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Abstract Model checkers frequently fail to completely
verify a concurrent program, even if partial-order reduc-
tion is applied. The verification engineer is left in doubt

whether the program is safe and the effort towards ver-
ifying the program is wasted.

We present a technique that uses the results of such
incomplete verification attempts to construct a (fair)
scheduler that allows the safe execution of the par-
tially verified concurrent program. This scheduler re-

stricts the execution to schedules that have been proven
safe (and prevents executions that were found to be
erroneous). We evaluate the performance of our tech-

nique and show how it can be improved using partial-
order reduction. While constraining the scheduler re-
sults in a considerable performance penalty in general,

we show that in some cases our approach—somewhat
surprisingly—even leads to faster executions.
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1 Introduction

Automated verification of concurrent programs is in-
herently difficult because of exponentially large state

spaces [39]. State space reductions such as partial-order
reduction (POR) [10,17,16] allow a model checker to
focus on a subset of all reachable states while the veri-

fication result is valid for all reachable states. However,
even reduced state spaces may be intractably large [17]
and corresponding programs infeasible to (automati-
cally) verify, requiring manual intervention.

We propose a novel model checking approach
for safety verification of potentially non-terminating
programs with a bounded number of threads, non-

deterministic scheduling, and shared memory. Our
approach iteratively generates incomplete verification
results (IVRs) to prove the safety of a program under

a (semi-)deterministic scheduler. Our contribution is
the novel generation and use of IVRs based on existing
model checking algorithms, where we use lazy abstrac-
tion with interpolants [40] to instantiate our approach.
The scheduling constraints induced by an IVR can be
enforced by iteratively relaxed scheduling [29], a tech-
nique to enforce fine-grained orderings of concurrent
memory events. When the scheduling constraints of
an IVR are enforced, all executions (for all possible in-
puts) are safe, even if the underlying (operating system)
scheduler is non-deterministic. Thereby, the program
can be executed safely before a complete verification
result is available. Executions can still exploit concur-
rency and the number of memory accesses that are

executed concurrently may even be increased. As the
model checking problem is eased, additional programs
become tractable. Furthermore, IVRs can be used to
safely execute unsafe programs which are safe under at
least one scheduler. E.g., instead of programming syn-
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1 initially:
2 empty buffer of size N
3 count = 0
4 mutex = 0
5

6 thread T1:
7 while true:
8 produce()
9

10 thread T2:
11 while true:
12 consume()

13 produce:
14 lock(mutex)
15 if count < N:
16 put item
17 count += 1
18 else:
19 error (overflow)
20 unlock(mutex)
21

22 consume:
23 lock(mutex)
24 if count > 0:
25 remove item
26 count −= 1
27 else:
28 error (underflow)
29 unlock(mutex)

Fig. 1: An erroneous version of the producer-consumer

problem

chronization explicitly, our model checking algorithm

can be used to synthesize synchronization so that all

executions are safe.

We use the producer-consumer example from Fig. 1

to explain our approach. The verifier analyses an initial

schedule, e.g., where thread T1 and T2 produce and con-

sume in turns, and emits an IVR R1, guaranteeing safe

executions under this schedule. With its second IVR,

the verifier might verify the correctness of producing

two items in a row and the scheduling constraints can

be relaxed accordingly. When the verifier hits an unsafe

execution (the producer causes an overflow or the con-

sumer causes an underflow), it emits an unsafe IVR for

debugging. If the verifier accomplishes to analyze all

possible executions of the program, it will report the

final result partially safe, as the program can be used

safely under all inputs but unsafe executions exist. Had

there been no unsafe or safe IVRs, the final result would

be safe or unsafe, respectively.

This paper shows how to instantiate our approach

by answering the following questions: 1. Which state

space abstractions are suitable for iterative model

checking? The abstraction should be able to represent

non-terminating executions and facilitate the extrac-

tion of schedules. 2. How to formalize and represent

suitable IVRs? IVRs should be as small as possible

in order to allow short iterations, while they must be

large enough to guarantee fully functional executions

under all possible program inputs. More precisely, for

every possible program input, an IVR must cover a pro-

gram execution. 3. What are suitable model checking

algorithms that can be adapted to produce IVRs? A

suitable algorithm should easily allow to select sched-

ules for exploration.

Beyond the contributions of a previous version of

this paper [30], this extended version contains proofs

of our formal statements, a more detailed description

of constructing ARTs with the monolithic Impact al-

gorithm for concurrent programs and our iterative ex-

tension, a more detailed description of the implemen-

tation for our evaluation, additional experimental per-

formance measurements, additional illustration of our

case studies, and a more detailed discussion of section

schedules and their optimization.

2 Incomplete verification results

2.1 Basic definitions

A program P comprises a set S of states (including

a distinct initial state) and a finite set T of threads.

Each state s ∈ S maps program counters and variables

to values. We use l(s) to denote the program location

of a state s, which comprises a local location lT (s) for

each thread T ∈ T . W.l.o.g. we assume the existence

of a single error location that is only reachable if the

program P is not safe.

A state formula φ is a predicate over the program

variables encoding all states s in which φ(s) evaluates

to true. A transition relation R relates states s and their

successor states s′. Each tread T is partitioned into lo-

cal transitions Rl,l′ such that l = lT (s) and l′ = lT (s′)

for all s, s′ satisfying Rl,l′(s, s
′) and Rl,l′ leaves the

program locations and variables of other threads un-

changed. We use Guard(R) to denote a predicate en-

coding ∃s′ . R(s, s′), e.g., Guard(R13,14) is (count < N)

for the transition from location 15 to 16 in Fig. 1.

We say that Rl,l′ (or T , respectively) is active at lo-

cation l and enabled in a state s iff l(s) = l and s satisfies

Guard(R). We write enabled(s) for the set of enabled

transitions at s. Multiple transitions of a thread T at a

location can be active, but we allow only one transition

R to be enabled at a given state. If R exists, we write

enabledT (s) := {R} and enabledT (s) := ∅ otherwise.

If there exist states s for which no transition of a

thread T is enabled (e.g., in line 14 in Fig. 1), T may

block. We assume that such locations lT (s) are (conser-

vatively) marked by may-block(lT (s)).

An execution is a sequence s0, T1, s1, . . . , where s0 is

the initial state and the states si and si+1 in every ad-

jacent triple (si, Ti, si+1) are related by the transition

relation of Ti. An execution that does not reach the

error location is safe. A deadlock is a state s in which

no transitions are enabled. W.l.o.g. we assume that all

finite executions correspond to deadlocks and are un-

desirable; intentionally terminating executions can be

modelled using terminal locations with self-loops.

An execution τ is (strongly) fair if every thread Ti
enabled infinitely often in τ is also scheduled infinitely
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often [5]. We assume that fairness is desirable and en-

force it by our algorithm presented in Sec. 3. Other no-

tions of fairness, such as weak fairness, can be enforced

analogously to our use of strong fairness.

Non-determinism can arise both through schedul-

ing and non-deterministic transitions. A scheduler can

resolve the former kind of non-determinism.

Definition 1 (scheduler) A scheduler ζ : (S×T )∗×
S → T of a program P is a function that takes an

execution prefix s0, T1, . . . , Tn, sn and selects a thread

that is enabled at sn, if such a thread exists. A scheduler

ζ is deadlock-free (fair, respectively) if all executions

possible under ζ are deadlock-free (fair).

A scheduler for the program of Fig. 1, for in-

stance, must select T1 rather than T2 for the pre-

fix sinit , T1, s1, T1, s2, T1, s3, T2, s4, T2, s5, since at that

point the lock is held by T1 and enabledT2
(s5) = ∅.

Non-deterministic transitions are the second source

of non-determinism. If Rl,l′ of thread T allows multiple

successor states for a state s, we presume the existence

of input symbols X such that each ι ∈ X determines

a unique successor state s′ by selecting an Rιl,l′ ⊆ Rl,l′

with Rιl,l′(s, s
′).

Definition 2 (input) An input is a function χ : (S ×
T )∗ → X, which chooses an input symbol depending

on the current execution prefix.

In conjunction, an input and a scheduler render

a program completely deterministic: the input χ and

scheduler ζ select a transition in each step such that

each adjacent triple (si, Ti+1, si+1) is uniquely deter-

mined.

For Partial Order Reduction (POR), we assume

that a symmetric independence relation ‖ on transi-

tions of different threads is given, which induces an

equivalence relation on executions. Two transitions R1

and R2 are only independent if they are from distinct

threads, they are commutative at states where both R1

and R2 are enabled, and executing R1 does neither en-

able nor disable R2. If R1 and R2 are not independent,

we write R1 ∦ R2.

2.2 Requirements on incomplete verification results

Our goal is to ease the verification task by producing

incomplete verification results (IVRs) which prove the

program safety under reduced non-determinism, i.e.,

only for a certain scheduler. We only allow “legitimate”

restrictions of the scheduler that do not introduce dead-

locks or exclude threads. Inputs must not be restricted,

since this might reduce functionality and result in un-

handled inputs.

Hence, we define an IVR to be a function R that

maps execution prefixes to sets of threads, representing

scheduling constraints. An IVR for the program from

Fig. 1, for instance, may output {T1} in states with

an empty buffer, meaning that only thread T1 may be

scheduled here, and {T2} otherwise, so that an item is

produced if and only if the buffer is empty. A scheduler

ζR enforces (the scheduling constraints of) an IVR R
if ζR(τ) ∈ R(τ) for all execution prefixes τ . IVR R
permits all executions possible under a scheduler that

enforces R.

The remainder of this subsection discusses the re-

quirements on useful IVRs. We define safe, realizable,

deadlock-free, fairness-admitting, and fair IVRs. In the

following subsection, we instantiate IVRs with abstract

reachability trees (ARTs). Fig. 2 gives an overview on

the logical relationship between properties of ARTs

(left) and IVRs (right).

Safety. An IVR R can either expose a bug in a pro-

gram or guarantee that all permitted executions are

safe. Here, we are only concerned with the latter case.

An IVR R is safe if all executions permitted by R are

safe. An unsafe IVR permits an unsafe execution and

is called a counterexample.

Completeness. To reduce the work for the model

checker, a safe IVR R should ideally have to prove the

correctness of as few executions as possible. At the same

time, it should cover sufficiently many executions so

that the program can be used without functional re-

strictions. For instance, the IVR R(τ) := ∅, for all τ ,

is safe but not useful, as it does not permit any ex-

ecution. Consequently, R should permit at least one

enabled transition, in all non-deadlock states, which

is done by realizable IVRs: an IVR R is realizable if

at least one scheduler that enforces R exists. Further-

more, an IVR should never introduce a deadlock: an

IVR R is deadlock-free if all schedulers that enforce R
are deadlock-free.

Fairness. In general, we deem only fair executions

desirable. The IVR R(τ) := {T1}, for instance, is

deadlock-free for the program of Fig. 1 but useless,

as no item is consumed. A deadlock-free IVR admits

fairness if there exists a fair scheduler enforcing R (i.e.,

a fair execution of the program is possible).

If a scheduler permits both fair and unfair execu-

tions, it might be difficult to guarantee fairness at run-

time. In such cases, a fair IVR can be used: A deadlock-

free IVR R is fair if all schedulers enforcing R are fair.
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ART: IVR:

A is safe ⇒ RA is safe
⇑

⇑ RA is realizable
⇑

A is deadlock-free ⇒ RA is deadlock-free
⇑ ⇑

A admits fairness ⇒ RA admits fairness
⇑ ⇑

A is fair ⇒ RA is fair

Fig. 2: Overview on the relationship between properties

of IVRs and ARTs.⇒ and ⇑ denote logical implication.

2.3 Abstract reachability trees as incomplete

verification results

In this subsection, we instantiate the notion of IVRs us-

ing abstract reachability trees (ARTs), which underly a

range of software model checking tools [21,28,23,9] and

have recently been used for concurrent programs [40].

Due to the explicit representation of scheduling choices

from the beginning of an execution up to an (abstract)

state, ARTs are well-suited to represent IVRs. Model

checking algorithms based on ARTs perform a path-

wise exploration of program executions and represent

the current state of the exploration using a tree in which

each node v corresponds to a set of states at a program

location l(v). These states, represented by a predicate

φ(v), (safely) over-approximate the states reachable via

the program path from the root of the ART (ε) to v.

Edges expanded at v correspond to transitions starting

at l(v). A node w may cover v (written v B w) if the

states at w include all states at v (φ(v) ⇒ φ(w)); in

this cases, v is covered (covered(v)) and its successors

need not be further explored. (Intuitively, executions

reaching v are continued from w.) Formally, an ART is

defined as follows:

Definition 3 (abstract reachability tree [28,40])

An abstract reachability tree (ART) is a tuple A =

(V, ε,−→,B), where (V,−→) is a finite tree with root ε ∈ V
and B⊆ V×V is a covering relation. Nodes v are labeled

with global control locations and state formulas, writ-

ten l(v) and φ(v), respectively. Edges (v, w) ∈−→ are la-

beled with a thread and a transition, written v
T,R−−→ w.

Intuitively, an ART A is well-labeled [28] if A ’s

−→-edges represent the transitions of the program and

edges v B w indicate that all states modeled by node v

are also modeled by node w. Formally, A is well-labeled

if for every edge v
T,Rl,l′−−−−→ w in A we have that (i) φ(ε)

represents the initial state, (ii) φ(v)(s) ∧ Rl,l′(s, s
′) ⇒

φ(w)(s′) and lT (v) = l and lT (w) = l′, and (iii) for

every v, w with v B w, φ(v)⇒ φ(w) and ¬covered(w).

mutex = 0 ∧ count = 0

mutex = 0 ∧ count = 0

mutex = 1 ∧ count = 0

mutex = 1 ∧ count = 0

mutex = 1 ∧ count = 0

mutex = 1 ∧ count = 1

mutex = 0 ∧ count = 1

false

mutex = 0 ∧ count = 1

mutex = 1 ∧ count = 1

mutex = 1 ∧ count = 1

mutex = 1 ∧ count = 1

mutex = 1 ∧ count = 0

mutex = 0 ∧ count = 0

. .
.

ε

v1

v2

v6

v12

. .
.

T1: produce()

T1: lock(mutex)

T1: if (count<N)

T1: put item

T1: count+=1

T1: unlock(mutex)

T1: else

T2: consume()T1: produce()

T2: lock(mutex)

T2: if count> 0

T2: remove item

T2: count -= 1

T2: unlock(mutex)

T2: else

Fig. 3: An (incomplete) ART for the program of Fig. 1

An incomplete ART Ap-c for the producer-consumer

problem of Fig. 1 is shown in Fig. 3. Nodes show the

state formulas and edges are labeled with the thread

and statement corresponding to the transition. The

dashed edge is a B-edge.

ART-induced schedulers. A well-labeled ART A di-

rectly corresponds to an IVR RA that simulates an

execution by traversing A . We define RA as follows:

Let τ = s0, T1, s1, . . . , sn be an execution prefix. If A
contains no path that corresponds to τ , RA leaves the

schedules for this execution unconstrained. Otherwise,

let vn be the last node of the path in A that corre-

sponds to τ . RA permits exactly those threads that are

expanded at vn (or at w if vn is covered by some node

w). Execution prefixes are matched with (B ∪ −→)-

paths, which is, in particular, necessary to build infinite

executions. For example, the execution prefix

τ = s0, T1, s1, . . . , T1,︸ ︷︷ ︸
T1 scheduled 6 times

s6, T2, s7, . . . , T2,︸ ︷︷ ︸
T2 scheduled 6 times

s0

corresponds to the path in Ap-c from ε over v1, . . . , v12
back to ε. As only T1 is expanded at ε, RA p-c allows

only {T1} after τ .

Safety. An ART is safe if whenever lT (v) is the error

location then φ(v) = false. As only safe executions may
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correspond to a path in a safe ART (cf. Theorem 3.3

of [40]), RA is a safe IVR.

Completeness. In order to derive a deadlock-free

IVR from a well-labeled ART A , we have to fully ex-

pand at least one thread T at each node v that repre-

sents reachable states (where T is fully expanded at v if

v has an outgoing edge for every active transition of T

at lT (v)). However, there may exist reachable states s

represented by φ(v) for which no transition of T is en-

abled (i.e., enabledT (s) = ∅). If T is the only thread

expanded at v, RA is not realizable. This situation

can arise for locations l at which T may block (marked

with may-block(lT )).

Consequently, whenever may-block(lT (v)) in a

deadlock-free ART A , we require that φ(v) is strong

enough to entail that the transition R of T expanded

at v (or at the node covering v, respectively) are en-

abled (i.e., φ(v) ⇒ Guard(R)). For instance, φ(v1) in

the ART shown above proves the enabledness of T1 at

v1, as φ(v1) ⇒ mutex = 0 and lock(mutex) is enabled if

mutex = 0.

Lemma 1 If an ART A is deadlock-free, RA is a

deadlock-free IVR.

Proof Let RA be the IVR of a deadlock-free ART A .

First, we construct a scheduler that enforces RA , which

proves that RA is realizable. Second, we show that all

schedulers that enforce RA are deadlock-free, which

concludes the proof that RA is deadlock-free.

For arbitrary execution prefixes of the form τ =

s0, T1, s1, . . . , sn, let T ′(τ) = RA (τ) ∩ {T ∈ T :

enabledT (sn) 6= ∅}. Let ζ : (S × T )∗ × S → T be an

arbitrary function such that ∀τ. ζ(τ) ⊆ T ′(τ) when-

ever T ′(τ) is not empty. (A description of how ζ can
be constructed is given by the definition of RA .) By

construction, ζ enforces RA if ζ is a scheduler. We

show that ζ is a scheduler by contradiction. Assume

that ζ is not a scheduler. Then there exists an execu-

tion prefix τ = s0, T1, s1, . . . , sn such that ζ(τ) = T ,

enabledT (sn) = ∅ and enabled(sn) 6= ∅.

case τ does not correspond to a path in A : By

the definition of RA , RA (τ) = T . By assumption

enabled(sn) 6= ∅, T ′ is not empty. By the construc-

tion of ζ, T ∈ T ′. Contradiction to enabledT (sn) =

∅.
case τ corresponds to a path π = v0, T1, R1, v1, . . . , vn

in A : By the construction of RA , T is expanded

at vn.

case may-block(lT (vn)): By the definition of may

block, T has exactly one transition R active

at lT (vn). As A is deadlock-free, φ(vn) ⇒
Guard(R). By the assumption that τ corre-

sponds to a path π, sn � φ(vn). Hence, φ(vn) �

Guard(R) and R ∈ enabled(sn). Contradiction

to enabled(sn) = ∅.
case not may-block(lT (vn)): By the definition of

may block, enabledT (sn) 6= ∅. Contradiction to

enabledT (sn) = ∅.
It remains to show that all schedulers that en-

force RA are deadlock-free. Let ζ be an arbitrary

scheduler that enforces RA . Assume that ζ is not

deadlock-free. Then there exists an execution τ =

s0, T1, s1, . . . , sn that is possible under ζ such that

sn is a deadlock, i.e., ∀T ∈ T . enabledT (sn) = ∅
and ∃T ∈ T .∃Rl,l′ . lT (sn) = l. As τ is an exe-

cution permitted by RA , τ corresponds to a path

π = v0, T1, R1, v1, . . . , vn in A . Let T = ζ(τ). By

choice of ζ, T is expanded at vn. With the same

argument as above, in case may-block(lT (vn)), we

have φ(vn) ⇒ Guard(R) for some transition Rl,l′

with lT (vn) = lT (sn) = l and a contradiction to

enabled(sn) = ∅ and in case not may-block(lT (vn)),

we have enabledT (sn) 6= ∅ and a contradiction to

enabledT (sn) = ∅.

Fairness. IVRs derived from deadlock-free ARTs do

not necessarily admit fairness if the underlying ART

contains cycles (across B and −→ edges) that represent

unfair executions. In order to make sure a deadlock-free

ART admits fairness we implement a scheduler that al-

lows A to schedule each thread infinitely often (when-

ever it is enabled infinitely often) by requiring that ev-

ery (B ∪ −→)-cycle is “fair”, defined as follows.

Definition 4 (ART admitting fairness) A deadlock-

free ART A = (V, ε,−→,B) admits fairness if every

(B ∪ −→)-cycle contains, for every thread T that is
enabled at a node of the cycle, a node v such that T is

expanded at v.

Before we proof the fairness of IVRs induced by fair

ARTs, we state the following auxiliary proposition.

Proposition 1 (completely visited cycles) Let

G = (V,−→) be a directed, finite graph. For all infinite

paths π ∈ V ω through G and for all nodes v ∈ V that

occur infinitely often in π, there exists a cycle π′ in G

such that π′ contains v and all nodes of π′ are visited

infinitely often by π.

Lemma 2 If an ART A admits fairness, RA is an

IVR that admits fairness.

Proof We need to show that there exists a fair sched-

uler ζ that enforces an arbitrary ART A that admits

fairness. After constructing ζ, we show that ζ is fair by

contradiction.

Let τ = s0, T1, s1, . . . , sn be an execution pre-

fix and let π be a path such that τ corresponds to
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T1: lock()

T1: unlock()

T2: lock()

T2: unlock()

︸
︷︷

︸

p
ro
d
u
ce

1
item

co
n
su
m
e
1
it
em

︷
︸︸

︷

Fig. 4: A (B ∪ −→)-cycle (B is shown by a dashed line)

π = v0, T1, . . . , vn. By γ(T ), we denote the number of

occurrences of T in π. Let T ′ be the set of threads

that is both enabled at sn and permitted by A , i.e.,

T ′ = RA (τ) ∩ {T : enabledT (sn) 6= ∅}. We let ζ

schedule an arbitrary thread T ∈ T ′ such that no other

thread in T ′ occurs less often in π, i.e., ζ(τ) = T ∈ T ′

such that ∀T ′ ∈ T ′. γ(T ) ≤ γ(T ′). By Lemma 1 and as

A admits fairness, ζ is indeed a scheduler (T ′ is only

empty when enabled(sn) is empty).

It remains to show that ζ is fair, i.e., that ev-

ery execution scheduled by ζ is fair. Let τ be an

execution that is scheduled by ζ (τ is of the form

τ = sinit , ζ(sinit), s1, . . .). If τ is finite, it is trivially

fair. Otherwise, assume that τ is not fair. Then there

exists a thread T that is infinitely often enabled in τ

but does not occur in τ after some prefix of τ . Let

π be a path in A such that τ corresponds to pi. Let

vT be a node at which T is enabled and that occurs

infinitely often in π. As A is finite and by Proposi-

tion 1, there exists a cycle that contains vT such that

π visits all nodes in this cycle infinitely often. As A

admits fairness, there exists v
T,a−−→A v′ such that v is

in this cycle and a ∈ enabled(s) for all states s that

correspond to v. As T is not scheduled in τ after some

finite number i of steps, there exist one or more other

threads T ′ 6= T with v
T ′−→A w for some w 6= v′ which

are scheduled at v for all steps k > i. Let t be the set of

those threads T ′. By the construction of the scheduler,

γ(T ′) ≤ γ(T ) for all T ′ ∈ t. After only finitely many

steps l, γ(T ) < γ(T ′) for all T ′ ∈ t (e.g., take l to

be the product of the maximum path length from v to

v and the number
∑
T ′∈t 1 + γ(T ) − γ(T ′) of required

visits of v). Hence, there exists a prefix of π of length

l′ ≥ l in which v
T−→A v′ is the last step, i.e., T has

been scheduled. Contradiction to the assumption that T

is not scheduled after i steps in π.

Note that the expansion of a thread T at a node in

a cycle does not guarantee that the transition is part of

the cycle. A slight modification of the fairness condition

for ARTs leads to a sufficient condition for ARTs as fair

IVRs, as the following definition and lemma show. The

difference in the fairness condition is that all enabled

threads are expanded within each (B ∪ −→)-cycle c,

which we denote by fair(c). The (B ∪ −→)-cycle shown

in Fig. 4, for instance, is fair.

Definition 5 (fair ART) A deadlock-free ART A =

(V, ε,−→,B) is fair if fair(c) holds for every (B ∪ −→)-

cycle c.

Lemma 3 (fairness) For all fair ARTs A , RA is a

fair IVR.

Proof Let A be a fair ART. By Lemma 1 and as A
is deadlock-free, there exists a scheduler ζ that enforces

A . It remains to show that ζ is fair, which we prove

by contradiction. Suppose that an unfair execution τ is

possible under ζ. There exists a thread T that is en-

abled infinitely often in τ but does not occur in τ after

a finite prefix. Let π be a path through A such that τ

corresponds to π. As VA is finite, there exists a node

v that occurs infinitely often in π and at which T is

enabled. As A is finite and by Proposition 1, v is part

of a cycle of which all nodes occur infinitely often in π.

By fairness, one edge in this cycle is labeled with T . By

the definition of ARTs ((VA ,−→A ) is a tree), this edge

occurs infinitely often in π. Contradiction.

Given an ART A that admits fairness, one can gen-

erate a fair ART A ′ such that RA permits all execu-

tions permitted by RA ′ .

3 Iterative model checking

A suitable algorithm for our framework must gener-

ate fair IVRs. We use model checking based on ARTs

(cf. Sec. 2.3), which allows us to check infinite execu-

tions and explicitly represent scheduling. Nevertheless,

other program analysis techniques such as symbolic exe-

cution are also suitable to generate IVRs. In particular,

our algorithm (Alg. 1) constitutes an iterative exten-

sion of the Impact algorithm [28] for concurrent pro-

grams [40]. We chose Impact as a base for our algo-

rithm because it has an available implementation for

multi-threaded programs, which we use to evaluate our

approach in Sec. 5.

Impact generates an ART by path-wise unwinding

the transitions of a program. Once an error location is

reached at a node v, Impact checks whether the path

π from the ART’s root to v corresponds to a feasible

execution. If this is the case, a property violation is

reported; otherwise, the node labeling is strengthened

via interpolation. Thereby, a well-labeled ART is main-

tained. Once the ART is complete, its node labeling

provides a safety proof for the program.
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Algorithm 1: Iterative Impact for concurrent programs: main procedure (based on [40])
input : Program with threads T

intermediate outputs: fair ARTs A1 ⊆ A2 ⊆ . . . ⊆ An and unsafe ARTs

output : safe, partially safe, or unsafe

Data: A = (V, ε,−→,B) := ({ε}, ε, ∅, ∅), W := {ε}, I := {}

1 Function Main()

2 while true do

3 status := Iteration()

4 if status = no progress then

5 break

6 else if status = counterexample then

7 yield A as an unsafe IVR

8 else

9 A ′ := Remove_Error_Paths(A )

10 yield A ′ as a safe IVR

11 if A is safe then

12 return safe

13 else if Remove_Error_Paths(A ) admits fairness then

14 return partially-safe

15 else

16 return unsafe

17 Function Iteration()

18 W := New_Schedule_Start()

19 if W = ∅ then

20 return no progress

21 while W 6= ∅ do

22 select and remove v from W

23 Close(v)

24 if v not covered then

25 status := Refine (v)

26 if status = counterexample then

27 return counterexample

28 status := Check_Enabledness(v)

29 if status = no progress then

30 return no progress

31 Expand (v)

32 return progress

33 Function Check_Enabledness(v)

34 π := v0
T1,R1−−−−→ v1 . . .

Tn,Rn−−−−−→ vn path from ε to v

35 if not may-block(lvn−1)T n then

36 return progress

37 if R1 ∧ . . . ∧ Rn−1 ∧ ¬Guard(Rn) is unsat then

38 φ(v) := φ(v) ∧Guard(Rn)

39 else

40 return Backtrack(v)

41 Function Close(v)

42 for all uncovered nodes w that have been created before v do

43 if l(w) = l(v) ∧ (φ(v)⇒ φ(w)) ∧∀c ∈ CA (v, w). fair(c) then

44 B:=B ∪{(v, w)}
45 B:=B \{(x, y) : v  y}

46 for T with v
T−→ v′ and not w

T−→ w′ do

47 add (v, T ) to I

48 Function Backtrack(v)

49 π := v0
T1,R1−−−−→ v1 . . .

Tn,Rn−−−−−→ vn path from ε to v

50 i := n− 1

51 while i ≥ 0 do

52 if ∃T, v′i. vi
T−→ v′i /∈ A ∧(Skip(vi, T) = false) then

53 add vi
T−→ v′i to A

54 W := W ∪ {v′i}

55 prune
Ti+2,Ri+2−−−−−−−−→ vi+3 . . . . . .

Tn,Rn−−−−−→ vn from A

56 φ(vi+1) := false

57 return progress

58 i := i− 1

59 return no progress

60 Function Expand(v)

61 T := Schedule_Thread (v)

62 Expand_Thread (T , v)

To build an ART as in the producer-consumer ex-

ample of Fig. 3, Impact starts by constructing the root

node ε with φ(ε) = true and l(ε) = (8, 12), where we

indicate locations by line numbers in Fig. 1. Initially,

mutex = 0, count = 0, and the buffer size is bound by

an arbitrary constant N > 0. Thread T1 is expanded by

adding a node v1 with φ(v1) = true and l(v1) = (14, 12).

From v1, thread T1 is expanded repeatedly until node

v6 with φ(v6) = true and l(v6) = (8, 12) is produced.

At this point, all statements of the produce() procedure

have been expanded once. As v6 has the same global

location as ε and φ(v6) ⇒ φ(ε), a covering v6 B ε can

be inserted. However, when the else branch of thread T1
at node v1 is expanded, a node verror labeled with the

error location is added. In order to check the feasibility

of the error path ε −→ v1 −→ v2 −→ verror, Impact tries

to find a sequence interpolant for:

count = 0 ∧ mutex = 0,

mutex
′ = 1,

count ≥ N
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As we assume that the buffer is never of size 0, i.e.,

N > 0,
∧
U is unsatisfiable and a possible sequence in-

terpolant is:

I0 ≡ true

I1 ≡ count = 0 ∧ mutex = 0

I2 ≡ count = 0 ∧ mutex
′ = 1

I3 ≡ false

with:

I0 ∧ count = 0 ∧ mutex = 0⇒ I1

I1 ∧ mutex
′ = 1⇒ I2

I2 ∧ count ≥ N⇒ I3

Hence, verror can be labeled with false, so that the ART

remains safe, and the preceding labels can be updated

to φ(ε) = φ(v1) = count = 0 ∧ mutex = 0 and φ(v2) =

count = 0∧mutex = 1. Due to the relabeling, the covering

v6 B ε has to be removed and v6 has to be expanded.

When T2 has been expanded six times beginning at

v6, a node v12 is added with l(v12) = (8, 12). Impact

applies a heuristic that attempts to introduce cover-

ings eagerly, which results in a label φ(v12) = mutex =

0∧ count = 0 and a covering v12 B ε can be added. With

this covering, the current ART is fair and can be used as

an IVR. In contrast, Impact for concurrent programs

would then continue to explore additional interleavings

by expanding, e.g., T2 at ε. A complete ART is found

when both error paths and all interleavings of produce()

and consume() that respect the available buffer size N are

explored. Impact for concurrent programs does not ter-

minate until such a complete ART is found and would

not terminate at all if the buffer size is unbounded. Our

algorithm, however, is able to yield an fair IVR each

time a new interleaving has been explored.

In each iteration, our extended algorithm yields an

IVR which is either unsafe (a counterexample) or fair

(can be used as scheduling constraints). If the algo-

rithm terminates, it outputs “safe”, “partially safe”,

or “unsafe”, depending on whether the program is safe

under all, some, or no schedulers. Procedure Main()

repeatedly calls Iteration() (line 3), which, intuitively,

corresponds to an execution of the original algorithm

of [40] under a deterministic scheduler. Iteration()

(potentially) extends the ART A . If no progress is

made (A is unchanged), the algorithm terminates

(lines 12, 14, and 16). Otherwise, an intermediate

output is yielded: either A as an intermediate output

(line 7) or A with all previously found counterexamples

removed, i.e., the largest fair ART that is a subgraph

of A , denoted by Remove Error Paths().

Iteration() maintains a work list W of nodes v to

be explored via Close(v), which tries to find (as in [40])

a node that covers v. In addition to the covering check

of [40], we check fairness, where CA (v, w) denotes all

cycles that would be closed by adding the edge v B w

(line 43). If such a node w is found, any thread T that

is expanded at v but not at w (line 46) must not be

skipped at w by POR. Instead of expanding T instan-

taneously at w (as in [40]), which would explore another

schedule, T is added to the set I so that it can be ex-

plored in a subsequent iteration. If no covering node

for v is found, v is refined, which returns counterex-

ample if v has a feasible error path (line 25). Other-

wise (line 28), Check Enabledness() performs a dead-

lock check by testing whether the last transition that

leads to v is enabled in all states represented by the

predecessor node. If not, deadlock-freedom is not guar-

anteed and Backtrack() tries to find a substitute node

where exploration can continue.

The deterministic scheduler of Iteration() is con-

trolled by New Schedule Start() and Schedule Thread().

The former selects a set of initial nodes for the explo-

ration (line 18); the latter decides which thread to

expand at a given node (line 61). We use a simple

heuristic that selects the first (in breadth-first order)

node which is not yet fully expanded and use a round-

robin scheduler for Schedule Thread that switches to

the next thread once a back jump occurs (e.g., the

end of a loop body is reached). Additionally, Sched-

ule Thread returns only threads that are necessary to

expand at the given node after POR (cf. Skip() [40]).

More elaborate heuristics are conceivable but out of

the scope of this paper.

The correctness of Alg. 1 w.r.t. safety follows from

the correctness of [28] and [40]. Additionally, Alg. 1 is

also fair:

Lemma 4 (fairness of Alg. 1) Any safe ART A gen-

erated by Alg. 1 is fair.

Proof By contradiction. Assume that Alg. 1 returns a

safe ART A = (VA , ε,−→A ,B) that is not fair. By def-

inition 5, A contains a (B ∪ −→A )-cycle c that does

not satisfy fair(c). As (VA ,−→A ) is a tree, the cycle

contains a B edge. However, Alg. 1 checks, in line 43,

whether the candidate covering would produce an unfair

cycle. A B edge is only added if the resulting cycle is

fair. Contradiction.

4 Partial-order reduction

A naive enforcement of the context switches at the rel-

evant nodes of a safe IVR RA would result in a strictly

sequential execution of the transitions, foiling any ben-

efits of concurrency. To enable parallel executions, we
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1 Variables:
2 int x, y, z
3 Thread T1:
4 while true:
5 x := 1
6 if z = 0:
7 y := 1
8 Thread T2:
9 while true:

10 y := 0
11 x := 0

ε

v1

v2

v3

v4

v5 v6

v7

T1: x:=1

T1: read z

T2: y:=0

T2: x:=0

T1: if z=0 T1: else

T1: y:=1

Fig. 5 (a) A Program with a fair ART

T1:

e1 , x := 1

e2 , read z

T2:

e3 , y := 0

e4 , x := 0

Fig. 5 (b) The section schedule for
the section path π1 from ε to v4

ε

v3

σ1, true

σ2, z = 0 σ3, z 6= 0

Fig. 5 (c) A corresponding pro-
gram schedule

introduce program schedules that relax the scheduling

constraints by means of partial-order reduction (POR).

Note that this application of POR concerns the enforce-

ment of scheduling constraints and occurs in addition

to POR applied by our model checking algorithm when

constructing an ART (cf. Sec. 3). Nevertheless, depen-

dency information that is used for POR during model

checking can be reused so that redundant computations

are avoided.

The goal is to permit the parallel execution of inde-

pendent transitions (in different threads) whose order

does not affect the outcome of the execution represented

by A (i.e., the resulting traces are Mazurkiewicz-

equivalent). Using traditional POR to construct such

scheduling constraints poses two challenges: 1. Execu-

tions may be infinite, but we need a finite representation

of scheduling constraints. 2. The control flow of an ex-

ecution may be unpredictable, i.e., it is a priori unclear

which scheduling constraints will apply. We solve is-

sue 1 by partitioning ARTs into sections and associate

a finite schedule with every section. To address issue 2,

we require that sections do not contain branchings

(control flow and non-deterministic transitions).

Consider the program and corresponding ART in

Fig. 5a. The if-statement of T1 is modeled as a separate

read transition followed by a branching at node v3. We

define three section paths:

π1 := ε −→ v1 −→ v2 −→ v3 −→ v4

π2 := v4 −→ v5 −→ v7 −→ ε

π3 := v4 −→ v6 −→ ε

After π1 has been executed, a scheduler can distinguish

the cases y = 0 and y 6= 0 and schedule π2 or π3 ac-

cordingly.

Formally, a section path v1
R1−−→ . . .

Rn−−→ vn+1 corre-

sponds to a branching-free path in an ART whose first

transition may be guarded. A section path follows −→A

edges, skipping covering edges B. The section schedule

of a section path describes the Mazurkiewicz equiva-

lence class of the contained transitions and is defined

as the smallest partial order σ = (Vσ,−→σ) such that

Vσ = {e1, . . . , en} and −→σ⊇ {(ei, ej) : i < j ∧Ri ∦ Rj},
where ei, 1 ≤ i ≤ n is the occurrence of transition Ri
at position i.

The section schedule σ(π1) of π1 is depicted in

Fig. 5b. It consists of four events e1 , T1 : x:=1,

e2 , T1 : read z, e3 , T2 : y:=0, and e4 , T2 : x:=0. An

arrow e → e′ indicates that σ(π1) requires e to occur

before e′. Events of the same thread are ordered ac-

cording to the program order of the respective thread.

Events e1 and e3 are from different threads and write

to the same variable, hence they are dependent and

the section schedule needs to specify an ordering: e1
must occur before e3. Accordingly, the complete section

schedule is ({e1, e2, e3, e4}, {(e1, e2), (e3, e4), (e1, e3)}).
By the following lemma, an execution from a state

corresponding to the first node of a section and sched-

uled according to the respective section schedule will

always lead to a state corresponding to the last node of

the section. For instance, the following execution frag-

ments both lead from the initial state to a state repre-

sented by v4 (s4, s
′
4 � φ(v4)), as e1 and e3 are indepen-

dent and can be swapped:

sinit , T1, s1, T2, s2, T1, s3, T2, s4! e1, e3, e2, e4

sinit , T2, s
′
1, T1, s

′
2, T1, s

′
3, T2, s

′
4! e3, e1, e2, e4

Lemma 5 (correctness of section schedules) Let

τ be a linear extension of a section schedule σ(π) of a

section path π in a deadlock-free ART A . τ is equivalent

to a linear extension of σ(π) that corresponds to π.

Proof Let π be a section path, σ(π) its section schedule,

and τ a linear extension of σ(π). As σ(π) is a partial or-

der, all linear extensions of σ(π) are equivalent [17], in

particular the linear extension of σ(π) that corresponds

to π.

A program schedule Σ comprises several section

schedules. Σ is a labeled graph (VΣ , −→Σ). Each node

v ∈ VΣ is the start of a section path π in A . Each
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edge is labeled with the section schedule of π and the

guard Guard(R) of the first transition R in π. As A
is deadlock-free, there exists a thread T which is fully

expanded at v in A and we require that Σ likewise has

outgoing edges at v labeled with T for each transition

of T at v. Fig. 5c shows a program schedule for our

example program.

A scheduler can enforce the scheduling constraints

of a program schedule by picking a section schedule

that matches the current execution prefix and schedul-

ing an event whose predecessors (according to the sec-

tion schedule) have already been executed. Hence, all

independent events in a section can be executed con-

currently without synchronization. All events of a sec-

tion schedule have to appear before the first event of

the next section schedule, so that the states reached

between sections correspond to nodes of the program

schedule. For example, the event T1 : y := 1 from sec-

tion π2 must not occur in between events T1 : read z

and T2 : y := 0 from section π1.

A program schedule of an ART A that admits fair-

ness permits exactly those executions that correspond

to a path in A (modulo Mazurkiewicz equivalence).

In particular, as Mazurkiewicz equivalence preserves

safety properties [17], only safe executions are permit-

ted.

Lemma 6 (correctness of program schedules) Let

A be an ART that admits fairness and Σ a program

schedule for A . All program executions that adhere to

the scheduling constraints of Σ are equivalent to an ex-

ecution that corresponds to a path in A .

Proof Let A be an ART that admits fairness, Σ a pro-

gram schedule for A , and τ be an execution that ad-

heres to the scheduling constraints of Σ. We show that

all finite prefixes τ ′ of τ are equivalent to an execution

prefix that corresponds to a path from ε in A .

Induction on the length of τ ′.

case τ ′ is empty: τ ′ corresponds to the empty path in

A .

inductive case: Let πτ ′ = v0
σ0(π0)−−−−→Σ . . . vn

σn(πn)−−−−→Σ

vn+1 be the path in Σ that τ ′ corresponds to. Let

τ ′ = x1x2 be partitioned so that x1 corresponds to

the prefix v0 . . . vn in that path. Such a partition ex-

ists, as an event must occur after all events from the

previous section schedule and before all events from

the following section schedule.

By induction hypothesis, there exists an execution

x≈1 that is equivalent to x1 that corresponds to the

path π0 . . . πn−1 in A . By Lemma 5, there exists a

linear extension x≈2 of σn(πn) that is equivalent to

x2, which corresponds to πn in A . Thus, x≈1 x
≈
2 is

equivalent to τ ′ and corresponds to π0 . . . πn.

1

2

3

4

5

6

7

8

9

T1 produce

T2 produce

T3 produce

T4 produce

T5 consume

T6 consume

T7 consume

T8 consume

Fig. 6: First IVR for the producer-consumer problem

(simplified)

1 Thread T1:
2 while true:
3 lock(mutex1)
4 lock(mutex2)
5 execute critical section()
6 unlock(mutex2)
7 unlock(mutex1)

8 Thread T2:
9 while true:

10 lock(mutex2)
11 lock(mutex1)
12 execute critical section()
13 unlock(mutex2)
14 unlock(mutex1)

Fig. 7: A program with a deadlock

T1:

lock(mutex1)

lock(mutex2)

execute critical section()

unlock(mutex2)

unlock(mutex1)

T2:

lock(mutex2)

lock(mutex1)

execute critical section()

unlock(mutex2)

unlock(mutex1)

Fig. 8: Section schedule for the program of Fig. 7

5 Evaluation

In five case studies, we evaluate our iterative model

checking algorithm and scheduling based on IVRs.

We use the Impara model checker [40], as it is the

only available implementation of model checking for

non-terminating, multi-threaded programs based on a

forward analysis on ARTs we have found. Impara uses

lazy abstraction with interpolants based on weakest

preconditions. We extend the tool by implementing

our algorithm presented in Sec. 3. Impara accepts C

programs as inputs, however, some language features

are not supported and we have rewritten programs

accordingly.1 We refer to the (non-iterative) Impara

1 E.g., Pthread mutexes, some uses of the address-of opera-
tor, and reuse of the same function by several threads are not
supported. We solve these issues by rewriting our benchmark
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1 Threads
2 T1: while true: produce()
3 T2: while true: produce()
4 T3: while true: consume()
5 T4: while true: consume()

6 produce:
7 if buffer is not full():
8 lock()
9 assert buffer is not full()

10 add item()
11 unlock()

12 consume:
13 if buffer is not empty():
14 lock()
15 assert buffer is not empty()
16 remove item()
17 unlock()

Fig. 9 (a) The producer-consumer problem with a race condition

1

2

3

4

5

T1 produce

T2 produce

T3 consume

T4 consume

Fig. 9 (b) First IVR (simplified)

tool as Impara-C (for complete verification) and to

our extension of Impara with iterative model checking

as Impara-IMC.

5.1 Implementation

To evaluate the enforcement of program schedules

for infinite executions, we implement a custom (user

space) scheduler.

In a first step, we automatically translate ARTs

constructed by Impara-IMC to program schedules en-

coded as vector clocks. To omit sections in the gen-

erated program schedule that would never be executed

and thereby reduce the size of the program schedule, we

discard all paths in the ART that lead only to nodes la-

beled with false. As we use only deadlock-free ARTs, an

alternative, feasible path, always exists. A given ART

is traversed from the root. Recursively, we build section

paths by traversing the graph until a branching node

is reached. At the branching node, a fully expanded

thread T is chosen. The next sections are started at all

child nodes of the branching node that are reached by

a transition of T . For each section, the section schedule

is generated based on the dependency information of

memory accesses. Section schedules are represented by

vector clocks. Additionally, each section schedule con-

tains a link to all possible successor sections, i.e., those

sections that start at a direct successor node of the

current section. If there exist nodes v, w such that all

possible (interleaved) paths between v and w are equiv-

alent and section paths, a single section path between v

and w with relaxed scheduling constraints is sufficient.

In this case, no dependencies between memory events

need to be enforced. However, we use only the first IVR

in our experiments (produced in a single iteration of Al-

gorithm 1), hence we do not evaluate this case.

Firstly, all section schedules for the given ART are

generated by enumerating them, including link infor-

mation about successor sections, and marking the ini-

tial section.

programs so that Impara handles them correctly and their
semantics is not changed. We will publish our modifications
to Impara, including two bug fixes.

Secondly, we instrument the source code of bench-

mark programs manually with callbacks to our user

space scheduler and code for time measurement. The

user space scheduler is implemented in C++11 and

uses the C++ standard library for atomic memory

operations. Program schedules are included as header

files. Every access to a non-thread-local, global variable

(shared variable) is replaced by a C++ preprocessor

macro that calls the user space scheduler, executes the

original statement, and calls the user space scheduler

to notify that the statement has been executed. In

our selection of benchmark programs, we had to in-

strument assignments and if-then-else statements. In

the case of control flow branchings that depend on a

shared variable, i.e., an if-then-else statement where

the branching expression depends on a shared vari-

able, additional callbacks are necessary to notify the

scheduler of the taken control flow path.

To ensure that memory accesses enclosed by call-

backs are indeed executed after the preceding callback

and before the succeeding callback, memory fences

are used.

The result of steps one and two is a multi-threaded

program that executes concurrent memory accesses ac-

cording to a given program schedule. Threads are exe-

cuted concurrently and only forced to execute sequen-

tially where required by the program schedule. Each

time a thread T enters the callback preceding a mem-

ory access, T looks up the current section schedule and

program counters of the other threads. If the vector

clock of the section schedule, at the position of the cur-

rent event of T , shows an event of an other thread that

has to occur first, T waits until this event has been ex-

ecuted. If no more events are required to occur before

the current event of T by the section schedule, T exe-

cutes the current memory access and, in the succeeding

callback, updates its program counter so that the other

threads are notified that T has executed another event.

In case all events of the current section have already

been executed, T chooses the successor section associ-

ated to its current event. Waiting for all threads to com-

pletely execute the current section before switching to a

successor section ensures that the program, at the end

of each section, reaches a state that is represented by a

node in the program schedule (and thereby, in the ART
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generated by the model checker). In case T has no suc-

cessor section associated to its current event, T waits

for an other thread to choose the next section. In case

the last node of the current section is a branching node,

only the thread with a control flow branching chooses

the next section. In case T has a control flow branching

at the end of the last section, T chooses the successor

section based on the taken control flow branch.

Thirdly, we instrument the benchmark programs

with code for time measurement. Each thread executes

in an indefinite loop. Each time a thread has accom-

plished useful work in the current loop iteration, e.g.,

producing or consuming an item, writing a block or

inode, or executing the critical section, it increments its

performance counter. The main thread sleeps for 2 sec-

onds, the time out duration, and subsequently prints

the sum of the performance counters of all threads and

terminates the program. Such a single run of a bench-

mark program is executed five times and we report the

respective median value of performance counter sums.

All experiments have been executed on a 4-core Intel

Core i5-6500 CPU at 3.2 GHz.

While we manually instrumented the benchmark

source code, an automated instrumentation is well con-

ceivable. Main tasks of such an automated instrumen-

tation are to identify shared variables and all points in

the program, where dependent expressions are accessed.

Relevant shared variables can be either overapproxi-

mated so that all shared or global variables are included

or found by a static dependency analysis. Even if the

variables to be instrumented are overapproximated, the

expected additional execution time overhead is small,

as our experiments show: a callback to our scheduler is

fast if the current thread does not have to wait for other

threads before executing the next variable access. Ex-

pressions that depend on a shared variable can likewise

be found by a static dependency analysis. The auto-

mated instrumentation may of course be implemented

on the level on the intermediate representation of a

compiler and does not have to be conducted on the

source code level.

5.2 Infeasible complete verification

Even for a moderate number of threads, complete veri-

fication, i.e., verification of a program under all possible

schedules and inputs, may be infeasible. In particular,

Impara-C times out (after 72 h) on a corrected variant

of the producer-consumer problem (Fig. 1) with four

producers and four consumers. Impara-IMC produces

the first IVR R1 after 4:29:53 hours. A simplification

of R1 is depicted in Fig. 6; it covers all executions in

which the threads appear to execute their loop bodies

atomically in the order T1, T2, . . . , T8. While the main

bottleneck for Impara-C is state explosion and finding

many coverings for different schedules, we observe that

the main issue to produce R1 is to find a single covering

that comprises all threads, i.e., to find a fair cycle. The

essential predicates that lead to a fair cycle are:

count > 0, count + 1 > 0, count + 2 > 0, count + 3 > 0,
count 6= 1000, count 6= 999, count 6= 998, count 6= 997

The subsequent IVRs R2, . . . ,R8 are found much

faster than the first IVR, after 19:31, 12:3, 6:13, 28:0,

9:25, 8:27, and 8:40 minutes. We stop the model checker

after eight IVRs. According to our implementation of

New Schedule Start() in Alg. 1, IVR Ri permits, in

addition to all executions permitted by Ri−1, those

executions in which the threads appear in the or-

der Ti, T1, . . . , Ti−1, Ti+1, . . . , T8. Hence, R8 gives the

scheduler more freedom than R1, which may result in a

better execution performance, e.g., because a producer

which has its item available earlier does not have to

wait for all previous producers.

5.3 Deadlocks

A common issue with multi-threaded programs are

deadlocks, which may occur when multiple mutexes

are acquired in a wrong order, as in the program in

Fig. 7, in which two threads use two mutexes to protect

their critical sections. A deadlock is reached, e.g., when

T2 acquires mutex2 directly after T1 has acquired mutex1.

A monolithic verification approach would try to verify

one or more executions and, as soon as a deadlock is

found, report the execution that leads to the deadlock

as a counterexample. With manual intervention, this

counterexample can be inspected in order to identify

and fix the bug.

In contrast, Impara-IMC logs both safe and un-

safe IVRs. The first IVR found in this example cov-

ers all executions in which Threads 1 and 2 execute

their loop bodies in turns, with Thread 1 beginning.

The corresponding program schedule consists of a sin-

gle section schedule depicted in Fig. 8. As expected,

executing the program with enforcing the first program

schedule never leads to a deadlock. Executing the unin-

strumented program (without scheduling constraints)

leads to a deadlock after only a few hundred loop iter-

ations. Hence, IMC enables to safely use the program

deadlock-free and without manual intervention.

5.4 Race conditions through erroneous synchronization

The program in Fig. 9a shows a variant of the producer-

consumer problem with two producers and two con-
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1 Variables:
2 int block
3 boolean busy
4 boolean inode
5 mutex m inode
6 mutex m busy
7 Initially: inode = busy

8 Thread T1:
9 while true:

10 lock(m inode)
11 if not inode:
12 lock(m busy)
13 busy := true
14 unlock(m busy)
15 inode := true
16 block := 1
17 unlock(m inode)

18 Thread T2:
19 while true:
20 lock(m busy)
21 if not busy:
22 block := 0
23 unlock (m busy)

24 Thread T3:
25 while true:
26 lock(m inode)
27 lock(m busy)
28 inode := false
29 busy := false
30 unlock(m inode)
31 unlock(m busy)

Fig. 10: The file system benchmark

1 Thread T1:
2 while true:
3 if not inode:
4 busy := true
5 inode := true
6 atomic−begin
7 assume inode and busy
8 block := 1
9 atomic−end

10 Thread T2:
11 while true:
12 if not busy:
13 atomic−begin
14 assume not busy
15 block := 0
16 atomic−end

17 Thread T3:
18 while true:
19 atomic−begin
20 assume inode = busy
21 inode := false
22 busy := false
23 atomic−end

Fig. 11: The file system benchmark with synchronization constraints in assume state-

ments

1 Thread T ′2:
2 while true:
3 atomic−begin
4 assume not busy
5 block := 0
6 atomic−end

Fig. 12: Thread T ′2: the if-

statement is omitted

1 initially:
2 empty buffer of size 1000
3 count = 0
4 mutex = 0
5

6 thread T1...4:
7 while true:
8 lock()
9 if count != 1000:

10 int return value = produce()
11 assert(return value != OVERFLOW);
12 unlock()
13

14 thread T5...8:
15 while true:
16 lock()
17 if top > 0:
18 return value = consume();
19 assert(return value != UNDERFLOW);
20 unlock()

Fig. 13: A correct program for the producer-consumer

problem with four producers and four consumers

sumers which uses erroneous synchronization: both the

produce and consume procedures check the amount of free

space without acquiring the mutex first. For example, a

buffer underflow occurs if the buffer contains only one

item and the two consumers concurrently find that the

buffer is not empty; although the buffer becomes empty

after the first consumer has removed the last item, the

second consumer tries to remove another item.

The first IVR found by Impara-IMC is depicted

simplified in Fig. 9b. The simplification merges all in-

dividual edges of a procedure into a single edge, which

is possible as Impara-IMC does not apply context

switches inside of procedures during the first iteration.

Since both procedures appear to be executed atomi-

cally, no assertion violation is found during the first

iteration. We ran the program with a program schedule

corresponding to the first IVR. As expected, we have

not observed any assertion violations.

5.5 Declarative synchronization

Fig. 10 shows an extension of a benchmark used in [15],

which is a simplified extract of the multi-threaded

Frangipani file system. The program uses a time-

varying mutex: depending on the current value of

the busy bit, a disk block is protected by m busy or m inode.

We want to evaluate whether we can use Impara-IMC

to generate safe program schedules even if all mutexes
are (intentionally) removed from the program.

For this purpose, we use a variant of the file system

benchmark where all mutexes are removed and synchro-

nization constraints are declared as assume statements,

shown in Fig. 11. It is sufficient to assure for T1 that

the block is written only if it is allocated, i.e., both inode

and busy are true. For T2, it is sufficient to assure that

the block is only reset if it is not busy, i.e., busy = false.

Finally, for T3, it is necessary to assure that the block

is deallocated only if it is already deallocated or fully

allocated, i.e., inode = busy.

Running Impara-IMC on the file system benchmark

without mutexes yields a first program schedule that

schedules T1, T2, T3 repeatedly in this order, accord-

ing to our simple heuristic for an initial IVR. However,

although all executions permitted by this schedule are

fair, the if-condition of T2 always evaluates to false and

T2 never performs useful work. To obtain a more useful

schedule, we inform the model checker that the (omit-

ted) else-branch of Thread T2 is not useful. We encode
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this information by inserting else: assume false. After sim-

plifying the code, we obtain T ′2 as depicted in Fig. 12.

For the updated code, Impara-IMC yields a first sched-

uler that schedules T3 before T2 before T1, so that all

threads perform useful work.

5.6 Performance

Tab. 1 shows the performance impact of enforcing

IVRs on several correct programs. Each program is

model-checked once until the first IVR (Impara-IMC)

and once completely (Impara-C). As a baseline, the

program is run without schedule enforcement (uncon-

strained). The first IVR is enforced without (Opt0),

and with optimizations (Opt1, Opt2). Opt1 applies

POR and omits operations on synchronization objects

(mutexes, barriers).2 Opt2 uses, in addition to Opt1,

longer section schedules (by replicating a section eight

times) and stronger partial-order reduction that identi-

fies independent accesses to distinct indices of an array.

Additionally, for the producer-consumer benchmark,

we apply a compiler-like optimization, removing and

reordering events to reduce the number of constraints.3

Both Opt1 and Opt2 enable the concurrent execution

of more memory accesses, e.g., because the beginning

of a critical section can already be executed before

a thread arrives at a constrained access that has to

wait. The schedules for each benchmark (Opt0–Opt2)

are obtained from the first IVR. As all benchmarks

use unbounded loops, we measure the execution time

performance by counting useful (i.e., with a successful

concurrent access such as a produced item) loop itera-

tions and terminating the execution after 2 seconds.

At the example of a section schedule of the producer-

consumer benchmark with two threads, Fig. 14a–14b il-

lustrates the difference between optimizations. Fig. 14a

shows a section schedule for Opt0. All shared memory

events are executed strictly sequentially, as it is the

case with unconstrained executions: only the thread

holding the lock is allowed to access shared memory.

Opt1 removes the lock operations while maintaining

the same ordering of events. Opt2, cf. Fig.14b, relaxes

the original ordering, subsumes eight loop executions of

both threads, and eliminates the redundant read event

of count.

In Fig. 14b, when the consumer executes the sched-

uler callback before its first event (read count), it looks

2 As enforcing an IVR is redundant to synchronization over
existing mutexes and barriers, omitting them is safe.
3 Opt2 follows a general algorithm, however we do not au-

tomate our implementation of Opt2, as it would be a large
effort to implement compiler optimizations. Our implemen-
tation of Opt1 is automated.

up the constraint e12 → e21 and waits for the producer

to finish event e12. When the producer in the callback

after e12 has notified that e12 has been executed, the

consumer continues and executes e21. Similarly, the pro-

ducer is permitted to execute e14 before e23 has been

executed. Thus, the constrained execution under the

optimized schedule permits “more” concurrency (i.e.,

more events to be executed concurrently) than the un-

constrained execution with locks.

For instance, the consumer is allowed to read the

counter already after the producer has written it and

does not have to wait for the producer to also write an

item to the buffer.

We use the producer-consumer implementation

(with correct synchronization and buffer size 1000)

from SV-COMP [1] (stack safe), modified with an un-

bounded loop and with 1, 2, and 4 producers and

consumers. The double lock benchmark is a corrected

version (lock operations in T2 reversed) of the dead-

lock benchmark (Sec. 5.3), where the critical section is

simulated by sleeping for 1 ms; the uncorrected version

reached a deadlock after only 172 loop iterations. The

file system benchmark from SV-COMP (time var mu-

tex safe) is extended with a third thread and again with

unbounded loops as in Sec. 5.5. The barrier benchmark

uses two barriers to implement ring communication

between threads.

As the model checking columns of Tab. 1 show,

Impara-IMC finds the first IVR often much faster

than or at least as fast as it takes Impara-C for com-

plete model checking; it can produce an IVR even

for our largest benchmarks, where Impara-C times

out. For a buffer size of 5, Impara-C can verify the

producer-consumer benchmark even with eight threads

but again, Impara-IMC is considerably faster in find-

ing the first IVR. Subsequent IVRs were generated

considerably faster than the first IVR, which might be

caused by caching of facts in the model checker.

The verification time for the producer-consumer

benchmark of both Impara-C and Impara-IMC ap-

pears to grow exponentially with the number of threads.

This growth is not a limitation of our approach but

a property of the application of lazy abstraction with

interpolants in Impara. Potentially, Impara can be im-

proved by including symmetry reduction, which would

reduce the verification time for both Impara-C and

Impara-IMC but is outside of the scope of this work.

Somewhat surprisingly, some benchmarks are slower

when executed unconstrained than under Opt2. We

conjecture that this is caused by more memory ac-

cesses being executed in parallel under Opt2, as all

other effects of Opt2 only improve handling by our

user space scheduler and do not affect unconstrained
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T1 (producer):

if (count < N)

local count = count

buf[local count + 1] = item

count = local count + 1

e11 , lock

e12 , read count

e13 , read count

e14 , write buf

e15 , write count

e16 , unlock

T2 (consumer):

if (count > 0)

local count = count

count = local count − 1

item = buf[local count − 1]

e21 , lock

e22 , read count

e23 , read count

e24 , write count

e25 , read buf

e26 , unlock

Fig. 14 (a) Section schedule for the producer-consumer benchmark (Opt0)

T1 (producer):

local count = count

count = local count + 1

buf[local count + 1] = item

local count = count

count = local count + 1

buf[local count + 1] = item

e11 , read count

e12 , write count

e13 , write buf

e14 , read count

e15 , write count

e16 , write buf

T1 (producer):

local count = count

count = local count + 1

buf[local count + 1] = item

local count = count

count = local count + 1

buf[local count + 1] = item

e21 , read count

e22 , write count

e23 , write buf

e24 , read count

e25 , write count

e26 , write buf

Fig. 14 (b) Section schedule for the producer-consumer benchmark (Opt2)

Table 1: Experimental results (to: timeout, rounded to full seconds)

Performance is measured in number of useful (e.g., with a successful concurrent access such as a produced item)

loop iterations within a time limit of 2 seconds.

Model checking Performance (higher is better)
Benchmark Time 1st IVR Impara-C Opt0 Opt1 Opt2 Unconstrained
prod.-cons. 1p 1c 1000b 2m 0 s to (72h) 4 864 489 7 466 093 11 370 258 8 199 202
prod.-cons. 2p 2c 1000b 23m 47 s to (72h) 3 400 187 5 959 041 8 428 598 11 643 208
prod.-cons. 4p 4c 1000b 4 h 29m 53 s to (72h) 1 327 063 2 576 695 3 676 876 7 210 796

prod.-cons. 1p 1c 5b 2 s 2 m 28 s 4 945 116 7 075 596 12 372 817 7 915 465
prod.-cons. 2p 2c 5b 18 s 1 m 16 s 3 194 019 5 514 429 9 271 859 6 933 172
prod.-cons. 4p 4c 5b 2m 41 s 9 m 44 s 1 345 991 2 465 108 3 392 111 3 240 136
double lock 1 ms 0 s 0 s 1 845 1 834 3 217 1 797
file system 0 s 0 s 3 667 4 877 035 6 705 672 23 822 129
barrier 1 s 4 m 14 s 1 238 720 8 285 228 14 586 849 1 077 907

executions. It is, however, not directly possible to mea-

sure the effect of parallelizing memory accesses: in

order to re-sequentialize memory accesses under Opt2,

synchronization (e.g., over a mutex) would have to be

added, which produces additional overhead.

In all cases but one, Opt2 is considerably faster than

Opt1, which is considerably faster than Opt0. The high-

est overhead is observed for the file system benchmark,

where Opt2 is about 3.5 times slower than the uncon-

strained execution. We conjecture that the high over-

head here stems from an unequal distribution of loop it-

erations among threads, when executed unconstrained:

the loop body of T2 was executed nearly 100 times more

frequently than T1, while it is shorter and probably

faster. Opt0–Opt2 execute all threads nearly balanced.

In addition to the Pthread barriers used in the bar-

rier benchmark, we tried a variant with busy waiting

barriers, where the unconstrained execution showed a

performance of 13 567 135, which is still slower than

Opt2.

Comparing the results for the producer-consumer

benchmark with a buffer size of 1000 to those for a

buffer size of 5, we observe that there is no considerable

effect on Opt0–Opt2 but on most of the unconstrained

executions. This observation is comprehensible, as the

first IVR does not make use of more than at most four
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Execution time (s)
Schedule Constrained Unconstrained Relative
S1 3.34 3.25 1.03
S2 3.34 3.25 1.03
S3 3.6 3.25 1.10
S4 3.57 3.25 1.10

Table 2: Experimental performance results for pfscan

cells in the buffer (in case of four producers). The per-

formance of unconstrained executions decreases with a

smaller buffer as the chance that the buffer is full and

a producer has to wait is higher. For all three configu-

rations with a buffer size of 5, Opt2 shows the highest

execution time performance.

Even in repeated executions of the experiment,

the unconstrained variant of double lock showed only

“starving” executions in the sense that the second

thread was never able to acquire the mutexes before

the timeout of 2 seconds. Hence, the constrained exe-

cutions improve on the operating system scheduler in

terms of a balanced execution of all threads.

In order to compare to the enforcement of input-

covering schedules [7] (explained in Section 6), we mea-

sure the overhead of our scheduler implementation on

the pfscan benchmark used there. Pfscan is a parallel

implementation of grep and uses 1 producer and 2 con-

sumer threads to distribute tasks, consisting of reading

and searching a file for a given query. As input, we use 8

files with 100MB of random content each. We evaluate 4

different schedules4, which show an overhead between

3% and 10% (with Opt2). Hence, IVRs can perform

much better than input-covering schedules (60% over-

head reported in [7]).

Tab. 2 contains our experimental results for the pfs-

can benchmark. We use two worker threads in addition

to the main thread. The benchmark is executed with

scheduling constraints of several program schedules S1–

4 (column two) and unconstrained (column three). Ex-

ecution times are given in seconds. The fourth column

gives the relative execution time (overhead). In all con-

strained configurations, operations on synchronization

objects have been omitted (Opt1). S1, S2, and S3 are

program schedules as they can be produced during the

first iteration of our model checking algorithm. Pro-

gram schedule S4 allows any interleaving of critical sec-

tions so that all executions of the unconstrained pro-

gram are matched. S1 and S2 contain sections that

comprise both worker threads, while S3 and S4 con-

tain only single-threaded sections. S1 and S2 differ in

the ordering of the worker threads.

4 As Impara cannot handle several features used by pfscan
(such as condition variables, structs, and standard output),
we manually generate initial IVRs.

S3 causes an overhead of 10% with respect to the

unconstrained execution. Although S4 allows any inter-

leaving of critical sections, there remains an overhead of

10% caused by looking up section schedules during the

execution. S1 and S2 show only a small overhead of 3%.

We conjecture that the lower number of section sched-

ule look-ups (compared to S3 and S4) is responsible for

the considerably lower overhead.

6 Related work

Unbounded model checking [20,40,33,18] is a technique

to verify the correctness of potentially non-terminating

programs. In our setting, we deploy algorithms that use

abstract reachability trees (ARTs) [21,28,40] to repre-

sent the already explored state space and schedules,

and perform this exploration in a forward manner. In-

stead of discarding an ART after an unsuccessful at-

tempt to verify a program, we use the ART to extract

safe schedules.

Conditional model checking [8] reuses arbitrary in-

termediate verification results. In contrast to our ap-

proach, they are not guaranteed to prove the safety of a

program that is functional under all inputs and does not

enforce the preconditions (e.g., scheduling constraints)

of the intermediate result.

Context bounding [37,36,32] eases the model check-

ing problem by bounding the number of context

switches. It is limited to finite executions and unlike

our approach, does not enforce schedules at runtime.

Automated fence insertion [13,24,2,3,26] trans-

forms a program that is safe under sequential con-
sistency to a program that is also safe under weaker

memory models. While the amount of non-determinism

in the ordering of events is reduced, non-determinism

due to scheduling can not be influenced. Synchroniza-

tion synthesis [19] inserts synchronization primitives in

order to prevent incorrect executions, but may intro-

duce deadlocks.

Deterministic multi-threading (DMT) [4,6,7,12,11,

27,31,35] reduces non-determinism due to scheduling

in multi-threaded programs. Schedules are chosen dy-

namically, depending on the explicit input, and can

not be enforced by a model checker. Nevertheless,

there are combinations with model checking [11] and

instances which schedule based on previously recorded

executions [12].

We are aware of only one DMT approach that

supports symbolic inputs [7]. Similar to our sections,

bounded epochs describe infinite schedules as permu-

tations of finite schedules. Via symbolic execution,

an input-covering set of schedules is generated, which
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contains a schedule for each permutation of bounded

epochs. As all permutations need to be analyzed (even

if they are infeasible), state space explosion through

concurrency is only partially avoided; indeed, the ex-

perimental evaluation shows that the analysis is infea-

sible even for five threads when the program has many

such permutations. In contrast, we do not require race-

freedom, use model checking, sections may contain

multiple threads, omit infeasible schedules, and allow

a safe execution from the first schedule on, i.e., an IVR

can be considerably smaller than an input-covering set

of schedules.

Deterministic concurrency requires a program to be

deterministic regardless of scheduling. In [38], a deter-

ministic variant of a concurrent program is synthesized

based on constraints on conflicts learned by abstract

interpretation. In contrast to DMT, symbolic inputs

are supported, however no verification of general safety

properties is done and the degree of non-determinism

is not adjustable, in contrast to IVRs.

Sequentialized programs [37,25,14,22,33,34] em-

ulate the semantics of a multi-threaded program, al-

lowing tools for sequential programs to be used. The

amount of possible schedules is either not reduced at

all or similar to context bounding.

7 Conclusion

We present a formal framework for using IVRs to ex-

tract safe schedules. We state why it is legitimate to

constrain scheduling (in contrast to inputs) and for-

mulate general requirements on model checkers in our

framework. We instantiate our framework with the Im-

pact model checking algorithm and find in our evalua-

tion that it can be used to 1. model check programs that

are intractable for monolithic model checkers, 2. safely

execute a program, given an IVR, even if there exist

unsafe executions, 3. synthesize synchronization via as-

sume statements, and 4. guarantee fair executions. A

drawback of enforcing IVRs is a potential execution

time overhead, however, in several cases, constrained

executions turned out to be even faster than uncon-

strained executions.
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