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Abstract 34 

 35 

Habitat structure influences a broad range of ecological interactions and ecosystem functions across 36 

biomes. To understand and effectively manage dynamic ecosystems, we need detailed information 37 

about habitat properties and how they vary across spatial and temporal scales. Measuring and 38 

monitoring variation in three-dimensional (3D) habitat structure has traditionally been challenging, 39 

despite recognition of its importance to ecological processes. Modern 3D mapping technologies 40 

present opportunities to characterise spatial and temporal variation in habitat structure at a range of 41 

ecologically relevant scales. Biogenic reefs are structurally complex and dynamic habitats, in which 42 

structure has a pivotal influence on ecosystem biodiversity, function and resilience. For the first time, 43 

we characterised spatial and temporal dynamics in the 3D structure of intertidal Sabellaria alveolata 44 

biogenic reef across scales. We used drone-derived structure-from-motion photogrammetry and 45 

terrestrial laser scanning to characterise reef structural variation at mm to cm resolutions at a habitat 46 

scale (~35,000 m2) over one year, and at a plot scale (2,500 m2) over five years (2014-2019, 6-month 47 

intervals). We found that most of the variation in reef emergence above the substrate, accretion rate 48 

and erosion rate was explained by a combination of systematic trends with shore height and positive 49 

spatial autocorrelation up to the scale of colonies (1.5 m) or small patches (up to 4 m). We identified 50 

previously undocumented temporal patterns in intertidal S. alveolata reef accretion and erosion, 51 

specifically groups of rapidly accreting, short-lived colonies and slow accreting, long-lived colonies. 52 

We showed that these highly dynamic colony-scale structural changes compensate for each other, 53 

resulting in seemingly stable reef habitat structure over larger spatial and temporal scales. These 54 

patterns could only be detected with the use of modern 3D mapping technologies, demonstrating their 55 

potential to enhance our understanding of ecosystem dynamics across scales. 56 

 57 
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Introduction 61 
 62 

Ecosystems are dynamic (Odum, 1969). Gradients in biophysical and human socioeconomic drivers 63 

create complex mosaics in ecosystem properties (Legendre and Fortin, 1989; Perry, 2002; Williams et 64 

al., 2019), with the patterns we observe determined by the scale of our observations (Levin, 1992; 65 

Wiens, 1989). Because ecosystem patterns and processes are intrinsically linked, we can gain a deeper 66 

understanding about ecological processes and their drivers by quantifying these underlying patterns 67 

across scales (Horne and Schneider, 1995; Underwood et al., 2000). Quantifying patterns in 68 

ecosystem properties not only advances ecological insight, but also facilitates evidence-based 69 

management by enabling us to detect change in ecosystem characteristics like habitat structure in 70 

response to disturbance (Landres et al., 1999). 71 

Physical habitat structure can be abiotic like rocks on a shoreline, or biogenic like the trees of a forest. 72 

These features determine habitat structural complexity and influence the biodiversity and community 73 

composition of associated ecological communities through myriad processes. These include buffering 74 

organisms from extreme environmental conditions (Scheffers et al., 2014), mediating resource 75 

availability (Safriel and Ben-Eliahu, 1991), and providing shelter for prey species from predation 76 

(Stevenson et al., 2015; Warfe et al., 2008). Biogenic reefs are complex habitats in which substrate 77 

and structure is generated and amplified by engineering organisms (Jones et al., 1994). Biogenic reefs 78 

represent global biodiversity hotspots and provide a range of ecosystem services to humanity 79 

(Bruschetti, 2019; Connell, 1978; Dubois et al., 2002; Woodhead et al., 2019). Spatially and 80 

temporally dynamic three-dimensional (3D) structure is critical to the biodiversity, ecological 81 

functioning and conservation value of biogenic reefs (Graham and Nash, 2013; Holt et al., 1998). 82 

Metrics of reef structure can also be an indicator of the health of the engineering species (Curd et al., 83 

2019) and reef recovery potential following acute disturbance (Graham et al., 2015). To understand 84 

organism-habitat interactions within biogenic reef systems, we must first identify the patterns and 85 

scales of variation inherent within their structures (Holt et al., 1998; Jenkins et al., 2018). 86 

Much of our understanding about scale-dependent processes in ecosystems derives from terrestrial 87 

landscape ecology. The study of spatial patterns in terrestrial systems has greatly benefitted from 88 

remote sensing, providing high-resolution, spatially continuous data for a variety of ecosystem 89 

properties including 3D habitat structure (Chambers et al., 2007; Vierling et al., 2008). Remote 90 

sensing of 3D structure in the marine environment from satellite or crewed aircraft improves 91 

ecological insight in clear, shallow waters (Wedding et al., 2019), but similar information is 92 

challenging and expensive to capture in deep or turbid waters (Lecours et al., 2015). Recent 93 

developments in high-resolution 3D mapping technologies including structure-from-motion 94 

photogrammetry and laser scanning offer the potential to study patterns in 3D structure from organism 95 



to habitat scales, and are practical for investigation of scale-dependent properties in marine and 96 

coastal habitats (Calders et al., 2020; Urbina-Barreto et al., 2021). This creates opportunities to apply 97 

conceptual and analytical frameworks from landscape ecology, such as identification of dominant 98 

spatial scales of variation (Legendre and Fortin, 1989), at new scales and in new systems. The ability 99 

to record spatially continuous 3D habitat structure across km-extents at mm resolution, with rapid 100 

repeats and low operating costs is sparking a revolution in the scope and scale of ecological 101 

investigations (D’Urban Jackson et al., 2020). 102 

Here we use intertidal habitat structure built by Sabellaria alveolata, a reef-building annelid, as a 103 

model system to characterise scale-dependent structural dynamics in complex biogenic reef habitats 104 

using high-resolution 3D mapping. S. alveolata reef comprises colonies of sediment tubes 105 

biocemented together, creating extensive reefs on northeast Atlantic and Mediterranean coasts 106 

(Bruschetti, 2019; Godet et al., 2011; La Porta and Nicoletti, 2009). Similar reefs built by other 107 

species in the Sabellariidae family are found globally (Capa et al., 2012). Our current understanding 108 

of the scale-dependent structural dynamics in biogenic reefs is hampered by a lack of spatio-temporal 109 

information about habitat structure across scales. To explore this, we quantify spatial and temporal 110 

patterns in reef structure at mm to cm resolution, at plot- (2,500 m2) to habitat-scale (~35,000 m2) 111 

extents and over temporal scales of 1-5 years. Our findings reveal previously undescribed patterns of 112 

structural variation in intertidal biogenic reefs and demonstrate the enhanced ecological insight gained 113 

from the application of modern remote sensing technologies for 3D ecosystem mapping in structurally 114 

complex habitats.  115 



Methods 116 

 117 

Data collection 118 

Study site 119 

To characterise variation in biogenic reef habitat structure across scales we conducted high-resolution 120 

3D mapping at a Sabellaria alveolata reef habitat at Llanddulas, Wales, UK (53.294 N, 3.632 W) 121 

using two techniques between 2014 and 2019 (Fig. 1). The reef at Llanddulas occupies the low shore 122 

for at least one kilometre along a moderately exposed, unconsolidated cobble beach with a gentle 123 

slope gradient of 3%. 124 

 125 

Plot-scale (2,500 m2) 3D mapping 126 

We collected data to investigate multi-annual temporal patterns in S. alveolata reef structure using 127 

terrestrial laser scanning (HDS ScanStation C10, Leica Geosystems, Switzerland) of a permanent 128 

2,500 m2 reef plot at approximately 6-month intervals (autumn and spring) over 5 years from 129 

September 2014 to October 2019. Terrestrial laser scanning generates high-resolution (thousands of 130 

points per m2) data with mm precision and was the most advanced 3D mapping technology available 131 

for field sampling at the start of the study in 2014. We conducted medium resolution (0.1 m point 132 

spacing at 100 m range) scans of the plot from several stationary positions per time point, ensuring 133 

similar data coverage among time points. We used retroreflective sphere reference targets to align 134 

scan datasets within a time point. Aligning datasets from different time points typically uses global 135 

navigation satellite system (GNSS) georeferencing or permanent reference targets. Our plot was 136 

intertidal with an unconsolidated substrate, so permanent targets could not be left and expected not to 137 

move, and alignment by GNSS georeferencing would have introduced error on the same scale (cm) as 138 

the changes we expected to detect, limiting their reliable detection and interpretation. Therefore, to 139 

enable accurate alignment of repeat surveys we increased the laser scanning data coverage to include 140 

permanent nearby features (rock groynes, cycle path and buildings), enabling us to align the datasets 141 

using the geometry of these stable features, without constraining the data across the dynamic 142 

foreshore.  143 

We quality checked, aligned, georeferenced and manually cleaned the laser scanning point cloud data 144 

in Cyclone v9 software (Leica Geosystems, Switzerland). Within a time point, we aligned datasets 145 

from different scanner positions to 6 mm accuracy using target positions. We then aligned complete 146 

datasets from different time points to 6 mm accuracy using the geometry of permanent features. We 147 

made a final adjustment to the vertical alignment within the plot based on stable regions of non-reef 148 



substrate. We standardised datasets from different time points by cropping to the plot extent, 149 

subsampling point clouds to a minimum point spacing of 5 mm, and removing isolated points using 150 

the statistical outlier removal tool in the open source software CloudCompare v2.11 (CloudCompare, 151 

2019). 152 

 153 

Habitat-scale (~35,000 m2) 3D mapping 154 

Terrestrial laser scanning was impractical for the larger extent of habitat-scale sampling within short 155 

low-tide windows. Therefore, to investigate spatial and temporal patterns in S. alveolata reef structure 156 

at a habitat scale (~35,000 m2) we used structure-from-motion photogrammetry derived from drone 157 

aerial imagery, in April 2018 and April 2019. Drone-derived structure-from-motion photogrammetry 158 

generates continuous 3D information across large extents, with comparable accuracy to terrestrial 159 

laser scanning in complex habitats like S. alveolata reef (D’Urban Jackson et al., 2020). We used a 160 

Phantom 4 Pro (DJI) with a 20 MP camera flying at 46 m altitude to capture images with 14 mm XY 161 

ground resolution, covering approximately 150,000 m2 of the coastline. The flight pattern was pre-162 

determined and flying was automated using software (Maps Made Easy) to ensure the same survey 163 

pattern was flown in both years. To optimise the 3D modelling process, we used a high image 164 

overlap, so that every XY position in the area of interest was captured in at least 5 images. We 165 

generated 3D models for each survey using the industry standard software Pix4Dmapper Pro v4. 166 

Unlike terrestrial laser scanning, for structure-from-motion photogrammetry we required 167 

georeferenced ground control points to scale, constrain and align the 3D models. We used 11 (2018) 168 

and 19 (2019) control points surveyed with commercial GNSS equipment (system 1200, Leica 169 

Geosystems, Switzerland), giving root mean square errors of 9 mm and 32 mm respectively. Because 170 

there were no permanent features within the study area, we verified vertical alignment accuracy by 171 

calculating elevation difference at 100 random points along a cycle path adjacent to the study area, 172 

giving a median difference of 23 mm and root mean square error of 26 mm. This represents a worst-173 

case estimate because the cycle path was outside the area constrained by control points. From the 3D 174 

models and aerial images, we generated digital surface models (DSMs, 0.1 m XY resolution) and 175 

orthomosaics (0.02 m XY resolution) for 2018 and 2019.  176 



 177 

Data analysis 178 

Habitat-scale (~35,000 m2) spatial patterns in S. alveolata reef emergence, accretion rate 179 

and erosion rate 180 

To study habitat-scale spatial patterns of variation in S. alveolata reef structure we conducted 181 

variography (Fig. 2, Supporting information) using the drone-derived digital surface models (DSMs) 182 

from 2018 and 2019. To investigate reef structure independently from trends in the underlying non-183 

reef substrate, we calculated reef emergence, defined as the height of the DSM surfaces above a 184 

standardised digital elevation model (DEM) representing the lowest levels in the non-reef substrate 185 

(Fig. 3). We used a threshold of emergence to classify DSM cells as reef (≥ 0.15 m) or non-reef 186 

substrate (< 0.15 m) within a reef area polygon (36,363 m2) digitised from the 2018 orthomosaic. We 187 

validated the classification by manually classifying 500 random points on the orthomosaic and 188 

interpreting a confusion matrix of predicted against observed classes. Overall accuracy (correct 189 

predictions out of total predictions) was 81.2%, precisions (true positives out of total positive 190 

predictions) were 91.7% and 80.1% for reef and non-reef substrate, respectively. To study spatial 191 

patterns in accretion (positive change) and erosion (negative change) of S. alveolata reef we 192 

calculated the vertical difference between the DSMs from April 2018 and April 2019, to provide 193 

accretion and erosion rates as positive and negative vertical change per year. 194 

To characterise spatial variation in habitat-scale S. alveolata reef structure, we modelled trends and 195 

conducted variography using emergence, accretion rate and erosion rate values of the 9140 reef cells 196 

in a random sample of 100,000 cells in the reef area. Our data exploration indicated that emergence, 197 

accretion rate and erosion rate had trends with shore height and along-shore distance and were 198 

anisotropic with a major axis along the shore and minor axis down the shore. To meet the gaussian 199 

distribution requirements of linear modelling and variography, we transformed the data using ordered 200 

quantile transformation (Peterson and Cavanaugh, 2020), then modelled trends using ordinary least 201 

squares linear regression. We conducted variography on the linear model residuals along two axes: 202 

along the shore (120° from north) and down the shore (30° from north), with maximum lags of 250 m 203 

and 50 m respectively, approximately two thirds of the maximum reef area dimensions, using the 204 

gstat package in R (Graler et al., 2016; Pebesma, 2004; R Core Team, 2020). We fitted an initial 205 

variogram model to each experimental variogram automatically, then improved the fit by adjusting 206 

the model parameters and adding a secondary variogram model where appropriate, until a visual good 207 

fit was found to the experimental variogram (Gringarten and Deutsch, 2001). To investigate whether 208 

patterns in reef structure were related directly to patterns in the underlying non-reef substrate 209 



topography we conducted variography using emergence data from 10,000 random non-reef substrate 210 

DSM cells. 211 

The trend in mean emergence with shore height explained only a small amount of the variation (R2 = 212 

0.043, Supporting information table S1). Our data exploration showed that the reef comprised 213 

colonies at all stages of emergence, from the classification threshold of 0.15 m up to an emergence 214 

limit that was related to shore height. Therefore, shore height appeared to represent a limiting factor 215 

and so maximum emergence was a better metric for characterising habitat structure than a measure of 216 

central tendency (Kaiser et al., 1994). To examine the relationship between maximum reef emergence 217 

and shore height we used a sample of 2,000 reef cells with a minimum point spacing of 1.5 m derived 218 

from the variography results, 1.5 m being the dominant range of spatial autocorrelation. We modelled 219 

the relationship between maximum (99th percentile) reef emergence and DEM elevation with linear 220 

quantile regression, using the quantreg package in R (Koenker, 2020). 221 

 222 

Plot-scale (2,500 m2) temporal patterns in reef structure 223 

To characterise multi-annual structural changes in S. alveolata reef structure, we used terrestrial laser 224 

scanning to survey a 2,500 m2 plot in autumn and spring from September 2014 to October 2019. To 225 

track vertical changes in reef emergence through time we digitally sampled locations within the plot 226 

(n = 454) that had reef presence in at least one time point, avoided reef colony edges where lateral 227 

accretion and erosion would confuse interpretation, and were spatially independent (Fig. 4, 228 

Supporting information). At each sample location and for each time point, we extracted mean 229 

emergence above a common DEM. To examine common characteristics in temporal changes in reef 230 

emergence, we derived accretion and emergence metrics from each sample timeseries. We calculated 231 

mean and maximum annual accretion rate, maximum emergence, and time spent within 80% of 232 

maximum emergence, which we termed persistence. We then used partitioning around medoids 233 

(PAM) clustering, a common data clustering method that is robust to outliers (Kaufman and 234 

Rousseeuw, 1990), to classify sample timeseries’ into two groups with similar metrics using the 235 

cluster package in R (Maechler et al., 2019).  236 

Following evidence of multiannual cycles of habitat-scale accretion and erosion (Gruet, 1986), we 237 

hypothesised that mean plot-scale reef emergence would vary over the 5 year study period. We also 238 

hypothesised that due to higher productivity in summer and lower growth rates coupled with more 239 

destructive wave action in winter, plot-scale emergence would be higher in autumn than in spring. We 240 

tested these hypotheses using a two fixed-factor (year and season) permutational analysis of variance 241 

(Anderson, 2001) with reef emergence as a univariate response. The permutational nature of the test 242 

removes the need to satisfy normality in the response variable as the routine permutes the raw data to 243 



generate the null distribution (Anderson, 2001). To ensure a balanced design with no missing data and 244 

no repeat sampling, we first divided reef sample locations (n = 454) randomly and equally among 245 

season (2 levels: autumn and spring) and year (5 levels: 2015-2019) combinations (10 combinations, n 246 

= 45). Some reef sample locations contained missing data for certain season and year combinations, 247 

so we iteratively exchanged these reef sample locations among groups until no missing data remained. 248 

Homogeneity of variance between factor levels was confirmed with Levene’s test (P > 0.05). Our 249 

permutational analysis of variance was based on a Euclidean distance similarity matrix of the raw reef 250 

emergence data, with 9999 random permutations under a reduced model and Type III (partial) sums 251 

of squares. Where there was global model significance, permutational pairwise tests were used to 252 

determine where the differences occurred between factor levels.  253 

  254 



Results 255 

 256 

Habitat-scale (~35,000 m2) spatial patterns in S. alveolata reef emergence, accretion rate 257 

and erosion rate 258 

We estimated the percentage cover of S. alveolata reef within the 36,363 m2 reef area as 26.8% or a 259 

total coverage of 9,745 m2 based on our binary classification of the 0.1 m XY resolution emergence 260 

raster into reef or non-reef substrate (Fig. 5A). Maximum reef emergence (99th percentile) increased 261 

down the shore from approximately 0.2 m at 0 m ordnance datum Newlyn (ODN) to a maximum of 262 

0.5 m above the substrate at 2.8 m below ODN (Fig. 5B). The relationship was described by: 263 

 264 

log(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚) =  −0.308(𝑠𝑠ℎ𝑜𝑜𝑒𝑒𝑒𝑒 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡) − 1.551   (1) 265 

 266 

Reef emergence was positively spatially autocorrelated up to 1.5 m in both along shore and down 267 

shore directions, represented by a spatial structure that described 65-70% of the variance (Fig. 5C, 268 

Supporting information table S1.). There was a smaller amount of residual positive autocorrelation in 269 

reef emergence over larger distances along the shore (up to 110 m) and down the shore (up to 20 m) 270 

(Fig. 5C, Supporting information table S1). At larger distances still, the variogram indicated 271 

additional patterns in spatial dependence of reef emergence including cyclicity, but these were not 272 

quantified because variogram model fitting becomes less reliable at larger distances relative to the 273 

study extent. The variogram of non-reef substrate emergence showed that the dominant 274 

autocorrelation pattern mostly occurred over a larger distance of 4.5 m and explained a higher 275 

proportion (90%) of the variation compared to reef emergence (Supporting information table S1). A 276 

small amount of spatial autocorrelation in non-reef substrate emergence was also evident over larger 277 

distances (up to 50 – 90 m).  278 

 279 

At the habitat scale (~35,000 m2), the elevation of S. alveolata reef colonies changed by 19 ± 82 mm 280 

(mean ± 1 sd) between April 2018 and April 2019 (Fig. 6A). The small magnitude of mean elevation 281 

change across the total reef area was the result of a balance between variable positive and negative 282 

changes of individual samples (0.1 m XY resolution cells). A high proportion of reef samples (80%) 283 

showed a small positive elevation change (accretion, 49 ± 30 mm), with the remaining samples (20%) 284 

showing larger and more variable negative changes (erosion, -99 ± 113 mm). Both accretion and 285 

erosion maxima increased towards the lower shore (Fig. 6A) and showed different spatial 286 

autocorrelation patterns. Positive spatial autocorrelation in accretion mostly occurred within short 287 

distances (up to 0.75 – 1.05 m), with a small proportion of positive autocorrelation extending over 288 

larger distances up to 40-130 m (Fig. 6B, Supporting information table S2). In contrast, erosion of 289 



reef material was only positively spatially autocorrelated up to distances of 2.9 – 3.8 m, beyond which 290 

the variogram indicated spatial randomness (Fig. 6C, Supporting information table S2). 291 

 292 

Plot-scale (2,500 m2) temporal patterns in reef structure 293 

Within the 2,500 m2 plot, overall reef emergence across all 11 time points over 5 years was 0.22 ± 294 

0.13 m (mean ± 1 sd). We found scale dependent variation, with high variation in emergence at each 295 

sample location (colony-scale, n = 454) through time and high variation among samples at each time 296 

point, but low variation in plot-scale emergence through time. The coefficient of variation (mean ± 1 297 

sd) in sample location emergence through time was 52 ± 32.3, and per time point was 56.5 ± 3.7, 298 

whereas the coefficient of variation in plot-scale mean emergence through time was 8.8. 299 

Timeseries’ of emergence at reef sample locations revealed diverse temporal patterns in emergence, 300 

accretion, and erosion metrics of colonies, that we classified into two groups called fast and slow 301 

colonies (Fig. 7). These two groups clustered moderately well, indicated by an average silhouette 302 

width of 0.35 on a scale from 0 (poorly clustered) to 1 (perfectly clustered) (Kaufman and 303 

Rousseeuw, 1990). Fast colonies were characterised by higher maximum and mean annual accretion, 304 

higher maximum emergence and shorter persistence (time spent within 80% of their maximum 305 

emergence) than slow colonies (Fig. 7, Supporting information table S3). Visual assessment showed 306 

that slow colonies were evenly distributed throughout the plot, whereas fast colonies were 307 

concentrated in the northern, lower-shore half of the plot (Supporting information figure S1). We 308 

found that erosion of reef colonies often occurred rapidly in both groups; it was common for 309 

emergence to drop to the level of the non-reef substrate within 6 months to a year (Fig. 7).  310 

There was a significant interaction between ‘year’ and ‘season’ on plot-scale reef emergence (F4,440 = 311 

3.48, P = 0.009, Supporting information table S4) driven entirely by emergence being higher in 312 

autumn than spring in 2015 (P = 0.001). Across season, there were no differences among years in 313 

spring emergence, but there were significant differences in autumn, with 2015, 2016 and 2019 having 314 

higher emergence than 2017 and 2018 (P < 0.05, Supporting information figure S2, Supporting 315 

information table S4). 316 

  317 



Discussion 318 

Habitat structure strongly dictates ecological function in complex 3D ecosystems. Quantifying how 319 

3D habitat structure varies across space and time is therefore a crucial step in understanding 320 

ecosystem dynamics and guiding their effective management. Here, for the first time, we quantified 321 

patterns of spatial and temporal variation in 3D habitat structure across scales in an ecologically 322 

important but understudied Sabellaria alveolata biogenic reef habitat. Our results reveal that patterns 323 

in reef emergence, accretion rate and erosion rate are spatially autocorrelated and highly scale-324 

dependent. In this system, reef colonies formed groups of rapidly accreting short-lived colonies and 325 

slow accreting long-lived colonies, creating dynamic structure at fine spatial (m) and temporal (6 326 

month) scales. However, these colony-scale dynamics cancel each other out at larger spatial (50m – 1 327 

km) and temporal (5 year) scales, resulting in seemingly stable reef habitat (Fig. 7). This habitat 328 

steady-state despite the mosaic of small-scale dynamics is akin to other biogenic systems like forests, 329 

where scale-dependent patterns in ecosystem properties have been better studied using remote sensing 330 

(Chambers et al., 2013). Using modern 3D mapping we have quantified spatially continuous, cross-331 

scale habitat structure in a biogenic reef, revealing scale-dependent patterns that indicate parallels in 332 

structural dynamics between terrestrial and marine biogenic habitats.  333 

 334 

Spatial patterns in reef habitat structure 335 

We identified predictable trends in maximum reef emergence, accretion rate and erosion rate, that all 336 

increased towards the lower shore. Shore height trends are ubiquitous in intertidal ecosystems like 337 

rocky shores and saltmarshes because numerous biological, chemical and physical structuring 338 

processes correlate with vertical position (Chappuis et al., 2014; Connell, 1972; Pennings and 339 

Callaway, 1992). The trends in our data can be explained by spatially varying hydrodynamic forces, 340 

proposed as the most important abiotic structuring factor of S. alveolata reef habitat (Collin et al., 341 

2018; Gruet, 1986; Wilson, 1971). Wave forces are predicted to be greatest at the lower shore, with 342 

energy attenuated as waves travel across the rough reef surface (Bouma et al., 2014; Lowe et al., 343 

2005). We suggest that higher wave energy at the lower shore results in more coarse sediment being 344 

resuspended higher in the water column, enabling faster reef colony accretion and higher maximum 345 

emergence. Wave energy can also be destructive, increasing reef erosion rate towards the lower shore. 346 

In addition, longer periods of immersion experienced lower on the shore give more time for both reef 347 

accretion and erosion. 348 

Interactions between individuals can produce spatially coherent self-organised patterns that influence 349 

ecosystem-scale processes in many natural systems, including mussel reefs (Van De Koppel et al., 350 

2008) and arid vegetation (Klausmeier, 1999). We found evidence for self-organisation in S. alveolata 351 



reef emergence and accretion rate, that were spatially clustered (positively autocorrelated) up to 352 

colony scales (1.5 m). Prograding S. alveolata reef colonies have characteristic smooth surfaces 353 

comprising the openings of dense, parallel tubes (Fig. 1) (Curd et al., 2019; Ventura et al., 2020). To 354 

maintain this morphology as the colony grows, within-colony accretion rate and emergence must be 355 

similar among worms. Self-organisation enhances habitat resilience (Guichard et al., 2003; Liu et al., 356 

2014), and in this system the colony morphology may contribute to the remarkable wave-resistance in 357 

the friable intertidal structures (Le Cam et al., 2011), analogous to massive stony coral morphologies 358 

that can dominate wave-exposed subtidal tropical reefs (Chappell, 1980).  359 

Spatial patterns in biogenic reef properties provide insight into the biotic and abiotic drivers of 360 

ecosystem structuring processes (Aston et al., 2019; Edwards et al., 2017; Ford et al., 2020). In our 361 

system, reef emergence and accretion rates showed secondary spatial clustering at habitat scales (20-362 

40 m down the shore, 110-130 m along the shore), whereas erosion rates showed spatial randomness 363 

beyond 4 m. Habitat-scale spatial clustering in reef emergence and accretion rate may be due to 364 

spatial variation in resources (e.g., sediment or food quality), environmental conditions (e.g., salinity), 365 

biotic factors (e.g., recruitment density) or anthropogenic influence (e.g., trampling). Interactions 366 

between myriad drivers are likely to influence reef structure at various scales (Collin et al., 2018). 367 

Identification of the relative importance of these factors and how they vary in time and space warrants 368 

further investigation, and may help explain why S. alveolata reef structure is highly variable among 369 

sites (Stone et al., 2019). Spatial clustering of erosion rates up to 4 m indicates that erosion mostly 370 

occurs as the catastrophic collapse of entire S. alveolata colonies and platform sections. The lack of 371 

larger scale spatial autocorrelation in erosion rates shows that colony collapse is random after 372 

accounting for shore height trends, suggesting that destructive processes are similar horizontally along 373 

the shore.  374 

Modern remote sensing technologies are advancing our ability to describe and interrogate spatial 375 

patterns in marine reef systems. In intertidal habitats like S. alveolata reef, aerial methods can capture 376 

a range of ecologically relevant information at high resolution across large extents of several km2 377 

(Bajjouk et al., 2020; Collin et al., 2019, 2018). The importance of 3D ecosystem structure in 378 

ecological investigations is recognised, and tools to capture and analyse 3D structure in diverse 379 

systems including subtidal reefs are becoming increasingly powerful and accessible (D’Urban Jackson 380 

et al., 2020; Lepczyk et al., 2021). 381 

 382 

Temporal patterns in biogenic reef structure 383 

Identifying key scales of variation and their forcing processes has been a persistent challenge in 384 

ecology (Chave, 2013; Denny et al., 2004; Levin, 1992), especially in marine systems beyond the 385 

observation capabilities of traditional remote sensing (Lecours et al., 2015; Wedding et al., 2011). Our 386 



study reveals previously undescribed patterns of scale-dependent spatio-temporal variation in S. 387 

alveolata reef structure. We found that individual S. alveolata colonies on the scale of metres undergo 388 

independent and compensatory accretion and erosion cycles, resulting in stability at larger spatial 389 

(2,500 m2) and temporal (5 year) scales. Previous characterisation of S. alveolata reef structural 390 

dynamics have described multiannual accretion and erosion cycles operating over large areas of reef 391 

(10s – 100s m) at some sites, and multiannual stability at others (Gruet, 1986; Lecornu et al., 2016). 392 

While we recorded stability in reef structure over a period of 5 years, at decadal time scales the habitat 393 

can be transient (Firth et al., 2015). Scale-dependent structural dynamism is a feature of other systems 394 

like terrestrial forests (Chambers et al., 2013), and our results indicate that conceptual frameworks 395 

from terrestrial landscape ecology can be applied to biogenic reef systems. For instance, the stability 396 

of a forest ecosystem can be modelled as a product of the spatial and temporal scales of disturbance 397 

events that it experiences (Turner et al., 1993). Applying this concept to our study system, disturbance 398 

events (colony collapse) were small in size (up to 4 m) relative to the habitat size (~35,000 m2) and 399 

disturbance (collapse) intervals were generally longer than recovery (accretion to maximum 400 

emergence) intervals. As predicted by the conceptual model (Turner et al., 1993), we observed 401 

stability in the system at the habitat scale. 402 

We identified two distinct types of reef colonies: “fast” colonies with rapid accretion, high maximum 403 

emergence, and short lifespan, and “slow” colonies with slower accretion, lower maximum emergence 404 

and longer lifespan. Accretion rates of “fast” S. alveolata colonies in our study (mean 0.109 m yr-1, 405 

max 0.215 m yr-1) were comparable to upper estimates of 0.105 m yr-1 in Cornwall, UK, and >0.5 m 406 

yr-1 in Normandy, France (Gruet, 1986; Wilson, 1971). These studies documented faster accretion 407 

rates in new, small colonies and a similar general pattern could be seen in our timeseries’, although 408 

variation was high and many colonies had incomplete structural cycles within our study period. We 409 

found new, low emergent colonies accreted rapidly and then accretion slowed as they approached a 410 

maximum emergence, followed by a period of persistence at the maximum emergence and eventual 411 

rapid collapse. A similar accretion pattern has been documented in oyster (Crassostrea virginica) 412 

reefs, with rapid accretion in deeper edges of a reef (8 m diameter) while no change was recorded in 413 

the shallowest central portions, just 2 m away (Rodriguez et al., 2014). This fine-scale spatial 414 

variation in structural characteristics would be lost at larger observational scales, highlighting the 415 

need for a multiscale approach when assessing the resilience of biogenic reefs to pressures like sea 416 

level rise.  417 

Seasonal patterns of accretion and erosion in S. alveolata reef and their driving processes are not well 418 

understood. We did not find evidence for a consistent seasonal pattern in reef emergence, and while 419 

reef emergence measured in autumn showed some variation, spring observations were stable over 5 420 

years (Supporting information figure S2, Supporting information  table S4). However, we did find a 421 

seasonal difference in one survey year (2015). Temperature and wave energy are two dominant 422 



seasonally varying factors in intertidal habitats. The habitat is vulnerable to severe winter 423 

temperatures and damage from winter storms (Crisp, 1964; Firth et al., 2015). In summer, higher 424 

temperatures and increased food availability in summer may promote worm productivity that 425 

translates to increased accretion rate, but the availability of resuspended sediment with low summer 426 

wave action may limit accretion rate. Hydrodynamic energy promotes both S. alveolata reef accretion 427 

and erosion, so the effects of seasonal variation in wave energy are difficult to predict. Higher 428 

emergence in the autumn of 2015 compared to the spring appeared to be a result of heavy recruitment 429 

during the summer of that year (TDJ, pers. obs.), resulting in many new, rapidly accreting colonies. 430 

Recruitment of pelagic larvae to S. alveolata reefs is through a combination of continuous low-level 431 

settlement and stochastic heavy settlement events when hydrodynamic conditions are favourable 432 

(Ayata et al., 2009; Bush et al., 2015; Dubois et al., 2007). Sabellariid worms respond to storm 433 

damage with increased reproductive output in a similar way that some plants respond to fire (Barry, 434 

1989) and S. alveolata larvae show high levels of retention within local geographic areas (Bush et al., 435 

2015; Dubois et al., 2007). These factors likely result in compensatory self-recruitment to a damaged 436 

reef, contributing to long term reef persistence.  437 

 438 

Conclusion 439 

Our findings represent the most comprehensive characterisation of S. alveolata biogenic reef habitat 440 

structure across spatial and temporal scales to date, expanding our understanding of scale-dependent 441 

structural dynamics in this complex 3D habitat. We found that S. alveolata reef structure is 442 

characterised by a mosaic of different colony successional states leading to a dynamic landscape at 443 

smaller scales (m), while displaying relative stability (a steady state) at larger spatial and temporal 444 

scales. This phenomenon is characteristic of other structurally complex ecosystems like forests and 445 

we hypothesise could be true for other colonial reef systems, such as subtidal tropical coral reefs. We 446 

also identified previously undocumented temporal patterns in reef structure, specifically distinct 447 

groups of “fast and “slow” colonies. The patterns we documented could only be detected with high-448 

resolution 3D mapping, demonstrating the enhanced ecological insight gained from the adoption of 449 

contemporary technologies in modern ecology. Scale-dependent ecosystem patterns have historically 450 

been challenging to study due to necessary trade-offs in observation scale, especially in marine 451 

systems. By embracing modern mapping technology in ecology, these long-standing constraints can 452 

be overcome, leading to an improved understanding of ecosystem dynamics in complex 3D habitats. 453 

  454 
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Figures 702 
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 704 

 705 

Figure 1. A) Sabellaria alveolata biogenic reef habitat comprises aggregations of sediment tubes in 706 
colonies that emerge above a hard, non-reef substrate. B) Close-up image of a prograding colony 707 
surface showing dense tube openings of ~5 mm diameter. C) Cross section of 3D terrestrial laser scan 708 
point cloud data from 3 years, demonstrating the detailed information about spatial and temporal 709 
dynamics in habitat structure that can be captured using modern 3D mapping technology. Reef 710 
colonies accrete upwards and outwards from the non-reef substrate in characteristic mushroom-like 711 
hummocks that coalesce into platforms. Erosion of reef colonies is often rapid and catastrophic.  712 



 713 

 714 

Figure 2. Interpreting spatial patterns in processes that generate spatial variables using variography. 715 
Variograms visualise spatial self-similarity, or autocorrelation, in a variable by plotting semivariance 716 
(γ) against lag, the distance between two samples. As lag increases samples become less similar 717 
(higher γ) until a plateau (sill) is reached at a distance (range), beyond which sample values are not 718 
autocorrelated. Here we show three simulated examples of a variable generated with different 719 
processes, and their respective variograms. Top: a fine-scale process generates a variable that is 720 
autocorrelated only over short distances, so the range (point and dashed line) is small. Bottom: a 721 
broad-scale process generates a variable that is autocorrelated over longer distances, producing a 722 
variogram with a larger range. Middle: the fine- and broad- scale processes have been added together, 723 
producing a variable with both short- and long-distance autocorrelation, generating a nested 724 
variogram with two ranges. 725 
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 727 

Figure 3: Data processing method used to classify habitat-scale digital surface models (DSMs) as reef 728 
or non-reef substrate. We generated 0.1 m XY resolution DSMs using drone aerial imagery and 729 
structure-from-motion photogrammetry. From the DSM we generated a digital elevation model 730 
(DEM) representing the ground level at the same resolution by interpolating between the lowest point 731 
in each square of a 2 m grid. We calculated emergence by subtracting the DEM from the DSM 732 
elevation. Finally, within the known reef area (Fig. 5A) we used a binary classification of reef (≥0.15 733 
m emergence) and non-reef substrate (<0.15 m emergence). 734 
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 736 

Figure 4. Data processing method used to sample reef emergence through time at independent reef 737 
locations within a 50 x 50 m plot mapped using terrestrial laser scanning at 6-month intervals over 5 738 
years (Supporting information). 1) Example section of 3D point cloud data. 2) We used a cloth 739 
simulation filter to generate a digital elevation model (DEM) for each time point and retained only 740 
points ≥0.2 m above the DEM. 3) We generated a digital surface model (DSM, 0.1 m XY resolution) 741 
of mean point elevation, then used the DSM to generate a mask that removed low point density cells, 742 
isolated cells, and colony edges. 4) We combined the masks from all time points. 5) We used a 2 m 743 
grid to generate spatially stratified random points (5 points per strata). 6) We randomly selected one 744 
point per strata with a minimum spacing of 1.5 m to generate our sample point locations. 7) At each 745 
sample location we calculated a timeseries of emergence by subtracting the elevation of a common 746 
digital elevation model representing the ground level from the DSM for each time point (Fig. 7).     747 
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 749 

Figure 5. A) The foreshore at Llanddulas, Wales, UK. Habitat-scale 3D structure data were analysed 750 
within a 36,363 m2 reef area polygon digitised from an aerial imagery orthomosaic. Presence of 751 
emergent reef is shown at 1 m XY resolution. B) Maximum reef colony emergence increases lower 752 
down the shore. The reef colonies that we analysed had a minimum emergence of 0.15 m. C) Reef 753 
colony emergence was spatially autocorrelated over short distances (1.5 m) both along the shore 754 
(purple) and down the shore (orange), ranges indicated by left-most vertical lines and arrows. There 755 
was a secondary autocorrelation structure that had a longer range (110 m) in the along shore direction 756 
compared to down the shore (20 m), ranges shown by right-most vertical lines and arrows.  757 



 758 

Figure 6. Spatial variation in S. alveolata reef elevation changes from April 2018 to April 2019 759 
within the reef area (Fig. 5A). A) Both positive and negative elevation changes increased towards the 760 
lower shore. Samples showing positive changes (blue) were greater in number than those with 761 
negative change (red), but the larger average magnitude of negative changes resulted in little change 762 
in overall elevation, shown by the boxplot of all samples crossing 0. Grey points represent samples 763 
with changes within the alignment uncertainty estimate of ±0.03 m. B) Variogram showing spatial 764 
autocorrelation scales of positive elevation changes (accretion) after accounting for trend (Supporting 765 
information table S2). The majority of spatial autocorrelation is explained by a short range (0.75 – 766 
1.05 m) structure (left-most vertical lines and arrows), with a secondary structure showing a longer 767 
range (130 m) in the alongshore orientation compared to down the shore (30 m). C) Variogram 768 
showing spatial scales of negative elevation changes (erosion) after accounting for trend (Supporting 769 
information table S2). Spatial autocorrelation only occurs up to a short range (2.9 – 3.84 m, vertical 770 
lines and arrows). 771 



 772 

Figure 7. Colony-scale variation balances out to produce plot-scale stability in S. alveolata reef 773 
habitat structure over several years. Emergence was measured at 454 stratified random, spatially 774 
independent sample locations in a 2,500 m2 plot in autumn and spring each year from September 2014 775 
(month 0) to October 2019 (month 61). Thin blue lines show individual sample timeseries. Bold blue 776 
line and dashed lines show the mean ± 1 sd emergence of all samples. Six example sample timeseries’ 777 
are highlighted to show the diversity of fine-scale dynamics in reef accretion and loss over time, 778 
clustered into two groups: fast colonies with rapid accretion and short persistence (orange) and slow 779 
colonies with slower accretion and longer persistence (red). 780 
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