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Abstract 

For water companies, benchmarking their performance relative to other companies can be an 

effective way to identify the scope for efficiency gains to be made through infrastructure 

investment and operational improvements. However, a key limitation to benchmarking is the 

confounding effect of exogenous factors, which may not be factored in to benchmarking 

methodologies. The purpose of this study was to provide an unbiased comparison of efficiency 

across a sample of water and sewage companies, accounting for important exogenous 

factors. Bias-corrected economic and environmental efficiency estimates with explanatory 

factors were evaluated for a sample of 13 water and sewage companies in the UK and Ireland, 

using a double-bootstrap data envelopment analysis (DEA) approach. Bias correction for 

economic and environmental efficiency changed the rankings of nine and eight companies, 

respectively. On average, companies could reduce economic inputs by 19% and carbon 

outputs by 16% if they performed at the efficiency frontier. Variables explaining efficiency 

were: source of water, leakage rate, per capita consumption and population density. 

Population density showed statistical significance with both economic (p-value 0.002) and 

environmental (p-value 0.001) efficiency. Consequently, a rurality factor was defined for each 

company’s operational area, which was then regressed against normalised water company 

performance data. More rural water companies spend more per property (R2 of 0.633), in part 

reflecting a larger number of smaller sewage treatment works serving rural populations (R2 of 
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0.823). These findings provide new insight into methods for benchmarking, and factors 

affecting, water company efficiency, pertinent for both regulators and water companies.  

 

Key words: Data Envelopment Analysis, Double-Bootstrap, Water Utilities, Performance 

Analysis, Explanatory Factors, Urbanity 



1. Introduction 

The water and sewage industry has fundamental links to all aspects of sustainability, those 

being economic, social and environmental considerations. This is through the sector being 

responsible for delivering potable water, a social necessity, which requires significant amounts 

of energy, physical infrastructure (treatment plants and pipes) and financial inputs to purify, 

distribute, and treat before and after usage to protect receiving waters and uphold sanitary 

standards (Olsson, 2015; Saleh and Gupta, 2016). Increasing economic and environmental 

efficiency reduces the consumption of resources and could enable a more reliable service, in 

line with industry, consumer and societal interests. Benchmarking is regarded as a valuable 

tool for increasing efficiency because it can be used to evaluate the comparative performance 

of companies, underpinning effective regulation. Examples where benchmarking is used by 

regulators arise in many different countries, such as England and Wales via Office of Water 

Services (OFWAT), Portugal by Entidade Reguladora dos Serviços de Águas e Resíduos 

(ERSAR) and Latin America via Regulación de Agua y Saneamiento en las Américas 

(ADERASA) (Berg, 2013), to name just a few. Even where regulators do not employ 

benchmarking, companies are taking it up themselves to help them perform competitively 

against sector leaders and to enable innovation collaborations for best practices. This is 

evidenced by voluntary subscriptions to organisations such as the EU Benchmarking Co-

operation, South East Asia Water Utility Network (SEAWUN), and the International 

Benchmarking Network (IBNET), which compare key indicators from water utilities across 

international boundaries (Asian Development Bank, 2018; IBNET, 2018).  

Benchmarking is also a topic of interest in academia. Frequent attempts have been made to 

refine and optimise benchmarking methodologies for the water sector as well as to validate 

new techniques (Daraio and Simar, 2006; Berg, 2013) and provide evidence on factors that 

influence efficiency (De Witte and Marques, 2010a; Lannier and Porcher, 2013; Marques et 

al. 2014). The most popular type of method for conducting benchmarking in the literature is 

production frontier analysis (Berg, 2013). A production frontier can be calculated with 



parametric methods (Kumbhakar and Lovell, 2004) or non-parametric methods such as data 

envelopment analysis (DEA), which is the most popular of the production frontier methods 

(Song et al. 2012). The reason for the popularity of DEA is that is has three fundamental 

characteristics, which make it beneficial for assessing water and sewerage companies 

(WaSCs). 1) It integrates multiple inputs and outputs for each unit, providing a multi-criteria 

analysis; 2) weightings applied to aggregate inputs and outputs are generated endogenously; 

and 3) it does not require a priori assumptions about the functional relationship between the 

inputs and outputs (Berg, 2013).  

In spite of the advantages that DEA offers, it has a crucial limitation in that it is a deterministic 

method, meaning statistical inferences cannot be drawn from conventional DEA efficiency 

scores (Simar and Wilson, 2007). This is of particular relevance for WaSCs, since DEA does 

not allow the use of regression analysis to evaluate the explanatory factors. Cazals et al. 

(2002) proposed a method to overcome this limitation, referred to as ‘order-m’, which is a 

partial frontier method that uses a portion of the original population sample to estimate the 

efficiency scores. Despite the advantages of the ‘order-m’ method in terms of enabling 

statistical evaluation of efficiency scores, it has drawbacks (Daraio and Simar, 2006). The 

limitations are specifically related to the selection of ‘m’, that is the sample taken from the 

original larger sample – the representativeness of this sample greatly affects the efficiency 

scores (Da Cruz and Marques, 2014). 

An alternative approach is Simar and Wilson’s (2007) double-bootstrap procedure, which 

allows for hypothesis-testing and statistical inferences in the DEA method, thus enabling the 

exploration of determinants of efficiency, whilst also bias-correcting the efficiency scores 

yielded from the DEA model (Yang and Zhang, 2018). As Gomez et al. (2017) note, the 

advantages of the bootstrap method have led to its application in an array of different areas, 

such as banking (Tziogkidis et al., 2018) and educational institutions (Andersson et al., 2017), 

as well as water companies (De Witte and Marques, 2010b; Ananda, 2014). However, the 

double-bootstrap DEA method has not been used extensively on water and sewage 



companies previously, with only one study (Molinos-Senate et al. 2018) to the best of our 

knowledge having done so.  

Many research papers have assessed explanatory factors for the reasons behind the 

performance of their analysed water utilities and networks, with Conti (2005) highlighting the 

“role played by environmental variables in ‘shaping’ both the technology and the efficiency 

levels of the water utility industry”. Examples include, but are not limited to ownership, size, 

technology use, energy consumption, source of water, year of construction, peak factor, and 

particularly relevant to this study population density (Abbott and Cohen, 2009; Guerrini et al., 

2011; Molinos-Senante, et al., 2013; Molinos-Senante and Guzmán, 2018; Peda, et al., 2011; 

Renzetti and Dupont, 2009). 

Despite there being a diverse range of exogenous factors evaluated in performance 

assessments of water utilities, “rurality” is a potentially pertinent differentiating factor that is 

rarely explored. De Witte and Marques (2010a) documented just eight academic studies prior 

to their 2010 publication that included customer or population density (a proxy for rurality), as 

an explanatory factor. Aside from those eight, there have been very few following this. A few 

notable studies are Carvalho and Marques (2011), Lannier and Porcher (2013), and Marques 

et al. (2014). Since population density is only a crude partial indicator if used to assess the 

influence of rurality/urbanity, a different approach is needed. There is, however, very little 

literature available discussing methodologies for assessing or clustering the catchments for 

water authorities, especially in terms of rural/urban split. Perhaps most relevant work with 

regard to quantifying geographic situation is Neunteufel (2017), where the use of urban 

classifications to aid management decisions is used. This study highlighted how leakage rate 

should be perceived differently in terms of acceptable performance when considering the age 

of piping. The analysis was conducted via a clustering exercise, with prescribed boundaries 

to classify between rural, urban and metropolitan (described as “Urbanity” cluster). 

The reason rurality is of interest is that without accounting for it in efficiency analysis and 

benchmarking, it limits avenues for improvement and it may appear that companies which 



operate more rurally than others are performing poorly. This has relevance for all performance 

across water only companies (WoCs) and WaSCs operating at varying scales of urbanity 

furthermore, it may be relevant to regulators when evaluating whether companies are doing 

enough to be efficient.  

There were three objectives to this study, which are discussed in order throughout the 

upcoming sections. Firstly, bias-corrected comparison of economic and environmental 

efficiency scores across UK and Irish WaSCs. Secondly, identification of key factors that may 

affect bias-corrected efficiency scores. Thirdly, development of a framework to assess the 

influence of rurality on operational efficiency across a set of English and Welsh WoCs and 

WaSCs. Collectively, these objectives provide novel insight for the water services industry and 

contribute to the academic literature on benchmarking by displaying alternative 

methodologies, contributing bias-corrected results and analysis of factors affecting economic 

and environmental efficiency across the UK and Ireland.  

 

2. Methodology 

2.1. Efficiency estimate 

In order to estimate the economic and carbon efficiency of UK and Irish water and sewage 

companies as well as the factors affecting their efficiencies, Simar and Wilson’s (2007) double-

bootstrap DEA model with a truncated bootstrapped regression was used. This approach 

enabled bias-corrected efficiencies to be obtained, and facilitated an assessment of the 

variables that influence these efficiencies. The wider advantages of this method have already 

been mentioned above.  

2.1.1. Sample and data description for efficiency estimate 

The sample for the economic efficiency analysis consisted of 13 WaSCs in the UK and Ireland, 

whilst the environmental carbon analysis consisted of 12 WaSCs in the UK alone. The 

reported efficiency parameters were for the period April 2014 to April 2015. When applying a 



DEA model, the sample should be as homogenous as possible; companies in this sample 

were all of similar size and conduct comparable operations. The source of the data was largely 

from Water UK (2015), a national organisation that represents and works with WaSCs 

throughout the UK, collating key UK water utility data from annual company reports. For data 

points that were missing from the Water UK set, alternative sources were accessed and are 

outlined as follows. Wastewater treatment volumes were largely sourced from 2017/18 data 

sets due to poor data availability for 2014/15; inter-annual variance in wastewater treatment 

volume is not significant (only 0.4% average year on year variance expected in the next 8 

years according to the PR19 OFWAT data tables, data not shown). The wastewater data 

source for UK companies was OFWAT and their PR19 data tables (OFWAT, 2018). For Irish 

Water, it was their business plan document (Irish Water, 2015a) which provided the majority 

of their data except operational expenditure (OPEX) which came from a 2015 financial 

statements document (Irish Water, 2015b) and wastewater compliance information, which 

came from a wastewater treatment report by the Irish Environmental Protection Agency 

(2016). For Scottish Water, water delivered and per capita consumption data were recovered 

from a report from the Water Industry Commission for Scotland (2015), whilst their OPEX data 

were sourced from one of their own asset reports (Scottish Water, 2015). OPEX data were 

also acquired for Northern Ireland Water through an annual report (Northern Ireland Water, 

2015). Finally, the percentage of abstracted water coming from surface water for all UK 

companies was obtained via direct correspondence with the British Geological Survey (M 

Ascott 2018, personal communication, 19 September).  

The number of units (WaSCs) available for analysis in the DEA models was small relative to 

most studies on water utilities, and for a DEA model to avoid relative efficiency discrimination 

problems; the sample needs to meet a minimum size threshold. To determine a size 

thresholds that avoids discrimination problems, ‘Cooper’s rule’ was used here, which states 

the number of units to be analysed must be ≥ max{𝑚 𝑥 𝑠; 3(𝑚 + 𝑠)} where 𝑚 is the number of 

inputs and 𝑠 is the number of outputs used in the model (Cooper et al. 2007). Since the 



samples used in this paper were 13 and 12, and both the economic and environmental 

assessments use two inputs and one output, ‘Cooper’s rule’ was met. Furthermore, Molinos-

Senate et al. (2018) comments that utilising DEA with a bootstrap procedure ensured more 

accurate efficiency scores with a limited sample size.  

The selection of representative inputs and outputs is imperative for a DEA model to produce 

valid results. The two inputs used in the economic model were OPEX and capital expenditure 

(CAPEX) as these accurately represent the key aspects of financial operations within a water 

company. OPEX in this study was made up of both wholesale and retail expenditure and 

excludes exceptional items, depreciation and amortisation. CAPEX was used under the 

assumption that the companies in the sample contribute enough for it to be sufficient to 

maintain and renew the distribution network long-term. Since Ireland’s currency is Euros, Irish 

Water’s OPEX and CAPEX figures had to be converted to GBP for the analysis using the 

2011-2015 average exchange rate of 0.814 (Statista, 2018). The two inputs used in the 

environmental model are operational greenhouse gas (carbon dioxide equivalent) emissions 

and kilometres of water mains and sewage piping, which represents embedded emissions 

within capital assets. The length of sewage and delivery network provide a suitable proxy for 

embedded carbon emissions within a company given the dominance of this infrastructure in 

terms of material inputs. Greenhouse gas emissions, to the authors’ knowledge, has not been 

assessed with the DEA method within the water utility literature. However; many studies have 

used length of piping as a proxy to represent financial capital (Mbuvi et al. 2012; Ananda, 

2014; See, 2015; Molinos-Senate et al. 2018) and fixed assets have been used to estimate 

carbon in other DEA literature (Zhu, 2018).  

One output was used for both the environmental and economic efficiency analyses. This 

output is a combined volume of both water delivered and wastewater treated and combines 

the two key determinants of resource use within water utilities, reflecting the most common 

outputs used in the DEA water utility literature (De Witte and Marques, 2010a, Guerrini et al. 

2013). The water delivered volumes were estimated from subtracting leakage rates away from 



distribution input, which is the amount of water entering the distribution system at the point of 

production. The wastewater treated volumes encompass all water treated at treatment plants, 

not just effluent from businesses and homes.  

A fundamental driver of resource use within WaSCs is the quality of water they produce and 

the wastewater they dispose of (Plappally and Lienhard, 2012; Maziotis et al. 2015). With this 

in mind, companies should not be penalised in terms of efficiency assessment for producing 

higher quality outputs than others; therefore, this study follows Saal et al. (2007) and Molinos-

Senate et al. (2015) and adjusts the two indicators used to calculate net output according to 

available water quality parameters. Water delivered was corrected by the quality of the water 

(𝑦1) and wastewater treated was adjusted based on wastewater discharge permit compliance 

(𝑦2). The quality indicators are reported as percentages, with 100% meaning that all legal 

requirements are met. For this study, they are converted to decimals and are used as 

multipliers for the original output data, defined thus:  

𝑦1 = 𝑊𝐷 × 𝐷𝑊𝑄          (1) 

𝑦2 = 𝑊𝑊𝑇 × 𝐷𝑃𝐶          (2) 

Where 𝑦1 is the quality-adjusted water delivered; 𝑊𝐷 is the volume of drinking water delivered 

to customers; 𝐷𝑊𝑄 is drinking water quality; 𝑦2 is the quality-adjusted wastewater volume 

treated; 𝑊𝑊𝑇 is the wastewater treated volume; 𝐷𝑃𝐶 is discharge permit compliance, an 

appropriate wastewater discharge quality proxy. The resulting figures for the indicators 𝑦1 and 

𝑦2 then made up the solo output of both the environmental and economic DEA analysis.  

In an attempt to decipher the reasons behind companies performing the way that they do, 

population density, percentage of abstracted water being from surface water, leakage and 

consumption per capita were used as the determinant variables to evaluate. These were 

selected as the most likely determinants of efficiency available from the aforementioned data 

sources, based on results of previous studies summarised above (De Witte and Marques, 

2010a; Carvalho and Marques, 2011; Marques et al. 2014; Molinos-Senate et al. 2018). The 



variables used for analysing the determinants of efficiency along with the inputs, outputs and 

quality variables used to determine the efficiency scores are summarised in Table 1.  

Table 1. Data sample description for use in DEA analyses. 

 

2.1.2. Standard DEA model 

The DEA method was originally produced by Farrell (1957) and later developed by Charnes 

et al. (1978), and has since been frequently used to assess a vast array of water utilities (Berg, 

2013). It is a non-parametric technique that employs linear programming to facilitate the 

creation of the efficient production frontier. The frontier develops the relative efficiency of the 

sample of decision-making units (DMUs), which in this case are the UK and Ireland water 

utilities, by comparing their inputs and outputs in relation one and other within the sample 

(Charnes et al. 1978). The technical efficiency of each DMU is then gauged by evaluating how 

far it is away from the frontier.  

The model of the DEA method can orientate towards either inputs or outputs. Generally, water 

and sewage companies do not have much control over the quantity of their outputs, those 

largely being determined by demand for drinking water and sewage treatment. They do 

  
Average SD Minimum Maximum 

Inputs Operational expenditure (million£) 399.855 207.360 165.2 823.6 
 

Capital expenditure (million£) 446.518 
327.612 155.8 1321.6 

 Operational GHG emissions 
(KtCO2e) 

365.417 185.787 
 

148 
 

824 
 

 Length of mains and sewage pipes 
(km) 

82,460.167 39,081.390 
 

30,961 
 

139,880 
 

Outputs Water delivered & wastewater 
treated (ML/ day) 2555.944 1587.173 738.47 6338.108 

Quality 
Variables 

Drinking water quality (%) 99.9 0.1 99.5 100 

 
Discharge permit compliance (%) 97.2 4.7 83 99.9 

Explanatory 
Variables 

Consumption per capita (l/h/d) 
(excluding leakage) 

138.873 16.017 115 181.159 

 
Population density (Population/km2) 66.889 16.848 42.323 106.084 

 
Leakage (%) 24.35 8.992 12.411 49 

 Surface water (%) 72.038 26.939 11.5 99.9 



however have a large influence over their inputs, with a goal to reduce the resources going 

into them as much as possible, whilst still producing those outputs at the same standard; 

therefore, this study employed an input-orientated model. This is in line with similar literature 

that analyses water utilities with DEA methods (De Witte and Marques, 2010a; Berg, 2013). 

Furthermore, the model was based on varying returns to scale (VRS), which allows for scale 

effects. This is a reasonable assumption to make since the WaSCs being assessed are of 

various sizes and are likely to produce differing level of outputs with same level of inputs, 

which again, is concurrent with the majority of the literature (Berg and Marques, 2010; Peda 

et al. 2011; Guerrini et al. 2015; See, 2015).  

Given 𝑗 = 1, 2…, 𝑁 units, each one using a vector of M inputs 𝑥j = (𝑥1𝑗, 𝑥2𝑗, …, 𝑥𝑀𝑗) to produce 

a vector of S outputs 𝑦𝑗 = (𝑦1𝑗, 𝑦2𝑗, …, 𝑦𝑆𝑗), the input-orientated DEA model is described as 

follows:  

𝑀𝑖𝑛 𝜃𝑗 

𝑠.𝑡. 

∑𝑗=1  
𝑁  λj 𝑥ij ≤ θ𝑥𝑖0    1 ≤ 𝑖 ≤ M 

∑𝑗=1  
𝑁  λ𝑗 𝑦𝑟𝑗 ≥ 𝑦𝑟0                           1 ≤ 𝑟 ≤ S      (3) 

λ𝑗 ≥ 0    1 ≤ 𝑗 ≤ 𝑁 

 

𝜃𝑗 is a scalar whose value signifies the efficiency of the evaluated unit (WaSC), which is 

efficient when 𝜃𝑗 = 1 and inefficient when 𝜃𝑗 > 1. This subscribes to Shephard efficiency, as 

opposed to Farrell efficiency that has inefficient units as < 1; by following this variation, it 

removes the need to convert the efficiencies for the next methodology section. M is the number 

of inputs used, S is the number of outputs generated, N is the number of units assessed and 

λ𝑗 is a set of intensity variables that symbolise the weighting of each analysed unit 𝑗 within the 

formation of the frontier.  

 



2.1.3. Double-bootstrap DEA method 

The literature on DEA shows Tobit regression as the most popular method to analyse the 

effects of explanatory variables on technical efficiency. It is a two-stage approach and works 

by regressing the sample of explanatory variables against the technical efficiency scores, 

originally acquired through a DEA model (Hoff, 2007). There are, however, limitations to this 

method, an example being: the DEA efficiency scores are found to be serially correlated, which 

causes results to be biased, then explanatory variables are caused to have errors due to being 

derived from those efficiency estimates (Simar and Wilson, 2007). 

In order to estimate the technical efficiency of a sample with DEA but without bias, whilst also 

assessing the influence of explanatory variables, Simar and Wilson (2007) introduced a 

double-bootstrap model. This method operates by simulating the sample distribution by 

mimicking the data-generation process (Simões et al. 2010); in this study, 2,000 bootstrap 

samples were generated. The DEA efficiency scores are then re-estimated with the new 

generated data. The difference between the original scores and the estimated frontier from 

the double-bootstrap method shows the amount of bias that would have potentially skewed 

results using other methods.   

Simar and Wilson’s (2007) double-bootstrap method is summarised in the proceeding steps: 

1) apply the standard DEA method to estimate Shepherd’s efficiency score for the WaSCs; 2) 

conduct a truncated normal regression with maximum likelihood method, regressing the 

estimated efficiency scores that are greater than one against the explanatory factors; 3) obtain 

bootstrap samples from the truncated normal distribution of the efficiency estimates; 4) using 

the bootstrap results, calculate the bias-corrected efficiency scores; 5) re-estimate the 

marginal effects of the explanatory factors with the bias-corrected efficiency scores in the 

second-stage regression; 6) apply a second bootstrap based on the empirical distribution on 

the second-stage bias-corrected regression; 7) for each explanatory factor attain 95% 

confidence intervals. The full computational procedure referred to as algorithm 2 in Simar and 

Wilson (2007) is encapsulated below: 



1. Estimate the DEA input-efficiency scores 𝜃𝑗 for all of the water and sewage companies 

in the sample by use of equation 3.  

2. Carry out a truncated maximum likelihood estimation to regress 𝜃 against a set of 

explanatory variables 𝑧𝑗, 𝜃𝑗 = 𝑧𝑗β + 𝜀𝑗, and provide an estimate 𝛽̂ of the coefficient vector 

𝛽 and estimate 𝜎𝜀̂ of 𝜎𝜀, the standard deviation of the residual errors 𝜀𝑗.  

3. For each company 𝑗 (𝑗 = 1, …, 𝑁) repeat the following steps (3.1-3.4) B1 times to obtain 

a set of B1 bootstrap estimates ( 𝜃𝑗𝑏 )̂ for b = 1, …, B1.    

3.1. Generate the residual error 𝜀𝑗 from the normal distribution 𝑁 (0, σε
2̂). 

3.2. Compute 𝜃𝑗
∗ = 𝑧𝑗𝛽̂ + 𝜀𝑗.  

3.3. Generate a pseudo set (𝑥𝑗
∗, 𝑦𝑗

∗) where 𝑥𝑗
∗ = 𝑥𝑗 and 𝑦𝑗

∗ = 𝑦𝑗( 
θ𝑗

θ𝑗
∗).  

3.4. Using the pseudo set (𝑥𝑗
∗, 𝑦𝑗

∗) and equation one, estimate pseudo efficiency 

estimates 𝜃𝑗
∗̂.  

4. Calculate the bias-corrected estimator 𝜃𝑗̂ for each water and sewage company 𝑗 (𝑗 =

1, … , 𝑁) using the bootstrap estimator or the bias 𝑏𝑗̂ where 𝜃𝑗̂ = 𝜃𝑗 − 𝑏𝑗̂ and 𝑏𝑗̂ = 

(
1

𝐵1
  ∑ 𝜃𝑗𝑏

∗̂𝐵1
𝑏=1 ) - 𝜃𝑗. 

5. Use the truncated maximum likelihood estimation to regress 𝜃𝑗̂ on the explanatory 

variables 𝑧𝑗 and provide an estimate 𝛽∗̂ for 𝛽 and an estimate 𝜎 ∗̂ for 𝜎𝜀.  

6. Repeat the following three steps (6.1-6.3) 𝐵2 times to obtain a set of 𝐵2 pairs of 

bootstrap estimates (𝛽𝑗
∗∗̂ ),  (σ𝑗

∗∗̂) for 𝑏 = 1, … , 𝐵2. 

6.1. Generate the residual error 𝜀𝑗 from the normal distribution 𝑁 (0,  σ∗2̂) 

6.2. Calculate 𝜃𝑗
∗∗̂ = 𝑧𝑗𝛽∗̂ + 𝜀𝑗.  

6.3. Use truncated maximum likelihood estimation to regress 𝜃𝑗
∗∗̂ on the explanatory 

variables 𝑧𝑗 and provide as estimate 𝛽∗∗̂
 for 𝛽 and an estimate σ∗∗̂ for σε. 

7. Construct the estimated (1 − 𝛼)%  confidence interval of the 𝑛-th element, 𝛽𝑛 of the 

vector 𝛽, that is [𝐿𝑜𝑤𝑒𝑟𝑎𝑛, 𝑈𝑝𝑝𝑒𝑟𝑎𝑛] = [𝛽𝑛
∗̂ + 𝑎𝑎̂ , 𝛽𝑛

∗̂ −  𝑏𝑎̂] with  



𝑃𝑟𝑜𝑏 (−𝑏𝑎̂ ≤ 𝛽𝑛
∗∗̂ − 𝛽𝑛

∗̂ ≤ 𝑎𝑎̂)  ≈ 1 − 𝑎 

For solving the model, the statistical computing software ‘R’ with the package ‘rDEA’ 

developed by Simm and Besstremyannaya (2016) was used.  

2.2. Analysing operational and rurality correlations 

2.2.1. Water utility data description 

So that water companies can benchmark themselves against each other in the UK, historic 

information about their operations, investment and performance is collated and shared. In the 

interests of transparency, this information is published by WaterUK, in the same format in 

which it was submitted by companies at the end of the 2014/15 financial year and as reported 

to OFWAT. The data shared by WaterUK in 2015 is the sole source for the information utilised 

in the rurality analysis. This information has not necessarily been through the assurance 

procedures and tests that would normally be applied to regulatory performance reporting data. 

Including a mixture of WaSCs and WoCs within the sample could undermine the analysis due 

to their different operations and sizes. This issue is negated in the DEA analyses part of the 

study as just WaSCs were assessed. In order to minimise the impact of mixed operations and 

size in this part of the study, the data were normalised. Where data were reported as financial 

spend and total operation information by each water company, they were normalised against 

numbers of properties connected for that service. i.e. dividing total operation information and 

financial spend by the number of properties connected for water and/or sewage services as 

appropriate. Other already normalised data were left as originally provided. A refined version 

of this data is displayed below in Table 2 to provide a visual example; a full set of the data is 

available in supplementary information.  

Table 2. Refined indicator summary table used in rurality correlation analysis (M = million, S = sewage, GWP = 
Global Warming Potential, STWs = Sewage Treatment Works, 105a sewers = private lines that have become 
owned by water companies, size bands 1-3 = smallest group of treatment works). 

Indicator Metric Average Standard 
deviation 

Minimum Maximum 

Total company 
spend 

£/property connected 
for sewage and water 

205.492 78.741 90.164 372.615 



Number of sewage 
treatment works 

number/M property 
served S 

353.205 240.323 60.941 905.097 

Total length of 
sewers (km) 

m/properties connected 
S 

13.494 1.408 11.399 16.570 

Total length of 
section 105A 
sewers (km) 

m/properties connected 
S 

10.199 1.958 7.005 13.989 

Total load treated 
by all STWs  

kg BOD5/day/M 
properties 

135.224 
 

43.625 59.549 
 

176.891 
 

Total load treated 
by STWs in size 
bands 1-3 

kg BOD5/day/M 
properties 

6,334.695 
 

4,736.725 
 

1,062.269 
 

15,458.511 

Total Company 
GWP 

kgCO2e/property 
connected for water and 
sewage 

154.621 
 

47.101 
 

116.793 
 

273.130 

 

2.2.2. Rurality factor assessment 

Water company operating area boundaries are not made publicly available by regulating 

bodies such as the Environment Agency, Natural Resources Wales or Drinking Water 

Inspectorate, due to complex licencing issues. Water companies may provide geospatial data 

(i.e. their supply boundary polygons) or maps outlining their operations at their discretion. 

Using published data sources (both geospatial and mapped outputs) combined with data 

provided in response to direct requests, the potable and wastewater operational area 

boundaries were georeferenced and digitised (where required) using ESRI ArcGIS 10.4 and 

assembled into an England and Wales coverage. 

The Rural/Urban Classification is an official statistic used to distinguish rural and urban areas. 

The classification defines areas as rural if they are outside settlements with more than 10,000 

resident population. The classification is then further divided via sparsity into whether the area 

is a small town, village, hamlet or conurbation of various extents (Office of National Statistics, 

2013).  

Geospatial data representing the 2011 Census Middle Layer Super Output Area (MLSOA) 

boundary polygons were obtained (in ESRI shapefile format) from the Office of National 

Statistics. The corresponding Rural–Urban Classification (RUC) identifiers for Small Area 



Geographies data were subsequently obtained in tabular form and joined using common 

attributes (the MLSOA identifier codes).  

The water company operational area datasets for potable and wastewater treatment were 

separately geoprocessed using intersection with the RUC MLSOA polygons. The resulting 

intersected dataset related each water company supply area to its constituent rural and urban 

area polygons (Figure 1). The area measures for each of the resulting polygons were re-

calculated to account for any splitting and resizing of individual entities resulting from the 

geoprocessing, and then aggregated to their individual classes nested within each water 

company area using a summary statistical process. The percentages of the constituent 

classes were then calculated (Table 3). 

 

Figure 1. Catchment areas water supply companies in the England and Wales, showing the distribution of rural-

urban classifications within them. 



Table 3. The percentage of water and sewage supply areas of WaSCs and WoCs that fall into the primary 
classification of “rural”. 

Water company 

Water supply 
area: MLOSA 
rural-urban 

Index (% Rural) 

Sewage supply 
area: MLOSA 
rural-urban  

Index (% Rural) 

Total area 
classed as 
rural (%) 

South West Water 91.5 91.7 91.6 

Wessex Water 87.4 80.8 84.1 

Welsh Water 86.9 86.2 86.6 

Anglian Water 86.2 84 85.1 

Essex & Suffolk Water 85.5  85.5 

Cambridge Water 84.4  84.4 

Northumbrian Water 81.3 81.2 81.3 

Yorkshire Water 76.8 74.8 75.8 

Severn Trent Water 75.6 75.2 75.4 

Thames Water 71.8 60.6 66.6 

United Utilities 69.2 69.3 69.3 

South Eastern Water 69  69 

Southern Water 68.7 71.8 70.3 

Bristol Water 68  68 

Bournemouth Water 64.2  64.2 

Affinity Water 57.8  57.8 

Portsmouth Water 55.1  55.1 

South Staffordshire Water 49.1  49.1 

Sutton & East Surrey Water 47.4  47.4 

Essex Water 44.5  44.5 

Dee Valley Water 32.2  32.2 
 

2.2.3. Correlation methodological process  

In order to evaluate if and how rurality affects water utility operations and therefore efficiency, 

regression analysis was undertaken. This was completed by calculating the R2 value of the 

correlation between an operational parameter and the rurality percentage of the companies 

within the sample. The slope and intercept of the linier trendlines were also calculated to 

provide an average baseline from which to benchmark the performance of the utility 

companies assessed.  

3. Results and Discussion 

3.1. Economic efficiency estimate  

The input-orientated Shepherd distance function that is subscribed to here regards efficiency 

scores higher than one as inefficient compared to the frontier, which are those operating at or 



closest to one. The initial DEA model, referred to in Figure 2 as ‘non-bias corrected scores’, 

estimated that seven of the 13 (53.8%) WaSCs are on the efficiency frontier and all have an 

efficiency estimate of one. This means that according this model, those seven companies 

cannot reduce their CAPEX and OPEX inputs, whilst also maintaining their water delivered 

and wastewater treated output levels. The mean efficiency was 1.140 with a standard 

deviation of 0.295. The implication is that an average WaSC can decrease their inputs by 

12.3% (1-1/1.140) and still produce their outputs to the same standard, if they are to perform 

at the same level as the frontier or ‘benchmark’. For a more detailed view of the specific 

efficiency scores, the rank changes, and the confidence intervals, see Supplementary 

Information.  

 

Figure 2. Rankings based on biased standard DEA model and bias-corrected DEA estimates generated with 2,000 
bootstrap iterations for the economic performance of 13 UK and Irish water and sewage companies. 

 

The bias for all WaSCs were zero or negative values, with mean average of bias being -0.116. 

This means the bias correction largely indicates that the sample are less efficient after bias-

correction than in the original DEA model. This is concurrent with other studies (Ananda, 2014; 

See, 2015; Gomez et al. 2017; Molinos-Senate et al. 2018) and the application of the 

technique (Simar and Wilson, 2007).  

The mean average of the efficiency scores of the sample once bias was removed was 1.256. 

These analyses were repeated three times to prove validity and had an average difference of 
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0.22% (range -0.98%-1.29% between the repeats). This result indicated that on average if the 

water companies could perform at the benchmark level they could reduce their financial inputs 

by 19.4%, whilst still maintaining the same levels of service outputs. The range of the sample 

was large, with the most inefficient DMU having an efficiency score of 2.175, whilst the 12th 

most efficient company had a score of 1.431. This result displays that most of the companies 

were close to each other in terms of efficiency, which was expected as the UK has quite a 

mature water sector that has undergone benchmarking and regulation for decades. The result 

also shows that one company was significantly lagging behind its peers and could likely benefit 

from the sharing of best practise.  

The average bias was -0.116 as noted above, which is a small efficiency correction overall, 

but it did have a significant impact on the rank of some WaSCs. For instance, DMU 1 climbed 

from rank eight to three. However, large bias corrections did not necessarily mean large 

changes in rank; for example, DMU 12 had the largest correction of -0.315, only moving it 

down from seven to 11. Collectively, nine of the 13 water utilities within the sample exhibited 

a rank change.  

3.2. Determinants of economic efficiency  

The key advantage of using the double-bootstrap methodology is that it enables a review of 

the determinants of the WaSC efficiency scores by applying a bootstrap truncated regression 

model. The explanatory factors assessed in this study were consumption per capita, 

percentage surface water, leakage and population density; their relationship with efficiency is 

displayed in Table 4. The bias-corrected coefficients with the method used in this study impact 

the efficiency of the water utilities negatively if the value is positive and have a positive effect 

on efficiency scores if the coefficient is negative. A p-value ≤ 0.05 displays that the explanatory 

variable is significant at the 95% significance level, essentially meaning the variable influences 

the efficiency estimates of the WaSCs.  



 Table 4. Results of bootstrap truncated regression for economic efficiency analysis. 

Note: *Statistically significant at the 1%, 5% and 10% levels. 

Percentage surface water abstracted had a significant positive relationship with efficiency (p-

value 0.002). This result was unexpected and goes against what is found elsewhere in the 

literature. Carvalho and Marques (2011) observe mixed results, with a negative influence from 

surface water being observed when it makes up 70-80% and over 95% of a company’s total 

abstraction, but a positive influence between 80-95% and no influence at all below 70%. Whilst 

recent studies that utilise a similar methodology to the one used in this study have found 

insignificant relationships with surface water (Marques et al. 2014; See, 2015; Molinos-Senate 

et al. 2018), the expected results were that if a relationship was shown, it would be negative, 

such as that in Byrnes et al. (2010). The literature suggests that surface water requires 

purification of the water via chemical treatments that are more expensive than those used in 

groundwater treatment (Aubert and Reynaud, 2005; Shih et al., 2006). These costs are 

expected to be higher in surface water despite groundwater typically requiring pumping up to 

the surface, largely as a result of groundwater treatment mostly only being required for 

hardness and salinity (United States Geological Survey, 2016) and partially because some 

groundwater sources are from naturally occurring high pressure aquifers that flow to the 

surface without the need for pumping. It could be the case for UK and Irish companies the 

surface water they abstract is of a reasonably good quality and thus does not require much 

treatment and costs are lower. 

The variable consumption per capita negatively influences the efficiency of the WaSCs to a 

non-significant level. Generally, the literature shows mixed results (Ananda, 2014; De Witte 

and Marques, 2010a; Marques et al., 2014). There is an argument that per capita consumption 

Explanatory variable Bias-corrected 
coefficients 

Standard 
error 

Low High P-Value 

Consumption per 
capita 

0.003 0.004 -0.006 0.010 0.527 

Population density -0.018 0.006 -0.032 -0.009 0.002* 

Leakage 0.029 0.008 0.014 0.044 0.000* 

Surface water % -0.008 0.003 -0.014 -0.004 0.001* 



can affect efficiency scores positively due to links with economies of density (Byrnes et al. 

2010; Carvalho et al. 2012). The indication is that once a distribution pipe network is set up, 

the amount of water actually running through it has minimal costs. The negative relationship 

found in this study may show that companies increase their efficiency via cost reductions as 

opposed to increasing the sale of water as noted by De Witte and Marques (2010a), however, 

the relationship found in this research is weak so any conclusions drawn from it are speculative 

(p-value 0.52).  

As Table 4 illustrates, leakage is significantly negatively associated with efficiency. Logically, 

an increase in leakage should result in lower efficiencies since companies would have to 

extract, treat and pump more water to meet a specific demand. This result is concurrent with 

the overall trend in the literature (Corton and Berg, 2009; See, 2015; Molinos-Senate, 2018). 

Despite this, leakage and its equivalent indicator, non-revenue water, are not always 

conclusive towards causing negative effects on efficiency. Marques et al. (2014) for example, 

concludes that leakage shows no influence on efficiency. Furthermore, Ananda (2014) and 

De Witte and Marques (2010a) show there is a relationship between increased leakage and 

increased efficiency.  

Population density showed a significantly positive relationship with the WaSC efficiency 

scores. This result is consistent with the overwhelming theme of results from other empirical 

studies from various countries (Abbott et al. 2012; Guerrini et al. 2013; Marques et al. 2014; 

Ananda, 2014; See, 2015; Molinos-Senate et al., 2018). The relationship between population 

density and efficiency is thought to be related to economy of densities (Byrnes et al. 2010; 

García-Sánchez, 2006). Essentially this means there is less network to install and maintain 

per population of customers, meaning fewer resource inputs per service output and therefore 

higher efficiency. Though these results concur with much of the literature, some studies still 

show up no significant relationship (Marques et al., 2014). Population density has particular 

relevance in this sample of UK and Ireland WaSCs. The water utilities compared operate in 

areas with a range of population densities, from 42 to 106 people/km2, meaning certain 



companies have natural advantages or disadvantages in relation to each other. This should 

be taken into account when it comes to regulation and benchmarking to ensure fairer 

evaluations of performance. The un-level efficiency playing field created by population density 

has considerable implications for water company competitiveness and long-term viability, and 

is one of the key reasons that rurality/urbanity have been further investigated in this study 

(Section 3.5). 

3.3. Environmental efficiency estimate 

The results from the standard DEA model referred to in Figure 3 under ‘non-bias corrected 

score’, estimated that five of the 12 (41.6%) WaSCs are on the efficiency frontier and have an 

efficiency estimate of one. The mean efficiency was 1.096 with a standard deviation of 0.159. 

The average WaSC can decrease their carbon inputs by 8.8% (1-1/1.096) and still theoretically 

produce their water delivery and wastewater treatment outputs to the same standard, if they 

are to perform at the same level as their peers who operate at the frontier. As with section 3.1, 

more information on efficiency scores is available in supplementary information.  

 

Figure 3. Rankings based on biased standard DEA model and bias-corrected DEA estimates generated with 2,000 
bootstrap iterations for the environmental performance of 12 UK water and sewage companies. 
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The bias for all WaSCs were negative values, with -0.122 being the mean average of bias. As 

referred to in section 3.1, the double-bootstrap DEA results were expected to display a drop 

in efficiency within the sample. Similar to the economic efficiency analysis above, the average 

bias was small but again it did affect how the companies were ranked. Eight out of 12 DMUs 

within this sample experienced a ranking change and in total, there was 15 ranking place 

movements even in this small sample.   

The average environmental efficiency score once bias was removed was 1.219; this analysis 

was repeated three times and displayed an average difference of 0.22% (range -0.98%-1.29% 

between the repeats). The average corrected efficiency score means on average if the WaSCs 

could perform at the frontier, they could reduce their carbon inputs by 15.8%, whilst still 

maintaining the same levels of outputs. There were no significant outliers in efficiency 

however, the range from 1.026-1.765 combined with the clustering of the top four performing 

companies (1.026-1.082), indicated that a handful of companies are leading the way in terms 

of carbon efficiency, and could be exemplars for various best practice techniques.   

3.4. Determinants of environmental efficiency estimate 

The explanatory factors assessed in the carbon efficiency analysis were the same as those 

evaluated for economic efficiency; consumption per capita, percentage surface water, leakage 

and population density. As noted in section 3.2, the bias-corrected coefficients for the 

explanatory variables (displayed in Table 5) are deemed to positively affect efficiency if their 

values are negative and adversely affect efficiency if their values are positive.  

Table 5. Results of bootstrap truncated regression for environmental efficiency analysis. 

Explanatory variable Bias-
corrected 

coefficients  

Standard 
error 

Low High P-Value 

Consumption per capita 0.013 0.005 0.005 0.024 0.008* 

Population density -0.018 0.005 -0.030 -0.009 0.001* 

Leakage 0.003 0.014 -0.024 0.031 0.867 

Surface water % -0.006 0.003 -0.012 -0.002 0.013* 



 Note: *Statistically significant at the 1%, 5% and 10% levels.  

 

Consumption per capita was shown to significantly negatively influence carbon efficiency. This 

result matches the direction of effect on efficiency that was found in the economic analysis. 

The belief is that the more water each person consumes, the more treatment and energy is 

required, which are key sources of carbon. This relationship, like that in the economic analysis, 

is subject to economies of density, therefore it was not expected to necessarily show 

significance.  

The percentage of surface water abstracted shows the same result as for the economic 

analysis, positively affecting efficiency to a significant degree. This is likely to be a result of 

lower electricity demand compared to groundwater pumping. Similar to the economic 

efficiency, the increased treatment usually reported for surface water may not be the case in 

the UK and Ireland, therefore there is a concurrent saving in carbon costs.   

Population density, like surface water percentage, matched the results from the economic 

analysis. This was expected due to economies of density yielding naturally more efficient use 

of resources, as discussed in section 3.2. More pumping is required if populations are spread 

over a large area, as well as more infrastructure such as piping and treatment works to support 

those populations, which have large amounts of embodied carbon within them.  

The result for leakage however diverged between environmental and economic efficiency 

analyses, with a non-significant relationship shown for environmental efficiency. The 

anticipated result was that as leakage went up, so would carbon due to more pumping and 

therefore more energy being required. A possible cause of this result may be that capital 

projects into lowering leakage rates may have been carbon intensive, therefore the 

relationship over a one year snapshot is not truly representative and companies who have not 

invested and thus have lower carbon emissions but higher leakage rates, appear to be 

performing better.  

3.5. The role of rurality 



3.5.1. Correlation results 

Regression analysis was conducted on England and Wales water utilities, with a split of 10 

WaSCs and 11 WoCs. The R2 values closer to one indicate a stronger relationship between 

rurality and the displayed parameter. Table 6 displays the top regressions from the analysis; 

the total analysis results are available in supplementary information. The table displays the R2 

results, slope and intercept related to the parameter’s relationship with rurality. The 

parameters contain data from varying areas including: economic costs, scale information, 

environmental performance and emissions, which are all normalised by properties connected.  

To make it easier to identify where a linear correlation is more likely, Table 6 has been sorted 

in terms of R2 values.  

Table 6. Rurality relationship with economic cost, global warming potential, scale information, and environmental 
performance data normalised by property connected for that service (M = million, S = Sewage, W = Water, GWP 
= Global Warming Potential, STWs = Sewage Treatment Works, size bands 1-3 = smallest group of treatment 
works). 

Indicator Unit R2 Slope Intercept 
Number of sewage 
treatment works 

number/M property served 
S 

0.823 24.008 -1508.887 

Total load treated by 
STWs in size bands 1-3 

kg BOD5/day/M properties 0.792 -5.139 533.304 

Total company spend £/property connected for 
S&W 

0.633 4.035 -69.813 

Properties flooded in the 
year 

other causes/M properties 0.544 -5.139 533.304 

GWP of sewage 
treatment 

kgCO2e /property 
connected for sewage 

0.508 0.880 -21.657 

Total company GWP kgCO2e /property 
connected for water and 
sewage 

0.485 3.890 -150.956 

Spend on sewage 
treatment 

£/property connected for S 0.471 1.632 -42.806 

Sewage sub-total GWP kgCO2e /property 
connected for sewage 

0.466 2.048 -68.807 

GWP of sewage 
collection 

kgCO2e /property 
connected for sewage 

0.460 1.041 -46.813 

Water sub-total GWP kgCO2e /property 
connected for water 

0.427 1.450 -17.841 

Employee total number/M properties 
connected W+S 

0.407 8.620 717.109 

 

The highest R2 value from the economic data is for total company spend per property 

connected (0.633), indicating that as rurality percentage increases, so does the spending of 



the water companies. This direction of relationship is concurrent with the population density 

results from section 3.2, although the strengths vary. This highlights how population density is 

a reasonable ‘crude’ indicator to use to gauge rurality/urbanity but other methods such as the 

one used here, may be more accurate.  

Concerning scale information and assets one of the most striking correlations found in this 

study was that of rurality against number of sewage treatment works (STWs) with an R2 of 

0.823 for a linear trendline and 0.963 for an exponential one (shown in Figure 4). This was 

reflected in the largest correlated indicator within the environmental performance information, 

which is total load treated by STWs in size bands 1-3 (0.792), signifying that a large number 

of smaller size treatment plants are distributed across more rural areas. According to these 

results, dispersed small treatment works are the key driver behind rurality causing economic 

inefficiencies across water companies. This makes sense, as economies of scale are well 

documented for wastewater treatment in terms of infrastructure, maintenance, energy and 

chemical costs (Libralato et al. 2012). The correlations described above go some way in 

explaining the correlations found with economic factors against the percentage rural index, 

such as marginal correlations in spend on sewage treatment (0.471). Future research could 

evaluate solutions to this, for example, assessing whether it is more financially viable within 

certain areas to use more extensive piping and pumping networks to move the sewage to 

larger treatment plants. 



  
Figure 4. The correlation between percentage of catchment being rural and the number of sewage treatment works 
normalised by million properties served for sewage, with an exponential trendline. 

 

A more minor potential impact that rurality induces on companies appeared to be an increase 

in the number of employees (R2 0.407). The number of employees may actually be at least 

partially a result of the increased number of sewage treatment works too; further emphasizing 

the impact of rurality appears to be largely resulting from dispersed wastewater treatment.  

The R2 results for emissions that display relationships were carbon equivalent of sewage 

treatment (0.508), total company carbon equivalent (0.485), sewage sub-total carbon 

equivalent (0.466), carbon equivalent of sewage collection (0.460) and water sub-total carbon 

equivalent (0.427). These trends concur with the economic regressions to a lesser extent, 

which further shows how rurality leads to inefficiencies, particularly within sewage operations. 

This effect of rurality on efficiency matches that of Gibson’s (2017) who presented the effect 

of remoteness, measured in “travel time to significant city”, and correlated this with a “water 

service provider performance index”. Their research stated, “remoteness from a commercial 

centre clearly has a significant impact on performance”.   

Our results emphasise the important exogenous influence of rurality on water company 

efficiency, which needs to be taken into consideration when benchmarking. Doing so would 
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enable companies to more accurately ascertain their scope for improvement, and to identify 

priority aspects to drive this improvement (e.g. by clarifying best practice). NGOs could use 

these techniques to more reliably evaluate best and worst performers within the sector, whilst 

regulators could define more rigorous performance targets for urban water companies and 

adjust targets for rural companies to account for exogenous factors.  

3.5.2. Methodology appraisal 

In terms of methodology, the framework presented here provides a powerful tool to benchmark 

among companies where exogenous factors may influence spend or performance. Our 

approach may be preferential to methods that use clustering of similar company attributes 

where a decision has to be made whether to include borderline data in one or another cluster, 

this method instead provides a “sliding scale” to make individual benchmark cases. 

The same methodology was also applied to the operating catchments of one water authority, 

and similar trends where found, although with fewer data points. That exercise highlighted 

another use for the method within companies, in aiding a more holistic approach to regional 

budgeting or how operational areas are drawn, especially concerning sewage treatment and 

collection. 

The influence of topography was also studied within one operation catchment by means of the 

Melton Ruggedness Number and a 3D Analyst 2D area; however, no notable correlation was 

found for that study. However, the influence of topography on water company efficiency may 

merit further investigation.  

4. Conclusions 

The aims of this paper were to utilise a double-bootstrap Data Envelopment Analysis (DEA) 

method to compare unbiased environmental and economic efficiency across water 

companies, and to explore factors influencing these efficiencies, including the specific role of 

rurality. There are four main conclusions to draw from this work. Firstly, the results show that 

the average company could reduce their economic inputs by 19.4% and carbon emissions by 



15.8% by stepping up to the efficiency frontier. Thus, we demonstrate that there is 

considerable scope for improvement in economic and environmental efficiency across water 

companies if they adopt the practises of the top performers. Secondly, bias-correction of DEA 

results using the double-bootstrap method changed performance rankings for nine companies 

in the economic evaluation and eight companies in the environmental evaluation. We propose 

that such bias correction is vital to undertake accurate benchmarking across water companies. 

Thirdly, the study identified important factors influencing efficiency. Surface water sourcing 

was significantly positively associated with economic and environmental efficiency (p-values 

0.001, 0.013) as was population density (p-values 0.002, 0.001). These exogenous factors 

are beyond the control of water companies, and thus need to be corrected for when 

benchmarking. Water consumption per capita displayed a negative association with 

environmental efficiency (p-value 0.008); whilst leakage rate showed a negative effect on 

economic efficiency (p-value (0.000). These factors are at least somewhat within the control 

of water companies, and should be prioritised to improve efficiency. The fourth conclusion of 

this study is that the degree of catchment rurality significantly influences the efficiency of water 

service companies. More rural catchments are associated with higher water company total 

spend and higher greenhouse gas emissions per property connected is (R2 of 0.633 and 

0.485). Operational data correlations suggest that this is a consequence of a greater number 

of smaller decentralised sewage treatment works in more rural areas (R2 of 0.823 for number 

of treatment works, R2 of 0.792 for small treatment works). It is clear that exogenous factors 

such as rurality play a significant role in determining the apparent efficiency of water service 

company operations, and thus benchmarking should be adjusted to reflect this non-level 

playing field. Future research and development supporting more efficient water services 

should focus on how to mitigate the resource burdens associated with larger numbers of 

smaller sewage treatment plants in rural areas.  
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