperatures denote the spontaneity of the adsorption process (Li et al., 2005; Khan et 395 

al., 2020). As the temperature rose, the absolute value of ∆𝐺°  increased implying that the 396 

adsorption process is more favourable at a higher temperature. The positive values of ∆𝐻° 397 

confirm that the adsorption process is endothermic (Gao et al., 2013). The positive values of ∆𝑆° 398 

imply increasing randomness of the process (Ghaedi et al., 2012). In summary, the adsorption 399 

process of fluoride onto Zr-ACF is spontaneous and endothermic.  400 

 401 

4. Conclusion 402 

In this study, we have presented a new drop-coating method to prepare Zr-ACF 403 

adsorbents for fluoride removal. Compared to the traditional soaking method, the drop-coating 404 

method achieved a 5.5 times higher fluoride adsorption capacity while consumed much fewer 405 

chemicals and no complexing agents. The optimal Zr/ACF mass ratio for fluoride removal was 406 

0.6. SEM and BET results showed that Zr-ACF prepared by drop-coating had smoother surface 407 

and greater surface area than the original ACF. The micropores contribute most to the adsorption 408 

capacity of Zr-ACF. FTIR and XPS results showed that −OH groups played a key role in the 409 

anchoring of Zr(IV) on ACF and the adsorption of fluoride onto Zr-ACF. Ion exchange and 410 

electrostatic attraction were the two main adsorption mechanisms and they dominated in 411 
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different pH zones that were divided by pHPZC of Zr-ACF and pKa of fluoride. Various co-412 

existing anions, except for SO4
2−, had insignificant influence on the fluoride adsorption capacity 413 

of Zr-ACF. The PSO model was suitable in describing the adsorption kinetics and the Langmuir 414 

model was best fit to the isotherms data with the maximum adsorption capacity obtained at 25 °C 415 

up to 28.50 mg/L. The thermodynamic study revealed that the adsorption process was 416 

spontaneous and endothermic in nature.  417 

The results have demonstrated that Zr-ACF produced by drop-coating is an efficient and 418 

cost-effective adsorbent for fluoride removal due to its ease of synthesis, reduced chemical 419 

consumption and improved adsorption capacity. The drop-coating method can be easily scaled 420 

up by using commercial sprayers, which makes it highly practical in rural and remote areas of 421 

developing countries. However, further research is needed to assess the environmental impact of 422 

Zr-ACF and develop an appropriate recycling strategy before it can be used for large-scale 423 

applications. 424 
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