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Abstract
Background/Aims: Rise in global incidence of obesity impacts metabolic health. Evidence 
from human and animal models show association of vitamin B12 (B12) deficiency with elevated 
BMI and lipids. Human adipocytes demonstrated dysregulation of lipogenesis by low B12 via 
hypomethylation and altered microRNAs. It is known de novo hepatic lipogenesis plays a key 
role towards dyslipidaemia, however, whether low B12 affects hepatic metabolism of lipids is 
not explored. Methods: HepG2 was cultured in B12-deficient EMEM medium and seeded in 
different B12 media: 500nM(control), 1000pM(1nM), 100pM and 25pM(low) B12. Lipid droplets 
were examined by Oil Red O (ORO) staining using microscopy and then quantified by elution 
assay. Gene expression were assessed with real-time quantitative polymerase chain reaction 
(qRT-PCR) and intracellular triglycerides were quantified using commercial kit (Abcam, UK) 
and radiochemical assay. Fatty acid composition was measured by gas chromatography and 
mitochondrial function by seahorse XF24 flux assay. Results: HepG2 cells in low B12 had more 
lipid droplets that were intensely stained with ORO compared with control. The total intracellular 
triglyceride and incorporation of radio-labelled-fatty acid in triglyceride synthesis were 
increased. Expression of genes regulating fatty acid, triglyceride and cholesterol biosynthesis 
were upregulated. Absolute concentrations of total fatty acids, saturated fatty acids (SFAs), 
monounsaturated fatty acids (MUFAs), trans-fatty acids and individual even-chain and odd-
chain fatty acids were significantly increased. Also, low B12 impaired fatty acid oxidation and 
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mitochondrial functional integrity in HepG2 compared with control. Conclusion: Our data 
provide novel evidence that low B12 increases fatty acid synthesis and levels of individual 
fatty acids, and decreases fatty acid oxidation and mitochondrial respiration, thus resulting in 
dysregulation of lipid metabolism in HepG2. This highlights the potential significance of de 
novo lipogenesis and warrants possible epigenetic mechanisms of low B12.

Introduction

The impact of higher adiposity on metabolic health has been extensively studied due 
to alarming increase in the global incidence of obesity. It was recently estimated that the 
worldwide prevalence of overweight in adults is 39%, obesity is 13% and non-alcoholic fatty 
liver disease (NAFLD) is 25% [1, 2]. Obesity, characterized by the excessive storage of fat in 
adipose and hepatic tissues, has been associated with dyslipidaemia, insulin resistance and 
NAFLD. Hepatic de novo lipogenesis is a major factor contributing to plasma triglyceride levels 
and hepatic steatosis [3]. Similarly, fatty acid oxidation is significant in suppressing lipolysis 
of adipose triglyceride as well as reducing hepatic fat accumulation [4]. However, increased 
plasma free fatty acid levels have been associated with insulin resistance, inflammation and 
gestational diabetes (GDM) [5].

Environmental factors such as nutrition (micronutrients), may affect metabolism of 
lipids and deregulate the processes of lipogenesis and lipid oxidation. Deficiencies in methyl 
donors (vitamin B12 (B12) and folate) are associated with obesity [6], liver steatosis [7] 
and increased risk of metabolic syndrome [8]. Low B12 in pregnancy was associated with 
elevated BMI, insulin resistance and GDM [9]. Maternal low B12 was associated with higher 
levels of triglyceride in both maternal and cord blood [10], and higher insulin resistance 
in the offspring at six years of age [11]. It has also been shown that low serum B12 level 
was observed in individuals with NAFLD, especially with grade 2 and 3 steatosis [12]. In 
support to this human studies, B12 restriction in maternal rat models demonstrated that 
the offspring had higher adiposity, dyslipidaemia, upregulation of enzymes in lipogenesis 
and lipid oxidation [13]. We have previously shown in a human adipocyte model in low B12, 
the master regulator of lipogenesis (SREBF - sterol regulatory element binding protein) 
and cholesterologenesis (LDLR - low density lipoprotein receptor) were upregulated [14] 
and might lead to higher adiposity and dyslipidaemia via hypomethylation of DNA [14] 
and altered microRNAs [15]. Compared to the liver, the contribution of adipose tissue to 
the circulating levels of lipids is considerably lower [16]. Therefore, if the effects of B12 
are similar in hepatocytes, this may explain the association observed between low B12 and 
dyslipidaemia in humans [17] and the causal association observed in animal models [17].

In animal models, apart from the increased triglyceride and cholesterol levels, low B12 
was associated with altered levels of long chain polyunsaturated fatty acids (LC-PUFAs) in 
the plasma and liver of subjects across three generations [18]. Recent evidences suggest 
that fatty acids in circulation may be implicated in metabolic dysregulation such as GDM 
[19], postmenopausal obese and overweight women [20], metabolic syndrome [21], type 2 
diabetes (T2D) [22] and cardiovascular disease (CVD) [23]. Despite the diverse metabolic 
roles of these fatty acids and the potential link between low B12 and beta-oxidation of 
fatty acids [24, 25], there are no studies that explored the relationship between low B12 
on the individual fatty acids at tissue levels, especially in an active metabolic tissue such as 
hepatocytes.

With this foregoing discussion, in this current study we present data on (1) the effects 
of low B12 on lipogenesis and lipid oxidation in human hepatocyte cell line (HepG2) and (2) 
the effects of low B12 on the fatty acid concentrations in HepG2.

© 2021 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG
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Materials and Methods

Experimental methods are detailed in Supplemental Methods (for all supplementary material see 
www.cellphysiolbiochem.com). They are articulated in brief in the following paragraphs.

Cell culture
HepG2 cell culture was done, with slight modifications [26]. Using B12-deficient Eagles’ Minimal 

Essential Medium (EMEM), cells were cultured in T-75 flask and seeded into six well-plates at 75,000 
cells/well in different B12 concentrations of EMEM media: 500nM (Control), 1000pM, 100pM and 25pM. 
Customised B12 medium was changed every 48-hours until 100% confluence.

Oil Red O staining and elution assay
HepG2 cells, following 1-hour fixation with 10% formalin, were stained for 2-hours with ORO. Oil 

droplet images were captured under 40x objective of light microscope.

RNA isolation, cDNA synthesis and gene expression
RNA was isolated using the Trizol method [27] and gene expression assays were done using qRT-PCR 

and normalized with 18s rRNA (Applied Biosystems, UK) [14].

Total intracellular triglyceride estimation
Total intracellular triglyceride in HepG2 was assessed with commercial Triglyceride Quantification Kit 

(ab65336) from Abcam, Cambridge, UK.

Radiochemical measurement of synthesized triglyceride
HepG2 was labelled with 12C-Oleate for 2-hours, then followed by total lipids extraction [28] and the 

resultant radiolabelled triglyceride was separated on a TLC plate with glyceryltripalmitate as standard and 
quantified with the scintillation counter (Beckman coulter LS6500, USA) [26] and normalized per milligram 
protein estimated with Bradford method [29].

Fatty acid composition in total lipids of HepG2
Fatty acid levels (µg) were normalized per milligram protein, quantified by Bradford assay [29], in 

HepG2 pellets. Pellets were dissolved in 0.2 mL cell lysis buffer containing 1mM phenylmethanesulfonyl 
fluoride [30], followed by sonication, to obtain cell lysate. Total lipids extraction [28] was achieved after 
adding 0.05mg pentadecanoic acid (internal standard) to cell pellets. After drying, synthesis of fatty acid 
methyl esters (FAME) using 3mol/l methanolic HCl (Supelco, Bellafonte, PA, EEUU) for 1-hour at 90°C, 
was performed. FAME were analysed by gas-chromatography [31] and fatty acid concentrations were 
determined in relation to peak area of internal standard.

Seahorse extracellular flux assay of mitochondrial dysfunction
Maximal respiratory capacity. Briefly, the basal oxygen consumption rate (OCR) measurement was 

performed in HepG2 cells in a rich substrate media (glucose-2.5mM, pyruvate-1mM, L-Glutamine-2mM, 
BSA-0.1%) by addition of the inhibitors Oligomycin and FCCP followed by antimycin/rotenone using 
Seahorse 24XF flux analyser.

Respiratory capacity in a limited-substrate (high-palmitate) supply. Then, to examine how the low B12 
HepG2 function with the endogenous supply of high extracellular levels of palmitate and other limited 
substrate, we incubated HepG2 in a limited-substrate KHB medium (only 0.5mM L-carnitine and 1.25mM 
glucose), which is poorly enriched with other supplements compared with the rich-substrate KHB medium, 
for one-hour. After the basal OCR was measured in HepG2, the cells were either exposed to 200µM palmitate 
(dissolved in 33.3 µM BSA) or 33.3µM BSA only (basal control) in the substrate medium to assess how 
HepG2 cells efficiently uptake palmitate for ATP metabolism.
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Statistical analysis
All quantitative measurements, where applicable, were obtained n=6 for standards, controls and cases 

for precision. Differences between either parametric groups or non-parametric groups were observed 
respectively by performing Student’s t-test or Mann-Whitney U test. P values of <0.05 were considered 
statistically significant.

Results

Effect of B12 on Lipogenesis
Lipid droplets accumulation. To determine the effect of B12 on hepatic lipogenesis, we 

imaged lipid droplets in HepG2 cells using x40 objective of a light microscope under different 
conditions of B12 [500nM (control), 1000pM, 100pM and 25pM] following the initial fixing 
and staining of cells with ORO. We observed HepG2 cells in low B12 had high number of 
intensely stained lipid droplets compared to control with few lightly stained lipid droplets 
(Fig. 1A.i). Then the lipid content was quantified using the elution assay standardized by 
milligram protein concentration of HepG2, which showed significantly higher amount of 
lipids eluted from cells of low B12 compared with control (Fig. 1A.ii).

Total intracellular triglyceride levels. HepG2 in low B12 had significantly higher level 
of total intracellular triglyceride, normalized per milligram protein, compared with control 
cells (Fig. 1B), thus confirming the earlier evidence obtained in ORO staining and elution 
assays.

Triglyceride synthesis utilizing radio-labelled fatty acid. We observed a high measure of 
radioactivity (disintegration per minute, DPM) by scintillation count in HepG2 of low B12, 
normalized per milligram protein, following initial extraction and isolation of radiolabelled 
triglyceride. This provided a direct indication that increased levels of fatty acids were 
incorporated and synthesised in HepG2 treated with low B12 compared to control (Fig. 1C).

Genes regulating fatty acid synthesis. Next, we assessed the effect of B12 on gene 
expression of sterol regulatory element-binding protein (SREBF), which is a master 
regulator of biosynthesis pathways of fatty acids, triglyceride and cholesterol, and then the 
downstream genes regulating fatty acid synthesis: acetyl-CoA by ATP citrate lyase (ACLY), 
acetyl-CoA carboxylase (ACC), fatty acid synthase (FASN), and elongation of very long-chain 
fatty acids (ELOVL6). We observed that gene expression of SREBF1 and the genes involved in 
de novo lipogenesis including ACLY, ACC, FASN and ELOVL6, were increased in low B12 cells 
compared with control (Fig. 1D).

Genes regulating triglyceride biosynthesis. Triglyceride biosynthesis occurs by conversion 
of saturated fatty acids to monounsaturated fatty acids by Stearoyl-Co-desaturase 1 (SCD1) 
and sequential esterification onto glycerol-3-phosphate (G3P) by Glycerol-3-phosphate 
acyltransferase (GPAT), 1-acylglycerol-3-phosphateacyltransferase (AGPAT), phosphatidate 
phosphatase (LPIN1) and Diacylglycerol acyltransferase (DGAT) enzymes into triglyceride, 
which may be stored in the liver or exported into the blood as VLDL.

The mRNA expression of the genes (SCD1, GPAM, AGPAT, LPIN1 and DGAT2) were 
increased in low B12 cells. Therefore, these findings demonstrate that both de novo synthesis 
and retention of fatty acids in triglycerides were increased in low B12 cells compared with 
control (Fig. 2A).

Genes regulating cholesterol synthesis. Dysregulation in fatty acid and triglyceride 
metabolism could affect cholesterol biosynthesis as the latter utilizes acetyl CoA and 
VLDL which are derivatives of fatty acids (endogenous or exogenous) and triglycerides in 
the mitochondria and cytosol, respectively. We observed an increased gene expression of 
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LDLR (master regulator of cholesterol synthesis) in low B12 cells. Likewise, genes including 
3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), 3-hydroxy-3-methylglutaryl-CoA syn-
thase (HMGCS1) and Isopentenyl-Diphosphate delta Isomerase 1 (IDI1) were increased in 
low B12 compared with control (Fig. 2B). This evidence therefore suggests that hepatocyte 
cell line in low B12 had higher levels of cholesterol compared with control.

Fatty acid levels. We showed evidence of low B12 induced upregulation of genes involved 
in pathways leading to de novo synthesis, elongation and desaturation of certain fatty 
acid. We further performed fatty acid quantification in HepG2 under different conditions 
of B12 to assess how levels of different fatty acid were affected in the hepatocyte cell line. 

Fig. 1. Low B12 increased lipid droplets, triglyceride levels and genes regulating fatty acid synthesis in 
HepG2: (A) Image of lipid droplets in HepG2 cells stained with ORO and estimation of lipids eluted from 
hepatocytes standardized per milligram protein. (B) Total intracellular levels of triglycerides quantified in 
hepatocytes using the triglyceride kit and normalized per milligram protein under each B12 condition. (C) 
Levels of synthesized triglyceride in HepG2 was assessed radio-chemically (using 14C-Oleate, L-carnitine) 
and normalized per milligram protein. (D) Expression of gene SREBF1 (i) and genes regulating de novo fatty 
acid synthesis [ACLY (ii), ACC (iii) FASN (iv) and ELOVL6 (v)], normalized to 18S rRNA. Data is mean ± SEM 
(n=6), and *compared to control; *p< 0.05, **p< 0.01, ***p< 0.001.
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Fatty acid families that contributed to the accumulation of total fatty acid were saturated fatty 
acid (SFA), monounsaturated fatty acid (MUFA), n-6 polyunsaturated fatty acid (n-6 PUFA), 
n-3 polyunsaturated fatty acid (n-3 PUFA), n-9 long chain polyunsaturated fatty acid (n-9 
LC-PUFA) and trans fatty acid. Our data showed that the level of total fatty acids synthesized 
in HepG2 with low B12 (25pM) was 38% higher compared with control (Control - 254 ± 31 
µg fatty acid/mg protein vs low B12 (25pM) - 367 ± 37 µg fatty acid/mg protein, P=0.006) 
(Fig. 3i). We observed that the concentration of the predominant fatty acid form, the SFA and 
MUFA were significantly higher in low B12 which accounted for the overall increase in the 
total fatty acid in low B12 hepatocyte-cell line compared to control (Fig. 3ii, iii). In PUFAs-
total, there was no significant difference observed between low B12 and control however, 
sub-groups of PUFA such as n-6 PUFA, n-6 LC-PUFA, n-6/n-3 PUFA and trans-fatty acid were 
significantly higher in low B12 hepatocytes (Fig. 3vii-x). Moreover, n-3 PUFA and n-3 LC-
PUFA concentrations showed no significant difference between low B12 and control (Fig. 
3v, vi).

Fig. 2. Low B12 upregulates enzymes involved in triglyceride and cholesterol biosynthesis in HepG2: (A) 
Expression of genes regulating de novo triglyceride biosynthesis [SCD (i), GPAM (ii), AGPAT (iii), LIPIN (iv) 
and DGAT2 (v)] and DGAT1 (vi) normalized to 18S rRNA. (B) Expression of genes regulating cholesterol 
biosynthesis [HMGCR (i), HMGCS1 (ii) and IDI1 (iii) and LDLR (iv) in hepatocytes. All gene expressions were 
normalized to 18S rRNA. Data is mean ± SEM (n=6), and *compared to control; *p< 0.05, **p< 0.01, ***p< 
0.001.
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Levels of individual fatty acids in different B12 conditions are listed in Table 1, which 
explained the differences observed in the various sub-groups of the fatty acids. While some 
of the saturated even chain fatty acid, odd chain fatty acid and trans-fatty acid showed higher 
concentrations in low B12 levels compared to control, no differences were seen in others. 
Similar observations were seen in PUFA subgroups (n-3, n-6 and n-9). Interestingly, all the 
MUFAs showed higher concentrations in low B12 levels except Gondoic acid (20:1n-9) which 
was significantly lower compared to control.

Effect of B12 on Fatty acid oxidation
Genes regulating fatty acid oxidation. Free long chain-fatty acids are activated and 

transported across the mitochondrial membranes by the enzymes: acyl-CoA synthetase 
(ACSL), carnitine palmitoyl transferase-1 (CPT1), carnitine acyl carnitine translocase (CACT) 
and carnitine palmitoyl transferase-2 (CPT2). This precedes dehydrogenation, hydration, 
oxidation and thiolytic cleavage by enzymes including acyl-CoA dehydrogenase long chain 
(ACADL), acyl-CoA dehydrogenase medium chain (ACADM), acyl-CoA dehydrogenase short 

Fig. 3. Levels of various groups of fatty acids in HepG2 in different conditions of B12: Fatty acid levels in 
HepG2 cell line in different B12 conditions [500nM (Control), 1000pM, 100pM and 25pM] obtained in total 
lipids extracted from cell pellets of hepatocytes and analysed using gas chromatography. Fatty acid levels 
(µg) normalized per milligram protein showing various fatty acid groups such as total fatty acid (i), SFA (ii), 
MUFA (iii), PUFAn-6 (iv), PUFAn-3 (v), LC-PUFAn-6 (vi), PUFA-total (vii), Trans-fatty acids (viii), LC-PUFAn-3 
(ix), PUFA n-6/n-3 ratio (x). Data is mean ± SEM (n=6), and *compared to control; *p< 0.05, **p< 0.01, ***p< 
0.001.
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chain (ACADS) and hydroxyacyl-CoA dehydrogenase trifunctional multi-complex subunits 
beta and alpha (HADHB and HADHA) in the beta-oxidation pathway.

In the mitochondria, B12 is a cofactor for the enzyme methyl malonic CoA mutase (MCM). 
Low B12 deficiency reduces the activity of MCM resulting in the accumulation of methyl 
malonic acid (MMA) through inefficient conversion of methyl malonyl-CoA to succinyl CoA 
during propionate metabolism. MMA was however shown to be a potent inhibitor of the 
rate limiting enzyme of the fatty acid oxidation pathway, CPT1 in the liver and muscles of 
rats [32]. Since lipid metabolism is co-ordinated by an intricate balance of fatty acid synthesis 
and oxidation, we assessed the effect of low B12 on CPT1α and the downstream genes involved 
in fatty acid oxidation in the mitochondria. The genes regulating fatty acid oxidation: CPT1α, 
CACT, ACSL1, ACADL, ACADM, ACADS, HADHB and HADHA were significantly decreased in 
HepG2 with low B12 compared to control (Fig. 4A).

Effect of B12 on mitochondrial functional integrity
Efficiency of mitochondria in utilizing a rich-substrate supply. The key metabolic pathways 

such as fatty acid oxidation and oxidative phosphorylation (OXPHOS) in mitochondria is the 
principal source of energy (ATP) in eukaryotes. It has been shown that primary deficiencies 
in fatty acid oxidation results in secondary OXPHOS defects, although the precise underlying 
mechanism is unclear [33]. We assessed the effect of B12 on mitochondrial respiration 
(OXPHOS), by measuring the OCR in HepG2, as an assessment of mitochondrial functional 
integrity under various conditions of B12.

Table 1. Levels of individual fatty acids in HepG2 of different B12 conditions. * indicates significance com-
pared to control; * p< 0.05, ** p< 0.01, *** p< 0.001. n. d: not detected
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In the presence of inhibitors (oligomycin, FCCP, rotenone), the maximal respiratory 
capacity, OCR of HepG2 in a rich-substrate medium (high glucose), was decreased in low B12 
compared with control (Fig. 4B.i). Also, the spare respiratory capacity (SRC), a measure of the 
capacity of electron transport chain and substrate supply to respond to elevation in energy 
demand, was decreased in low B12 cells compared with control (Fig. 4B ii). This suggests 
that the efficiency of the mitochondria in utilising a rich-substrate for energy metabolism 
was compromised in low B12.

Fig. 4. Low B12 impaired fatty acid oxidation and triggered mitochondrial dysfunction in HepG2: (A) Ex-
pression of genes oxidising fatty acids - CPT1a (i), CACT (ii), ACSL1 (iii), ACADL (iv), ACADM (v), ACADS (vi), 
HADHB (vii) and HADHA (viii) normalized to 18S rRNA. (B) (i) OCR before and after injection of inhibitors 
such as oligomycin, FCCP and rotenone/antimycin-A, showing the maximal respiratory capacity in HepG2 
under various B12 conditions. SRC in HepG2 of; (ii) a substrate-rich KHB substrate medium and (iii) a sub-
strate-limited KHB medium under different conditions of B12. Data is mean ± SEM (n=6), and *compared to 
B12  control; *p< 0.05, **p< 0.01, ***p< 0.001. $ - represents significane compared to basal control (BSA).

 

Figure 4: 
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Efficiency of the mitochondria in utilizing limited-substrate (low glucose, high palmitate) 
supply. We observed that in low B12, upon exposure to high palmitate levels, the SRC of 
HepG2 cells was significantly lower compared with control (Fig. 4B.iii). This suggests that 
the capacity of the mitochondria to catabolise long chain fatty acid (palmitate) for energy 
metabolism was reduced in low B12, therefore, likely to accumulate in low B12.

Discussion

Here we show that low B12 in HepG2 increased gene expression of lipogenesis and 
decreased lipid oxidation, resulting in increased intracellular triglyceride and accumulation 
of lipid droplets. In addition, we also observed subclasses of fatty acids such as SFAs, MUFAs, 
n-3, n-6 PUFAs and trans-fatty acids were also significantly higher in low B12 condition. 
Our findings indicate that in low B12 conditions, increased fatty acid synthesis coupled 
with reduced fatty acid oxidation and catabolism of fatty acids (decreased mitochondrial 
respiration), may lead to higher intracellular fatty acid concentrations in HepG2 cells.

Hepatocytes demonstrate elevated level of fatty acids, which is immediately converted 
to triglyceride and are stored in lipid droplets. In the current study, we observed in HepG2 
with low B12 that lipid droplets, total intracellular triglycerides and radiolabelled-fatty acid 
uptake for triglyceride synthesis were higher. This evidence was similar to the observation 
of elevated accumulation of lipid droplets, increased levels of triglyceride and cholesterol in 
adipocytes differentiated in deficient B12 condition [15]. An earlier study hypothesized that 
lipid droplets are much sensitive to conditions such as nutritional stress capable of inducing 
unique alterations in the lipidome of lipid droplets present in mice hepatocytes [34]. Lipid 
droplets resident in hepatocytes may demonstrate variations in numbers and sizes which 
are reflective of the precise state of the pathological and or physiological condition of an 
individual [34]. Accumulation of lipid droplets underlies and defines the state of steatosis 
in the liver [35], therefore implying that our observation of low B12 induced accumulation 
of lipids in HepG2, may be associated with the pathogenesis of hepatic steatosis. This 
supports the clinical observation which showed that serum B12 negatively associated with 
serum triglyceride and VLDL levels in Indian subjects [17, 36]. In an animal model, severe 
B12 deficiency was associated with higher serum triglyceride levels which resulted in 
adverse pregnancy outcome [37]. Our findings extend these evidences and provide potential 
mechanisms for higher lipid levels in low B12 conditions.

Furthermore, we observed that gene expression of the master regulator of lipogenesis 
(SREBF1), cholesterol synthesis (LDLR) and downstream genes regulating synthesis of fatty 
acid, triglyceride and cholesterol were increased in HepG2 in low B12. In a previous study, 
hepatic transcription factors: SREBP1c, liver X receptor (LXRα) and retinoid X receptor 
(RXRα) in Wistar rat offspring were differentially regulated by B12 restriction [38]. Higher 
expression of SREBF1 and LDLR were observed in human adipocytes with low B12 levels [14] 
and increased level of SREBP-1c in the fatty livers of ob /ob mice [39]. Similar studies have 
also shown increased expression of genes involved in biosynthesis of fatty acid, triglyceride 
and cholesterol in animals [13] and human adipocytes [15]. Three separate clinical studies 
involving women at (a) child-bearing age, (b) early pregnancy and (c) during delivery 
showed an association between low B12 and higher LDL cholesterol, total cholesterol, ratio 
of cholesterol-to-HDL and triglyceride [14]. In addition, adipocytes isolated from subjects 
with low B12 levels showed higher cholesterolgenesis and lipogenesis, which may result 
from epigenetic modulations via hypomethylation of SREBF and LDLR [14] and altered 
micro-RNAs targeting PPARg and insulin resistance [15], respectively. In humans, de novo 
lipogenesis is reported to be responsible for about 26% of total triglyceride synthesis in 
the liver and contributes to the incidence of hepatic steatosis and NAFLD [40]. Our findings 
raised the possibility that an increase in hepatic de novo lipogenesis due to low B12 levels 
may increase the future risk of obesity and NAFLD and in turn the risk of developing T2D. 
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Although, genetically driven NAFLD causally promotes T2D and central obesity [41], our 
data adds that future research should address the epigenetic mechanisms of B12 driving 
obesity and NAFLD.

An important observation of the present study was the extensive evaluation of 27 fatty 
acids in hepG2 cells in four different conditions of B12. Overall, total fatty acids and subclasses 
of fatty acids (SFAs, MUFAs, n-6 PUFAs and trans-FAs) were higher in HepG2 cells in low B12. 
Recently, the Fatty Acids and Outcomes Research Consortium (FORCE) study involving 17 
global cohorts (n=65, 225) reported that higher concentrations of SFA (16:0 - palmitate, 18:0 
-stearate) and MUFA (16:1 n-7 – palmitoleate, 18:1 n-9 - oleate) was associated with higher 
incidence of T2D [42]. We found higher levels of 16:0 and 18:0, de novo lipogenesis related 
fatty acids in low B12 status. Several studies have shown association of SFAs [43], MUFAs 
[44] and trans-fatty acids concentrations [44] with subclinical inflammation, increased risk 
of cardiometabolic diseases. Chen et al. showed that serum SFA and MUFA were elevated in 
GDM women at delivery and also reported a graded trend between the severity of maternal 
hyperglycaemia and individual serum fatty acid concentrations [45]. Similarly, the same 
authors showed that percentage of saturated even chain fatty acid (14:0 - myristic acid) was 
inversely associated with insulin resistance and inflammation [5, 46]. This was in line with 
an animal study that reported increased percentages of these fatty acids in liver tissues of 
B12-deficient rat [47]. These data therefore highlight the potential importance of de novo 
lipogenesis and these individual fatty acids in the low B12 status which might predispose 
to development of T2D and other related co-morbidities. Whether B12 plays an epigenetic 
role in the synthesis of 16:0 and 18:0 fatty acids, similar to our previous observations on 
adipocytes [14, 15] and animal studies [13, 48], requires future studies.

In addition, we also observed n-3 PUFA (EPA (eicosapentaenoic acid), DPA 
(docosapentaenoic acid)), n-6 PUFA (LA (linoleic acid), DGLA (dihomo-γ-linolenic acid), 
AA (arachidonic acid), DPA) and n-6/n-3 ratio levels were significantly higher in low B12 
status. Iglesia et al. in European adolescents found an inverse association of serum B12 with 
triglyceride and phospholipid fatty acid, mainly with n-3 PUFAs [44]. Similar relationship in 
liver tissues from offspring of B12 restricted rats was shown between B12 and n-3 and n-6 
PUFA percentages [18]. Association of higher n-6 /n-3 ratio with dysregulation in hepatic 
metabolism of lipids [49] and the risk of developing NAFLD [50] has been studied. On the 
contrary, a separate FORCE consortium study (30 prospective cohorts; n=68,659) showed 
circulating and adipose tissue concentrations of LA were inversely associated with CVD [51]. 
EPIC-InterAct study (eight European cohorts; n=15,919) showed inverse association of LA 
and positive association of DGLA and DPA with T2D [22]. In addition, a longitudinal study of 
2803 pregnant women showed an inverse association of EPA and DPA with insulin resistance 
markers and positive association of DGLA with GDM [52]. These large cohort studies 
showing differential association of these n-3, n-6 PUFA and the risk of metabolic diseases 
may depend upon complex interplay of other risk factors. It is known that circulating n-3 and 
n-6 PUFAs are a function of exogenous (diet) and endogenous (de novo lipogenesis) sources, 
but our finding clearly indicates that low B12 in HepG2 contributes to some fraction of 
endogenous PUFAs. Our data suggests that in low B12 status, the pathophysiological process 
of dyslipidaemia and insulin resistance may be linked to these de novo lipogenesis related 
fatty acids. Future investigations studying the role of complex interplay of these fatty acids 
in obese individuals with B12 deficiency and GDM risk are warranted.

Another significant finding in this study was low B12 accounted for impaired beta-
oxidation of fatty acids which is revealed by decreased expression of the rate limiting enzyme 
CPT1α and the downstream genes crucial in the fatty acid oxidation pathway. In addition, we 
observed that mitochondrial functional integrity (OCR and SRC) was decreased in low B12 
condition thereby indicating that the oxidation of long chain fatty acid (palmitate) is reduced 
in the mitochondria. Likewise, an animal study had shown evidence of hepatic fatty acid 
oxidation impairment by methyl donor (both B12 and folate) deficiency via hypomethylation 
of PGC1-α [8]. The authors however, supplemented mice with methyl donors and observed 
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a deficit of carnitine in the liver of subjects compared with control [8], confirming fatty 
acid oxidation improvement via CPT1α upregulation [53]. These observations indicate 
impairment of combined fatty acid oxidation and mitochondrial respiration in low B12 state 
and the importance of B12 in hepatic metabolism [54].

Conclusion

In summary, our study provided novel evidence that low B12 in hepatocytes accumulated 
more lipids, intracellular triglyceride and increased uptake of fatty acid under the influence 
of increased fatty acid synthesis and decreased fatty acid oxidation. Interestingly, we found 
that there are higher levels of fatty acid concentrations, especially the subclasses of SFA and 
MUFA. Our data also support that inefficiency to couple beta oxidation of fatty acid with 
mitochondrial respiration might be a possible confounder to accumulate more fatty acids 
in the hepatocytes in low B12 status which could result in dyslipidaemia. These findings 
highlight the need to recognize the distinct association between B12 and individual fatty 
acids and their metabolic role. Future studies elucidating the possible epigenetic mechanisms 
of B12 in metabolic tissues are warranted.
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