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Prototype Classifiers and the Big Fish
The Case of Prototype (Instance) Selection

Ludmila I Kuncheva

I. HISTORY, CONTEXT, AND SENTIMENT

ONCE Jim told me “Write just the same way you talk!”
And this is my excuse for the unashamedly colloquial

text to follow.
Many, many years ago, sometime during the rock’n’roll-

1980s, when ladies wore shoulder pads and IBM 80-column
punched cards were in high fashion, everybody in our little
research team had heard of Jim Bezdek. We were bewitched
by fuzzy pattern recognition, and Jim Bezdek – the author of
the famous book ‘Pattern Recognition with Fuzzy Objective
Function Algorithms’ [1] – was our hero, alongside Lotfi
Zadeh. During those times, none of us could afford to buy
a copy of this coveted book but we were devouring all Jim’s
research articles we could get our hands on.

Years later, in 1993, I had the fortune to attend one of
Jim’s plenary talks at a conference in Aachen, Germany. In
walked Jim Bezdek, in the most colourful Hawaiian shirt,
blue shorts, the statutory baseball cap, and a smile brighter
than Florida sunshine. And his talk is magic! Lo and behold,
in 1996/1997, thanks to a generous grant from the COBASE
program of NSF, I spent six months in Pensacola, working
with Jim. I treasure those six months as the most valuable and
enlightening experience in my career.

By that time, I was gradually losing faith in the ‘fuzzy’
side of fuzzy pattern recognition. You might ask what I was
doing, then, visiting the current Editor-in-Chief of the IEEE
Transactions of Fuzzy Systems? (Founding EiC, come to that!)
Good question! Turned out, both Jim and I had a soft spot for
the nearest neighbour classifier and its variants, and this is
what our COBASE grant was about. This little paper tells the
story of our collaboration on prototype selection, and what
happened since.

II. PROTOTYPE CLASSIFIERS

A. Definition

In prototype classification, the data live in some metric
space Rn equipped with a distance. Depending on which disci-
pline or school (or continent) you come from, you may have a
different name for the elements of Rn. In pattern recognition,
we call those ‘objects’, ‘data points’ or ‘patterns’ even. In
machine learning, you are more likely to call them ‘instances’
or ‘examples’. In statistics, we talk about ‘observations’ and
(the dubious singular-plural) ‘samples’. These are all the same
thing: x ∈ Rn!

We have a labelled reference set of prototypes, X ⊂ Rn.
Each prototype is an element of Rn and is labelled in one
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of c classes. A new data point x∗ is labelled as its nearest
prototype from the reference set X . This is indeed the good
old and wonderful nearest neighbour classifier (1-nn) [2], [3]
where the points in the reference set are called prototypes.

B. My example data

I can hear Jim saying “Pictures, Lucy! I like pictures! Where
are the pictures?” Yes, yes, I like pictures too! Here they come.

Have you ever seen a picture of Jim Bezdek not clutching
or cuddling or dangling a 5+ kg fish? You have? Really?
Take another look; I bet there is a piranha printed on his cap
or T-shirt. Jim and fish... this is something else. So, for my
examples here, I am choosing a 2-dimensional data set to suit
the theme (Figure 1 (a)). Unusual, eh? Wherever did the good
old Gaussians go? Just for fun, I will call the fish George.

(a) Full George data set

(b) Sampled data X (the prototypes)

(c) Classification regions for 1-nn
using X as the reference set; error rate 6.68%

Fig. 1. The George data set.
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There are three classes in this data set: 1 Background
(black), 2 Top-and-tail (green), and 3 Face-and-bottom (blue).
The only two features of a data point x are its x1 and x2

coordinates. The Bayes error for this data set is 0, because
there are no overlapping points with different class labels. But
the configuration of the classes is beautifully bizarre.

Figure 1 (b) shows the data set sampled randomly from the
full data. The classification regions of the nearest neighbour
classifier using the sampled data as the reference set are shown
in Figure 1 (c). George looks a bit dishevelled there but,
actually, over 93% of the labels match the original ones.

The classes are imbalanced as class 1 contains about 64%
of the points, class 2 contains 20%, and class 3 contains
16%. While the imbalance is not as acute as in many real-life
data sets, this still poses a challenge for many classification
algorithms.

The full data was prepared from an image of size 391
rows × 769 columns of pixels, and contains 300,679 points
altogether. Our randomly sampled data contains 1,000 points.

The question in this little paper is: can we use a reference
set of fewer than 1,000 points and achieve similar (or better!)
accuracy in recognising George?

C. Who cares about prototype classifiers?

Who cares about prototype classifiers today? Hello, we
have deep learning neural networks! I hear this old question
repeated over and over... In the 1980s we were ready to dismiss
the decision tree classifier as we were building expert systems.
But shortly after, we didn’t care much about expert systems
either, because the almighty Multi-Layer Perceptron (MLP)
came to power. Come the 1990s, and we hailed the new king:
the SVM! And today? Today we have deep learning neural
networks and nothing else will do.

Delgado et al. [4] carried out a massive experimental com-
parison of classifiers in an attempt to answer the provocative
question: Do we need hundreds of classifiers to solve real-
world classification problems? A staggering 179 classifiers
from 17 families were compared on 121 data sets. And the
authors’ answer is no! We don’t need hundreds of classifiers.
The current favourites are Random Forest [5] and the SVM [6].
Long live the winners! The message from the conclusion of the
paper is clear: “The remaining families of classifiers, including
other neural networks (radial basis functions, learning vector
quantization and cascade correlation), discriminant analysis,
decision trees other than C5.0, rule-based classifiers, other
bagging and boosting ensembles, nearest neighbors, Bayesian,
GLM, PLSR, MARS, etc., are not competitive at all.” (italic
mine). Ah, wait, but there is a new kid on the block! Rotation
Forest [7] beats them all according to a more recent study by
Bagnall et al. [8].1 I kind of feel for all those non-competitive
classifiers.

But we all know that there is no one single tool for
every job! If that was the case, your car, your computer, and
your smartphone would all be repaired with a hammer. It all
depends on the data, of course. And, hey, not all is lost. In

1I am quite proud of this, actually, as I have a little contribution myself to
the Rotation Forest ensemble method.

2008, the nearest neighbour family was included (by experts!)
among the top 10 algorithms in data mining [9].

Figure 2 shows a bibliometric snapshot of the publication
rate for the nearest neighbour classifier.

Fig. 2. Publication rate for the nearest neighbour classifier. (Data sourced
from Web-of-Science, on the 10th June 2019.)

The data for this graph were sources from Web-of-Science2

on the 10th June 2019 and cover the period 1990–2018. The
number of publications grows every year. Therefore we plotted
only the rate rather than the number of publications on the
subject. To calculate the rate, two searches were carried out for
each year. The first search used keyword ‘classif*’ to account
for ‘classifier’, ‘classifying’, ‘classification’, etc. (1,099,295
returns). The second search was done among the results from
the first search using keywords (‘nearest neighbor’ or ‘nearest
neighbour’), returning 11,918 articles. Suppose we retrieved a
papers from Search 1 and b papers from Search 2 for a given
year. The rate was calculated as b/a. The trend of the graph
in Figure 2 shows that the interest in the nearest neighbour
family of classifiers increases steadily over the years.

III. PROTOTYPE (INSTANCE) SELECTION

Observing that the 1-nn philosophy underpins many seem-
ingly unrelated classifiers, Jim and I set off to unite these
classifiers under the same umbrella. We called it the Gen-
eralised Nearest Prototype Classifier (GNPC) [10], [11]. We
were hoping to pull a rabbit out of the hat, that is, identify
niches which were not explored thus far, and propose new
alternative versions of the prototype classifier. Alas, Floppy
(the rabbit) did not materialise at the time but, instead,
Jim and I got properly sucked into one of the sidelines
of 1-nn: instance selection (also known as: prototype selec-
tion/extraction/generation/replacement, data editing for the 1-
nn classifier, data condensing, data reduction, and more).

Here we will take prototype selection to mean that we
select a subset S of the reference set X which satisfies
some criteria related to the classification accuracy of 1-nn
using S as the reference set. Requiring a zero error on X
(resubstitution error) gives rise to the so-called ‘condensing’
methods, the classic instance of which is Hart’s Condensed
Nearest Neighbour (CNN) [12]. A reference set with a zero
resubstitution error is called a ‘consistent’ subset of X . This
approach preserves boundary objects which are likely to be
misclassified if missing from the prototype set. The alternative
approach, called ‘editing’, is to select prototypes by removing
noise. This approach aims at a better generalisation accuracy
with S compared to that when using the whole of X as the

2https://wok.mimas.ac.uk/
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reference set. The pioneering method in this category is due
to Wilson (1972) [13]. In this approach, border objects that
may be misclassified are discarded. A third category, called
‘hybrid’, includes methods which combine the two ideas. A
myriad of methods for prototype selection have been proposed
in all three categories since those early years [14], [15], [16],
[17], [18], [19].

Jim and I were curious about the hybrid approach. But
instead of explicitly combining strategies for keeping and
discarding prototypes, we chose a random, criterion-driven
approach [20]. Our study was meant as a proof-of-concept,
and we only played around with the famous iris data set.
We discovered that a random criterion-driven approach (brute-
force random search and a basic genetic algorithm) offered
the best compromise between classification accuracy and re-
duction rate compared to the classical examples of editing
and condensing. We subsequently carried out experimental
comparisons [21] and included also methods which belonged
in the group of prototype replacement. In other words, S
is no longer a subset of X but a subset of Rn, with a
cardinality restriction |S| ≤ |X|. Our random, criterion-driven
methods were doing OK but were not as good as the prototype-
replacement competitors. In those pre-Google times, we were
not even aware that our brute-force random search actually
had a name: Monte Carlo 1 (MC1) [22]. Much as we wanted
to, we could not afford to run a large experiment then. Intel
was yet to release the first Xeon processor, the Pentium II
Xeon 400 (1 M cache, 400 MHz).

A funny story unfolded shortly after the publication of
our ‘apotheosis’ of random/GA prototype selection [20]. Our
experiments gave a 14-element consistent set for the iris data.
The previous record was a 15-element consistent set, so we
beat it by 1 element. Before we published the paper Jim said
“You know what? I want to be double and treble sure that
we have not made a mistake. Delete your 1-nn code, write
it again from scratch and verify the result. The first thing
people will do is stick our winning prototype set in their 1-nn
classifier!” So I did; no mistake. The paper came out. Almost
instantly the author of the previous winner (the 15-element
consistent prototype set) wrote an indignant e-mail to Jim and
me claiming that our supposedly-consistent set mislabels one
object in the iris data! They suggested that we write a retractor
note and apologise for misleading the journal’s readership.
This e-mail exchange didn’t do my blood pressure any good
but I knew that there was no mistake. It transpired that we
have been using slightly different versions of the iris data! Jim
and I then sourced the original paper by Fisher [23] where
Anderson’s data [24] were published, and it turned out that
the ‘real’ data set matched Jim’s and my version. Could have
easily been the other way around. Jim was so amused by the
whole story that he indeed wrote a note, but not to apologise.
The title was: ‘Will the real iris data please stand up?’ [25].
The note includes a table with the ‘real’ (original) iris data set
and warns about the non-matching variants floating around.

Years passed, technology prospered, and big data descended
upon us. And not only big data! In addition to the problem
of scalability [26], [27], [28], prototype selection was facing
new challenges [29]: streaming data [30], unlabelled data, data

with concept drift [31], and more. How did random prototype
selection methods fare in the new world order? Quite well,
apparently, especially the evolutionary algorithms [32], [33],
[34]. Shall we check some of the recent favourites then? Let’s
see how our random methods manage to reconstruct George
to a recognisable character with as few prototypes as possible.

IV. THE FUN PART: RECOGNISING GEORGE

A. Methods

Garcı́a et al. (2012) [18] and Triguero et al. (2012) [19]
reviewed between them over 75 prototype selection and re-
placement methods, and ran experimental comparisons. As
we have our hearts set on prototype selection, here are the
methods which were identified in the conclusion of Garcı́a et
al.’s survey as the best ones (the first-mentioned method in
each group).

To simplify the algorithms, here we introduce some com-
mon concepts and notations:
• All algorithms take as input a labelled data set X with

N objects.
• We will denote by M the desired number of prototypes

which will be an input parameter for some of the algo-
rithms.

• T denotes the number of iterations, K denotes the pop-
ulation size, W denotes the number of generations.

• We will need two sets of indices A← {1, 2, . . . , N} and
B ← {1, 2, . . . ,M}.

• We will also need two functions: e(S,X) returning the
1-nn classification error for X when S is used as the
reference set; and choose(Q,m) returning a random
subset of cardinality m sampled without replacement
from set Q.
Note that if I is a set of indices of elements of X , we use
X(I) to denote the subset of X containing the indexed
elements.

• RMHC (1994). From the hybrid family (editing and con-
densing), Random Mutation Hill Climbing [22] achieved an
excellent trade-off between reduction and classifier success
in the experiments. RMHC is one of the beautifully-elegant
random, criterion-driven methods. (Score!)

While the original algorithm is in a binary form, for the little
experiment with George, we can indulge in a less efficient but
more straightforward implementation (Algorithm 1).

In our implementation, we evolved several solutions and
picked the best S among them.

• RNGE (1997). Relative Neighbourhood Graph Editing is an
editing prototype selection algorithm [35] classed as the best
in its group [18].

Relative Neighbourhood Graph (RNG) is an undirected
graph defined on X . There is an edge between p ∈ X and
q ∈ X if there is no other point r ∈ X which is closer to both
p and q than they are to each other. The editing algorithm
works by first building the RNG of X and then removing all
points which are misclassified by their immediate neighbours
in the graph (Algorithm 2).
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Algorithm 1: RMHC prototype selection algorithm

Input: X , M , T

Output: Reference set S, S ⊂ X , |S| = M

1 C ← choose(A,M) // the chromosome to mutate
2 e← e(X(C), X) // stored error

3 for i = 1 : T do
4 Ctemp ← C.
5 k ← choose(B, 1) // index to mutate
6 Ctemp(k)← choose(A \ C, 1) // replace
7 etemp ← e(X(Ctemp), X).

8 if etemp ≤ e then
9 C ← Ctemp; e← etemp

10 Return S = X(C).

Algorithm 2: RNGE prototype selection algorithm

Input: X

Output: Reference set S, S ⊆ X

1 Build G, the RNG for X .
2 Remove all points which are misclassified by their

immediate neighbours in G.
3 Return the remaining points as S.

• RNN (1972). The Relative Nearest Neighbour rule [36] was
singled out as one of the best two methods in the condensing
group [18]. RNN starts with a consistent reference set S (zero
errors of 1-nn on X) and reduces it further by removing
one element at a time and checking whether the set is still
consistent. If not, return the element in the set. If the set is
consistent, remove the element permanently. Continue until
all elements have been checked and there has not been any
change of S (Algorithm 3).

Algorithm 3: RNN prototype selection algorithm

Input: X

Output: Reference set S, S ⊆ X

1 Run Hart’s algorithm [12] on X to obtain an initial C.

2 flag ← true.
3 while flag do
4 flag ← false.
5 for each element i of C do
6 C ′ ← C \ {i}. // remove i temporarily
7 if C ′ is consistent then
8 C ← C ′. // remove i permanently
9 flag ← true.

10 Return S = X(C).

Did you notice? All three winning algorithms are old and
simple. My kind of algorithms! We add to this collection our
own baselines and competitors as explained below.

• H (1968) Hart’s CNN [12] returns a consistent set, usually
with a very good reduction rate. This is the archetypal con-
densing algorithm which gave rise to the whole condensing
branch.

• W (1972) Wilson’s algorithm [13] is the forefather of the
editing branch of prototype selection algorithms. It marks for
deletion all objects of X which are misclassified by their k
nearest neighbours (typically, k = 3). Then the marked objects
are removed, and the remaining set is returned as S.

• MC1 (1994) The Monte Carlo method for prototype selec-
tion [22] is the same as our Random Search [20]. This is a
brute-force random search whereby we generate T prototype
sets and pick the best among them. The value of T is chosen
in advance.

• GA (1995) Genetic Algorithms (GA) are a perfect fit for
prototype selection [37], [20], [32], [33], [34]. The chromo-
some can encode S ⊆ X storing 0 at position i if the ith
element of X is not in S, and 1, otherwise. The version of a
GA which we used here is shown in Algorithm 4. It allows
for pre-specifying the number of prototypes. However, due
to the cross-over, there may be repeated prototypes within a
chromosome. This means that M is an upper limit on the
number of prototypes for the GA.

The George data set and the MATLAB code for this
illustration are available at https://github.com/LucyKuncheva/
instance selection.

B. Experimental set-up

We can hardly glorify this little illustration with an ‘exper-
iment’ status but we still need to explain how we made the
comparisons as fair as possible.

We used the George data set (Figure 1 (b)) sampled from the
‘full’ George data set (Figure 1 (a)).3 The prototype selection
methods which we used are listed in Table I together with the
results.

In addition to the methods listed in the previous subsection,
we included W+H, which is an application of Wilson’s method
(W) followed by Hart’s method (H). This combined method
(hybrid type) often leads to a small and accurate references
set.

We took care that all our random methods carry out exactly
the same number of evaluations of the criterion function (1-nn
error rate on the sampled George data). The parameters in this
experiment were as follows:
• MC1: Number of iterations T = 12, 000.
• GA: Population size K = 40, number of generations

W = 300.

3Both data sets are included in the GitHub library https://github.com/
LucyKuncheva/instance selection.
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Algorithm 4: GA prototype selection algorithm

Input: X ,M ,K,W

Output: Reference set S, S ⊂ X , |S| = M .

1 for i = 1 : K do
2 P (i)← choose(A,M) // random chromosome
3 fp(i)← 1− e(X(P (i)), X) // population fitness

4 for gen = 1 : W do

5 O ← ∅. // offspring set
6 for par = 1 : K/2 do
7 p1 ← choose(P, 1) // parent 1
8 p2 ← choose(P, 1) // parent 2
9 k ← choose(B, 1) // crossover point

10 Swap the tail parts of p1 and p2 to create
offspring o1 and o2. (Tail is from k + 1 to M .
If k = M , no crossover occurs and the
offspring are the parents themselves.)

11 O ← O ∪ {o1, o2}

12 for j = 1 : K do
13 C ← O(j)
14 m← choose(B, 1) // index to mutate
15 C(k)← choose(A \ C, 1) // replace
16 fo(j)← 1− e(X(C), X) // offspring fitness
17 O(j)← C

18 Pool fp and fo and sort in descending order.
Keep the best K chromosomes from P ∪O to
be the new population P and store the
respective fitnesses.

19 Return S = X(P (1)) // the best chromosome

TABLE I
RESULTS FROM THE EXPERIMENT WITH THE NOISE-FREE GEORGE DATA.

Method Type Error Number of Time (s)
rate (%) prototypes

1-nn – 6.68 1000 0.18
H C 7.90 211 24.93
W E 7.10 913 0.50

W + H H 8.44 101 22.71
RNGE E 6.59 921 3.92

RNN C 8.20 160 27.81
RMHC H 15.83 10 81.99
RMHC H 13.31 20 79.27
RMHC H 10.47 100 83.42
RMHC H 9.49 200 84.04

MC1 H 20.21 10 75.45
MC1 H 15.62 20 78.80
MC1 H 11.16 100 81.23
MC1 H 9.83 200 83.81

GA H 12.68 10 76.63
GA H 8.47 20 77.20
GA H 6.52 98 84.71
GA H 6.96 195 82.49

TABLE II
RESULTS FROM THE EXPERIMENT WITH THE NOISY GEORGE DATA.

Method Type Error Number of Time (s)
rate (%) prototypes

1-nn – 16.24 1000 0.49
H C 20.00 415 27.87
W E 8.43 806 0.48

W + H H 9.68 91 19.30
RNGE E 8.17 794 3.97

RNN C 21.18 355 33.94
RMHC H 24.70 10 76.70
RMHC H 15.65 20 77.74
RMHC H 14.38 100 80.67
RMHC H 15.61 200 82.14

MC1 H 21.25 10 74.18
MC1 H 15.62 20 74.91
MC1 H 15.88 100 76.50
MC1 H 14.28 200 79.76

GA H 15.85 10 75.64
GA H 11.08 20 77.30
GA H 9.92 100 80.82
GA H 12.70 197 83.03

• RMHC: Number of chromosomes evolved (separately)
K = 40, number of mutations W = 300.

In the second leg of the experiment, we contaminated
George with label noise by flipping the labels of 10% of
the sampled data to a different class. Figure 3 shows the
classification regions of 1-nn with the contaminated set. Ouch!
George looks a little exploded here...

Fig. 3. Classification regions of 1-nn with 10% label-noise contamination;
error rate 18.49% (or a nice pyjama pattern).

C. Results
Table I shows the results with the clean data, and Table II,

the results with the noisy data.
To make more sense of the numbers, we will use a scat-

terplot. The x-axis is the logarithm of the number of retained
prototypes out of the initial 1,000. We chose the logarithmic
scale for the sole purpose of making the graphs less crowded
at the smaller cardinalities. The y-axis is the 1-nn classification
error on the full data (the whole of George). An ideal point
would sit at (ln(3) = 1.0986, 0) where we have one prototype
of each class and zero error. The closer the point is to the
origin, the better the method. The results are shown in Figure 4
for the noise-free George and in Figure 5 for the noisy George.

In both figures, each prototype selection method is shown
with a yellow marker. Circles represent hybrid methods, trian-
gles represent condensing, and squares represent editing. The
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Fig. 4. Scatterplot of the results for the noise-free George. The blue line represents the Pareto front.

thick blue line is the Pareto front, that is, the collection of
non-dominated methods. These methods are highlighted in
boldface in the respective tables. Note that we can choose
the number of prototypes for MC1, RMHC, and GA. The
versions of a method for different number of prototypes are
shown as line graphs. In addition, next to each method on the
Pareto front, we show a cute little portrait of George which
resulted from that method (the classification regions, leaving
the background white).

D. Discussion

Well, what is trivial is trivial: when there is noise in the
data, all points are higher up, indicating higher error. Without
noise, the editing methods (RNN and H) were good, and if
we hadn’t chosen serendipitous parameters of our GA, these
methods would have been on the Pareto front. When there is
noise, however, the condensing methods learn that noise to
perfection, and the generalisation error shoots up (top right
corner of Figure 5. The editing competitors (W and RNGE)
are unfazed by noise. They consistently return good but large
reference sets. The type of random noise that we included is

filtered quite well by them, and RNGE found its place in the
Pareto front for the noisy George, beating W by a whisker.

The clear winners are the hybrid methods, which echoes the
findings of other authors. We don’t need to explicitly enforce
the strategy (‘keep the noise’ or ‘clean the noise’) within the
method; criterion-driven methods fare a lot better.

What is the situation with our beloved MC1 and GA? In
our 1998 paper [20], we found that random, criterion-driven
methods such as MC1 and GA were simple and effective,
something that was also mentioned as a surprising observation
by Skalak [22] in relation to RMHC. In our later paper [21],
however, we could not confirm this result. My GA implemen-
tation (I will blame that) kicked the GA towards the bottom of
the league table. The difference with Algorithm 4 here is that
previously we used a criterion which sought a compromise
between the 1-nn error and the number of prototypes in the
form of a weighted sum. Here, on the other hand, we specify
a limit on the number of prototypes. GA turned out to be
the best among the competitors, which were chosen among
the most successful prototype selection methods [18]. Fluke
as it may be, our little experiment with GA (and George)
showed that this strategy can handle noise. However, in both



7

Fig. 5. Scatterplot of the results for the noisy George. The blue line represents the Pareto front.

experiments, the generalisation error for M = 200 prototypes
increases (possibly due to overfitting), leaving the last point on
the GA line graph out of the Pareto front for the clean data. For
the noisy George, the GA with 100 prototypes is marginally
worse than W+H, another classical hybrid prototype selection
method.

The random search (MC1) did not work well here and nor
did RMHC. The likely reason is that the class configuration
was chosen deliberately to be challenging unlike many ex-
perimental studies where the classes are sampled as good old
Gaussians.

Yes, yes, we evaluate our criterion on the training data! This
is what we have been using all the way here (condensing meth-
ods don’t have a choice as they are meant to guarantee zero
resubstitution error). The scatterplots, however, show the error
on the full data, which consists of the 1,000 sampled points
(0.33%) and the remaining 299,679 points (99.67%). Don’t
get me started on the limitations of this example/illustration.
Indeed, the list is as long as this journal has pages. But the
moral of the story is that if we do need a very small subset of
the data with an acceptable error rate, we may have to resort to
those random, criterion-driven approaches which seem to offer

a good compromise between the cardinality of the reference
set and the 1-nn error rate. Long live random search!

V. CONCLUSION

Guess what? That was the conclusion! “Long live random
search”.

Back in 1997, when Jim and I were writing papers together,
I would come to him with a draft of a paper, and he would
invariably return a comment “What kind of conclusion is
this?!? You have run out of steam, Lucy.” And then he writes
the conclusion himself. I wish, one day, I could match Jim’s
astute, eloquent, and endlessly entertaining writing. A girl can
dream...
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