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Abstract: Heat storage with thermochemical (TC) materials is a promising technology for solar energy
storage. In this paper, a solar-driven desiccant evaporative cooling (DEC) system for air-conditioning
is proposed, which converts solar heat energy into cooling with built-in daily storage. The system
utilises thermochemical heat storage along with the DEC technology in a unique way. Magnesium
Chloride (MgCl2·6H2O) has been used, which serves as both a desiccant and a thermochemical heat
storage medium. The system has been designed for the subtropical climate of Lahore, Pakistan, for
a bedroom with 8 h of cooling requirements during the night. MATLAB has been employed for
modelling the system. The simulation results show that 57 kg of magnesium chloride is sufficient to
meet 98.8% of cooling demand for the entire month of July at an elevated cooling requirement. It was
found that the cooling output of the system increased with increasing heat exchanger effectiveness.
The heat exchangers’ effectiveness was increased from 0.7 to 0.8, with the solar fraction increased
from 70.4% to 82.44%. The cooled air supplied to the building meets the fresh air requirements for
proper ventilation.

Keywords: desiccant; evaporative; cooling; air conditioning; solar; energy storage; refrigeration

1. Introduction

Buildings are consuming about 40% of global primary energy and account for around
33% of the world’s carbon dioxide (CO2) emissions [1]. Vapour compression cycle (VCC) is
the most commonly used refrigeration technology all over the world [2]. Rapid urbanisation
and an increase in the quality of life has been increasing the global cooling demand.
According to the UN, by 2050, about 70% of the world’s population will be living in
cities [3], and the world’s cooling demand is expected to triple by 2050 [4]. Approximately
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up to half of the energy input to industries is released to the environment by stacks
and flare gases as low-temperature heat [5]. Low-temperature heat is also available in
abundance from green sources such as geothermal energy [6] and solar thermal energy [7].
Low-temperature heat utilisation can lead to increased energy efficiency, which is a key
parameter to energy transition goals [8] and low-grade heat-driven refrigeration systems
present a great solution to meet the challenge of a rapid increase in air-conditioning
demand [9], especially for tropical areas, for which harnessing low-grade heat is more
challenging [10]. Solar energy is considered as an alternative to fossils for refrigeration
because of its coincidence of availability, cooling demand, and severe water scarcity [11].
Desiccant evaporative cooling (DEC) systems are heat-driven systems used as an alternative
to conventional vapour compression systems [12]. The system can be operated in open
(more common) or closed-cycle modes [13]. A heat source is required for the regeneration
of the desiccant, and low-temperature heat (at 60–90 ◦C) may be utilised [14]. In DEC,
heat is used to dry desiccant (hygroscopic) material, and the dry material is used to
produce dry air by absorbing water vapour from it. Water is then evaporated in this
dry air in the next stage to produce cooling due to evaporation. DEC is a promising
low-energy cooling technology as the moisture (latent cooling load) from humid air is
removed by utilising the chemical affinity between desiccant material and water. It cannot
be removed by reducing the temperature below the dew point. DEC systems are naturally
suitable for applications with higher ventilation requirements. A DEC system can use both
solid sorption materials or liquid sorption materials. Commercially available desiccants
are silica gel, natural and synthetic zeolites, activated alumina, lithium chloride, and
synthetic polymers [15]. DEC technology decouples the latent and sensible cooling loads
by making it possible to condition spaces with a wide range of design conditions [16].
The open DEC cycles produce conditioned air directly, whereas closed cycles are mostly
used to produce chilled water. Most of the standard open cycles use a rotating desiccant
wheel combined with a silica gel or lithium-chloride solution as a sorption material [17].
Desiccant dehumidifiers are used along with air conditioning systems to remove the latent
load (water vapour) from the air before it enters the air conditioning system. These are
used in commercial buildings where integrated heating, ventilation, and air conditioning
(HVAC) systems are installed [18]. Several theoretical and experimental studies have been
conducted on DEC systems. Fatouh et al. [19] did an experimental investigation for the
characterisation of a cooling system comprising of a vapour compression system integrated
with activated alumina with multiple layers. The systems were investigated under humid
tropical conditions (relative humidity of 50–80%) with a fresh air ratio in the range of
40–100%. Finocchiaro et al. [20] investigated a compact DEC system named “Freescoo”
(free solar cooling). The system involves a photovoltaic-thermal system and is suitable for
a small-scale built environment. The power consumption of the system is about 5% of the
conventional system. Ham et al. [21] developed a liquid-desiccant, evaporative (in-direct,
dewpoint) cooling system. Simulation results showed that the system saved about 12% of
primary energy compared to a conventional system, while 100% fresh outdoor air was used.
Shanghai Jiao combined a desiccant coated heat exchanger and a regenerative evaporative
cooler and named the system SCDHE (self-cooled evaporative cooling systems). The
simulation results showed that the system produced 30% more cooling as compared to
the usual DCHE system [22]. La et al. [23] did experimental studies on an innovative
chiller that had an open and rotary type desiccant cooling system. The results showed
positive results for low-temperature heat utilisation for producing air conditioning with the
supply of chilled water with temperatures of 15–20 ◦C and a thermal COP of 0.3–0.6 range
with respect to the chilled water production. Hourani et al. [24] studied a hybrid cooling
system where an experimental setup was incorporated with a solid desiccant system and a
two-stage evaporative cooling system. Compared with a single-stage evaporative cooling
system, a two-stage system resulted in 16.15% less consumption of energy and 26.93%
lesser consumption of water. Beccali et al. [25] evaluated the energy performance of a
desiccant cooling system and designed an air handling unit for ventilation with a radiant
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ceiling to provide cooling and heating to space. The experimental set up consisted of an
air handling unit for ventilation combined with the radiant ceiling fan for sensible cooling
or heat energy. Flat-plate collectors are installed to provide some of the regeneration heat
of the desiccant wheel in summer and for space heating in winter. The results obtained
from daily and monthly monitoring in five summer months and three winter months
indicate that in comparison to conventional air handling unit, primary energy savings
are almost 50%, and the DEC process covers the approximately 50% energy supplied by
the air handling unit (AHU). Rafique et al. [26] established a mathematical model for the
evaporative desiccant cooling and analyses how the device is feasible under Dhahrano,
Saudi Arabia’s climate conditions.

Although there are many studies reported in the literature related to the DEC systems,
there is still a literature gap with respect to a system that could utilise low-grade solar
thermal energy to power a DEC, which also acts as daily storage at the same time. In this
paper, a novel system has been proposed, which uniquely utilises DEC technology and has
been designed in such a way that the desiccant material (MgCl2·6H2O) serves two purposes
simultaneously, that is, it works as a desiccant (for DEC) and as a daily solar heat storage
medium. The system has been designed to produce solar cooling for a small building
situated in the subtropical city of Lahore, Pakistan. The system has been simulated with
MATLAB by incorporating weather data of Lahore with the system modelling equations.
The desiccant reactor has been modelled by developing an analytical solution to governing
equations by assuming constant reactor bed temperature segments. The reactor transient
model undergoes heat and mass transfer simultaneously. The solar DEC model has been
incorporated with the conditioned space (bedroom), and the solar fraction is calculated.
Sensitivity analysis of the various parameters has been performed too. The system has
been designed to provide night cooling only, and the sizing of the collector and desiccant
reactor has been performed accordingly. However, this is not a limitation of the system as
the system can be made to operate continuously by increasing (3–4 times) the sizing of the
collector and energy-storing reactor. The limiting factors in this regard are the availability
of space for bigger collectors and reactors in residential buildings.

1.1. System Design and Description

The basic idea is to design a desiccant evaporative cooling system for providing
cooling to a building. There should be a reactor that holds the sorption material and allows
the removal of moisture from the air passing through the reactor to make it dry. During
the hydration of sorption material, the heat of absorption is released and removed from
the air. An evaporator is needed to evaporate water in the dry air to cool it down. A fan
is needed to force the air to flow through the reactor and evaporator before entering the
room. Figure 1 shows a schematic DEC process.
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The reactor should increase the air temperature and bring the absolute humidity down
by absorbing the moisture from it. The heat exchanger should bring the temperature down
for the same value of absolute humidity. The evaporator should increase the absolute
humidity and bring the temperature down. The increase and decrease of air temperature
and moisture content are conceptually shown on a Psychrometric chart in Figure 2.
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Figure 2. Conceptual variation of psychrometric air properties in a basic DEC system.

The evaporation process is a constant enthalpy process in which the heat of evapora-
tion is absorbed from the air. The evaporation process should follow the constant enthalpy
line on the psychrometric chart.

The sorption (desiccant) material needs to be charged (dried) after some time. It
has a limited capacity to absorb moisture. For charging, it needs to be heated up to the
dehydration temperature of the sorption material. The material should be dehydrated
by passing hot air through it. Heat energy is required to heat the air to the dehydration
temperature. The heating of the air is achieved by using the abundantly available solar
energy in the daytime. The air is passed through a solar collector, which absorbs solar
radiation and converts it into heat by transferring it to the passing through the air. For this
specific case, cooling is required at night, and solar energy is available during the day. It
means that the charging and discharging of the sorption material is not simultaneous. This
allows using a single fan in combination with valves. The valves can be opened and closed
for day and night operation, as shown in Figure 3.

Energies 2021, 14, x FOR PEER REVIEW 4 of 17 
 

 

The reactor should increase the air temperature and bring the absolute humidity 

down by absorbing the moisture from it. The heat exchanger should bring the temperature 

down for the same value of absolute humidity. The evaporator should increase the abso-

lute humidity and bring the temperature down. The increase and decrease of air temper-

ature and moisture content are conceptually shown on a Psychrometric chart in Figure 2. 

 

Figure 2. Conceptual variation of psychrometric air properties in a basic DEC system. 

The evaporation process is a constant enthalpy process in which the heat of evapora-

tion is absorbed from the air. The evaporation process should follow the constant enthalpy 

line on the psychrometric chart.  

The sorption (desiccant) material needs to be charged (dried) after some time. It has 

a limited capacity to absorb moisture. For charging, it needs to be heated up to the dehy-

dration temperature of the sorption material. The material should be dehydrated by pass-

ing hot air through it. Heat energy is required to heat the air to the dehydration tempera-

ture. The heating of the air is achieved by using the abundantly available solar energy in 

the daytime. The air is passed through a solar collector, which absorbs solar radiation and 

converts it into heat by transferring it to the passing through the air. For this specific case, 

cooling is required at night, and solar energy is available during the day. It means that the 

charging and discharging of the sorption material is not simultaneous. This allows using 

a single fan in combination with valves. The valves can be opened and closed for day and 

night operation, as shown in Figure 3. 

 

Figure 3. Day and night operation of the DEC system.



Energies 2021, 14, 2429 5 of 17

Two-way valves are used, and the ports are numbered and shown in the red colour
in Figure 3. During the daytime, the fan inducts the atmospheric air through the solar
collector and the high-temperature air is delivered to the reactor for the dehydration of
the sorption material. During the daytime, port 2 of valve 1 is closed. No air is inducted
through this port. Similarly, as port 4 of valve 2 is closed during the daytime, there is no air
delivered to the room, and the wet air is exhausted in the atmosphere. During the night,
the fan inducts the atmospheric air through port 2 of valve 1 and delivers it to the reactor.
The reactor dries the air and delivers it to the evaporator through port 4 of valve 2 as port
3 is closed in the night operation. The temperature and humidity of the air delivered to
the room by the DEC system can be changed based on the room’s requirements. Different
kinds of configurations can be designed in this regard. The air coming out of the reactor
is hot and dry. It can be pre-cooled by exchanging heat with the room’s exhaust air at
a lower temperature. This increases the initial cost of the system in spite of increasing
the efficiency of the system. Another heat exchanger can be installed to exchange the
heat with atmospheric air, which is at a lower temperature than the air coming out of the
reactor. Figure 4 explains the installation of the heat exchangers to increase the efficiency of
the system.

Energies 2021, 14, x FOR PEER REVIEW 5 of 17 
 

 

Figure 3. Day and night operation of the DEC system. 

Two-way valves are used, and the ports are numbered and shown in the red colour 

in Figure 3. During the daytime, the fan inducts the atmospheric air through the solar 

collector and the high-temperature air is delivered to the reactor for the dehydration of 

the sorption material. During the daytime, port 2 of valve 1 is closed. No air is inducted 

through this port. Similarly, as port 4 of valve 2 is closed during the daytime, there is no 

air delivered to the room, and the wet air is exhausted in the atmosphere. During the 

night, the fan inducts the atmospheric air through port 2 of valve 1 and delivers it to the 

reactor. The reactor dries the air and delivers it to the evaporator through port 4 of valve 

2 as port 3 is closed in the night operation. The temperature and humidity of the air deliv-

ered to the room by the DEC system can be changed based on the room’s requirements. 

Different kinds of configurations can be designed in this regard. The air coming out of the 

reactor is hot and dry. It can be pre-cooled by exchanging heat with the room’s exhaust 

air at a lower temperature. This increases the initial cost of the system in spite of increasing 

the efficiency of the system. Another heat exchanger can be installed to exchange the heat 

with atmospheric air, which is at a lower temperature than the air coming out of the reac-

tor. Figure 4 explains the installation of the heat exchangers to increase the efficiency of 

the system. 

 

Figure 4. Schematic heat exchangers installation in DEC System. 

Heat exchanger 1 (HE 1) brings the temperature down near the atmospheric temper-

ature by increasing relative humidity. Heat exchanger 2 (HE 2) brings the temperature 

further down as the air coming out of the room is cooler, so the relative humidity goes 

further up. The extent of heat transfer in the heat exchangers depends on the type and size 

of the heat exchangers, which are normally limited by the heat exchangers’ cost. Expen-

sive and bigger heat exchangers provide higher effectiveness. 

The air coming out of the room can be passed by another evaporator to decrease its 

temperature further before exchanging the heat in HE 2 to increase the system’s perfor-

mance further. For example, if the air coming out of the room has a temperature of 26 °C 

and the relative humidity of 60%, then its temperature can be reduced up to 22 °C if the 

evaporator increases the relative humidity up to 90% (following the constant enthalpy line 

on the psychrometric chart). The schematic of this evaporator is shown in Figure 5. The 

Evaporator 2 is typically always used in the continuous wheel type systems because it 

allows utilising the maximum potential of the room exhaust (return) air to increase the 

Figure 4. Schematic heat exchangers installation in DEC System.

Heat exchanger 1 (HE 1) brings the temperature down near the atmospheric temper-
ature by increasing relative humidity. Heat exchanger 2 (HE 2) brings the temperature
further down as the air coming out of the room is cooler, so the relative humidity goes
further up. The extent of heat transfer in the heat exchangers depends on the type and size
of the heat exchangers, which are normally limited by the heat exchangers’ cost. Expensive
and bigger heat exchangers provide higher effectiveness.

The air coming out of the room can be passed by another evaporator to decrease its
temperature further before exchanging the heat in HE 2 to increase the system’s perfor-
mance further. For example, if the air coming out of the room has a temperature of 26 ◦C
and the relative humidity of 60%, then its temperature can be reduced up to 22 ◦C if the
evaporator increases the relative humidity up to 90% (following the constant enthalpy line
on the psychrometric chart). The schematic of this evaporator is shown in Figure 5. The
Evaporator 2 is typically always used in the continuous wheel type systems because it
allows utilising the maximum potential of the room exhaust (return) air to increase the
whole system’s efficiency. If the DEC system cannot provide enough cooling to meet the
cooling demand of the room or in case of high fluctuations of the room’s cooling demand,
the DEC system can be integrated with an auxiliary cooling system that provides additional
cooling to meet the cooling demand.
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1.2. Final Design of Solar DEC System

For the final system design, the calculations were made to select and size different
components for the specific case of producing cooling in the nighttime to a small room
located in Lahore. The final system, which is to be modelled for simulations, is shown in
Figure 5.

This is not a continuous system as the cooling is produced during the night only.
Thus, the reactor is not the wheel type that is generally used in DEC systems. The starting
point for sizing components for system integration is the ventilation requirements of the
room. The DEC system mass flow rate will come from the ventilation requirements of
the system. During the charging of the reactor in the daytime, the incoming ambient air
can be preheated by the air leaving the reactor. In this way, the wasted heat energy of the
exhaust air can be utilised to increase the efficiency of the system. It will allow the use of a
smaller solar collector to achieve the same performance. For simplification of the model,
this option is not considered at the present stage, but it is recommended to be used in
future developments to bring down the initial cost of the system. The by-pass connection
for Evaporator 1 is not considered in the final system design. The calculations were made
for the humidity balance of the room, and it was found that the humidity of the room
does not increase above the comfortable limit. Table 1 shows that the psychrometric air
properties are changing as the air passes through different components:

Table 1. Psychrometric values of different states of air in the system.

State Explanation Temp.
(◦C)

RH
(%)

Night operation
1 Atmospheric air 33 70
3 Reactor outlet 50 10
4 Supply after HE1 38.1 19
5 Hot air after HE.1 44.9 23
6 Supply after HE 2 26.83 35
7 Supply air 17 90
8 Return air 26 60
9 Return air after

evaporator 2 22 90
10 Return after HE 2 33.2 50

Day operation
1 Atmospheric air 38 55
2 Collector outlet 90 7
3 Reactor outlet 70 20
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The states (1 to 10) mentioned in Table 1 are also indicated in Figure 5. The values
presented are conceptual values to explain the process, which is happening inside every
component of the system. These are not actual values from simulation results. State 1 is
the atmospheric air, and these are the typical values for day and night in July in Lahore.
In the daytime, the temperature is higher, but at the nighttime, as the temperature drops,
the humidity increases. For actual simulation, these values will be taken from the weather
data file.

State 2 is the solar collector output and depends on the size and the type of the collector
and the solar energy available on the collector. The solar collector adds heat to the air,
so the temperature increases, decreasing the relative humidity as the moisture content is
the same. State 3 is the outlet of the reactor. In the daytime, the reactor material is dried,
the heat is absorbed in the reactor to allow the release of the water molecules, and the
temperature at state 3 stays at the dehydration temperature (70 ◦C) until all the material is
dehydrated. Due to the release of the water molecules by the sorption material, the air’s
relative humidity increases. During the night, the reactor absorbs moisture from the outside
air, bringing its humidity down, and as the heat of absorption, the reaction is released, so
the temperature increases. This dry and hot air, state 3, exchanges heat with atmospheric
air in HE 1 to reduce the temperature and increase the relative humidity at state 4 as no
moisture is added or removed. These processes are shown on the psychrometric chart in
Figure 6.
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Figure 6. Psychrometric properties of air (at 1 atm total pressure) at different states of the system [27].

The horizontal line from 3 to 4 indicates constant absolute humidity. Similarly, from
4 to 6, there is no change in absolute humidity. When the temperature is reducing, the
relative humidity is increasing. From 6 to 7, evaporation is taking place, so the temperature
is reducing, and absolute as well as relative humidity is increasing along the constant
enthalpy line. The air with state 7 is entering the room, and 8 is the state of the air coming
out of the room, which is also the inside room conditions. There is heat gain inside the
room, and some moisture addition visible. The process from state 8 to 9 is the evaporation
process again along with the constant enthalpy to reduce temperature. From 9 to 10, there is
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a heat exchange process with constant absolute humidity. This analysis so far is indicating
encouraging results for the designed system.

2. Modelling
2.1. Solar Collector

Referring to the system’s schematic diagram, the temperature of the heating air should
be more than the dehydration temperature of the desiccant material. Due to the high-
temperature requirement, the evacuated tube collector is used in the system. The efficiency
of the collector depends on the heat loss, which is a function of the difference between
the mean temperature of the reactor and the ambient temperature. The efficiency of the
collector (η) is calculated by the following Equation (1).

η = ηopt − k1
(Tmean − Tamb)

G
− k2

(Tmean − Tamb)
2

G
(1)

Here, ηopt is the optical efficiency of the collector, and k1 and k2 are constant heat loss
coefficients, the suitable values of which can be obtained from literature or provided by the
manufacturer [28]. G is the global (direct and diffused) solar irradiance on the surface of
the collector in W/m2, and Tmean is the average or the mean temperature of the collector.
The heat absorbed (E) by the collector is given by Equation (2):

E = η × G× Ac (2)

This heat is taken up by the air passing through the collector. Its temperature at the
exit of the collector for each time interval is simulated by using Equation (3).

Tout(t + ∆t) =
E(t)

ma × Cp,a
+ Tamb (t) (3)

Table 2 below shows the values of constants used in the modelling of solar collector.

Table 2. Values of constants used in the modelling of solar collector.

S. No. Symbol Explanation Value Unit

1 ma Air mass flow rate 0.037 kg/s
2 Ac Area of collector 7 m2

3 Cp,a Air specific heat 1000 J/kgK
4 ηopt Collector optical efficiency 0.566 -
5 k1 Heat transfer coefficients 0.94 W/m2K
6 k2 Heat transfer coefficients 0.0071 W/m2K2

2.2. The Reactor

The reactor is the most important component of the whole system, which holds the
solid desiccant material in the presence of passing air through it. The reactor is an open-
atmospheric bed type reactor that operates at atmospheric pressure. The hydration and
dehydration reactions occur as the air passes through the reactor and the temperature of
passing air keeps changing, which alters the heat transfer rate as a function of position
inside the reactor. The desiccant material’s temperature is not uniform inside the reactor
as the material does not have enough heat transfer within itself. Every portion of the
reactor material has its temperature and its heat transfer rate. The desiccant material
absorbs moisture from the passing air while hydrating and releases moisture to the air
while dehydrating. This requires the mass transfer of moisture to or from the air as well.
The heat of the reaction is released during hydration and absorbed during dehydration.
MgCl2 is the thermochemical heat storage material used in this study. The hydration
and dehydration reactions are summarised in Table 3 [29]. These reactions are typical
atmospheric conditions with partial water pressure of around 13.6 mbar in the air.
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Table 3. Magnesium chloride dehydration reaction properties.

Reaction ∆H
(kJ/mol of Salt)

Reaction
Temperature (◦C)

MgCl2·6H2O (s)→MgCl2·4H2O (s) + 2 H2O (g) 116.4 50
MgCl2·4H2O (s)→MgCl2·2H2O (s) + 2 H2O (g) 135.6 80

MgCl2·2H2O (s)→MgCl2·H2O (s) + H2O (g) 71.3 115
MgCl2·H2O (s)→MgOHCl + HCl (g) 83.5 140

The heat transfer model between the air and solid desiccant material particles is taken
as one-dimensional. Figure 7 shows the conceptual variation of bed temperature for the
hydration reaction.

Energies 2021, 14, x FOR PEER REVIEW 9 of 17 
 

 

passing air keeps changing, which alters the heat transfer rate as a function of position 

inside the reactor. The desiccant material’s temperature is not uniform inside the reactor 

as the material does not have enough heat transfer within itself. Every portion of the re-

actor material has its temperature and its heat transfer rate. The desiccant material absorbs 

moisture from the passing air while hydrating and releases moisture to the air while de-

hydrating. This requires the mass transfer of moisture to or from the air as well. The heat 

of the reaction is released during hydration and absorbed during dehydration. MgCl2 is 

the thermochemical heat storage material used in this study. The hydration and dehydra-

tion reactions are summarised in Table 3 [29]. These reactions are typical atmospheric con-

ditions with partial water pressure of around 13.6 mbar in the air. 

Table 3. Magnesium chloride dehydration reaction properties. 

Reaction 
ΔH 

(kJ/mol of salt) 

Reaction 

Temperature  

(°C) 

MgCl2•6H2O (s)  MgCl2•4H2O (s) + 2 H2O (g) 116.4 50 

MgCl2•4H2O (s)  MgCl2•2H2O (s) + 2 H2O (g) 135.6 80 

MgCl2•2H2O (s)  MgCl2•H2O (s) + H2O (g) 71.3 115 

MgCl2•H2O (s)  MgOHCl + HCl (g) 83.5 140 

The heat transfer model between the air and solid desiccant material particles is taken 

as one-dimensional. Figure 7 shows the conceptual variation of bed temperature for the 

hydration reaction.  

 

Figure 7. Travel of reaction front inside the reactor as a function of time during hydration. 

During dehydration, high-temperature air enters the rector and increases the tem-

perature of the bed segments. When a segment’s temperature reaches the dehydration 

temperature, the temperature stops increasing, and the heat energy is absorbed to break 

the chemical bonds of the water and desiccant material molecules. When the moisture is 

completely removed from the segment, the temperature of the bed segment starts increas-

ing. The heat transfer between air and small particles is modelled by using the Schaumann 

method [30]. If Ta is the temperature of air and Tb is the temperature of the reactor bed, 

then the heat balance can be described by the following Equation (4). 

𝜖𝜌𝑎𝑐𝑝,𝑎

𝜕𝑇𝑎

𝜕𝑡
= −

𝑚𝑎𝑐𝑝,𝑎

𝐴𝑟𝑒𝑎𝑐𝑡𝑜𝑟

𝜕𝑇𝑎

𝜕𝑥
+ ℎ𝜐(𝑇𝑏 − 𝑇𝑎) (4) 

Figure 7. Travel of reaction front inside the reactor as a function of time during hydration.

During dehydration, high-temperature air enters the rector and increases the tem-
perature of the bed segments. When a segment’s temperature reaches the dehydration
temperature, the temperature stops increasing, and the heat energy is absorbed to break
the chemical bonds of the water and desiccant material molecules. When the moisture is
completely removed from the segment, the temperature of the bed segment starts increas-
ing. The heat transfer between air and small particles is modelled by using the Schaumann
method [30]. If Ta is the temperature of air and Tb is the temperature of the reactor bed,
then the heat balance can be described by the following Equation (4).

ερacp,a
∂Ta

∂t
= −

macp,a

Areactor

∂Ta

∂x
+ hυ(Tb − Ta) (4)

where ε is the porosity and ρa is the density of air.
The left-hand side of the equation gives the rate of change of energy of air with respect

to the time per unit volume of the air inside the reactor. This rate of change of energy is
equal to the net heat entering the air. The second term on the right-hand side is the heat
entering the air from the bed, and hv is the volumetric heat transfer coefficient between air
and reactor bed. The first term is the heat getting out of the air because of its flow rate. The
ma is the mass flow rate of air, and Areactor is the cross-sectional area of the reactor, and
x is the axial position inside the reactor. The reactor bed is divided into small segments
with the assumption that the temperature of one segment is constant to facilitate solving
the energy balance equation. For that, the size of one segment should be small enough
that the temperature difference across the segment is negligible. The first step is to check
a reasonable value of the number of segments N and the time interval ∆t. After running
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various simulations, the N value is chosen to be 10 and ∆t of 30 s is selected. During the
hydration process, the reaction rate depends upon the state of charge (SOC) of the reactor
desiccant material. The SOC of the desiccant material varies between 0 and 1 (1 for fully
dry). For the higher value of SOC, the reaction takes place quickly, and almost all the
moisture is absorbed. This concept is implemented in the model by introducing a kinetic
parameter kp. It can be estimated by Equation (5).

kp(t, x) = 1− exp(−A× SOC(t, x)) (5)

A is the amplification factor, and increasing the value of A would result in a steep
decrease of the kinetic parameter. The reaction rate depends on not only the SOC but also
the water vapour mass flow rate. The reaction rate (r) is calculated by Equation (6):

r(t, x) = kp(t, x)×Mvap(t, x) (6)

Here, Mvap is the molar vapour flow rate in mol/s, which is also the unit of r. The
dehydration process modelling assumes that the reaction is swift and is governed by the
temperature difference between the air and the bed. When the bed’s temperature reaches
the material’s dehydration temperature, the temperature of the bed stops increasing, and
the heat absorbed is utilised to break the chemical bonds to release water molecules. The
dehydration starts with a SOC value of 0, and the SOC value increases as the water is
released. The SOC of a segment is calculated by the amount of energy that is absorbed by
the material of the segment Qstored, relative to energy required by the segment to release all
the water molecules Qmax. SOC is calculated by Equation (7).

SOC(t, x) =
Qstored(t, x)

Qmax
(7)

The SOC value is calculated for every bed segment and each step to simulate the
transient behaviour.

2.3. The Building

The building for which the system has been designed is a bedroom for accommodating
two people. The room has a volume of 36 m3 (4 m × 3 m × 3 m) with a floor area of 12 m2.
For thermal modelling, the room’s infiltration is taken to be 1 air change per hour (ACH),
which is 0.0123 kg/s for a normal air density of 1.23 kg/m3. A total intake of 4 ACH is
required to maintain indoor air quality. The rest of the 3 ACH is provided by the ventilation
flow rate, which becomes 0.0369 kg/s. This is the mass flow of air provided by the designed
DEC system, and the same amount of air is removed from the room. The indoor design
temperature of the room is taken to be 26 ◦C. Figure 8 shows the heat streams entering and
leaving the room. The solar gains are not considered because the cooling system has been
designed to operate only at night. Table 4 shows the values of different parameters used
for building’s cooling demand modelling.

Table 4. Values of different parameters for thermal modelling of a building.

Symbol Value Unit Symbol Value Unit

Vroom 36 m3 Troom 26 ◦C
Afloor 12 m2 N 2 -

Infiltration 1 ACH Q pp 100 W
minf 0.0123 kg/s Cp,a 1000 J/kg K
Pa 1.23 kg/m3 Q el. Appl. 150 W

Ventilation 3 ACH Uroom 0.35 W/m2K
ma 0.0369 kg/s Aroom 54 m2
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The heat exchangers used in the system have been modelled by the effectiveness
method. The effectiveness of heat exchangers is the actual heat transfer divided by maxi-
mum possible heat transfer. For the psychrometric calculations, the following
Equations (8)–(10) are used to calculate the absolute humidity (Xw) and the enthalpy of the
air (hair).

Xw =
Mv

Ma
× Pv

Ptot − Pv
= 0.622× Pv

Ptot − Pv
(8)

hair = TCp,a + Xw
(
r + Cp,vT

)
(9)

hair = T + Xw(2500 + 1.86T) (10)

where Mv is the molar mass of water (18 kg/kmol), Ma is the molar mass of air (29 kg/kmol),
and Ptot is the total pressure of the humid air, r is the latent heat of vaporisation of water
(2500 kJ/kg at 0 ◦C), and Cp,v is the specific heat of water vapour (1.86 kJ/kg.K).

3. Results and Discussion

For system simulations, the individual component models are integrated to simulate
the whole system’s operation. The reactor size is optimised by reducing the hydration time
of the whole reactor. The solar collector model is integrated with the reactor’s dehydration
model. The cooling provided by the whole system is simulated, and the solar fraction is
calculated. Figure 9 shows the modelling results for a 1 d (1st July).
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Figure 9. Solar collector simulation of one day, variation of air outlet temperature (Tout), Tamb, and G
with time.

Tamb and G are taken from the weather data. The values of Tout are going above the
80 ◦C mark for around 8 h. The Tout is following the G in shape, which is in accordance
with equation 3.5. It should be noted that Tout is lagging the G in time. This is because
Tout is calculated by using the value of E from the previous time step. The mass flow
rate (ma) is the same, which will be used for hydration of desiccant and obtained by the
room’s ventilation requirements to be cooled. The mass flow can be different as well
because charging and discharging is done separately. The constants ηopt, k1, and k2 are the
collector’s construction properties and define the amount of energy that the collector can
absorb according to Equation (1). The simulation results for variation of Tout profiles with
the area of the collector is shown in Figure 10.
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Figure 10. The effect of collector area on the collector outlet temperature.

By increasing the collector area from 5 m2 to 9 m2, the maximum temperature reached
by the air changes from around 90–130 ◦C. A more extensive collector area means higher
initial cost and more extended payback time. Figure 11 shows the modelling results of
evaporator 1.
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Figure 11. Simulation of temperature drop achieved by evaporator-1 for the whole month.

The evaporator model takes the values of temperature and humidity of the entering
air. The evaporator is modelled to increases the relative humidity of the air to 90%. The
temperature drops because evaporation is calculated by using the psychrometric modelling
equations. A temperature drop of around 10 ◦C is achieved in the evaporator by increasing
the relative humidity by 60%. Figure 12 shows the simulation result of the hydration
process of a reactor with reduced size.
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Figure 12. Simulation of hydration of reactor with reduced size.

Figure 12 shows that the time required for the reactor’s total hydration has come
down to around 11 h. An air mass flow rate of 0.0369 kg/s was used in this simulation.
The size was achieved by reducing the length of the reactor to 0.55 m and the diameter of
the reactor to 0.65 m. The porosity of the reactor was increased to 0.8. This resulted in a
reduction of the mass of the desiccant to a value of 57 kg, which is a reduction of about 72%
in the mass. Figure 13 shows the integrated system’s simulation results when the reactor is
taking air from the ambient.
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Figure 13. Simulation of the hydration process of an integrated reactor with an ambient air intake in
the night starting at 10:00 PM of 1st July.

The reactor segments are hydrated when the ambient air passes through the reactor.
When the hydration reaction completes a segment, its temperature comes down to the
intake air temperature, which is varying continuously. The complete hydration of the
reactor takes around 11 h. It means the system can provide cooling for up to 11 h. Figure 14
shows the simulation results of T4, T6, and T7 (referring to Figure 5).
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Figure 14. Simulation of temperatures of supply air at different stages of the system (T7 is room
supply temperature after evaporator 1, T6 is temperature after HE 2, and T4 is temperature after
HE 1).

Heat exchanger 1 reduces the temperature of dry air coming out of the reactor and
brings it down to T4. Heat exchanger 2 reduces the temperature from T4 to T6. Evaporator 1
brings the temperature of air down to T7 from T6 by evaporation. This simulation assumes
a constant supply of dry air from the reactor by repeating the cycle. The system operates
only at night, which corresponds to the lower values of these graphs. Figure 15 represents
the net cooling demand (cooling demand-cooling supplied) for the room.
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Figure 15. Simulation of net cooling demand of the room on the nights of July.

The positive values indicate that the cooling demand is more than the cooling supplied,
and the DEC system cannot meet the cooling demand. The auxiliary cooling system will
provide this excess cooling. The negative values are for the colder nights when the DEC
system provides more cooling (removing more heat) than required by the room. Ideally,
the net cooling demand of the room should always be zero. This is achieved by turning the
cooling system off after regular intervals or reducing the mass flow rate of supply air by
reducing the fan’s speed. If all the positive values of the net cooling demand obtained, it
gives the total cooling provided by the auxiliary system for July. This value obtained to be
1.462 kWh. The total cooling demand of the room for the nighttime found to be 124.32 kWh.
This gives the solar fraction of 98.8%. It means that with these dimensions of the system,
the system can meet 98.8% of the room’s cooling demand in July. Figure 16 shows the
simulation result for net cooling demand.
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Figure 16. Simulation of net cooling demand of the room with reduced U value of the room in the
nights of July.

In this case, the cooling demand of the room drops to 217.4 kWh. The auxiliary
cooling needed by the room also reduces to 34.3 kWh. This gives the solar fraction of
84.2%. By decreasing the room’s U value by 0.1 W/m2K, the solar fraction is increased
by 1.8%. Similarly, the effect of changing other parameters can be studied by varying
their values in the model and running the simulation for various operating conditions.
For the basic design, the system shows quite positive results. The affirmative results
provide considerable encouragement for refining the system further by going into more
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details of different simplifications made in the modelling and working towards developing
technology. A following important effect is an option for reducing the environmental
impact [31] quantified by, e.g., GHG footprints [32].

4. Conclusions

A solar DEC system has been designed and analysed using numerical simulations. The
system has been uniquely designed in such a way that the desiccant material (MgCl2·6H2O)
serves two purposes simultaneously; it works as a desiccant and as a daily solar heat storage
medium. The system has been designed to produce solar cooling for a small building
situated in the subtropical city of Lahore, Pakistan. The desiccant holding reactor has
been transiently modelled numerically in such a way that its total length is divided into
20 segments, and an appropriate time step of 30 s has been selected. The reactor’s initial
design and simulation gave a total hydration time of 29 h for a mass of desiccant of
201 kg. For meeting the cooling demand of the selected building (system integration), this
time is reduced to 11 h for 57 kg of desiccant material. The solar collector is modelled
numerically and is integrated with the dehydration model of the reactor. It is found that
the 7 m2 collector dehydrated the desiccant material in approximately 5 h. The integration
of the reactor’s hydration model with models of heat exchangers and evaporators showed
that the designed solar DEC system could meet 98.8% (solar fraction) of the building’s
cooling demand for the whole month of July, providing 122.86 kWh of cooling. The system
provided a solar fraction of 70.4% when the number of people in the building and electrical
appliances’ heat is doubled. However, the system’s cooling in the second case increased
to 156.17 kWh due to lesser cooling losses. The cooling output of the system increased
with the increasing heat exchanger effectiveness. When the heat exchangers’ effectiveness
increased from 0.7 to 0.8, solar fraction increased from 70.4% to 82.44%. It shows that
investing in advanced heat exchangers is desirable for such a system. By decreasing the U
value of the room from 0.35 to 0.25 W/m2K, the solar fraction increased from 82.44% to
84.2%. The results obtained by using the weather data of the city of Lahore showed strong
feasibility of using solar driven DEC in subtropical climate (higher latent cooling loads),
where enough solar energy is available during the day. The energy can be stored and used
during the night for air conditioning.
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