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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

The increasing number of distributed photovoltaic (PV) systems connected to the power grid has made system planning and 
performance evaluation a challenging task. This is mainly due to the computational complexity, such as load flow analysis with 
large irradiance datasets collected from various locations of the installed PV farms. Solar irradiance data are known to possess the 
characteristic of high uncertainty, due to the random nature of cloud cover and atmospheric conditions. This paper presents the 
studies on the relationships of clustered clearness index profiles and the weather conditions obtained from the weather forecasting 
stations. Four years of solar irradiance and weather conditions data from two locations (Johannesburg and Kenya) were obtained 
and are used for the analysis. The preliminary study shows that the weather condition is related to the daily clearness index profiles. 
This work will form the basis for estimating the daily clearness index profile with weather conditions. 
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1. Introduction 

Photovoltaic (PV) systems are being connected to the grid via the distribution systems at an exponential rate [1]. 
This is the result from reduced cost and increased in economy of scales of PV systems [2]. The transition in the way 
power is generated is welcomed by the government and environmentalist. Green energy, i.e. solar PV can reduce the 
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carbon emission and environmental pollutions. However, this also poses a serious problem for system operators. Power 
and voltage fluctuations on the grid are the main concerns, as a direct result from the non dispatchable PV generation. 
The problem is worsened with the fact that PV systems in general are of small scale and situated in various locations. 
Feed-in-tariffs from various countries promote the installation of small scale PV farms, typically of kilowatts. The 
solar irradiance can be of significant difference at different locations due to the climate and cloud cover. Large scale 
irradiance datasets are required for detail analysis of the PV farms to the grid in order to prevent brownouts and 
blackouts. 

Currently, irradiance fluctuations are mostly studied with statistical techniques [3-9]. The advantage of these 
methods is that few parameters can be used to characterize the massive quantity of data. Clearness index (CI) can be 
useful in studying the fluctuations for solar energy applications [6, 10-12]. The diminish impact of the atmosphere on 
solar irradiance with respect to the amount of extraterrestrial solar irradiance that reaches the surface of the earth can 
be presented by CI.  

The recent work in [13] presents a study in cluster analysis of daily CI profiles. This work aims to study how well 
the proposed clustering method correlates with the weather forecasting information, i.e. weather conditions. This will 
confirm the dependency of the CI and the weather conditions and in addition, the accuracy of the clustering results. 
The results will also suggest that the clustering procedure can be applied to other locations for PV system evaluations, 
such as sizing and distribution system load flow analysis. This will be useful in estimating the CI profiles with limited 
weather conditions data. Also, it provides a validation method for the cluster analysis results and to confirm the 
generality of the clustering approach. 

One of the major issues that needs to be addressed is the question of “How is a ‘Clear day’ defined?”. As an 
example, can a day with strong cloud cover in the noon for two hours and with no cloud for the rest of the day be 
classified as a ‘Clear day’? This question will be explored and addressed in the paper. Section 2 presents the formal 
definition of CI. The cluster analysis results of Kenya with Fuzzy C-Means Dynamic time warping (FCM DTW) will 
be given in Section 3. Section 4 will present the study of weather conditions and clearness index. An algorithm is 
proposed to determine the percentage of clear days from a set of daily weather conditions. Conclusion and future work 
are given in Section 5. 

2. Clearness Index 

The solar irradiance received on the ground will be equal to the value of the solar constant subtract the amount of 
atmospheric absorption under the ideal atmospheric condition. In general, the global solar irradiance consists of two 
main components, these are known as diffuse sky irradiance and the direct beam component. Typically, the real-life 
solar irradiance collected for solar application studies is from a pyranometer device. It measures the solar irradiance 
on a flat surface and measures the solar radiation flux density in W/m2. The CI is calculated from the data obtained 
from the pyranometer data and clear sky model. The CI has a value between 0 and 1. The value 0 signifies that a total 
cloud cover occurs and no irradiance is to be received on the ground. Conversely, a value of 1 signifies that the 
maximum theoretical amount will be received on the ground. Exceptional cases need to be made when using CI, such 
as the definition of CI before sunrise and after sunset where the irradiance will be zero. As these conditions are not 
useful in this study, they will be neglected during the analysis. The equation for CI calculation is given in Equation 
(1) below: 

 

𝐶𝐶𝐶𝐶 𝑡𝑡 =
𝐶𝐶%&'()*+,-,'(𝑡𝑡)
𝐶𝐶+*0,1(𝑡𝑡)

																																																																																(1) 

 
𝐶𝐶+*0,1 is the clear-sky solar irradiance from the solar model and 𝐶𝐶%&'()*+-,' is the real-life solar irradiance at time 

𝑡𝑡. The clearness index obtained in this work are calculated from the clear-sky solar irradiance model in [13]. Various 
variables are incorporated in the solar model to compute the clear-sky solar irradiance. These include correction factor 
to mean solar distance, optical air mass corrected for station height, solar altitude angle and Rayleigh optical depth. 
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3. Cluster analysis results 

The FCM DTW clustering technique is studied with the four years of solar irradiance data (2011-2014) obtained 
from Solargis company. The corresponding weather conditions are obtained for Nairobi Jomo, Kenya from Weather 
Underground [14]. The location of the irradiance data is at Gitaru dam, Kenya with coordinates (0.789°S,37.73°E) 
and elevation at 969 meters. The sampling rate is at 1 sample/15min. The weather conditions for the four years of 
Johannesburg were also collected from the database in the same website. The clustering results for Johannesburg case 
are given in [13]. Daily CI profiles are constructed for the four seasons in Kenya and the results are presented in Fig. 
1. The mean, plus one and minus one standard deviation for the CI profiles are given in black, blue and red lines 
respectively. The optimal numbers of clusters obtained from fuzzy decision with cluster reduction are 5, 4, 6 and 6 for 
Spring, Summer, Autumn and Winter respectively. 

 

 

As shown in Fig. 1a, the ‘Clear days’ for Spring in Kenya belongs to cluster 1. The cluster has high CIs values with 
little fluctuations. The CIs with lowest values are situated in cluster 2. The ‘Clear days’ for Summer in Kenya belongs 
to cluster 1. Although the other centroids are generally of high mean value, there are some form of perturbations, such 
as the centroid in cluster 3 reaches a value of 0.3 at 7 am. The ‘Clear days’ for Autumn in Kenya belongs to clusters 
1 and 6. Although clusters 2 and 4 show some high CI values, the CI suffers from cloud covering. The ‘Clear days’ 
for Winter in Kenya belongs to cluster 5. 

The dataset with weather conditions to be analyzed is shown in Table 1. Columns 1, 2, 3 and 4 represent the time 
in year, month, day and hour in MATLAB format respectively. The solar irradiance is given in column 5. The weather 
condition and the CI are given in columns 6 and 7 respectively. 

Fig. 1. (a) Daily CI profiles for Spring case in Kenya; (b) Summer case in Kenya; (c) Autumn case in Kenya; (d) Winter case in Kenya. 

a b 

c d 



 Chun Sing Lai  et al. / Energy Procedia 142 (2017) 77–82 79
2 Author name / Energy Procedia 00 (2017) 000–000 

carbon emission and environmental pollutions. However, this also poses a serious problem for system operators. Power 
and voltage fluctuations on the grid are the main concerns, as a direct result from the non dispatchable PV generation. 
The problem is worsened with the fact that PV systems in general are of small scale and situated in various locations. 
Feed-in-tariffs from various countries promote the installation of small scale PV farms, typically of kilowatts. The 
solar irradiance can be of significant difference at different locations due to the climate and cloud cover. Large scale 
irradiance datasets are required for detail analysis of the PV farms to the grid in order to prevent brownouts and 
blackouts. 

Currently, irradiance fluctuations are mostly studied with statistical techniques [3-9]. The advantage of these 
methods is that few parameters can be used to characterize the massive quantity of data. Clearness index (CI) can be 
useful in studying the fluctuations for solar energy applications [6, 10-12]. The diminish impact of the atmosphere on 
solar irradiance with respect to the amount of extraterrestrial solar irradiance that reaches the surface of the earth can 
be presented by CI.  

The recent work in [13] presents a study in cluster analysis of daily CI profiles. This work aims to study how well 
the proposed clustering method correlates with the weather forecasting information, i.e. weather conditions. This will 
confirm the dependency of the CI and the weather conditions and in addition, the accuracy of the clustering results. 
The results will also suggest that the clustering procedure can be applied to other locations for PV system evaluations, 
such as sizing and distribution system load flow analysis. This will be useful in estimating the CI profiles with limited 
weather conditions data. Also, it provides a validation method for the cluster analysis results and to confirm the 
generality of the clustering approach. 

One of the major issues that needs to be addressed is the question of “How is a ‘Clear day’ defined?”. As an 
example, can a day with strong cloud cover in the noon for two hours and with no cloud for the rest of the day be 
classified as a ‘Clear day’? This question will be explored and addressed in the paper. Section 2 presents the formal 
definition of CI. The cluster analysis results of Kenya with Fuzzy C-Means Dynamic time warping (FCM DTW) will 
be given in Section 3. Section 4 will present the study of weather conditions and clearness index. An algorithm is 
proposed to determine the percentage of clear days from a set of daily weather conditions. Conclusion and future work 
are given in Section 5. 

2. Clearness Index 

The solar irradiance received on the ground will be equal to the value of the solar constant subtract the amount of 
atmospheric absorption under the ideal atmospheric condition. In general, the global solar irradiance consists of two 
main components, these are known as diffuse sky irradiance and the direct beam component. Typically, the real-life 
solar irradiance collected for solar application studies is from a pyranometer device. It measures the solar irradiance 
on a flat surface and measures the solar radiation flux density in W/m2. The CI is calculated from the data obtained 
from the pyranometer data and clear sky model. The CI has a value between 0 and 1. The value 0 signifies that a total 
cloud cover occurs and no irradiance is to be received on the ground. Conversely, a value of 1 signifies that the 
maximum theoretical amount will be received on the ground. Exceptional cases need to be made when using CI, such 
as the definition of CI before sunrise and after sunset where the irradiance will be zero. As these conditions are not 
useful in this study, they will be neglected during the analysis. The equation for CI calculation is given in Equation 
(1) below: 

 

𝐶𝐶𝐶𝐶 𝑡𝑡 =
𝐶𝐶%&'()*+,-,'(𝑡𝑡)
𝐶𝐶+*0,1(𝑡𝑡)

																																																																																(1) 

 
𝐶𝐶+*0,1 is the clear-sky solar irradiance from the solar model and 𝐶𝐶%&'()*+-,' is the real-life solar irradiance at time 

𝑡𝑡. The clearness index obtained in this work are calculated from the clear-sky solar irradiance model in [13]. Various 
variables are incorporated in the solar model to compute the clear-sky solar irradiance. These include correction factor 
to mean solar distance, optical air mass corrected for station height, solar altitude angle and Rayleigh optical depth. 

 Author name / Energy Procedia 00 (2017) 000–000   3 

3. Cluster analysis results 

The FCM DTW clustering technique is studied with the four years of solar irradiance data (2011-2014) obtained 
from Solargis company. The corresponding weather conditions are obtained for Nairobi Jomo, Kenya from Weather 
Underground [14]. The location of the irradiance data is at Gitaru dam, Kenya with coordinates (0.789°S,37.73°E) 
and elevation at 969 meters. The sampling rate is at 1 sample/15min. The weather conditions for the four years of 
Johannesburg were also collected from the database in the same website. The clustering results for Johannesburg case 
are given in [13]. Daily CI profiles are constructed for the four seasons in Kenya and the results are presented in Fig. 
1. The mean, plus one and minus one standard deviation for the CI profiles are given in black, blue and red lines 
respectively. The optimal numbers of clusters obtained from fuzzy decision with cluster reduction are 5, 4, 6 and 6 for 
Spring, Summer, Autumn and Winter respectively. 

 

 

As shown in Fig. 1a, the ‘Clear days’ for Spring in Kenya belongs to cluster 1. The cluster has high CIs values with 
little fluctuations. The CIs with lowest values are situated in cluster 2. The ‘Clear days’ for Summer in Kenya belongs 
to cluster 1. Although the other centroids are generally of high mean value, there are some form of perturbations, such 
as the centroid in cluster 3 reaches a value of 0.3 at 7 am. The ‘Clear days’ for Autumn in Kenya belongs to clusters 
1 and 6. Although clusters 2 and 4 show some high CI values, the CI suffers from cloud covering. The ‘Clear days’ 
for Winter in Kenya belongs to cluster 5. 

The dataset with weather conditions to be analyzed is shown in Table 1. Columns 1, 2, 3 and 4 represent the time 
in year, month, day and hour in MATLAB format respectively. The solar irradiance is given in column 5. The weather 
condition and the CI are given in columns 6 and 7 respectively. 

Fig. 1. (a) Daily CI profiles for Spring case in Kenya; (b) Summer case in Kenya; (c) Autumn case in Kenya; (d) Winter case in Kenya. 

a b 

c d 



80 Chun Sing Lai  et al. / Energy Procedia 142 (2017) 77–824 Author name / Energy Procedia 00 (2017) 000–000 

 
 

 

4. Weather conditions and clearness index studies 

4.1. Background 

As shown in Table 1, the weather condition for each time interval can be different. Hence, there will be a degree 
of ambiguity for defining ‘Clear day’. In practice and real-life situations, there are very few instances with ‘100%’ 
clear day.  According to the weather glossary from timeanddate.com [15], the ‘Clear’ weather condition is defined as 
a sky condition of less than 1/10 cloud covered. The ‘Partly Cloudy’ condition is defined as the sky condition when 
between 7/10ths and 3/10ths of the sky is covered, and is used more frequently at night. The ‘Scattered Clouds’ 
condition is defined as a cloud layer that covers between 3/8ths and ½ of the sky. 

According to Weather Underground [14], there are 42 other terms such as, ‘Rain’, ‘Thunderstorm’, ‘Drizzle’, 
‘Snow’, ‘Haze’, etc. that may be used to represent the weather condition for a particular time instance. In this context, 
the ‘Clear day’ can be defined with high CI value and in general associate with the weather conditions of ‘Clear’, 
‘Partly Cloudy’ and ‘Scattered Clouds’. Table 2 presents the algorithm to calculate the percentage of ‘Clear days’ for 
the season, with the given dataset in Table 1. 

 

Table 1. Data structure for time, irradiance, weather conditions and CI. 
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5. Results 

As presented in Table 2, the algorithm aims to calculate the percentage of ‘Clear days’ by assigning binary values 
to the time instances and there is no need to use CI values. It should be worth noting that there are missing weather 
data in the dataset. These are then converted to ‘NaN’ and are neglected during the summation process in the algorithm. 

The threshold can be seen as a sensitivity value and a key parameter in the algorithm. If above the threshold, it is 
expected that the CI produced for the day will be of high value with little perturbation. It should be recognized that 
due to different locations, seasons and climates, it may be possible for the threshold to be different. The threshold 
aims to give the percentage of ‘Clear days’ from weather analysis that represents the closest percentage of the total 
number of ‘Clear day’ clusters. The comparison of results for cluster analysis and weather analysis are presented in 
Tables 3 and 4 for Kenya and Johannesburg studies. 

 
Table 3. Percentage of ‘Clear days’ with cluster analysis and weather analysis for Kenya case study. 

 
Table 4. Percentage of ‘Clear days’ with cluster analysis and weather analysis for Johannesburg case study. 
 

  Spring Summer Autumn Winter 
Cluster analysis Cluster number 4 5 3 and 4 3 

Total percentage (%) 39.56 19.10 50.82 77.99 
Weather analysis 39.78 17.18 51.38 79.67 
Threshold (%) 95 95 85 80 
Absolute difference (%) 0.22 1.92 0.56 1.68 

 

Table 2. Algorithm for calculating the total percentage of ‘Clear days’ with weather data. 

Input:  𝑑𝑑 = {𝑑𝑑6, 𝑑𝑑8, … , 𝑑𝑑:}: object with the set of daily time and weather for k time intervals 
             threshold: Percentage of cloud cover to define if a day is ‘Clear day’ 
             start: element number in the array for sunrise 
             end: element number in the array for sunset 
Output: 𝑑𝑑′′:  the percentage of ‘Clear’ condition for the season 
1. for i1 = 1:length(𝑑𝑑) 
2.    for  i2 = start:end 
3.        if (𝑑𝑑{1, i1}(i2, 6) == ‘Clear’ or ‘Scattered Clouds’ or ‘Partly Cloudy’) is true 
4.        S(i1, i2) = 1; 
5.        elseif   	𝑑𝑑{1, i1}(i2, 6) == empty is true 
6.       S(i1,i2) = NaN; 
7.        else 
8.       S(i1,i2) = 0; 
9.        end 
10.    end 
11. end 
12. perc_clear = sum(S, 2)/length(S, 2); 
13. for  i3 = 1:length(𝑑𝑑) 
14.    if (perc_clear(i3) > threshold) is true 
15.    	𝑑𝑑′(i3) = 1; 
16.    else 
17.    	𝑑𝑑′(i3) = 0; 
18.    end 
19. end 
20. 𝑑𝑑′′ = sum(𝑑𝑑′) / length(𝑑𝑑′); 

  Spring Summer Autumn Winter 
Cluster analysis Cluster number 1 1 1 and 6 5 

Total percentage (%) 37.64 45.83 30.98 8.97 
Weather analysis 36.47 47.23 31.01 7.72 
Threshold (%) 45 50 35 10 
Absolute difference (%) 1.17 1.4 0.04 1.25 
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From Tables 3 and 4, the total percentage of ‘Clear days’ shows that there are more ‘Clear days’ in Johannesburg 
than Kenya, such as for Spring, Autumn and Winter. However, such comparison is invalid as the threshold value is 
different for both studies. The amplitude of centroids is generally higher for Kenya than Johannesburg, for all clusters 
and seasons. It can be concluded that the threshold value can influence the percentage of ‘clear days’ for a particular 
season. The threshold for Kenya is lower than Johannesburg, this indicates that it requires less appearances of ‘Clear’/ 
‘Scattered Clouds’/ ‘Partly Cloudy’ for the day to be classified as ‘Clear day’. The threshold is the percentage that 
represents the ‘Clear day’ duration. As an example, with a threshold at 25% and an average daily sunshine hours in 
Kenya at 12 hours, this effectively means that the day will be classified as a ‘Clear day’ if the day contains three hours 
of ‘Clear’/ ‘Scattered Clouds’/ ‘Partly Cloudy’. The percentage difference is larger for Summer than other seasons in 
Johannesburg. This may be due to the increased fluctuations of the CIs for the season, as shown in Fig. 3 in [13] and 
has proved to be more difficult to provide high quality clusters. 

6. Conclusions 

This work evaluates the clustering results with the forecast weather conditions. The results show that the weather 
condition can affect the clearness index, and subsequently the percentage of ‘Clear days’. It is possible to estimate the 
shapes and magnitude of daily clearness index profiles with given limited weather condition data. For future work, a 
systematic method to define the threshold, possibly through optimization approach will be useful.  The meaning and 
indication of threshold need to be further studied with additional irradiance data from other locations. The threshold 
will be useful in giving an indication of the number of appearances for ‘Clear’/ ‘Scattered Clouds’/ ‘Partly Cloudy’ 
of the day to produce high value CIs and to be considered as a ‘Clear day’. 
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