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Abstract: While the main conceptual issue related to deposit insurances is the moral hazard risk, the
main technical issue is inaccurate calibration of the implied volatility. This issue can raise the risk of
generating an arbitrage. In this paper, first, we discuss that by imposing the no-moral-hazard risk,
the removal of arbitrage is equivalent to removing the static arbitrage. Then, we propose a simple
quadratic model to parameterize implied volatility and remove the static arbitrage. The process
of removing the static risk is as follows: Using a machine learning approach with a regularized
cost function, we update the parameters in such a way that butterfly arbitrage is ruled out and also
implementing a calibration method, we make some conditions on the parameters of each time slice to
rule out calendar spread arbitrage. Therefore, eliminating the effects of both butterfly and calendar
spread arbitrage make the implied volatility surface free of static arbitrage.

Keywords: deposit insurance; implied volatility; static arbitrage; parameterization; machine
learning; calibration

1. Introduction

Banks can lend or invest most of their money deposits. However, if bank’s borrowers default,
the bank’s creditors, particularly depositors, risk loss. In order to protect depositors from this risk,
policy makers have promoted deposit insurance schemes that are majorly issued by government run
institutions. In the global scale, International Association of Deposit Insurers (IADI) was formed in 2002
“to enhance the effectiveness of deposit insurance systems by promoting guidance and international
cooperation”. Even though experiences from bank runs during the 1929 Great Depression led to
the introduction of the first deposit insurances in the US, they have been identified as one of the
contributors to the 2008 financial crisis. The major issue due to these type of insurances is that they
encourage the risk of moral hazard. While this problem has been studied to some extent in the literature
(see Assa (2015) and Assa and Okhrati (2018)), there is another issue relevant to the incorrect contract
design and miss-pricing which needs further attention. More precisely, in addition to the moral hazard
risk, arbitrage also needs to be removed in designing a sound deposit insurance. In this paper, we first
show that the removal of the arbitrage for the policies with no risk of moral hazard is tantamount to
the removal of static arbitrage. This fact lead us to naturally use machine learning methods to improve
the precision of estimation for implied volatility.

As it is discussed in Assa and Okhrati (2018), in a very general framework a sound deposit
insurance that rules out the risk of moral hazard is a two layer policy. A two layer policy can be
considered as the subtract of two European options. This helps us to use the financial engineering
formalism on derivative pricing in our setting. There are some existing models for predicting the price
of an option, most of which spin around the Black-Scholes model. The Black-Scholes formula is one of
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the most famous and frequently used methods of option pricing. However, it is derived under some
constraining assumptions including variability due to the randomness of the underlying Brownian
motion, no transaction costs, and fixed volatility and interest rate (Black and Scholes (1973)). In the
Black-Scholes formula, all parameters are given in the market except the the stock price volatility.
However, this parameter can be estimated by the past stock price data; it usually gives different
Black-Scholes option prices than the market option prices because the assumption of fixed volatility
does not hold in real markets. To overcome this drawback, option traders use implied volatility to
adapt the market prices for options with the Black-Sholes formula. In fact, they consider an option
price in terms of the Black-Sholes implied volatility.

Volatility is a measure of the variability of returns for a given security and it can be measured by
the standard deviation of returns for a particular period of time usually for one year. However, implied
volatility is the estimated volatility of a security’s price and it can be obtained by options trading
prices based on the Black-Scholes framework. While historical volatility has only some information
about underlying price fluctuation for a period of time in the past, implied volatility contains more
information about option price future behavior.

The market volatility can be considered as a proxy of the bank portfolio riskiness, as proved in
Zhang (2015). Volatility modeling proven to be a challenging task and there are only a few popular
models for stochastic implied volatility. For instance, one can consider the stochastic alpha, beta, rho
(SABR) parameterization Avellaneda (2005), Vana-Volga (VV) model Castagno (2007), a parametric
model of implied volatility Zhao (2013) and Stochastic Volatility Inspired (SVI) of Gatheral (2014).
Furthermore, some other studies like Malliaris (1996), Cont (2002), Alentorn (2004) and Roux (2007)
tried to parameterize implied volatility using neural network, regression and other machine learning
tools. However, none of these models could eliminate arbitrage opportunity.

In this study, a machine learning approach is proposed to model implied volatility and also to
remove static arbitrage. Since the price of a European call option depends on the price movement
of the underlying asset, we implement a quadratic machine learning approach to parametrize total
implied variance for the European Black-Scholes call options with less than one year to maturity. That,
how much the model is qualified to fit the implied volatility data, is verified both theoretically and
empirically. We also use a regularized cost function for each volatility slice to rule out both underfitting
and overfitting Hastie (2002). The main observation of this study is to explore how a regularized cost
function can help eliminate static arbitrage, whereas this idea has not been successfully studied in
the literature.

This paper is organized as follows: In Section 2, first we design a risk management framework,
then provide some basic materials of implied volatility, static arbitrage and machine learning which
are necessary for the rest of the paper. We propose a quadratic model for implied volatility and then
some necessary conditions are provided on the parameters of the model to get rid of static arbitrage in
Section 3. In Section 4, we implement a numerical example to illustrate the validity of the proposed
model. Eventually, the paper is finished by a suggestion for future possible works in Section 5.

2. Sound Deposit Insurance

In Assa and Okhrati (2018), a deposit insurance where the risk of moral hazard is ruled out is
discussed. In their paper they have shown a sound insurance contract in many cases, including when
using VaR and CVaR to model the risk aversion behavior of the investors, has a two layer structure.
As we want to address another caveat, that is to rule out the arbitrage, in a similar setting we use
their framework. Adopting notations in Assa and Okhrati (2018), let (Ω, =, F = (=t)0≤t≤T , P) be
a completed probability space, where Ω is the set of all scenarios, P is the physical probability measure
and (=t)0≤t≤T is a filtration with usual conditions and = = =T is a σ-field of measurable subsets of Ω.
Furthermore, E denotes the mathematical expectation with respect to P. Policies are issued at t = 0,
and liabilities are settled at t = T. Random variables represent losses for different scenarios at time
T. The cumulative distribution function associated with a random variable X is denoted by FX . The
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market risk free interest rate is a non-negative number r ≥ 0. Let us consider a bank with an initial
capital1 exp (−rT) b, and a non-negative loss variable associated with the deposit insurance denoted
by L ≥ 0. The bank wants to hedge its global position by transferring part of its losses to another party
(usually an insurance company). The insurance policy is denoted by a non-negative random variable I
and it has to satisfy 0 ≤ I ≤ L. The price of the policy is given by a premium function π : D → R at
time 0, where D is the domain of π. Therefore, the bank’s position is composed of four parts:

1. The initial capital at time 0 i.e., exp (−rT) b;
2. The global loss, L;
3. The insurance policy, −I;
4. The premium payed for the insurance policies, at time T, exp (rT)π (I).

Therefore, the total loss is

Total loss = exp (rT)π (I) + L− b− I.

The bank wants its global position to be solvent. We use a risk measure to measure the solvency;
particularly in this paper we consider Value at Risk (VaR) or Conditional Value at Risk (CVaR)
recommended in the Basel II accord for the banking system (also in the Solvency II for the insurance
industry). In this paper, $ denotes the risk measure recommended by regulator. The bank is solvent
if its capital b is adequate for the solvency i.e., $ (exp (rT)π (I) + L− b− I) ≤ 0. Then, an optimal
decision for the bank is to buy the cheapest insurance contract i.e.,

min π(I)

$(exp (rT)π (I) + L− b− I) ≤ 0

0 ≤ I ≤ L
(1)

Now, we move one step forward to use a more specific model for the bank’s asset. We use an
approach similar to Merton (1997), by considering that the bank’s asset follows a geometric Brownian
motion. This choice is very crucial, since one can use the risk neutral valuation in order to find the
“market (consistent) value” of an insurance contract which is a necessary practice by Solvency II.
Denoting the underlying by St, we assume it follows the following stochastic differential equation:{

dSt = µStdt + σStdWt

S0 > 0

Here Wt, µ and σ are respectively a standard Wiener process, drift, and volatility (constant
numbers). It is also known that:

St = S0 exp
((

µ− σ2

2

)
t + σWt

)
We assume that the bank’s loss is a non-negative and non-increasing function of its assets value.

In mathematical terms, L = L (ST), where L : R→ R+ ∪ {0} is a non-increasing function:

L(x) =

{
exp (rT) S0 − x if x ≤ exp (rT) S0

0 if x > exp (rT) S0
(2)

It is clear that L is equal to (exp (rT) S0 − x)+.

1 For technical reasons we assume the value of b at time T and discount it to make it comparable to today’s value.
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In Assa and Okhrati (2018) it is assumed that there is no risk of moral hazard, meaning that
both bank and insurance feel risk of an adverse event. For that, Assa and Okhrati (2018) assume that
both the bank and insurance loss variables are non-decreasing functions of the global loss variable.
This assumption rules out the risk of moral hazard, as both sides have to feel any increase in the
global loss (see for example Heimer (1989) and Bernard and Tian (2009)) Therefore, we assume that
I = f (L) where both f and id− f are non-negative and non-decreasing functions (here id denotes the
identity function).

Using the no-moral-hazard assumption, Assa and Okhrati (2018) have managed to find the sound
deposit insurances where the risk of insolvency is measured by a distortion risk measure. However, in
this paper we only restrain ourselves to the one mentioned by regulator (and also the most popular
ones), VaR and CVaR:

VaRα(X) = inf {x ∈ R|P (X > x) ≤ 1− α} , α ∈ [0, 1],

and

CVaRα(X) =
1

1− α

∫ 1

α
VaRt(X)dt. (3)

For these particular risk measures, Assa and Okhrati (2018) have shown that the contract has
a two-layer structure. By combining Corollary 1, Theorem 3 and Theorem 4 in Assa and Okhrati (2018)
we get the following theorem:

Theorem 1. If $ = VaRα or $ = CVaRα, and µ− r ≥ 0 hold, then the optimal deposit insurance is a two
layer policy on loss L i.e.,

I = f (L) ,

where f is defined as

f (x) =


0 if x ≤ l

x− l if l ≤ x ≤ u

u− l if u ≤ x

, (4)

for upper and lower retention levels u and l, respectively.

Now it is important to observe that such a contract can be written as the difference of two call
option policies. To see this we have to take the following steps:

f ◦ L (x) =


0 if L (x) ≤ l

L (x)− l if l ≤ L (x) ≤ u

u− l if u ≤ L (x)

.

First, observe that if exp (rT) ≤ l then L (x) = (exp (rT) S0 − x)+ ≤ l always holds and as a result
I = 0. Otherwise, if exp (rT) > l, then L (x) = (exp (rT) S0 − x)+ ≤ l is equivalent to exp (rT) S0 −
l ≤ x. On the other hand, u ≤ L = (exp (rT) S0 − x)+ is always equivalent to x ≤ exp (rT) S0 − u. So
we have the following policies:

1. If exp (rT) ≤ l then I = 0
2. If exp (rT) > l

f ◦ L (x) =


0 if exp (rT) S0 − l ≤ x

exp (rT) S0 − x− l if exp (rT) S0 − u ≤ x ≤ exp (rT) S0 − l

u− l if x ≤ exp (rT) S0 − u

.
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or
f ◦ L (x) = (x− exp (rT) S0 + l)+ − (x− exp (rT) S0 + u)+ + u− l.

This indicates that I can be written as the difference of two call options

I = (ST − exp (−rT) S0 + l)+ − (ST − exp (−rT) S0 + u)+ + u− l. (5)

Now, we want to introduce the risk premium. An important implication of what we have done
above is that all insurance contracts are in the form of a contingent claim i.e., for f ∈ C, f (L) =

f (L (ST)) = ( f ◦ L) (ST). To find the market value of a contingent claim we use the no-arbitrage
valuation, so we have:

π (I) = exp (−rT)E
(

dQ
dP I

)
= exp (−rT)E∗ (I) ,

where dQ
dP is the Radon-Nikodym derivative of the risk neutral probability measure Q with respect to P

and E∗is the expectation with respect to this measure. However, as we have seen in (5), this contract
can be written as the difference of two call options plus a constant value. So we can then use the
following valuation of the contract in our setup

π (I) = e−rTE∗ (I)

= CBS (S0, exp (rT) S0 − l, T, σ, r)− CBS (S0, exp (rT) S0 − u, T, σ, r)

+ exp (−rT) (u− l) , (6)

where in general CBS (S0, K, τ, σ, r) denotes the value of a call option with maturity τ, strike price K,
volatility σ, interest rate r and initial underlying value S0, in a Black-Scholes model. So we have the
following corollary:

Corollary 1. If $ = VaRα or $ = CVaRα, and µ − r ≥ 0 hold, then the optimal deposit insurance is the
difference of two call options plus a constant value. As a result, for a no-arbitrage valuation, the no-arbitrage
assumption needs only to hold for the call options.

2.1. Black-Scholes Model

The price of a European style call option Black and Scholes (1973) is calculated as follows:

CBS (S0, K, τ, σ, r) = exp (−rτ) E (ST − K)+
= S0N(d1)− exp (−rτ)KN(d2) (7)

d1 =
ln
(

S0
K

)
+
(

r + σ2

2

)
τ

σ
√

τ
, d2 = d1 − σ

√
τ

where S0 denotes the risky asset price at time 0, K is the exercise price, τ is the time to expiration, σ is
the standard deviation of the security’s return, N is the distribution function for the standard normal
distribution, and r is the rate of interest.

2.2. Implied Volatility

The implied volatility of a risky asset S is the unique value of σimp that solves the
following equation

C = CBS

(
τ, K, τσ2

imp, S, r, t
)

(8)
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where C is the market price for the call option written at time t with strike price K and T is the
expiration time.

Another version of implied volatility is calculated by the underlying price process being replaced
by the forward price in the Black-Scholes model. This version of implied volatility has some nice
properties that facilitate application of mathematical techniques. The Black formula is as follows:

CB

(
τ, K, τσ2

imp, S, r, t
)
= F[t,t+τ] N (d1)− KN (d2) (9)

d1 =
log
( F[t,t+τ]

k

)
+ 1

2 τσ2
imp√

τσ2
imp

, d2 =
log
( F[t,t+τ]

k

)
− 1

2 τσ2
imp√

τσ2
imp

where F[t,t+τ] = exp (−rτ) St is the forward price.

2.3. Static Arbitrage

Now, we provide mathematical definition Roper (2009) of static arbitrage and then present an
equivalent definition which connects it to the two other types of arbitrage called calendar spread
and butterfly.

Definition 1. A surface of call option C is said to be free of static arbitrage if there exists a non-negative
martingale X on (Ω, =, F = (=t)t≥0, P) which the call price formula can be reached by

C(K, τ) = E
(
(Xτ − k)+

)
, ∀(k, τ) ∈ [0, ∞) × [0, ∞) (10)

In other words, there exists a non-negative martingale which is associated with the security price
process in distribution, in fact both the security price and the equivalent martingale follow the same
probabilistic rules. The next two theorems by Kellerer (1972) provide some conditions on call surface
and some equivalent conditions on volatility surfaces to make them free of static arbitrage.

Theorem 2. A call option surface written on underlying S, with expiration time T

C : (0, ∞) × R → (0, ∞)

(τ, k) → E
(
(ST − k)+

)
is said to be free from static arbitrage if the following conditions are satisfied:

1. ∂τC > 0
2. lim

k→∞
C(τ, k) = 0

3. lim
k→−∞

C(τ, k) + k = a , a ∈ R

4. C(τ, k) is convex in k
5. C(τ, k) ≥ 0

Theorem 3. On the surface of total implied variance wimp = τσ2
imp where

wimp : (0, ∞) × R → (0, ∞) ,

(τ, K) → wimp (τ, K) ,

The conditions in Theorem 2 are derived by the following arguments

1. ∂τwimp > 0;
2. lim

k→∞
d1(k) = −∞;
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3. τσimp ≥ 0;

4.
(

1− x
2wimp

∂x(wimp)
)2
− 1

4

(
1

wimp
− 1

4

) (
∂x(wimp)

)2
+ 1

2 ∂xx(wimp) ≥ 0.

The first condition in Theorem 3 which implies the first one in Theorem 2 means that total implied
variance is increasing with respect to time to maturity. Moreover, if this condition holds, there is
no calendar spread arbitrage Fengler (2009), otherwise the opportunity of calendar spread arbitrage
emerges in the market, so one can do a risk-free trading strategy at a given moment. As a matter
of fact, the existence of calendar spread arbitrage addresses a trader to buy a nearby option and sell
the farther in the case of the large time spread between the two options and sell the nearby and buy
the farther if the spread is narrow Carr and Madan (2005). Conditions 2 and 3 in Theorem 3 imply
condition 2 of Theorem 2 which reveals that the price of an option for large exercise prices, tends to
zero. The third argument in Theorem 2 is derived by conditions 2, 3 and 4 in Theorem 3. Finally, the
inequality 4, known as Durrleman’s condition Durrleman (2003), is a part of the second derivative of
call surface with respect to strike price.

Conditions 2 and 4 in Theorem 3 provide a volatility surface free of butterfly arbitrage. For
example, let C1 and C2 are two call options with expiration time T and exercise prices Ki that K1 < K2,
and suppose an option with the same maturity time T and the strike price K, where K1 < K < K2, exists
in the market. If the call surface is non-convex with respect to exercise price, there is an opportunity to
sell two options at the middle strike price K and buy one at the strike price K1 and one at the strike
price K2 and by this strategy a trader can gain a risk-free profit. So, condition 4 of Theorem 3 assigns
a non-negative value for the second derivative of a call surface to get rid of butterfly arbitrage.

Now it is time to provide another definition for a volatility call surface Gatheral (2011) to make
it free of static arbitrage based on materials related to both types of arbitrage, calendar spread
and butterfly.

Definition 2. There is no static arbitrage on a volatility surface if and only if

1. It is free of calendar spread arbitrage;
2. The volatility slice is free of butterfly arbitrage for any fixed time to maturity.

Particularly, no butterfly arbitrage is equivalent to the existence of a positive probability density
Breeden and Breeden and Litzenberger (1978), and no calendar spread arbitrage implies that the option
price is increasing with respect to time to expiration.

2.4. Parameterization of the Implied Volatility

For a fixed time to expiration, the SVI model Gatheral (2004) is given by

wSVI
imp (x) = a + b(ρ (x−m) +

√
(x−m)2 + σ2) (11)

a ∈ R , b ≥ 0 , |ρ| < 1 , m ∈ R , σ > 0 , x = log
K

F[t, t+τ]

in this parametrization, x is moneyness, wSVI
imp (x) = τσ2

imp is total implied variance and {a, b, σ, ρ, m}
is the set of parameters that are supposed to be estimated. The behavior of volatility smile is highly
affected by variations in these five parameters; moreover, the reason to use total implied variance
instead of implied volatility is that in Equation (9) the volatility parameter σ is always accompanied
with a

√
τ Zhu (2013).

2.5. Machine Learning Approach

Machine learning is a branch of artificial intelligence (AI) that has many applications used
to model the behavior of natural phenomena and predict their future outcomes. The basic
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intuition behind this methodology is that there is a training set that consists of empirical data
(x(1), y(1)), (x(2), y(2)), ... , (x(m) , y(m)), where m is the number of training examples; moreover,
a learning algorithm (learning hypothesis) fits the data to determine how to learn from the training set
and how well the result can be generalized to the unseen data. The vector of parameters θ is reached
by the following strategy:

θ̂ = arg min
θ

J(θ) = arg min
θ

1
2m

m

∑
i=1

V
(

hθ(x(i)), y(i)
)

(12)

V is the cost of predicting y(i) based on hypothesis hθ(x(i)) for the i-th training example. The cost V for
the i-th training example is a function of the difference between the target value y(i) and the estimated
values hθ(x(i)). Usually this function is considered to be L-1 norm or L-2 norm loss function that the
L-1 norm is absolute difference and the L-2 norm is the square difference. A learning hypothesis is
a predetermined function, usually chosen by experts, that is considered to fit the data to describe its
behavior inside and outside the training set.

However, sometimes choosing an adequate learning algorithm which best describes the trend of
data outside the training set is the area of difficulty and a wrong learning algorithm takes a lot of time
investigating without coming up to a real conclusion. So, we should know what is the best promising
avenue to spend time pursuing. If our selected hypothesis does an excellent job predicting y from x for
observations in the training set but not for those outside the training set, we face overfitting, on the
other hand, if the hypothesis does not do well, predicting y in both the training set and outside the
training set, we encounter underfitting. Most of the time the algorithm is faced with overfitting since
a learning algorithm usually does a good job for data that builds the model and the problem is how
well it fits to the unseen data. Conquering these obstacles, we add a regularization term to the cost
function and estimate parameters as follows:

θ̂ = arg min
θ

1
2m

(
V
(

hθ

(
x(i)
)

, y(i)
)
+ λR

(
hθ

(
x(i)
)))

(13)

The penalty term is used when there is model complexity, in other words, as long as the algorithm
encounters underfitting or overfitting the penalty term keeps the parameters small to preclude these
types of complexity. To give a break down explanation of regularization, the parameter λ is called
the regularization parameter assigned to control the trade-off between underfitting and overfitting.
R is the regularization function which provides a penalty for the hypothesis complexity to impose
some certain restrictions on parameters space. Furthermore, the regularization function improves the
hypothesis to generalize well to the data beyond the training set Nilsson (2005).

There are some methods to debug a learning algorithm to rule out underfitting and overfitting.
To fix overfitting, we can get more training examples try smaller sets of features and try increasing
λ; moreover, to rule out underfitting, some adjustments like getting additional features, adding
polynomial features, and trying to decrease λ are helpful according to Hastie (2002).

3. The Quadratic Parametrization

Different types of quadratic models have been proposed for implied volatility parameterization in
recent years, but none of them are qualified enough to be free of static arbitrage. For instance,
Avellaneda (2005) proposed a quadratic model to parameterize implied volatility, however, as
mentioned in Roper (2010), this model does not guarantee the Durrleman’s function to be everywhere
non-negative around ATM, so the absence of butterfly arbitrage is not satisfied. There are some other
types of quadratic models, like Roux (2007), but there is no condition on the parameters to remove
static arbitrage, hence it is seemingly impossible to be encountered with this inadequacy in the area of
quadratic parametrization of implied volatility. Now, we introduce our proposed quadratic model to
parameterize implied volatility for call options with less than one year time to expiration, then provide
some special conditions on the model parameters, we preclude static arbitrage.
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3.1. The Raw Quadratic Model

The quadratic parameterization of total implied variance with respect to moneyness x is given by:

wQ2

imp(x, η) = θ0 + θ1x + θ2x2 (14)

where θ0 > 0, θ1 ∈ R. The condition of θ2 > 0 along with the condition of θ2
1 − 4θ0θ2 < 0 make the

function x → wQ2

imp (x, η) positive and strictly convex for all x ∈ R.

3.2. Elimination of Static Arbitrage

In this section, we present some conditions on the parameters of the quadratic model (14) to make
it free of static arbitrage. However, since (14) is a model with fixed time to maturity, we introduce an
equivalent parameterization for implied variance with respect to ATM variance, ATM volatility skew
and the lower bound of variance. Then, we make some conditions on the parameters of the equivalent
model to guarantee the absence of calendar spread arbitrage. These parameters are more familiar for
market traders than the raw parameters in (14) since they reveal some characteristics of market data
which are known for investors. The idea begins with the following definition.

Definition 3. For a fixed time to maturity and a parameter set χ = {vτ , ψτ , µτ}, the equivalent quadratic
parameterization of implied variance is

σ2
imp = vτ + (2

√
vτψτ) x +

(
vτψ2

vτ − µτ

)
x2 (15)

vτ > 0 , ψτ ∈ R , µτ > 0,

where vτ is ATM variance, ψτ is ATM volatility skew, and µτ is the minimum level of variance. Therefore,
this is a calibration to three given quantities which are more understandable for market traders than the raw
parameters. For a fixed time to maturity, the following relations hold between the raw parameters and the
equivalent quadratic parameters:

vτ =
θ0

τ
, ψτ =

1√
τ

θ1

2
√

θ0
, µτ =

1
τ

(
θ0 −

θ2
1

4θ2

)

Proposition 1. The equivalent parameterization of implied variance is not affected by calendar spread arbitrage
if the following arguments are held

1. ψτ (∂τψτ) > 0

2. ∂τ

[
ln
(

vτ
vτ−µτ

)]
> (vτ−µτ)

4v3
τ

3. ∂τ [ln ψτ ] <
2vτ

vτ−µτ
− 1

vτ

Proof. We are supposed to show that the following expression, which is the first derivative of the
surface with respect to time to maturity, always takes positive values

∂τσ2
imp =∂τvτ + 2

{
ψτ

2
√

vτ
+
√

vτ(∂τψτ)

}
x

+

{{
2ψτ(∂τψτ)vτ + ψ2

τ(∂τvτ)
}
(vτ − µτ)−

{
vτψ2

τ∂τ(vτ − µτ)
}

(vτ − µτ)2

}
x2.
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Since this is a quadratic function of x, we just need to show that the coefficient of the highest
degree is positive and the discriminant is negative. So, doing some rearrangement of the numerator of
the coefficient in the highest degree, we should proof the following inequality:

{2ψτ(∂τψτ)vτ} (vτ − µτ) + ψ2
τ {(∂τvτ)(vτ − µτ)− vτ∂τ(vτ − µτ)} > 0

The above inequality is satisfied based on conditions 1 and 2 since vτ and (vτ − µτ) are positive
due to the initial conditions on raw quadratic parameters of Section 3.1. Another step to make the
quadratic function everywhere non-negative is to make the discriminant everywhere negative since
a strictly positive quadratic function should not cross the x axis. Therefore, by some simple rewriting
of the discriminant we come up with the following inequality:

a =
vτψ2

τ

vτ − µτ
, b = 2

√
vτψτ , c = vτ

4ac− b2 =4ψ2
τv2

τ

{
{(∂τvτ)(vτ − µτ)− vτ∂τ(vτ − µτ)} −

(vτ − µτ)2

4v2
τ

}
+4vτψτ(∂τψτ)(vτ − µτ)

{
2 v2

τ −
{

vτ
(∂τψτ)

ψτ
+ 1
}
(vτ − µτ)

}
> 0.

So, we are supposed to make the above function strictly positive by providing some conditions on
the three introduced parameters. The first part of the function above is positive due to the condition
2, and the second part is non-negative based on conditions 1 and 3. So, our convex quadratic model
never crosses the x axis. Therefore, the proof is complete.

Note that, in the previous proposition we provided some conditions on the parameters which are
familiar for market traders and each of them is a function of time to maturity. So, to implement this
strategy to market data all these parameters should be available in terms of expiry time. In the next
proposition, we provide some conditions on the raw parameters to rule out static arbitrage. We will
discuss ways and means of implementing this strategy to market data in Section 4.

Proposition 2. The quadratic surface 14 is not influenced by calendar spread arbitrage if for any two times
to maturity τ1 < τ2 corresponding to w(., τ1) and w(., τ2) by the parameters sets η1 = {θ01, θ11, θ21} and
η2 = {θ02, θ12, θ22} the following conditions satisfy:

1. θ22 − θ21 > 0;
2. θ22θ01 + θ21θ02 < θ12θ11

2 .

Proof. To show that the two volatility slices never cross each other we should prove that the following
quadratic function takes positive values everywhere. Hence, it should be a convex function with no
real root

w(., τ2)− w(., τ1) = (θ22 − θ21)x2 + (θ12 − θ11)x + (θ02 − θ01). (16)

Condition 1 guarantees the quadratic Function (16) to be convex. In addition, we need to show
that it does not have a real root, so the discriminant should take a negative value

∆ =(θ12 − θ11)
2 − 4(θ22 − θ21)(θ02 − θ01)

=(θ2
12 − 4θ22θ02) + (θ2

11 − 4θ21θ01) + 4(θ22θ01 + θ21θ02)− 2θ12θ11

The first two terms are negative based on the initial conditions in Section 3.1, and also condition 2
makes the other two expressions negative. Therefore, ∆ < 0 and the proof is complete.

So, we use these conditions to parametrize total implied variance slice by slice. This means they
play the role of optimization constraints for each fixed time to maturity to preclude calendar spread
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arbitrage. A common approach is a forward strategy which performs these conditions separately for
the shortest time to expiration up to the longest one. Now, we set some conditions on the parameters
to make a volatility slice free of butterfly arbitrage.

Proposition 3. The quadratic volatility model in Section 3.1, for options with less than one year to maturity
(τ < 1), is free of butterfly arbitrage if

1. θ2
1 − 4θ0θ2 + θ2 < 0;

2. 1
4 < θ0 < 1.

Proof. First of all, we show that the minimum value of the proposed model belongs to the interval [0, 1]

since we assumed options with less than one year expiry time which makes wQ2

imp bounded between

0 and 1. So, the inequality 0 < wQ2

imp(−
θ1

2θ2
, η) < 1 and equivalently the inequality 4(θ0 − 1)θ2 <

θ2
1 < 4θ0θ2 must be held. It is easily satisfied because of conditions 2 and also the initial conditions of

Section 3.1. Moreover, another intuition behind the condition θ0 < 1 is to guarantee the model to be
less than one in case of ATM. Now, we do some rearrangement to make the Durrleman’s function take
positive values everywhere.

g(x) =
(

1− x
2w

∂x(w)
)2
− 1

4

(
1
w
− 1

4

)
(∂x(w))2 +

1
2

∂xx(w)

=

(
1− x(θ1 + 2θ2x)

2(θ0 + θ1x + θ2x2)

)2

+

(
− (θ1 + 2θ2x)2

4(θ0 + θ1x + θ2x2)
− (θ1 + 2θ2x)2

16
+ θ2

)
= f (x) + h(x)

For the Durrleman’s function g, we begin with the first expression as follows:

f (x) =
(

1− x(θ1 + 2θ2x)
2(θ0 + θ1x + θ2x2)

)2

= 1 +
x2(θ1 + 2θ2x)2

4(θ0 + θ1x + θ2x2)2 −
xθ1 + 2θ2x2

θ0 + θ1x + θ2x2

Rearranging the third term of function f, we get the following function:

x(θ1 + 2θ2x)
θ0 + θ1x + θ2x2 =

θ1x + θ2x2 + θ2x2 + θ0 − θ0

θ0 + θ1x + θ2x2 =
θ0 + θ1x + θ2x2 + θ2x2 − θ0

θ0 + θ1x + θ2x2

=1 +
θ2x2 − θ0

θ0 + θ1x + θ2x2

Therefore, we have

f (x) =
(

1− x(θ1 + 2θ2x)
2w

)2

= 1 +
x2(θ1 + 2θ2x)2

4w2 − 1− θ2x2 − θ0

w

=
θ2

1x2 + 4θ1θ2x3 + 4θ2
2x4 − 4θ0θ2x2 + 4θ2

0 − 4θ1θ2x3 + 4θ0θ1x− 4θ2
2x4 + 4θ0θ2x2

4w2

=
θ2

1x2 + 4θ0θ1x + 4θ2
0

4w2

Since θ2
1 > 0 and ∆ = 0, the numerator of f is a convex and strictly positive quadratic function

which takes its minimum value at x = 0

f

(
−4θ0θ1

2θ2
1

)
= f

(
−2θ0

θ1

)
= 4θ2

0 − 8θ2
0 + 4θ2

0 = 0
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So, regardless of the value of the parameters, the convex function f takes its minimum at 0, so
we are not supposed to subtract any positive value from function f because we desire to make the
Durrleman’s function g everywhere positive. Now we have to work on other parts of g, working
toward making some conditions on the parameters to rule out butterfly arbitrage. Based on condition 1
we have

(θ1 + 2θ2x)2 =θ2
1 + 4θ1θ2x + 4θ2

2x2

≤4θ0θ2 + 4θ1θ2x + 4θ2
2x2 = 4θ2w

So, the following inequality is satisfied for the function h

h(x) =− (θ1 + 2θ2x)2

4w
− (θ1 + 2θ2x)2

16
+ θ2

≥4wθ2 − (θ1 + 2θ2)
2

4w
− 4θ2w

16

=
1
4

(
4θ0θ2 − θ2

1
w

− θ2w

)

Since we assume this parameterization for options with less than one year to expiration (τ < 1),
we have w = τσ2

imp < 1; thus, the fact that −w ≥ − 1
w lets us make the function h everywhere positive

h(x) ≥1
4

(
4θ0θ2 − θ2

1
w

− θ2

w

)
=

1
4

(
4θ0θ2 − θ2

1 − θ2

w

)

=
1
4

(
θ2(4θ0 − 1)− θ2

1
w

)
≥ 0.

The last inequality is satisfied because of the first and second conditions we assumed for the
model, so g(θ) ≥ 0. Note that we limit our work on options with less than one year to maturity,
hence the data we use as w is between 0 and 1. Now we show that the second condition in Theorem 3
is satisfied

lim
k→∞

d1 ≤ lim sup
k→∞

d1 = lim sup
k→∞

log
( F[t, t+τ]

k

)
+ 1

2 τσ2
imp√

τσ2
imp

= lim sup
x→−∞

x + 1
2 (θ0 + θ1x + θ2x2)√
θ0 + θ1x + θ2x2

= lim sup
u→∞

−u + 1
2 (θ0 − θ1u + θ2u2)√
θ0 − θ1u + θ2u2

= lim sup
u→∞

−
√

u√
2

( √
2u√

θ0 − θ1u + θ2u2
−
√

θ0 − θ1u + θ2u2
√

2u

)

Roper (2010) proved that if the superior limit of the second term in parenthesis tends to a constant
in the interval [0, 1), then the last limit above goes to minus infinity

lim sup
u→∞

√
θ0 − θ1u + θ2u2
√

2u
< lim sup

u→∞

1√
2u

= 0 ∈ [0, 1)
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The inequality above is satisfied because we set θ1 ∈ R , therefore lim
k→∞

d1 = −∞ and the proposed

model is free of butterfly arbitrage.

Now, due to the Propositions 1 and 3, we come up with the following conclusion that provides
some conditions to rule out static arbitrage when we parametrize implied variance with respect to
ATM variance, ATM volatility skew and the minimum level of variance.

Theorem 4. The equivalent parameterization of implied variance for options with less than one year to maturity,
is not faced with static arbitrage if

1. ψτ (∂τψτ) > 0
2. ∂τ

[
ln
(

vτ
vτ−µτ

)]
> (vτ−µτ)

4v3
τ

3. ∂τ [ln ψτ ] <
2vτ

vτ−µτ
− 1

vτ

4. 0 < τvτ < 1
4

5. vτψ2
τ

vτ−µτ
(4τµτ − 1) > 0

So far, we have provided some conditions that guarantee the absence of static arbitrage; thus, we
have everything to fit the proposed quadratic model to implied volatility data.

4. Numerical Implementation

In this section, we provide a learning algorithm to modeling implied volatility data which is
earned by S&P 500 European call options written on 15 December 2014. In other words, we consider
bank asset to be S&P 500 index fund and we implement the proposed strategy to price call options
written on this asset. The reason to choose S&P 500 as underlying asset is the simplicity and availability
of this important data to make the numerical part move straightforward upon a well-defined path;
whereas, underlying price process St, can be replaced by any type of risky asset.

The idea behind our strategy is that since the total implied variance of a security price is
a smile-shaped function of log-moneyness, we fit the quadratic model 14 to the data. In other words,
instead of just learning from input data x, we learn based on a mapping from x to its second degree
polynomial. The training set of this investigation includes x as log-moneyness and w as total implied
variance. To improve the robustness of the algorithm, training set data is randomly divided into two
portions: 70% for the training set and 30% for the cross-validation set. The cost function consists
of a penalty to control the trade-off between underfitting and overfitting. Finally, to illustrate the
efficiency of the proposed approach, we perform it for six different times to maturity.

4.1. The Cost Function

The cost function we use to estimate the parameters of each volatility slice (for a fixed time to
maturity) is a machine learning regularized cost function and the parameters are estimated by the
following strategy:

θ̂ = arg min
θ

1
2m

(
m

∑
i=1

(
wQ2

θ (x(i))− w(i)
)2

+ λ
2

∑
j=1

θ2
j

)
(17)

w(i) is the corresponding total implied variance for the i-th training example and wQ2

θ (x(i)) is the
quadratic model proposed in Section 3.1 and in this case, it plays the role of learning hypothesis.
The cost function is a L-2 norm loss function plus a penalty term. L-2 function is chosen because
it is the most common cost function; furthermore, it has one stable solution whereas the L-1 loss
function has unstable and possibly multiple solutions. Since the goal is to estimate the parameters
of a quadratic model, a L-2 regularization term is reasonable, and it encourages parameter values
toward zero, but not exactly zero; moreover, the distribution of parameters is approximately a zero
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mean normal distribution. In case of model complexity (High test error), the penalty term keeps the
parameters small to make the hypothesis relatively simple to avoid overfitting. λ is the regularization
parameter that controls the trade-off between underfitting and overfitting.

When we choose a lambda value, the goal is to provide the right balance between simplicity
and training-data fit. If lambda is too high, the model will be simple, but we may face the risk of
underfitting and the model will not learn enough from the training set to make useful predictions. On
the other hand, if lambda is too low, there is more model complexity, and we encounter the risk of
overfitting; in addition, the model will learn too much from the training set and will not be able to
generalize to unseen data. The ideal value of lambda provides a model that generalizes well to the
data outside the training set, but it depends on data and we need to do some tuning. Therefore, based
on a trial and error strategy, we check model complexity and change the value of λ, then the algorithm
runs again to update parameters based on the new value for λ. Finally, the value of λ with the lowest
complexity will be chosen as the ideal one. The way we choose the value of λ is clearly explained by
a pseudo code in the next section.

To perform the algorithm, we learn the parameters from the training set, then the training error
and the cross-validation error are computed based on the learned hypothesis in the training set, and
learning curve which is the plot of the cross-validation error and the training error versus the size of
the training set helps us diagnose if the model is affected by underfitting or overfitting. The training
error and the cross-validation error are computed as follows:

Jtrain(θ) =
1

2m
,

m

∑
i=1

(
wQ2

θ (x(i)train)− w(i)
train

)2

Jcv(θ) =
1

2m
,

m

∑
i=1

(
wQ2

θ (x(i)cv )− w(i)
cv

)2

To overcome the effects of underfitting and overfitting for each volatility slice, the validation
curve which is the cross-validation error plotted versus the regularization parameter λ helps us select
the value of λ which minimizes the cross-validation error.

4.2. The Algorithm, Step by Step

In this section, to provide a better understanding of the proposed algorithm, we itemize a simple
pseudo code to show how to plot the Durrleman’s function and also choose the optimum value of λ

that rule out both underfitting and overfitting. The algorithm runs as follows:

1. Start by a volatility data (x(i), w(i)) for any fixed time to maturity.
2. Using the training set data and the conditions in Propositions 2 and 3, estimate parameters by

minimizing the cost function for a fixed value of λ (For the first implementation let λ = 0).
3. Using the estimated parameters, compute training error and cross-validation error for different

values of m.
4. Plot learning curve which is the training error and the cross-validation error versus m.
5. (a) If the learning curve shows no drawback of overfitting and underfitting, plot Durrleman’s

function based on the estimated parameters.

(b) Otherwise, plot the validation curve which is the cross-validation error versus the
regularization parameter λ, and choose the value of λ which minimizes the cross-validation
error, then move on to step 2.

4.3. Ruling Out Calendar Spread Arbitrage

A forward approach is implemented to fit the proposed quadratic model 3.1 to the total implied
variance data calculated by the Black-Scholes implied volatility in 9. Considering the initial conditions
in Section 3.1 and others in Remark 3, the parameterization is not encountered with butterfly arbitrage
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for each volatility slice, but we need to determine some relations among parameters of different slices
to organize them to be an increasing function of τ. First of all, we implement the optimization for the
shortest time to maturity and simultaneously we implement conditions in Section 3 and Remark 2
to estimate the parameters, then we assign the conditions of Remark 2 for the second shortest expiry
time due to the values of the estimated parameters for the first slice. For example, if the estimated
parameters for the shortest expiry time are:

θ2(1) = a , θ1(1) = b , θ0(1) = c , a, b, c ∈ R

where θi(j) is the i-th estimated parameter in the optimization for the j-th slice, we add some extra
constraints for optimization in the second shortest expiry time as follows:

1. θ2(2) > a

2. cθ2(2) + aθ0(2) <
bθ1(2)

2

So, in this way it is guaranteed for the two slices not to cross each other and also the second
slice is everywhere greater than the first one. In the next step, doing the optimization forward, the
same strategy is performed to the third shortest expiry time by some additional constraints due to the
values of the parameters for the second slice. Therefore, by implementing the forward method from
the slice with the shortest expiry time up to the one with the longest time to maturity, we ensure that
the calibration provides a volatility surface with no calendar spread arbitrage for the volatility surface,
and also no butterfly arbitrage for each slice. In general, for the optimization of the n-th slice we have
the following calibration rules:

1. θ2(n) > θ2(n−1)

2. θ2(n)θ0(n−1) + θ2(n−1)θ0(n) <
θ1(n)θ1(n−1)

2

Therefore, based on Definition 2, we have everything to rule out static arbitrage.

4.4. Discussion

Numerical implementation of the quadratic approach is done over six different times to maturity
for S&P 500 call option data traded on December 15, 2014. Table 1 represents the optimal values of λ

for each of the six different times to maturity. Figure 1 illustrates the plots of total implied variance
for all six volatility slices and it shows that total implied variance is an increasing function of time
to expiration since the volatility slices never cross each other, so the calibration method eliminates
calendar spread arbitrage. Plots for all six Durrleman’s functions are shown separately for each
volatility slice in Figure 2. The plots of Durrleman’s function for all six times to maturity are strictly
positive around at-the-money, implying the absence of butterfly arbitrage for each volatility slice.
Therefore, due to the conditions of Definition 2, we parameterized total implied variance for S&P 500
call option data in such a way that there is no static arbitrage.

Table 1. Times to maturity and the optimum values of the regularization parameter for each
volatility slice.

Expiry Date Time to Maturity λ

20 December 2014 0.0136 0.3
2 January 2015 0.0465 3

17 January 2015 0.0876 1.2
23 January 2015 0.1041 2.8

20 February 2015 0.178 0.9
20 March 2015 0.232 1.3

To sum up, modeling implied volatility with respect to time to expiration and strike price, and
precluding static arbitrage simultaneously, we can be aware of the upcoming price fluctuation of the
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risky asset and use it to price the options in Equation (6). Therefore, the risk management contract (6)
can be priced more precisely based on the behavior of implied volatility. It is necessary to note that
we did not implement an algorithm to price the contract since the main focus of this paper is to
parametrize implied volatility to improve the precision of contract pricing and the rest is just related to
option pricing that is widely studied in the literature.
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Figure 1. Plots of the total implied variance for six different times to maturity following the forward
slice-by-slice method of Section 4.3.
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Figure 2. Plots of the Durrleman’s function implemented for six different times to maturity.

5. Conclusions

Deposit insurances are introduced after the 1929 Great Depression as a tool to reduce the risk of
depositors’ loss. There are two major issues related to deposit insurances: the risk of moral hazard
on the one hand, and the risk of miss-pricing and arbitrage on the other hand. The main objective
of this study is to focus on the second issue by correctly pricing deposit insurances via improving
the implied volatility calibration. As the deposit insurances have been blamed for generating the
moral hazard risk, we considered a framework where the risk of moral hazard is ruled out (Assa and
Okhrati (2018)) and we focused our attention on arbitrage. In the first step, we showed that in this
framework no-arbitrage assumption can be reduced to no-static-arbitrage assumption. This paves
the way towards parametrization of the implied volatility. After introducing a quadratic approach to
parameterized implied volatility, we mathematically proved that for options with less than one year to
maturity and under some special conditions on parameters of the model, there is no opportunity for
static arbitrage. The results of the numerical implementation have shown that the proposed quadratic
model can be a helpful strategy for modeling implied volatility. Furthermore, our approach improved
other quadratic approaches which have already been proposed, since none of them could take care
of arbitrage opportunity. Another interesting property of the model is the simplicity of the quadratic
function which is understandable by a basic knowledge of mathematics. However, we believe this
area of volatility modeling still has some room to improve based on additional market features like the
underlying price, time to expiration and strike price, which we leave for future works.
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