
The University of Akron The University of Akron

IdeaExchange@UAkron IdeaExchange@UAkron

Williams Honors College, Honors Research
Projects

The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2021

Hard Hat Ambient Liability Observer (HALO) Hard Hat Ambient Liability Observer (HALO)

Hunter Hykes
The University of Akron

Nathan Kish
The University of Akron

Brian Thomson
The University of Akron

Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

 Part of the Electrical and Electronics Commons, Power and Energy Commons, Signal Processing

Commons, Systems and Communications Commons, and the VLSI and Circuits, Embedded and Hardware

Systems Commons

Please take a moment to share how this work helps you through this survey. Your feedback will

be important as we plan further development of our repository.

Recommended Citation Recommended Citation
Hykes, Hunter; Kish, Nathan; and Thomson, Brian, "Hard Hat Ambient Liability Observer (HALO)"
(2021). Williams Honors College, Honors Research Projects. 1329.
https://ideaexchange.uakron.edu/honors_research_projects/1329

This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela
S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University
of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College,
Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more
information, please contact mjon@uakron.edu, uapress@uakron.edu.

https://ideaexchange.uakron.edu/
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/1329
https://ideaexchange.uakron.edu/honors_research_projects/1329?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Hard Hat Ambient Liability Observer (H.A.L.O.)

Senior Project Final Report

DT04

Hunter Hykes

Nathan Kish

Brian Thomson

Nicklaus Walsh

Dr. French

4/23/2021

1

Table of Contents

Section 0 Abstract ..5

Section 1 Problem statement ...5

1.1 Needs ..5

1.2 Objective ..6

1.3 Background ..6

1.4 Marketing Requirements ..12

Section 2 Engineering Analysis ...13

2.1 Circuit ...13

2.2 Electronics ..13

Section 3 Engineering Requirements Specification ..18

Section 4 Engineering Standards Specification ...20

4.1 Safety ..20

4.2 Communication - I2C and SPI ...20

4.3 Programming Languages ..21

4.4 Connector Standards ..21

Section 5 Accepted Technical Design ...21

5.1 Hardware Design ..21

5.2 Software Design ...41

5.3 Final Design Images ...57

5.4 Testing and Demonstrations ...59

Section 6 Mechanical Sketch of System ...67

Section 7 Team Information ...69

Section 8 Parts List ..70

Section 9 Project Schedule .. 71

Section 10 Conclusions and Recommendations .. 82

Section 11 References .. 84

Section 12 Appendices and Data Sheets... 86

Appendix A: System Code ...86

Appendix B: Datasheets ...132

Appendix C: Parts Order Forms ...147

2

List of Figures

Figure 1: Power System Circuit Schematic ...13

Figure 2: Block Diagram Level 0 ..22

Figure 3: Block Diagram Level 1: Time-of-Flight Subsystem ...23

Figure 4: Block Diagram Level 1: Accelerometer Subsystem ...25

Figure 5: Block Diagram Level 1: Processor Subsystem ...26

Figure 6: Block Diagram Level 1: LED Subsystem ..27

Figure 7: Block Diagram Level 1: SD Card Subsystem ...28

Figure 8: Block Diagram Level 1: Power Subsystem ...29

Figure 9: Block Diagram Level 2: Overall System ...31

Figure 10: LTspice Schematic of Full Power Circuit ...32

Figure 11: LTspice Schematic of Charging Circuit ..33

Figure 12: LTspice Schematic of Buck-Boost Converter ...33

Figure 13: LTspice Waveform of Power Circuit ..34

Figure 14: Eagle Accelerometer Schematic ...35

Figure 15: Eagle SD Card Schematic ...36

Figure 16: Eagle RGB LED Schematic ..37

Figure 17: Eagle Processor Schematic ...38

Figure 18: Eagle Charging Circuit Schematic ..39

Figure 19: Eagle Converter Circuit Schematic ...40

Figure 20: Eagle Time-of-Flight Schematic ...41

Figure 21: Micro-SD Card Write Functionality ...43

Figure 22: HALO Main Board Schematic-Processor and SD ...44

Figure 23: HALO Main Board Schematic-Peripherals ..45

Figure 24: HALO Time-of-Flight Board Schematic ...46

Figure 25: HALO RGB LED Board Schematic ..46

Figure 26: Accelerometer Configuration ...47

Figure 27: Accelerometer Data Acquisition ..48

Figure 28: Time-of-Flight Functions ..49

Figure 29: Time-of-Flight Configuration...49

Figure 30: Time-of-Flight Data Acquisition ..50

3

Figure 31: Time-of-Flight Data Acquisition ..51

Figure 32: getNearestObstacleIndex() ...52

Figure 33: showDistanceRGB() ..53

Figure 34: Software Design Flowchart ..54

Figure 35: SD Card State Diagram ..56

Figure 36: LED State Diagram ...56

Figure 37: Frontal View of Housing Unit, ToF Sensors and LEDs ...57

Figure 38: Detached Housing Unit ...57

Figure 39: Main Board Front ...58

Figure 40: Main Board Back ..58

Figure 41: Time-of-Flight and LED Boards ..58

Figure 42: LED and ToF Right Side Green...59

Figure 43: LED and ToF Right Side Red ..60

Figure 44: LED and ToF Left Side Green ...60

Figure 45: LED and ToF Left Side Red ...61

Figure 46: LED and ToF Front Red ..61

Figure 47: LED and ToF Front Blue..61

Figure 48: LED and ToF Max Distance Test ..62

Figure 49: LED and ToF Max Distance 49 inches (~1245mm)..62

Figure 50: Initial Voltage Before Discharge ..63

Figure 51: Final Voltage After 8 Hours ...64

Figure 52: Mechanical Sketch of System (Overall) ..67

Figure 53: Mechanical Sketch of System (Rear View) ...68

Figure 54: Mechanical Sketch of System (Front View) ..69

List of Tables

Table 1: Engineering Requirements...18

Table 2: Safety Standards ...20

Table 3: Communication Protocols ..20

Table 4: Connector Standards ..21

Table 5: Functional Requirements ...22

4

Table 6: Processor Functionality ..24

Table 7: Accelerometer Functionality ..25

Table 8: Time-of-Flight Functionality ...27

Table 9: LED Functionality ..28

Table 10: SD Card Functionality..29

Table 11: Power System Functionality ..30

Table 12: Overall System Functionality ..31

Table 13: SPI Functionality ..55

Table 14: I2C Functionality ..55

Table 15: Discharge Testing Results ...64

Table 16: Recharge Testing Results ..65

Table 17: Main Board Bill of Materials ..70

5

0.) Abstract.

Capturing workplace incident information is a growing area of concern for most companies.

To assist with this, the design team proposed the H.A.L.O. This design uses time-of-flight

sensors connected to LEDs to create a proximity-based hazard warning system. It also records

incident data using an accelerometer and micro-SD card. This helps workers avoid some of the

most common workplace injuries, slips, trips, and falls and accidental collisions.

Students have created a design with engineering, and marketing requirements that

accomplish this task. The proposed design allows for this monitoring and mitigation systems to

be attached to hard hats. Team members developed software and hardware subsystems to fit on

any hardhat without hindering worker safety.

The completed design uses the systems listed above register hazardous objects within 1.5m

and color shifts depending on distance. Within the 150-degree FOV, any objects approaching the

device are registered. In case of a possible concussive event, collision data writes to a SD card

for use during an incident investigation. After a semester of development and integration, the

H.A.L.O. system met the engineering requirements to assist with preventing workplace injury in

a cost-effective manner. -NK

1.) Problem Statement.

1.1 Need.

Incident information in the workplace is difficult to capture due to the unpredictable nature

of accidents. TapRoot, which is a method for identifying and correcting the root causes of an

accident, and investigation analysis can only eliminate causal factors when understood and

documented. Presently, reports come from firsthand accounts without numerical backing. With

slips trips and falls, being 26.6% of workplace injuries, and another 23.3% being accidental

6

collision with objects in 2018, prevention and data collection are the best methods to create a safe

workspace.

-NK

 1.2 Objective.

A device that can assist with incident prevention and document occurrences provides a

safer working environment for everyone. The team’s objective is to create a device attachable to

a standard hardhat to provide enhanced sensory feedback, log sensor data related to the working

environment, and record incident data. This provides a means to both prevent and more

accurately document incidents.

-HH, NW

1.3 Background.

The basic theory behind the concept of a smart, hard hat attachment is to increase the

amount of information gleaned from an incident or accident in the workplace, specifically those

in construction. Worker safety is an essential aspect of any industry, especially in dangerous

fields such as construction and manufacturing. In most manufacturing facilities and construction

sites, reporting an incident or an accident is rudimentary nonexistent at worst. Most reporting

systems rely on the memory of the worker or a witness to describe the incident, leading to an

often unreliable and unhelpful report. These reports will often not include crucial information

such as the conditions when the accident took place, the exact location at which the accident

occurred, or whether workers followed OSHA regulations. Without this crucial data, these

accidents are likely to happen again, putting more workers in harm’s way unnecessarily.

-BT

7

The team plans to resolve this issue using data collection and real-time monitoring of the

user’s surroundings using various sensors. Time-of-flight sensors will provide the individual

wearing the helmet with a visual indication of hazards at the head level within some pre-

specified range to help prevent accidental collisions to the head. A data logging system will use a

micro SD card via an SPI interface to record relevant data, with assistance by a real-time clock

module (Veeramani Kandasamy) to provide relevant timestamps when the incident occurred.

These readings could then locate and address the source of these abnormalities, making it much

easier to correct any infraction or spill.

In the unfortunate scenario in which the wearer suffers injury, specifically a collision to

the head because of an unseen hazard or from a fall, an accelerometer measures the severity of

the impact. This will provide relevant information regarding what medical treatment the victim

should undergo, specifically focusing on the possibility of a concussion. One study conducted on

concussions using helmeted devices in various sports shows that multiple accelerometers would

provide more accurate data (O’Connor). Because of the shape of the team’s initially proposed

design, more accelerometers are available.

-HH

 Time-of-flight sensors work “by illuminating the scene with a modulated light source and

observing the reflected light. The phase shift between the illumination and the reflection is

measured and translated to distance” (Li). This means that these sensors can sense the distance of

the nearest object in their line of sight. By positioning three sensors on a helmet, it will be

possible to detect any hazards that may come close to the individual’s head and provide visual

sign via a set of RGB LEDs. These LEDs are a commonplace component in modern electronics

8

and can produce a variety of different colors from a ‘single’ RGB LED, which is three LEDs

(one red, one green, and one blue) within a close distance to each other on one component. It will

use this feature to show how close a hazard is to the wearer’s head by changing color as

obstacles get closer.

-HH

 Accelerometers are sensors that “measure the physical acceleration experienced by an

object because of inertial forces or mechanical excitation” (Accelerometer Theory & Design). In

aerospace applications, these sensors with gyroscopes for navigational and flight control

purposes are widespread. In short, accelerometers act as a damped object of mass on a spring,

therefore, when there is acceleration mass displaces, and it measures the displacement. Adding

one to the helmet allows investigators to view the acceleration data of workers wearing the

helmet after an incident. This will allow for a better determination of medical treatment.

-NW

 Ambient Light Sensors (ALS) monitors and measures the level of ambient lighting

surrounding the sensor. These devices primarily detect the amount of visible light surrounding

the sensor. However, infrared and ultraviolet light can skew the readings of the sensor, as it does

not limit the sensor to the bandwidth of the human eye. To remedy this, this sensor can also filter

out infrared and ultraviolet light as to give a more accurate reading (Ambient Light Sensor (ALS)

Applications in Portable Electronics). This sensor allows a safety inspector to see the lighting

conditions at the scene of an incident or accident. This will help safety inspectors to find the root

cause of an accident and will help them prevent a similar incident or accident from occurring

9

again. After considerations of cost, complexity, and the lack of necessity, the team removed ALS

sensors from the device design.

-BT

The goals of this safety device are to record all the pertinent data relating to an incident

or accident without impeding the worker, and to be an affordable alternative to other solutions

currently on the market. This device design fits around the top of any hardhat with a few built in

clips that fit onto the rim of the hardhat. This device will be low-profile and lightweight, as to

perform all its tasks without impeding the worker. Along with that, this device will contain a

battery cell that will last an entire workday on a single charge, removing the need for the worker

to worry about battery levels during the workday. This device is rather simple as far as

components go, as it only uses low-cost components such as a battery, a microprocessor, an

accelerometer, a micro SD card slot, a micro USB port, a plastic band, a light sensor, and a few

RGB LEDs, so the cost per unit will be low (less than $80). This device will also allow

supervisors to check for adherence to OSHA guidelines. Failing to comply with OSHA

guidelines is a driving factor in many accidents. According to the Commonly used Statistics page

on the Occupational Safety and Hazard Administration’s webpage, the top causes of worksite

fatalities are falls and being struck by an object, both of which are preventable, following proper

safety standards. This device uses a combination of monitoring and recording to ensure workers

create more safe working environments.

-BT

10

There are a few variations of “smart hard hats” in existence, many of which focus on

monitoring the wearer of the device with features such as heart-rate sensors, GPS, Wi-Fi

reporting of data, and map navigation of a site. Of these existing designs, many are permanent

fixtures on the hardhat themselves, limiting the number of devices used to a specific set of

individuals. Although the features of these designs are convenient, the modules are quite costly

for the information they provide. Something else to consider is that GPS and Wi-Fi features have

limited usefulness to specific types of worksites. Power plants and similar facilities are typically

multiple story indoor facilities constructed out of metal—yielding any GPS features useless.

Wireless communications at such sites are typically restricted or prohibited for security reasons.

For these reasons, the team elected to log data via a micro-SD card to avoid these unnecessary

and power-hungry modules.

-HH

Issues with limitations for the existing designs available arise since there are no similar

designs. Other designs to the hard hat and non-removable. This strays from the team’s design

and is costly to implement. Once a hard hat is no longer usable, workers must replace the

complete system. (Temperature Measurement Inside Protective Headgear). One device that

seems like our design, being an in-hat temperature sensor to prevent heat-related illnesses for

workers in the field, has the limitations of needing to be inside the hat. Other designs like that of

the in-helmet temperature sensor require the devices fixed to the helmet making repair or even

powering the system difficult (Temperature Measurement Inside Protective Headgear). The

team’s design however is an attachment to the outside of the helmet and can detach from the

11

helmet. This design being easily detachable from the helmet makes the repair of the system and

the recharging for batteries of the device a smoother, easier task to perform.

-NW

The present designs found and listed in the patent references; current systems focus more

on passive data tracking rather than incident prevention. The passive data tracking that most

current designs are tracking is location, whether the user is wearing the helmet, and the activity

of the worker based on their movement. This is good information, but costly, and overbearing for

every worker on a site. Rather than a focus on the activity of the worker, this design is based

around the safety of said worker. Also, other designs focus on the use of augmented reality

assistance with communications capabilities (Hard Hat with Additional Technical Features). The

design concept instead focuses on recording or eliminating the possibility of accidents occurring

by using time-of-flight sensors, light sensors, and accelerometers. Present designs integrate the

system onto the helmet for each device. As mentioned previously, a fundamental difference is

that that design being created is removable. Discarding compromised helmets is possible with

this design, making it better than current models.

-NK

 The recording of data is the greatest design similarity to modern iterations of smart

helmets. As mentioned, current systems also use removable SD cards that record the information

desired. Many existing designs use real-time readings for location and other sensory details

centered on worker output. Although both designs share the similarity of utilizing this

technology, the designed system has focus on incident mitigation. The real time signals being

12

used in this design are time-of-flight readings that connect to LEDs. Alongside the time-of-flight

sensors, accelerometer data assists with safety precaution and reporting.

 There is a lot of research around smart hard hats. The usage of several real time sensors is

already in existence, which is like the concept being designed. However, the systems already in

use and patented center on the addition of augmented reality and monitoring of worker

effectiveness. Some other systems are focusing on the usage of closed-circuit camera monitoring

and communication systems/ subsystems for real-time interactions and direction of workers

(Smart Helmet). These are relevant as they use similar technology to monitor these data points,

but the overall system has different goals. The addition of these systems and subsystems also

increases complexity and affordability of the incident monitoring system being proposed. In

preliminary research, there were no designs that focused on incident prevention and risk

management in a cost-effective manner like the design being proposed.

-NK

1.4 Marketing Requirements.

1.) The device assists with prevention of collision with objects in the working environment.

2.) The system will record impacts above a determined threshold for incident monitoring.

3.) The System is portable and rechargeable.

4.) The system will have a workday battery life of 8 hours.

5.) The system will detect objects in the user’s field of vision using sensors.

6.) Does not change a standard hard hat’s integrity.

- NK

13

2.) Engineering Analysis.

2.1 Circuit.

Figure 1.) Power System Circuit Schematic.

2.2 Electronics.

Time-of-Flight Sensors:

For monitoring, there were two possibilities for distance sensors. IR triangulation was the

first method researched for potential sensors. IR triangulation has benefits such as being

compact, lightweight, and capable of detecting objects in real-time with a wide range of view.

However, despite their ability to detect objects in real time, and a wide field of view on most

models, they do not capture objects moving at a high speed. Their refresh rate is lower than other

possibilities, making them less accurate at shorter distances. Also, part of the issue is the

inability to use them in unison with other sensors. They provide less reliable measurements when

used in conjunction. The intention of this design is not to detect high-speed objects moving

towards the sensors in this aspect. The design requirements focus on detecting overhead objects

in a predetermined FOV around the design, assisting with hazard detection.

The second sensors examined for this project were IR time-of-flight sensors. They use IR

LEDs like the previously explored option. However, these use the sensors with a higher

14

transmission and reception time, a better distance detection limit, and better refresh rate. Some

models explored were capable of refresh rates around 160 frames per second. A refresh rate that

high is perfect for real time situations and with a fixed FOV, time-of-flight sensors were by far

the best avenue for detections based on design requirements. -NK

A time-of-flight sensor uses infrared light to determine depth information. By emitting a

pulse of infrared light and observing the reflected light pulse, the sensor can make a conclusion

about the distance to the object light reflected from. The speed of light being approximately

300,000,000 m/s allows for readings taken in very little time. For reference, detecting an object

approximately 100m away from the sensor would take 660ns. -HH

Accelerometer:

The team will use an accelerometer to measure incident data. This is because of the

component’s ability to track tilt and angular changes, force and acceleration over time, and

collisions. It does this via a combination of a spring, damper, and a mass. A displacement sensor

is in the system to measure the mass movement relative to its attachment point. This tracks the

inertial forces on the mass. It compensates these forces with the springs and damper. The tension

from the combination of these two attachments keeps the mass in stasis to record.

With this system in place, when a collision occurs, a sensor on the accelerometer then

calculates the displacement of the mass. This converts into measurements for acceleration (m/s2).

With this data from the accelerometer, the second order response forms regarding displacement

over time.

The system designed for incident recording uses an accelerometer that can track this

response for plotting. As for how the data is captured by the accelerometer, capacitance is the

15

main method. In explored designs, the accelerometer has capacitor plates that attach to the mass.

When the mass moves, and the capacitor plates, the capacitance does. Modern accelerometers

have circuitry that takes this capacitance difference into account and presents an output voltage

that represents the desired data.

-NK

Concussion Analysis:

The most common form of head injury is a concussion. A concussion occurs when the

head sustains a significant impact or blow that creates a chemical imbalance or physical damage

within the brain. According to research by Kevin Guskiewicz, director of the Carolina’s Sports

Medicine Research Laboratory at UNC, concussions can result from impacts of 60g of force or

more. As concussions are the most common form of workplace head injuries, it is important that

workers are adequately protected from falling objects and falls. In many industries, the solution

for this is to wear a hard hat. They design hard hats to mitigate the impact of falling objects or

contact with the ground during a fall. The Occupational Safety and Health Administration

(OSHA) requires employers with ten or more employees to keep a record of serious work-related

injuries, concussions included. As stated above, the current methods in many workplaces around

the country are rudimentary and non-existent at worst. -BT

LEDs Component Analysis:

The need for a lighting-based warning system on the helmet led to the choice to use

LEDs. A simple setup of three LEDs, that are receiving signals from the time-of-flight sensor

and processor, is sufficient. The team decided this using two methods of reasoning, operation

hours, and power efficiency. Despite more upfront cost for the bulbs, on average LEDs have an

average rated life of roughly 50,000 hours which can be up to 50 times longer than incandescent

16

bulbs. LEDs also have a longer lifespan than CFLs and Halogens. The second reasoning behind

picking LEDs is because of their efficiency with power consumption compared to other bulbs.

On average, based on information from the department of energy, to produce a similar

luminosity to other designs, LEDs consume 75% less power. This decision weighed heavily on

the choice of component because of the powering requirements of the system.

The main reason that LEDs are so efficient with energy is because of their composition.

An LED emits light when it is forward biased, and it applies a voltage across the junction. In the

proposed design, the 3.3V signal from the processor comes from the time-of-flight sensor. As

LEDs are a PN junction, the light forms when energy releases when holes and electrons combine

at the junction, allowing current to flow. This is a much more energy efficient process than using

filaments or halogen bulbs that burn out after a thousand hours of operation. Another important

aspect of the design of the diode is their ability to change color based on the input signal. An

orange or yellow light emits at a wavelength of 590 to 610 nanometers when the LED receives a

signal of 2 (V) at 20 (mA). A red light radiates from most LEDs at a frequency of 610 to 760

nanometers when applied with a 1.6 to 2 (V) signal at (20 mA). The efficiency and ability for the

input signal to change color of the diode will assist in the goal of avoiding hazards in proximity

of the time-of-flight sensors.

-NK

Power Analysis:

The system should have a 3.7V DC lithium battery and hold a charge for a minimum 8-

hour workday. The battery charges using a 5V DC Micro-USB charger. Based on spec sheets for

potential processors, their consumption comes at an average of 150 to 200 (mA). The (ToF)

time-of-flight sensors has an average consumption of 18 (mA) per sensor. Six ToF sensors

17

combine for the expected average consumption of 108 (mA). The consumption of accelerometer

specs is roughly 140 (μA). For the LEDs, each individual LED consumes on average 45 (mA)

when activated with either the red or green diodes. A max consumption of power for the LEDs

would be 135 (mA) with all three LEDs on. However, all three LEDs will probably not be on,

since the ToF sensors spread apart at equal angles and don’t link to each light. At most, expected

consumption for the LEDs is 90 (mA). Taking the analysis for power consumption of all the

components of the device, a total mA requirement is just below 400 (mA).

With an expected operation time of 8 hours, the battery required is (8hrs)* (400mA) =

3200 (mAh) Since the system is being converted from a 3.7V battery to a 3.3V system, the power

consumption steps down to ((3.3V/3.7V)*3200mAh). This consumption is then 2854 (mAh).

With the 168 (mAh) loss from the DC to DC converter over an eight-hour period and other

minor losses in mind, a battery of 3200 (mAh) is necessary. The power losses of the charging

circuit are irrelevant, as that circuit does not draw any power from the battery. In practicality, the

consumption of these components is much lower, so these calculations are max estimates of the

power consumption in the absolute worst-case scenario.

The power system charges with a 5VDC Micro-USB cable. This will allow for a simpler

design for the charging circuit, as Micro-USB charging circuits are already on the market and are

cheap and easy to use. These charging circuits are also simple to integrate into a larger circuit, so

they will work perfectly for our intended application. This will also allow for easy charging. If

the charging process is easy and self-explanatory for the user, they will be more likely to charge

the device. If the charging process is cumbersome or complicated, workers will be less likely to

charge the devices. The team selected a design to run for a minimum of 8 hours. This accounts

for a normal workday time frame. Using a 5VDC Micro-USB cable will also allow for cheap and

18

easy installation for the employers setting up charging stations for these devices. Micro-USB

cables are easy to install. Therefore, designing the charging circuit to use a 5VDC Micro-USB

cable will benefit us as the designers, the workers, and the employers alike.

One concern with using a 3200mAh battery is its physical size. 3200mAh batteries are

3.19” by 2.48” by 0.18”, which could present some difficulties with physical design. The weight

of a 3200mAh battery is 56 grams, which is insignificant as far as the weight of the device goes.

If the team can get a more accurate power analysis or reduce the number of components in this

device, the size of the battery would decrease. For the time-being, however, a 3200mAh battery

is acceptable.

- BT / -NK

3.) Engineering Requirements Specification.

Below is a table showing the engineering requirements for the design. A justification why

these requirements are needed for the design are also present. Finally, the associated marketing

requirement is shown to depict the reasoning why the engineering requirement was chosen.

Attached to the bottom of the engineering requirement are the marketing requirements for

reference.

Table 1.) Engineering Requirements Table.

Engineering Requirements: Justification Marketing

Requirement:

1.) Must be able to last an entire 8-

hour workday without needing to charge.

Allows for the worker to use the

helmet for an entire shift without

having to worry about battery

life.

4

2.) The battery charges via a standard charging

cable within 8 hours.

This should be enough time to

charge the system using a

standard 500mA charge rate.

3

19

3.) Will write suspected impact/injury data to a

n on-board storage system for data retrieval.

Information regarding injury is

easily accessible and can be

assessed after an incident.

2

4.) Provides time-stamp data relating to

impact/injury.

Allows for waveform generation

and data pertaining to when an

incident happened.

2

5.) Does not interfere with

existing standard hardhat hardware or

functionality.

Makes it so companies do not

need to buy special helmets to

use this

product while allowing for simpl

e installation.

6

6.) Communication busses remain idle until

sensors detect relevant data, keeping

communication lines available.

When relevant data is not being

detected, the communication

busses are available. This allows

relevant data transmission in a

timely manner.

1,2,5

7.) LEDs illuminate with respect to a

detected hazard’s position relative to the user.

The system provides an intuitive

display to assist users in locating

a hazard.

1,5

8.) LEDs change color (yellow to red) as

hazards approach between 1.5m and the user.

This will allow the worker to

assess the proximity of

an existing hazard.

1,5

9.) 150-degree FOV deploys to detect

hazards.

Provides field of coverage

relevant to where the user

travels.

5

10.) Impact data above a predetermined

threshold will indicate an incident.

Data above a threshold of

(45g) will show an incident is

within a margin of error of force

that suggests a potential

concussion.

2

1.) The device assists with prevention of collision with objects in the working environment.

2.) The system will record impacts above a determined threshold for incident monitoring.

3.) The System is portable and rechargeable.

4.) The system will have a workday battery life of 8 hours.

5.) The system will detect objects in the user’s field of vision using sensors.

6.) Does not change a standard hard hat’s integrity.

20

4.) Engineering Standards Specification.

4.1. Safety.

The table below depicts the safety standards relevant to this design. Both standards listed in

this table are provided and created by OSHA. -BT

Table 2.) Safety Standards.

Safety Title

OSHA Part Number: 1926 Safety and Health Regulations for

Construction

Standard Number: 1926.100 Personal Protective and Life Saving

Equipment

Since the project is dealing with electrical equipment, students must ensure that standard

1926.100 (b) (2) applies. The team must implement electrical insulation of the device around the

hard hat to keep within guidelines of OSHA requirements. For other safety standard

considerations, the safety standards of selected electrical components will also apply. -NK

4.2. Communication- I2C and SPI.

The table below depicts the communications protocols relevant to this design. These

protocols include I2C and SPI. -BT

Table 3.) Communication Protocols.

Communication

Protocol
Implementation

I2C
- Time-of-Flight Sensors

- Accelerometer

- I2C Multiplexers

SPI - Micro-SD Card

Because of the difference in needs for communication, there are two separate

communication methods. For the Time-of-Flight sensors, since there are multiple of them, an

21

addressed based system is required. For SPI, the standard means of embedded projects to

interface with an SD card is using this method. Following this standard makes communication

with the Micro-SD much more reliable and simpler.

4.3. Programming Languages.

This project uses embedded C because of its commonplace implementation among

Microchip devices. This language also offers a simple interface for the communication protocols

by which it will communicate to the sensors, I2C and SPI. Team members have experience in C,

making this the most “universal” language for interpretation for the team. - HH

4.4. Connector Standards.

The table below depicts the connector standards relevant to this design. These connectors

include the SD card receiver, a micro-USB connector for the charging cable, and a ICSP

connector for the PICkit programming interface. -BT

Table 4.) Connector standards.

SD-Card -SD Card Receiver

 USB -Charging cables

ICSP -PICkit programing interface

5.) Accepted Technical Design.

5.1. Hardware Design.

Block Diagram Level 0:

The figure below shows the level 0 block diagram. This is a generalized overview of the

H.A.L.O design. The design features six time-of-flight sensors, an accelerometer, a micro-SD

car, and three RGB LEDs. The inputs to the processor are the time-of-flight sensors for multi-

22

directional distance measurements, and an accelerometer for measuring force to the helmet. The

outputs of the LEDs and SD card assist with hazard recognition or incident recording.

Figure 2.) Block Diagram Level 0.

- HH, NW

Functional Requirement Table:

The processor functional requirements table is shown below. Provided is a listing of

inputs, outputs and a parts description. The inputs of the time-of-flight sensor, accelerometer,

connect to the processor and go to the outputs of the LED and Micro SD card. The processor

takes the data from the sensors and sends it to the proper system to assist with incident

monitoring and mitigation. -NK

Table 5.) Functional Requirements Table.

Module Processor

Designer Hunter Hykes, Nathan Kish, Brian Thomson, Nicklaus Walsh

Inputs Time-of-Flight Sensors: detect head-level hazards

Accelerometer: collect collision data if the wearer suffers from

an impact to the head

Real-Time Clock: provide relevant timestamps for data logging

Outputs RGB LED: one light is present for each Time-of-Flight sensor

and the color will show the proximity of the hazard

Micro SD Card: will log sensor data as for review.

23

Description Time-of-flight (TOF) sensors will operate when the light sensors

determine the user is indoors and in a low-light area. Two RGB

LEDs respond to the TOF sensor readings to show a hazard

detected within some proximity to the wearer’s head. LEDs from

each side to help determine where the hazard is present. The

LEDs will change color (likely yellow to red) as the hazard

approaches. An accelerometer will be present on the device to

record data if the wearer suffers an impact to the head. A volatile

organic compound sensor will be present to take consistent

readings as the wearer walks around the work environment,

noting any abnormal conditions. A real-time clock assists a micro

SD card to log all this data with timestamps.

-HH, NW, BT

Block Diagram Level 1 | Processor Subsystem:

A preliminary processor subsystem diagram is seen below. The power system’s

3V3 inputs, the I2C and SPI communication lines are all visible. The interrupts signal to

the processor that some event happened. This is done for both the accelerometer and

time-of-flight sensor, allowing the processor to know when either a hazard is

approaching, or an incident occurred. -NK

Figure 3.) Block Diagram Level 1: Time-of-Flight Subsystem.

24

The table below depicts the inputs, outputs, and functionality of the processor used in this

design. The inputs for this processor are 3.3V power and a ground wire, and the outputs from this

processor are communication lines that run to the other subsystems, and I/O interrupt pin, and

the SD card communication lines. -BT

Table 6.) Processor Functionality Table.

Module Subsystem Processor

Designer Nicklaus Walsh

Inputs 3.3V input

Ground wire

Outputs Communication lines between each other subsystem

I/O interrupt pin

SD card communication lines

Functionality The processor controls each subsystem and gathers information from each

of the ToF sensors and the accelerometer. Based on the data relayed back

to the processor, it will alert the user and record the data from the

accelerometer to the SD card.

Block Diagram Level 1 | Accelerometer Subsystem:

A closer look at the connections between the accelerometer and the processor is below.

The outputs from the accelerometer are the serial data line, the serial clock line, and the

interrupts. These allow the data from an incident where the accelerometer is used to be

interpreted and used by the processor. -NK

25

Figure 4.) Block Diagram Level 1: Accelerometer Subsystem.

The table below depicts the inputs, outputs, and functionality of the accelerometer used in

this design. The inputs for this accelerometer are 3.3V power and a ground wire, and the outputs

from this accelerometer are 3.3V power, SDA communications to the processor, SCL

communications to the processor, and a ground wire. -BT

Table 7.) Accelerometer Functionality Table.

Module Accelerometer

Designer Brian Thomson

Inputs

3.3V power from the power system

Ground Wire

Outputs

3.3V power

SDA communications to the processor

SCL communications to the processor

Ground Wire

Functionality

To measure and quantify the acceleration of the device, and to communicate

and relay that information to the main processor.

26

Block Diagram Level 1 | Time-of-Flight Sensor Subsystem:

Below is a representation of the connections between the processor and the time-of-flight

sensors. The same communication scheme used for the accelerometer is present here.

Communication lines from the SCL and SDA allow the time-of-flight sensors to send

information to the processor. This information is then sent to the LEDs, creating the proximity

warning system for the H.A.L.O. design. -NK

Figure 5.) Block Diagram Level 1: Processor Subsystem.

The table below depicts the inputs, outputs, and functionality of the time-of-flight sensor

used in this design. The inputs for this time-of-flight sensor reflect light from a surface, 3.3V

power, and a ground wire, and the outputs from this time-of-flight sensor are serial data lines to

the processor. -BT

27

Table 8.) Time-of-Flight Functionality Table.

Module Time-of-Flight Sensors

Designer Nate Kish

Inputs 3.3V power

Ground Wire

Reflected Light from a Surface

Outputs Serial data pertaining to the distance between the sensor and object in view.

Functionality Acts as a measuring tool for distances from the sensors to potential hazards.

Delivers data to the registers in the processors upon request.

Block Diagram Level 1 | RGB LED Subsystem:

The following block diagram is a representation of the LED subsystem. The H.A.L.O.

uses three LEDs at equal spacing on the brim of the hard hat, all powered by the power

subsystem at 3.3V. The IO pins allow for communication with the processor and time-of-flight

sensors to vary the intensity of the light, acting as a warning device. -NK

Figure 6.) Block Diagram Level 1: LED Subsystem.

 The table below depicts the inputs, outputs, and functionality of the LEDs used in this

design. The inputs for the LEDs are 3.3V power, an I/O pin, and a ground wire, and the outputs

from the LEDs are red, orange, and yellow light. -BT

28

Table 9.) LED Functionality Table.

Module LED

Designer Nathan Kish

Inputs 3.3 V input

IO Pin

Ground cable

Outputs Orange or yellow light emits at a wavelength of 590 to 610 nanometers

when the LED receives a signal of 2 (V) at 20 (mA).

Red lights at a frequency of 610 to 760 nanometers

Functionality The functionality of the LEDs is to act as a warning system for hazards in

the immediate area around the user. Input distance data from the time-of-

flight sensor goes to the LED and produces one of two colors depending

on distance.

Block Diagram Level 1 | Micro-SD Card Subsystem:

The diagram below shows the interface of the processor and SD card. As seen in the

figure, the SD card and processor communicate using MISO and MOSI communication scheme

using SPI. The SD card connects to the processor using a serial clock line, following SPI

standards to assist with data capturing. -NK

Figure 7.) Block Diagram Level 1: SD Card Subsystem.

29

 The table below depicts the inputs, outputs, and functionality of the SD card used in this

design. The inputs for the SD card are 3.3V power, a MOSI communication line, and a ground

wire, and the output from the SD card is a MISO communication line. -BT

Table 10.) SD Card Functionality Table.

Module SD Card

Designer Nicklaus Walsh

Inputs 3.3V, GND power input from battery slave select line from processor

Master Out Slave In (MOSI) communication line

Outputs Master In Slave Out (MISO) communication line

Functionality Collect data from accelerometer if it is substantial contact and store on SD

card in a CSV file for analysis.

The CSV file generates a waveform to capture the severity of collisions

should an incident occur.

Block Diagram Level 1 | Power Subsystem:

The figure below depicts a level 1 block diagram of the power circuit. Starting

with a 5V micro-usb, the power circuit uses a charging circuit to step down the voltage to

4.2 and charge a battery of equal voltage. From said battery, voltage is then set to 3.3V

using a DC to DC buck-boost converter. This subsystem powers the rest of the

subsystems on the H.A.LO. design. -NK

Figure 8.) Block Diagram Level 1: Power Subsystem.

30

 The table below depicts the inputs, outputs, and functionality of the power system used in

this design. The inputs for the power system are 5.0V power and a ground wire, and the outputs

from the power system are 3.3V power and a ground wire. -BT

Table 11.) Power System Functionality Table.

Module Power System

Designer Brian Thomson

Inputs 5V DC input from Micro USB Charging Cable

Ground Wire

Outputs 3.3V DC Power distributed throughout the system

Ground Wire

Functionality To store and distribute power of a uniform voltage throughout the circuit.

Power comes into the charging circuit at 5V DC, then steps down to 4.2V to

charge the battery. The battery itself has an average voltage of 3.7V. From the

battery, power flows through a DC/DC converter to regulate the voltage to

3.3V. This system will also provide a universal ground for the entire circuit.

Block Diagram Level 2:

The following figure depicts an implementation of the whole H.A.L.O system. The level 2

diagram shows connections between the subsystems designed previously and the processor. It also

depicts connection pins and lines in this diagram. Though a simplified version of the system using

blocks, the flow of power, information, and data is now visible between all subsystems. -NK

31

Figure 9.) Block Diagram Level 2: Overall System.

 -HH

The table below describes the input, output, and functionality of the overall system.

Table 12.) Overall System Functionality Table.

Module System Overview

Designer Hunter Hykes

Inputs 5V DC input from Micro-USB Charging Cable

Time-of-Flight Sensors (x6)

Real-Time Clock

Accelerometer

Outputs RGB LEDs (x3)

Micro-SD Card

Functionality The system’s battery charges via the Micro-USB cable’s 5V and GND inputs.

Time-of-Flight sensors will sense hazards within a predetermined spatial

radius and send back detailed distance readings to the processor. The

processor will then drive the respective RGB LEDs based on how close the

hazard is.

The accelerometer will log data determined to be around the threshold for a

concussion to the Micro-SD card. This assists with recording incident data.

32

Hardware Design-Power System:

The power circuit is complete using the LTspice schematic shown in Figure 10. This

circuit is three parts: the charging circuit, the battery, and the buck-boost converter. This circuit

takes an input of 5V from a universal charging cable. This input goes into the charging circuit,

which reduces the voltage from 5V down to 4.2V. This circuit also regulates the charging current

to 500mA. The current then flows from the charging circuit into a 3200mAh lithium Ion battery.

This battery stores a nominal voltage of 4.2V.

The charging circuit is in Figure 11. The charging circuit implemented in the physical

circuit is a model TP4056 made by MCIgIcM. From there, power flows through the buck-boost

converter. The input voltage from the battery will vary, depending on power stored within it. If

the battery is fully charged, it will have a voltage of 4.2V. But as the battery drains, the voltage

will drop, eventually dropping to around 0V. The average voltage of the battery while in use is

3.7V.

 The buck-boost converter will yield a 3.3V output, regardless of the input voltage (so

long as the battery voltage does not drop below 2V, as this is the minimum required voltage for

the buck-boost converter to operate). The buck-boost converter is in Figure 12. The buck-boost

converter in the physical circuit is a model STBB1-AXX made by STMicroelectronics. From

there, a constant 3.3V output goes to the rest of the device. -BT

Figure 10.) LTspice Schematic of Full Power Circuit.

33

Figure 11.) LTspice Schematic of Charging Circuit.

Figure 12.) LTspice Schematic of Buck-Boost Converter.

The waveform for this circuit is in Figure 13. In this waveform figure, the teal line is the

input voltage, which is a constant 5V. The red line is the voltage of the battery, which is around

4.2V after a brief transient phase. For demonstrations, the battery gains a full charge nearly

instantaneously. In reality, this process would have taken around six and a half hours, which

would have taken days to simulate, considering it took nearly a minute to simulate 20ms. The

34

blue line is the current flowing into the battery, which is 500mA after a brief transient phase. The

green line represents the output voltage, which is 3.3V, after the same transient phase. For proof

of concept, any student educated in Spice schematic creation can follow these schematics to

create a similar power circuit. -BT

Figure 13.) LTspice Waveform of Power Circuit.

Hardware Software Eagle Schematic:

Accelerometer:

The accelerometer in Figure 14 is the H3LIS200DLTR. It can operate in either I2C or SPI

but for this design it’s using I2C. The I2C is used to write data into registers in which the content

also writes back. There are two signals associated with this I2C set up, the serial clock line SCL2

and the serial data line SDA2. Both lines connect to the processor to transmit and receive data

using pull-up resistors connecting the 3V3 VDD of the processor. The accelerometer acts as the

slave device following the initial instruction of the processor which starts transfer, generates

clock signals, and then terminates the transfer as needed. It does this through the SDA2 and

SCL2 lines, as mentioned. Like the Time-of-Flight sensors, the accelerometer complies with a

400kHZ fast mode and a normal mode of operation. -NK

35

Figure 14.) Eagle Accelerometer Schematic.

SD Card:

The SD card interface has been connected according to standard SD Card to SPI pin

mappings. As is shown in Figure 15, there are four pins utilized by the SPI interface: Slave

Select (SS), Serial Clock (SCK), Master Out Slave In (MOSI), and Master In Slave Out (MISO).

These connections are made between the processor’s SPI1 interface and a level shifter. This level

shifter ensures connections going to the SD card do not exceed 3.3V. As the level shifter is

shown now, VCCB is the same as VCCA; however, if the final design uses a VDD greater than

3.3V, then VCCB will be connected to this VDD and VCCA, the output voltage of data lines

going into the SD card, will remain at 3.3V.

-HH

36

Figure 15.) Eagle SD Card Schematic.

LED:

The RGB LED schematic shown in Figure 16 depicts the basic connections needed to

interface with an RGB LED. One board will be used per RGB LED. Each board has a connector

for power, ground, and data in, and a connector for power, ground, and data out. This will allow

for the boards to be connected in series, meaning only one connector will be needed on the main

board to connect to the entire series of RGB LEDs. A 0.1uF capacitor is used to reduce noise on

the power lines. -HH

37

Figure 16.) Eagle RGB LED Schematic.

Processor:

The processor used is the dsPIC33EP512GM706. Figure 17 illustrates the base schematic

for the peripherals and features used by the H.A.L.O.. On the left of the processor are the basic

components recommended for basic usage: a programming header for a PICkit device, a reset

button circuit, and the power capacitors specified by the recommended minimum connection

figure in the datasheet (Appendix B). Several extra capacitor footprints will be added to the

board in case noise proves to be an issue later on. The schematic also includes the peripherals

used by the product: I2C and SPI. A UART connection is also included, hoping to use a USB

interface for debugging purposes. One RGB_LED pin is used to send the data to the external

RGB LEDs. Lastly, eight debug LEDs are also present for development and will not have to be

installed on the final product.

-HH

38

Figure 17.) Eagle Processor Schematic.

Charging Circuit:

The charging circuit in Figure 18. shows the 5V. input to charging 4.2V circuit from the

hardware design power circuit. This is the first section of the power schematic designed in eagle,

accounting for the circuit elements required by datasheet specs. The resistors labeled RA, RB,

and RPROG all have varying values depending on the charging requirements. They are presently

blank since the physical circuit design may require different values depending on current use to

meet design needs. The charging device is the TP4056. The input of the 5V. input comes from a

micro-usb port. It goes through the series of resistors and capacitors, into the TP4056 device, and

connects to two LEDs. These LEDs and their resistors show the circuit is charging or charged

39

with a RED and Green LED. The output of this circuit outputs 4.2V. directly into a Lithium-Ion

Battery that is 3200 (mAH.) With the design below, the charging circuit meets the requirement

of charging the battery within 8 hours. The outputs of BAT_NEG and BAT_POS are the inputs

directly to the battery used in the Battery and Converter Circuit Below. -NK

Figure 18.) Eagle Charging Circuit Schematic.

Battery and Converter:

The battery and converter circuit in Figure 19. follow directly after the charging circuit.

The tags from the output of the charging circuit, BAT_POS and BAT_NEG, connect to the

battery and buck boost circuit. This schematic has a placeholder 5V battery but will operate at

4.2 in the final design. Circuit components shown assist with operation of converter as described

in datasheets. The most important elements besides the converter STBB1-AXX are the resistors

acting as a voltage regulator. With 100k and 560k the output voltage V_OUT, the voltage will be

roughly 3.3V to power the rest of the circuits. -NK

40

Figure 19.) Eagle Converter Circuit Schematic.

Time-of-Flight:

The time-of-flight schematic in Figure 20. Is the VL53L0X. The layout of the time-of-

flight sensor includes a serial clock line and serial data line that connects to the processor

A5/SCL - I²C Serial Clock line, SCL1 and A4/SDA - I²C Serial Data line SDA1. The 3.3V

inputs connect to these lines using two resistors of 10K as pull-ups. The pins of AVDD and

AVDDVSEL. connect to the 3V3 tag, which connects to the processors VDD2 output. The GND

pins on the processor connect to the GND and the AVSSVCSEL of the time-of-flight. The time-

of-flight sensor below can measure up to 2 meters with a potential sampling rate of 400kHZ.

Finally, the GPIO. connects to the Interrupt with a 1.0K resistor buffer. -NK

41

Figure 20.) Eagle Time-of-Flight Schematic.

5.2. Software Design:

SD Card Subsystem:

The micro-SD card interface uses the SPI1 interface of the dsPIC33EP512GM706. SPI1

was configured using Microchip Code Configurator (MCC) and uses the following libraries:

spi1_driver, sd_spi, and fatfs. Setup is handled within the SYSTEM_Initialize() function called

at startup. The code in Figure 21 achieves a write to the micro-SD card containing accelerometer

data in .csv format. The file “ACCEL.CSV” is written with the content of the character arrays

data1[], data2[], data3[], data4[], and data5[] which are populated with five consecutive X, Y,

and Z axis readings from the accelerometer. The information in each of these arrays is followed

by a carriage return and a newline, per .csv formatting. This function is called when the

42

getAccelPoints() function returns true, indicating that an accelerometer reading has

exceeded the set threshold.

// write a .CSV containing accelerometer data to the SD card

// pass SD status and File Write status variables for debugging

purposes

void writeAccelToSD(void) {

 // <Nick>

 uint8_t SD_status;

 uint8_t FW_status;

 FATFS drive; // Work area (filesystem object) for logical

drive

 FIL file; // File to write

 UINT actualLength; // Actual length of

 char data0[] = "X, Y, Z, t\r\n";

 char filename[] = "ACCEL.CSV";

 // write 5 data strings in .CSV format for X, Y, and Z axes

 // with millis() timestamps to plot

 sprintf(data1, "%f, %f, %f, %f \r\n", (double)x_1, (double)y_1,

(double)z_1, (double)timer1);

 sprintf(data2, "%f, %f, %f, %f \r\n", (double)x_2, (double)y_2,

(double)z_2, (double)timer2);

 sprintf(data3, "%f, %f, %f, %f \r\n", (double)x_3, (double)y_3,

(double)z_3, (double)timer3);

 sprintf(data4, "%f, %f, %f, %f \r\n", (double)x_4, (double)y_4,

(double)z_4, (double)timer4);

 sprintf(data5, "%f, %f, %f, %f \r\n", (double)x_5, (double)y_5,

(double)z_5, (double)timer5);

 // write the data strings to a file

 if(SD_SPI_IsMediaPresent() == false) {

 return;

 }

 SD_status = f_mount(&drive,"0:", 1);

 if (SD_status == FR_OK) { // mount disk

 //Open or Create <filename> file

 if (f_open(&file, filename, FA_WRITE | FA_CREATE_NEW) ==

FR_OK) {

 // write column headers

 FW_status = f_write(&file, data0, sizeof(data0)-1,

&actualLength);

 // write each line of data

 FW_status = f_write(&file, data1, sizeof(data1)-1,

&actualLength);

 FW_status = f_write(&file, data2, sizeof(data2)-1,

&actualLength);

43

 FW_status = f_write(&file, data3, sizeof(data3)-1,

&actualLength);

 FW_status = f_write(&file, data4, sizeof(data4)-1,

&actualLength);

 FW_status = f_write(&file, data5, sizeof(data5)-1,

&actualLength);

 f_close(&file); // close the file

 }

 f_mount(0,"0:",0); // unmount disk

 msTimerDelay(5);

 }

 // </Nick>

 showConcussion(); // 5 second LED display:

RED/PURPLE/RED/PURPLE/RED

}

Figure 21.) Micro-SD Card Write Functionality.

-HH

44

Figure 22.) HALO Main Board Schematic – Processor and SD.

45

Figure 23.) HALO Main Board Schematic – Peripherals.

46

Figure 24.) HALO Time-of-Flight Board Schematic.

Figure 25.) HALO RGB LED Board Schematic.

Accelerometer Subsystem:

The accelerometer subsystem uses the I2C1 interface of the dsPIC33EP512GM706. I2C1

was configured using MCC and uses the i2c1 library. The interface also uses the I2C_Handler

47

library, which was created from lightly changing the previously commented functions from

MCC which deal with reading consecutive bytes of data from the I2C bus. Figure 26 shows the

basic setup routine for the accelerometer, configuring two internal registers for acceleration

range and sample update time following a soft reset of the device.

Figure 26.) Accelerometer Configuration.

Figure 27 illustrates the process for acquiring data from the accelerometer. The processor

moves the memory pointer in the accelerometer device to the start location for each byte of data

and the accelerometer then sends each byte of data to the processor, consisting of two bytes per

acceleration axis.

48

Figure 27.) Accelerometer Data Acquisition.

The data acquired by the H3LIS200DL_readAxes() function is then interpreted by

getAccelPoints2(), which will return true if any of the values in the five data sets sampled

exceed the set threshold of 50Gs, indicating that a concussion may have occurred.

-HH

Time-of-Flight Subsystem:

The Time-of-Flight subsystem uses a great number of configuration helper functions.

These functions were developed regarding ST’s application programming interface (API) for the

VL53L0X Time-of-Flight sensor. They never made an official register map for the device public,

so a crowd sourced register map reference. This reference held true to the definitions found in

the official API. Figure 28 lists all helper functions used for configuration and interfacing with

the VL53L0X Time-of-Flight sensor.

49

Figure 28.) Time-of-Flight Functions.

Several of the functions listed above are called by the VL53L0X_init() function in

Figure 29 via VL53L0X_config() to do most of the configurations to use the sensor. The

timeout and measurement timing budgets are then set, and the sensor can sample data.

Figure 29.) Time-of-Flight Configuration.

50

Once the device is configured as described, the sensor is prepared to provide the

processor with a continuous stream of data at a rate determined in the configuration process.

Figure 30 breaks down the VL53L0X_readRangeSingleMillimeters() function, which is

to be called when the program needs to read new data from the sensor while in continuous mode.

This returns a sixteen-bit value describing the distance in millimeters between the object in view

of the sensor and the sensor itself. If the timeout interval expires before the sensor receives a

reflected infrared beam, it is concluded that no object has been detected and the function will

return a value of 65535, the maximum value for a sixteen-bit unsigned integer.

Figure 30.) Time-of-Flight Data Acquisition.

51

The process of reading each Time-of-Flight sensor is run continuously by the

getAllToF() function, detailed in Figure 31, which populates an array of six distance values,

one per sensor. This data can then be interpreted by the RGB LED subsystem to display the

appropriate lighting patterns to the user.

Figure 31.) Time-of-Flight Data Acquisition.

-HH

RGB LED Subsystem:

The RGB LED subsystem responds dependent on the readings from the set of six Time-

of-Flight sensors. The two ToF sensors to the left drive the left LED, the two ToF sensors in the

front drive the middle LED, and the two ToF sensors to the right drive the right LED. As

readings are acquired from all six Time-of-Flight sensors, the

getNearestObstacleIndex()function shown in Figure 32 determines which sensor is

detecting the nearest obstacle.

52

Figure 32.) getNearestObstacleIndex().

This index returned by getNearestObstacleIndex()is passed to the

showDistanceRGB() function which will drive the appropriate LED and illuminate it with a

different color depending on how far away the nearest obstacle is. If an obstacle is within

500mm (0.5m), the LED will turn red; if an obstacle is within 1000mm (1.0m), the LED will

turn green; if an obstacle is within 1500mm (1.5m) the LED will turn blue; and if no obstacle is

within 1900mm (1.9m), the LED will turn off. The showDistanceRGB() function is shown in

detail in Figure 33.

53

Figure 33.) showDistanceRGB().

Software System Overview:

The flow chart in figure 34 below describes how the system will work in the field. Once

the system is powered on there will be an interrupt check for the accelerometer to reach a

threshold to write the data to the SD card of a potential head injury. If nothing is detected by the

accelerometer, there is another check that is made by the interrupt lines of the time-of-flight

sensors as to if a hazard is within range. If there is, then the interrupts trigger the LED’s turning

54

on for the corresponding time-of-flight sensors. If not, then the accelerometer starts its checks

again. This is a constant loop until the system is powered off.

-NW

-NW

Figure 34.) Software Design Flowchart.

55

The table below depicts the inputs, outputs, and functionality of the SPI bus used in this

design. The inputs and outputs for the SPI bus communication signals with a frequency of up to

10MHz. -BT

Table 13.) SPI Functionality Table.

Communication Type SPI

Designer Hunter Hykes, Nicklaus Walsh

Inputs Up to 10 MHz communication input

Outputs Up to 10 MHz communication output.

Functionality SPI is a bus style communication method used to write data to a micro-

SD card.

The table below depicts the inputs, outputs, and functionality of the I2C bus used in this

design. The inputs and outputs for the I2C bus communication signals with a frequency of up to

1MHz. -BT

Table 14.) I2C Functionality Table.

Communication Type I2C

Designer Hunter Hykes, Nicklaus Walsh

Inputs Up to 1 MHz communication input

Outputs Up to 1 MHz communication output

Functionality I2C is a bus style communication method used to communicate with

accelerometer and time-of-flight sensors.

Figures 35 and 36 below describe the different states for the accelerometer, SD card,

LED’s, and Time-of-Flight sensors. The first figure, the SD card and accelerometer, describes

the different states of writing for the data going to the accelerometer to the SD card. If the

accelerometer is writing data, then the SD card is being written to. The next diagram for the

time-of-flight sensors describes the state of an LED being on or off in response to a ToF

detecting a hazard.

56

-NW

Figure 35.) SD Card State Diagram.

-HH

Figure 36.) LED State Diagram.

-HH

57

5.3. Final Design Images:

Figure 37.) Frontal View of Housing Unit, ToF Sensors and LEDs.

Figure 38.) Detached Housing Unit.

58

Figure 39.) Main Board Front.

 Figure 40.) Main Board Back.

 Figure 41.) Time of Flight and LED Boards.

59

5.4. Testing and Demonstrations:

Time of Flight and LED Subsystems:

The following images depict the testing for the engineering requirements of 6,7,8,9. The

testing procedure was to ensure that the LEDs light up with respect to the distancing of potential

hazards and that they change colors between 1.5m to the user. For the furthest distance of 1.5m a

blue light is used, from (1m) to (.5m) a green light is used and (.5m) to the user, a red light is

illuminated. Another requirement that is shown in these testing images is that the FOV for the

time-of-flight sensors is 150-degrees. For the demonstration in these images, a clipboard was

used as the mock hazardous object.

 -NK

Figure 42.) LED and ToF Right Side Green.

60

Figure 43.) LED and ToF Right Side Red.

Figure 44.) LED and ToF Left Side Green.

61

Figure 45.) LED and ToF Left Side Red.

Figure 46.) LED and ToF Front Red.

Figure 47.) LED and ToF Front Blue.

62

Figure 48.) LED and ToF Max Distance Test.

Figure 49.) LED and ToF Max Distance 49 inches (~1245mm).

As can be seen above in the testing images, the engineering requirements were met for the

FOV and color shifting. The only one that wasn’t exactly reached was the distance requirement

for the ToF sensor. The range was 1.25 shy. This could be easily fixed in future designs by using

63

a ToF sensor with slightly larger range. With minimal changes to the code, this could be

implemented with the new sensor. -NK

Power System Testing:

For the power system engineering requirements, it was needed that the battery must last for

an 8-hour workday and that the battery can recharge within 8 hours. The testing procedure for

both of these was simple. First the battery was discharged over the designated time frame while

voltage readings were taken every 30 minutes. After that was done, the battery was then hooked

up to a standard micro-usb charging cable and recorded until it recharged to full capacity. Below

are images of the recording set up and tables depicting the discharge and recharge times. -NK

Figure 50.) Initial Voltage Before Discharge.

64

Figure 51.) Final Voltage After 8 Hours.

Table 15.) Discharge Testing Recordings.

Time Passed Voltage

Initial 4.062 V

.5 Hour 4.058 V

1 Hour 4.053 V

1.5 Hours 4.045 V

2 Hours 4.032 V

2.5 Hours 4.013 V

3 Hours 4.005 V

3.5 Hours 3.999 V

4 Hours 3.976 V

4.5 Hours 3.960 V

5 Hours 3.943 V

65

5.5 Hours 3.931 V

6 Hours 3.923 V

6.5 Hours 3.914 V

7 Hours 3.900 V

7.5 Hours 3.985 V

8 Hours 3.880 V

As can be seen from the slow discharge rate of the battery, the system consumes much less

power than initially assumed. Conservative power estimations were done to ensure that the

battery life lasts a full 8-hour workday. With the usage of a buck boost converted, the battery

would be able to supply power to the system until it discharges to roughly two volts. However,

recharging after an 8-hour use, it took roughly 7.5 hours to completely recharge. The battery is

able to supply the system with power much longer than the 8-hour requirement. In future designs

it would be possible to reduce the battery size in order to accommodate a smaller less intrusive

design for the housing. -NK

Table 16.) Recharge Testing Recordings.

Time Passed Voltage

Initial 3.783 V

1.5 Hours 4.012 V

3 Hours 4.097 V

4.5 Hours 4.123 V

6 Hours 4.142

7.5Hours 4.159

66

Accelerometer and SD Card Testing:

The engineering requirements for the SD card and the Accelerometer systems we had to

write suspected impact or injury data to an on-board storage system that could be retrieved later.

This was in the form of the on-board SD card located on the main board. This data should also

include relative timestamps relating to the impact or injury data. This was handled in the coding

of the Accelerometer and SD card. Finally, the data should only be recorded if the accelerometer

measures an impact at or above a predetermined threshold these reading will be the indicator for

an incident.

 The way these were tested was, initially, to use the onboard LEDs to get the

Accelerometer data. This was done to make sure we were getting actual data from what the

Accelerometer was measuring that was shown on the LEDs. We then tested to make sure the SD

card could write dummy data on our board similar to how the proof of concept had shown to

make sure it would work on the developed PCB rather than a development board. Once that was

done we then transitioned to integrating the two sub-systems so that they interact in the way we

want. This involved having to format the C-strings to be written as a CSV file. Then we wrote

the data measured from the Accelerometer to the SD card only if it was reading a value at or

above the threshold we chose for testing. We did not want to use the actual value for a

concussion for the reasons of not wanting to actually hurt someone or potentially break another

sub-system on the board. We then set that threshold and with a relatively hard smack to the

helmet, the impact routine would start. The impact routine was that the LEDs for the vision

detection would flash showing the Accelerometer measured a reading at or above the pre-set

threshold then within the coding that took the data from the Accelerometer and formatted it and

wrote it to the SD card for analysis at a later time. -NW

67

6.) Mechanical Sketch of System:

The following mechanical sketches in figure 52 through 54 show the proposed

implementation of the H.A.L.O. system. The first hand-drawn sketch shows the band and

placement of the sensors, LEDs, and board on the back of the system. The second figure shows a

more detailed design, showing the back of the helmet and symbols representing the circuit

elements that will be on the main board. Finally, the last sketch shows a frontal view of how the

sensors and LEDs fit to the helmet. Note that for the final image, not every sensor or LED is

shown. There are in total six ToF sensors and three LEDs in the final design. -NK

Figure 52.) Mechanical Sketch of System (Overall).

68

Figure 53.) Mechanical Sketch of System (Rear View).

69

Figure 54.) Mechanical Sketch of System (Front View).

-NK

7.) Team Information:

Hunter Hykes – Computer Engineer

Nathan Kish – Electrical Engineer

Brian Thomson – Electrical Engineer

Nicklaus Walsh – Computer Engineer

70

8.) Parts List:

Table 17.) Main Board Bill of Materials.

Qty. Refdes Part Num. Description Cost Total
Cost

12 C1~C6 CL21B104KBCNNN
C

0.1uF Ceramic Capacitor 0805 $0.05 $0.56

4 C7~C8 CL21A475KPFNNN
E

4.7uF Ceramic Capacitor 0805 $0.10 $0.40

2 C9 CL21A106MQFNNN
E

10uF Ceramic Capacitor 0805 $0.10 $0.20

2 C10 CL21A226MAQNNN
E

22uF Ceramic Capacitor 0805 $0.34 $0.68

16 R17~R24 RC2012J102CS 1.00kOhm Resistor 0805 0.13 $2.08
6 R2, R25~R26 RC2012J103CS 10.0kOhm Resistor 0805 0.13 $0.78
36 R27~R44 RC2012J222CS 2.20kOhm Resistor 0806 0.13 $4.68
4 R1, R45 RC2012J471CS 470Ohm Resistor 0805 0.14 $0.56
2 R46 ERA-6AEB202V 2.00kOhm Resistor 0805 0.31 $0.62
4 R47~R48 RC2012F270CS 27.0Ohm Resistor 0805 0.14 $0.56
2 R49 RMCF0805JT560R 560kOhm Resistor 0805 0.10 $0.20
2 R50 ERA-6AEB104V 100kOhm Resistor 0805 0.31 $0.62

16 D1~D8 LY R976-PS-36 LED YELLOW DIFFUSED 0805

SMD
0.27 $4.32

2 D9 LG R971-KN-1 LED GREEN DIFFUSED 0805 SMD 0.25 $0.50
18 J1~J2, J5~J12 2011-

1X05TSD025B
Connector Header Through Hole 5
position 0.100”

0.84 $15.12

2 J3 DM3D-SF CONN MICRO SD CARD PUSH-
PULL

1.65 $3.30

1 J13 2011-
1X03G00SD025B

PIN HEADER, SINGLE ROW, 3
PIN, S

0.06 $0.06

1 J14 2011H-1X06G01SB PIN HEADER, SINGLE ROW, 6
PIN, S

0.87 $0.87

4 J15~J16 2011-
1X02TSH035B

PIN HEADER, SINGLE ROW, 2
PIN, T

0.51 $2.04

2 J17 473460001 CONN RCPT USB2.0 MICRO B
SMD R/A

0.95 $1.90

3 IC1 DSPIC33EP512GM

706-I/PT
Microchip DSPIC33EP512GM706-
I/PT, 16bit dsPIC Microcontroller,
60MHz, 512 kB Flash, 64-Pin TQFP

6.17 $18.51

4 U1~U2 PCA9544APW,118 I2C Multiplexer 1.78 $7.12
2 U3 TXB0104PWR Voltage Level Translator

Bidirectional 1 Circuit 4 Channel
100Mbps 14-TSSOP

0.92 $1.84

2 U4 STBB1-APUR Buck-Boost Converter 2.34 $4.68
2 U5 MCP73831T-

2ACI/OT
Battery Charging 0.56 $1.12

71

2 U8 H3LIS200DLTR H3LIS200DL Series 3.6 V 400 Hz
Low-Power 3-Axis Digital
Accelerometer -TFLGA-16L

6.68 $13.36

2 S1 CT11025.0F160 Momentary Switch 0.12 $0.24

 (ToF Brd)
12 U1 VL53L0CXV0DH/1 Time-of-Flight ranging sensor 3.88 $46.56
2 C1 CL21A475KPFNNN

E
4.7uF Ceramic Capacitor 0805 $0.10 $0.20

2 C2 CL21B104KBCNNN
C

0.1uF Ceramic Capacitor 0805 $0.05 $0.09

4 R1~R2 RC2012J103CS 10.0kOhm Resistor 0805 0.13 $0.52
2 R3 RC2012J102CS 1.00kOhm Resistor 0805 0.13 $0.26
4 J1~J2 2011-

1X05TSD025B
Connector Header Through Hole 5
position 0.100”

0.84 $3.36

 (RGB Brd)
6 LED1 1655 ADDRESS LED DISC SERIAL RGB

1=10
4.50 $27.00

6 J1~J2 2011-
1X03G00SD025B

PIN HEADER, SINGLE ROW, 3
PIN, S

0.06 $0.36

6 C1 CL21B105KAFNFN
E

CAP CER 1UF 25V X7R 0805 0.10 $0.60

 Total $165.88

9.) Project Schedule:

Mid-Semester Gantt Chart

This section shows the beginning of the semester to the mid-point. This part of the Gantt

chart covers the initial engineering requirements research and beginning of the technical design.

During this portion of the Gant chart, the split of work is visible, assigning each team member a

subsystem and engineering requirements research required for mid-term presentations. -NK

72

73

74

Final Design Gantt Chart

This section shows the progress from the mid-point of the semester onwards.

Team members worked on the subsystems to prepare for demonstrations at this point.

The engineering hardware and software work split between the two groups, with a

member of the Electrical and Computer teams working on both. Subsystem assignment

dates were met and demonstrations completed within the timeframe given. -NK

75

76

77

78

Initial (Spring) Project Gantt Chart

79

The charts above show the initial Gantt charts from the beginning of the semester. Though the

outline and subsystem division remained relatively similar, the actual Gantt charts depicted

below show the difference in scheduling and division in work.

80

The reasoning for the change in schedules for the Gantt chart were based upon the difficulties in

implementing subsystems for the midterm presentation. Due to the inability to demonstrate the

Accelerometer, LEDs, full range of time-of-flight sensors, the latter half of the workload was

changed as follows:

Spring Final Adjustments/ System Integration Design Gantt:

81

As mentioned previously, the subsystem design was not completed at the midterm goals as

initially intended. The power subsystems among other systems worked but mainly the LEDs and

accelerometer still needed adjustments before the final. Through reallocating the work from the

Gantt chart to the figure above, the design goals were reached for the final presentation. Many of

the goals not reached during the mid-term demonstration could be attributed to either poor

connections for the ToF and LED system. For the accelerometer, the subsystem was reading but

writing to the SD card was more difficult than anticipated. Still, with a joint effort from team

members, the project ultimately got back on track and succeeded in meeting its requirements. -

NK

82

10.) Conclusions and Recommendations:

Workplace injury is still of great consideration to most companies. The ability to track

and mitigate these injuries is always a growing concern and call to improve. To assist with this

need, the design team proposes the H.A.L.O. This is an affordable and simplistic design that has

several benefits to other solutions created previously. Other models or designs focus on different

aspects of work monitoring, such as employee location and productivity. Current designs also

prioritize inclusive models that are built into the hard hat. Since OSHA standards require

helmets are replaced after an incident, smart hard hats in collisions are not reusable, causing

large amounts of waste.

Given these circumstances, the development of the H.A.L. O includes engineering and

marketing requirements that offer a cost-effective solution. The H.A.L.O. design is replaceable

and reusable, reducing waste and still offering the services of smart helmet devices. The

requirements of battery life being 8 hours and rechargeable, time of flight sensors reading their

designated distances, LEDs shifting colors, and accelerometers reading and writing collision data

to a SD card have all been met. All of the housing, hardware, and software have been integrated,

accomplishing the engineering and marketing requirements.

With the design implemented, there are some recommendations that can be made. If

given more time, revisions to the housing unit and wire management would be important.

Reducing the overall size of the H.A.L.O. the number of wires going to sensors would be

beneficial. Redesign of the P.C.B. would allow for further reduction of the size as well. Future of

the project could potentially see a gradient color shift instead of a hard shift a given intervals for

the time of flight and LEDs. In future designs, better formatting and graphing of the

83

accelerometer data is recommended. Finally, with the subsystems working, reducing the cost of

construction for a unit would also be beneficial in future designs.

The design of the H.A.L.O system ran into implementation issues mainly with the

accelerometer and time-of-flight subsystems. Due to issues with hardware and coding, the

communication and implementation of multiple time-of-flight sensors to the LED subsystem

were not finished in time for the midterm presentation. This was also the case with the

accelerometer. The time-of-flights were able to read but integration of both systems together was

not completed until the final design demonstration. Causes of initial difficulties can be attributed

in part to issues with the soldering of the surface mount components, PCBs needing redesigned,

and code revision.

However, despite these issues, all the subsystems worked and were demonstrated for the

final. The engineering requirements were met and the H.A.L.O. system assists with incident

recording and mitigation as intended. The project success relied heavily on software and

embedded systems work which caused the team dynamic to shift towards the computer

engineering side of the project. This caused and imbalanced team dynamic that initially was

unforeseen. The hardware and power systems saw less issues with implementation mainly due to

the simplistic nature of their function.

As a recommendation, a better division of subsystems and better planning in regard to

workload division would have benefitted the project. With a project that largely relied on

embedded systems, small components on the PCBs, and programming, all students having a

background in Embedded systems classes such as Embedded Systems Interfacing, and

programming classes is recommended. For students that wish to work on projects that deal with

84

sensors and recording their inputs, such as time-of-flights and accelerometers, understanding of

programming in C or C++ would be beneficial.

Another recommendation for all senior design students is to have backgrounds in

soldering. Some of the components breaking due to mistakes with soldering slowed work on the

project leaving gaps where little progress was made. One final recommendation to students for

future students would be to order spares of components in order to avoid losing out on valuable

work time.

This project taught all members the value of properly applying concepts and theory

learned in academics in a realistic work environment. Dealing with deadlines, setbacks, and

monetary restrictions provided an important test to the skills students have developed throughout

their time in the college of engineering. Thanks to the assistance of their senior design professors

and coordinator, students were able to complete their design and gain experience in the

engineering process. -NK

11.) References:

Occupational Injury and Illness Classification System 2.01 developed by the Bureau of Labor

Statistics. Source: U.S. Bureau of Labor Statistics, U.S. Department of Labor, November 2019.

1.) Commonly used statistics | occupational safety and health administration. (17 December

2019). Retrieved March 31, 2020, from https://www.osha.gov/data/commonstats

2.) Hard Hat with Additional Technical Features.

https://patents.google.com/patent/US20140208487A1/en. Accessed 29 Mar. 2020.

3.) Li, Larry. Time-of-Flight Camera – An Introduction. Technical White Paper,

SLOA190B, Texas Instruments, May 2014, p. 10,

http://www.ti.com/lit/wp/sloa190b/sloa190b.pdf.

https://www.osha.gov/data/commonstats
http://www.ti.com/lit/wp/sloa190b/sloa190b.pdf

85

4.) Mitchell, Joel. B., et al. “Temperature Measurement Inside Protective Headgear:

Comparison With Core Temperatures and Indicators of Physiological Strain During

Exercise in a Hot Environment.” Journal of Occupational & Environmental Hygiene, vol.

12, no. 12, Dec. 2015, pp. 866–74. EBSCOhost, doi:10.1080/15459624.2015.1072631.

5.) O’Connor, Kathryn L., et al. “Head-Impact–Measurement Devices: A Systematic

Review.” Journal of Athletic Training, vol. 52, no. 3, Mar. 2017, pp. 206–27. PubMed

Central, doi:10.4085/1062-6050.52.2.05.

6.) Smart Helmet. https://patents.google.com/patent/US20170048496A1/en. Accessed 29

Mar. 2020.

7.) US EPA, OAR. “Basic Information about Oil and Natural Gas Air Pollution Standards.”

U.S. EPA, 20 Sept. 2016, https://www.epa.gov/controlling-air-pollution-oil-and-natural-

gas-industry/basic-information-about-oil-and-natural-gas.

8.) Veeramani Kandasamy, Dr T. (2016). Microcontroller and SD Card Based Standalone

Data Logging System using SPI and I2C Protocols for Industrial Application. 5. 2208-

2214. 10.5281/zenodo.3543657.

9.) Accelerometer Theory & Design. (2008). Retrieved April 3, 2020, from

https://shodhganga.inflibnet.ac.in/bitstream/10603/2272/8/08_chapter 2.pdf.

10.) Spinelle, Laurent, et al. “Review of Portable and Low-Cost Sensors for the Ambient Air

Monitoring of Benzene and Other Volatile Organic Compounds.” Sensors (Basel,

Switzerland), vol. 17, no. 7, June 2017. PubMed Central, doi:10.3390/s17071520.

11.) Ambient Light Sensor (ALS) Applications in Portable Electronics. Rohm Semiconductor.

https://www.rohm.com/documents/11308/12928/CNA09016_wp.pdf. Accessed 3 Apr.

2020.

https://www.epa.gov/controlling-air-pollution-oil-and-natural-gas-industry/basic-information-about-oil-and-natural-gas
https://www.epa.gov/controlling-air-pollution-oil-and-natural-gas-industry/basic-information-about-oil-and-natural-gas
https://www.rohm.com/documents/11308/12928/CNA09016_wp.pdf.%20Accessed%203%20Apr.%202020
https://www.rohm.com/documents/11308/12928/CNA09016_wp.pdf.%20Accessed%203%20Apr.%202020

86

12.) Appendices / Datasheets.

Appendix A: System Code

/**

 Section: Included Files

*/

#include <xc.h>

#include <stdbool.h>

#include <stdlib.h>

#define FCY 4000000UL // clock frequency

#include <libpic30.h>

#include "mcc_generated_files/mcc.h"

//#include "mcc_generated_files/system.h"

#include "mcc_generated_files/fatfs/fatfs_demo.h"

#include "mcc_generated_files/pwm_module_features.h"

#include "I2C_Handler.h"

#include "Initialize.h"

// Address Definitions

#define MUX_0 0x70

#define MUX_1 0x71

// number of ToF sensors

#define NUM_TOF 6

// pairing of mux numbers and port numbers

typedef struct {

 uint8_t mux;

 uint8_t port;

} muxPort_t;

// store (mux, port) pairs in an array

muxPort_t ToF[NUM_TOF] = {

 {0x00, 0x00}, // Left Center --> MID LED

 {0x00, 0x01}, // Left --> LEFT LED

 {0x00, 0x02}, // Left Left --> LEFT LED

 {0x01, 0x00}, // Right Center --> MID LED

 {0x01, 0x01}, // Right --> RIGHT LED

 {0x01, 0x02} // Right Right --> RIGHT LED

};

// LEFT LED == 0, MID LED == 1, RIGHT LED == 2

int LEDs[NUM_TOF] = {

 1, 0, 0, 1, 2, 2

};

/* * * * * * * * * * * RGB LED Color Definitions * * * * * * * * * *

*/

87

// These are utilizing the same I/O pins as the on-board LEDs

/*

* (0x01) LED1 <==> L/R RED

* (0x02) LED2 <==> L/R GRN

* (0x04) LED3 <==> L/R BLU

* (0x08) LED4 <==> R ENABLE (ENABLEs are active LOW)

* (0x10) LED5 <==> L ENABLE

* (0x20) LED6 <==> MID RED

* (0x40) LED7 <==> MID GRN

* (0x80) LED8 <==> MID BLU (MID LED has no ENABLE, is tied to GND)

*/

#define LR_RED 0x01

#define LR_GRN 0x02

#define LR_BLU 0x04

#define LR_YLW 0x03

#define LR_PRP 0x05

#define LR_ON 0x00 // both L and R on

#define R_ON 0x00

#define R_OFF 0x10

#define L_ON 0x00

#define L_OFF 0x08

#define MID_RED 0x20

#define MID_GRN 0x40

#define MID_BLU 0x80

#define MID_YLW 0x60

#define MID_PRP 0xA0

typedef enum { LED_L, LED_C, LED_R } LED_posn;

/* * * * * * * * * * * ToF Sensor Definitions * * * * * * * * * * */

define MAX_DISTANCE 1500 // 1500mm = 1.5m, the maximum range of

interest

#define VL53L0X_I2CADDR 0x29

// Record the current time to check an upcoming timeout against

#define startTimeout() (timeout_start_ms = millis())

// Check if timeout is enabled (set to nonzero value) and has expired

#define checkTimeoutExpired() (io_timeout > 0 && ((uint16_t)millis() -

timeout_start_ms) > io_timeout)

// Decode VCSEL (vertical cavity surface emitting laser) pulse period

in PCLKs

// from register value

// based on VL53L0X_decode_vcsel_period()

#define decodeVcselPeriod(reg_val) (((reg_val) + 1) << 1)

// Encode VCSEL pulse period register value from period in PCLKs

// based on VL53L0X_encode_vcsel_period()

#define encodeVcselPeriod(period_pclks) (((period_pclks) >> 1) - 1)

// Calculate macro period in *nanoseconds* from VCSEL period in PCLKs

// based on VL53L0X_calc_macro_period_ps()

// PLL_period_ps = 1655; macro_period_vclks = 2304

88

#define calcMacroPeriod(vcsel_period_pclks) ((((uint32_t)2304 *

(vcsel_period_pclks) * 1655) + 500) / 1000)

enum regAddr {

 SYSRANGE_START = 0x00,

 SYSTEM_THRESH_HIGH = 0x0C,

 SYSTEM_THRESH_LOW = 0x0E,

 SYSTEM_SEQUENCE_CONFIG = 0x01,

 SYSTEM_RANGE_CONFIG = 0x09,

 SYSTEM_INTERMEASUREMENT_PERIOD = 0x04,

 SYSTEM_INTERRUPT_CONFIG_GPIO = 0x0A,

 GPIO_HV_MUX_ACTIVE_HIGH = 0x84,

 SYSTEM_INTERRUPT_CLEAR = 0x0B,

 RESULT_INTERRUPT_STATUS = 0x13,

 RESULT_RANGE_STATUS = 0x14,

 RESULT_CORE_AMBIENT_WINDOW_EVENTS_RTN = 0xBC,

 RESULT_CORE_RANGING_TOTAL_EVENTS_RTN = 0xC0,

 RESULT_CORE_AMBIENT_WINDOW_EVENTS_REF = 0xD0,

 RESULT_CORE_RANGING_TOTAL_EVENTS_REF = 0xD4,

 RESULT_PEAK_SIGNAL_RATE_REF = 0xB6,

 ALGO_PART_TO_PART_RANGE_OFFSET_MM = 0x28,

 I2C_SLAVE_DEVICE_ADDRESS = 0x8A,

 MSRC_CONFIG_CONTROL = 0x60,

 PRE_RANGE_CONFIG_MIN_SNR = 0x27,

 PRE_RANGE_CONFIG_VALID_PHASE_LOW = 0x56,

 PRE_RANGE_CONFIG_VALID_PHASE_HIGH = 0x57,

 PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT = 0x64,

 FINAL_RANGE_CONFIG_MIN_SNR = 0x67,

 FINAL_RANGE_CONFIG_VALID_PHASE_LOW = 0x47,

 FINAL_RANGE_CONFIG_VALID_PHASE_HIGH = 0x48,

 FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT = 0x44,

 PRE_RANGE_CONFIG_SIGMA_THRESH_HI = 0x61,

 PRE_RANGE_CONFIG_SIGMA_THRESH_LO = 0x62,

 PRE_RANGE_CONFIG_VCSEL_PERIOD = 0x50,

 PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x51,

 PRE_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x52,

 SYSTEM_HISTOGRAM_BIN = 0x81,

89

 HISTOGRAM_CONFIG_INITIAL_PHASE_SELECT = 0x33,

 HISTOGRAM_CONFIG_READOUT_CTRL = 0x55,

 FINAL_RANGE_CONFIG_VCSEL_PERIOD = 0x70,

 FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x71,

 FINAL_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x72,

 CROSSTALK_COMPENSATION_PEAK_RATE_MCPS = 0x20,

 MSRC_CONFIG_TIMEOUT_MACROP = 0x46,

 SOFT_RESET_GO2_SOFT_RESET_N = 0xBF,

 IDENTIFICATION_MODEL_ID = 0xC0,

 IDENTIFICATION_REVISION_ID = 0xC2,

 OSC_CALIBRATE_VAL = 0xF8,

 GLOBAL_CONFIG_VCSEL_WIDTH = 0x32,

 GLOBAL_CONFIG_SPAD_ENABLES_REF_0 = 0xB0,

 GLOBAL_CONFIG_SPAD_ENABLES_REF_1 = 0xB1,

 GLOBAL_CONFIG_SPAD_ENABLES_REF_2 = 0xB2,

 GLOBAL_CONFIG_SPAD_ENABLES_REF_3 = 0xB3,

 GLOBAL_CONFIG_SPAD_ENABLES_REF_4 = 0xB4,

 GLOBAL_CONFIG_SPAD_ENABLES_REF_5 = 0xB5,

 GLOBAL_CONFIG_REF_EN_START_SELECT = 0xB6,

 DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD = 0x4E,

 DYNAMIC_SPAD_REF_EN_START_OFFSET = 0x4F,

 POWER_MANAGEMENT_GO1_POWER_FORCE = 0x80,

 VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV = 0x89,

 ALGO_PHASECAL_LIM = 0x30,

 ALGO_PHASECAL_CONFIG_TIMEOUT = 0x30,

};

typedef enum { VcselPeriodPreRange, VcselPeriodFinalRange }

vcselPeriodType;

uint8_t last_status; // status of last I2C transmission

typedef struct {

 bool tcc, msrc, dss, pre_range, final_range;

 // TCC: Target CentreCheck

 // MSRC: Minimum Signal Rate Check

 // DSS: Dynamic Spad Selection

} SequenceStepEnables;

typedef struct {

 uint16_t pre_range_vcsel_period_pclks,

final_range_vcsel_period_pclks;

 uint16_t msrc_dss_tcc_mclks, pre_range_mclks, final_range_mclks;

90

 uint32_t msrc_dss_tcc_us, pre_range_us, final_range_us;

} SequenceStepTimeouts;

uint8_t address;

uint16_t io_timeout;

bool did_timeout;

uint16_t timeout_start_ms;

uint8_t stop_variable; // read by init and used when starting

measurement; is StopVariable field of VL53L0X_DevData_t structure in

API

uint32_t measurement_timing_budget_us;

/* * * * * * * * * * * * I2C Bus Read/Write Functions * * * * * * * *

* * * */

I2C1_MESSAGE_STATUS I2C_Status = I2C1_MESSAGE_COMPLETE; // I2C Bus

Status

void selectPort(muxPort_t sensorPort);

void selectPort2(uint8_t mux, uint8_t port); // select mux port

uint8_t getMuxCtrlReg(uint8_t mux); // read interrupt values

from mux

uint8_t getInterrupts(uint8_t mux);

void writeRegister(uint8_t dev, uint8_t reg, uint8_t data);

void writeRegister_16b(uint8_t dev, uint8_t reg, uint16_t data);

void writeRegister_32b(uint8_t dev, uint8_t reg, uint32_t data);

uint8_t readReg(uint8_t dev, uint8_t reg);

void readRegister(uint8_t dev, uint8_t reg, uint8_t* data);

uint16_t readRegister_16b(uint8_t dev, uint8_t reg);

/* * * * * * * * * * * * * * ToF Helper Functions * * * * * * * * * *

* * * */

void initSingleToF(int ToF_num, uint16_t *dists);

void initAllToF(uint16_t *dists);

void initAllToF2(uint16_t *dists);

void getSingleToF(int ToF_num, uint16_t *dists);

void getAllToF(uint16_t *dists);

void getAllToF2(uint16_t *dists);

uint8_t getNearestObstacleIndex(uint16_t *dists);

uint8_t getNearestObstacleIndex2(uint16_t *dists);

/* * * * * * * * * * * Accelerometer Definitions * * * * * * * * * *

*/

//<Nick>

#define H3LIS200DL_I2CADDR 0x19

#define H3LIS200DL_WHO_AM_I 0x0F

#define H3LIS200DL_CTRL_REG1 0x20

#define H3LIS200DL_CTRL_REG2 0x21

#define H3LIS200DL_CTRL_REG3 0x22

#define H3LIS200DL_CTRL_REG4 0x23

91

#define H3LIS200DL_CTRL_REG5 0x24

#define H3LIS200DL_HP_FILTER_RESET 0x25

#define H3LIS200DL_REFERENCE 0x26

#define H3LIS200DL_STATUS_REG 0x27

#define H3LIS200DL_OUT_X_H 0x29 // X Data

#define H3LIS200DL_OUT_X_L 0x28

#define H3LIS200DL_OUT_Y_H 0x2B // Y Data

#define H3LIS200DL_OUT_Y_L 0x2A

#define H3LIS200DL_OUT_Z_H 0x2D // Z Data

#define H3LIS200DL_OUT_Z_L 0x2C

#define H3LIS200DL_INT1_CFG 0x30 // Interrupt 1 (Pin 11,

used)

#define H3LIS200DL_INT1_SRC 0x31

#define H3LIS200DL_INT1_THS 0x32

#define H3LIS200DL_INT1_DURATION 0x33

#define H3LIS200DL_INT2_CFG 0x34 // Interrupt 2

#define H3LIS200DL_INT2_SRC 0x35

#define H3LIS200DL_INT2_THS 0x36

#define H3LIS200DL_INT2_DURATION 0x37

 // POWER MODES

#define H3LIS200DL_PWR_DWN 0x00 // Power Down Mode

#define H3LIS200DL_NRML 0x01 // Normal Mode

#define H3LIS200DL_LP_0_5HZ 0x02 // Low Power 0.5Hz

#define H3LIS200DL_LP_1HZ 0x03 // Low Power 1.0Hz

#define H3LIS200DL_LP_2HZ 0x04 // Low Power 2.0Hz

#define H3LIS200DL_LP_5HZ 0x05 // Low Power 5.0Hz

#define H3LIS200DL_LP_10HZ 0x06 // Low Power 10.Hz

 // OUTPUT DATA RATES

#define H3LIS200DL_DR_50HZ 0x00 // 50Hz

#define H3LIS200DL_DR_100HZ 0x01 // 100Hz

#define H3LIS200DL_DR_400HZ 0x02 // 400Hz

#define H3LIS200DL_DR_1000HZ 0x03 // 1000Hz

#define H3LIS200DL_EN_X 0x01 // Enable X Data

#define H3LIS200DL_EN_Y 0x02 // Enable Y Data

#define H3LIS200DL_EN_Z 0x04 // Enable Z Data

#define H3LIS200DL_EN_XYZ 0x07 // Enable X, Y, and Z Data

/* * * * * * * * * * * Accelerometer Function Definitions * * * * * *

* * * * */

typedef enum {USE_I2C, USE_SPI} comm_mode;

typedef enum {POWER_DOWN, NORMAL, LOW_POWER_0_5HZ, LOW_POWER_1HZ,

 LOW_POWER_2HZ, LOW_POWER_5HZ, LOW_POWER_10HZ}

power_mode;

typedef enum {DR_50HZ, DR_100HZ, DR_400HZ, DR_1000HZ} data_rate;

typedef enum {HPC_8, HPC_16, HPC_32, HPC_64}

high_pass_cutoff_freq_cfg;

typedef enum {PUSH_PULL, OPEN_DRAIN} pp_od;

typedef enum {INT_SRC, INT1_2_SRC, DRDY, BOOT} int_sig_src;

typedef enum {LOW_RANGE, MED_RANGE, NO_RANGE, HIGH_RANGE} fs_range;

typedef enum {X_AXIS, Y_AXIS, Z_AXIS} int_axis;

92

typedef enum {TRIG_ON_HIGH, TRIG_ON_LOW} trig_on_level;

void H3LIS200DL_begin();

void H3LIS200DL_axesEnable(bool enable);

void H3LIS200DL_setPowerMode(power_mode pmode);

void H3LIS200DL_setODR(data_rate drate);

void H3LIS200DL_readAxes(int16_t* x, int16_t* y, int16_t* z);

uint8_t H3LIS200DL_readReg(uint8_t reg_address);

int16_t H3LIS200DL_convertToG(int16_t maxScale, int16_t reading);

void H3LIS200DL_setHighPassCoeff(high_pass_cutoff_freq_cfg hpcoeff);

void H3LIS200DL_enableHPF(bool enable);

void H3LIS200DL_HPFOnIntPin(bool enable, uint8_t pin);

void H3LIS200DL_intActiveHigh(bool enable);

void H3LIS200DL_intPinMode(pp_od _pinMode);

void H3LIS200DL_latchInterrupt(bool enable, uint8_t intSource);

void H3LIS200DL_intSrcConfig(int_sig_src src, uint8_t pin);

void H3LIS200DL_setFullScale(fs_range range);

bool H3LIS200DL_newXData();

bool H3LIS200DL_newYData();

bool H3LIS200DL_newZData();

void H3LIS200DL_enableInterrupt(int_axis axis, trig_on_level

trigLevel,uint8_t interrupt, bool enable);

void H3LIS200DL_setIntDuration(uint8_t duration, uint8_t intSource);

void H3LIS200DL_setIntThreshold(uint8_t threshold, uint8_t intSource);

int16_t H3LIS200DL_Read_x(int16_t x);

int16_t H3LIS200DL_Read_y(int16_t y);

int16_t H3LIS200DL_Read_z(int16_t z);

//</Nick>

bool getAccelPoints(void);

bool getAccelPoints2(void);

/* * * * * * * * * * * SD Card Functions * * * * * * * * * * */

void writeTemplateToSD(void);

void writeAccelToSD(void);

/* * * * * * * * * * * Time-of-Flight Sensor Functions * * * * * * * *

* * */

uint8_t VL53L0X_init(void);

bool VL53L0X_config(void);

bool VL53L0X_setSignalRateLimit(float limit_Mcps);

bool VL53L0X_getSpadInfo(uint8_t * count, bool * type_is_aperture);

uint32_t VL53L0X_getMeasurementTimingBudget(void);

void VL53L0X_getSequenceStepTimeouts(SequenceStepEnables const *

enables, SequenceStepTimeouts * timeouts);

uint8_t VL53L0X_getVcselPulsePeriod(vcselPeriodType type);

bool VL53L0X_setMeasurementTimingBudget(uint32_t budget_us);

void VL53L0X_getSequenceStepEnables(SequenceStepEnables * enables);

uint16_t VL53L0X_encodeTimeout(uint16_t timeout_mclks);

bool VL53L0X_performSingleRefCalibration(uint8_t vhv_init_byte);

93

uint32_t VL53L0X_timeoutMclksToMicroseconds(uint16_t

timeout_period_mclks, uint8_t vcsel_period_pclks);

uint32_t VL53L0X_timeoutMicrosecondsToMclks(uint32_t

timeout_period_us, uint8_t vcsel_period_pclks);

uint16_t VL53L0X_decodeTimeout(uint16_t reg_val);

void VL53L0X_startContinuous(uint32_t period_ms);

void VL53L0X_stopContinuous(void);

uint16_t VL53L0X_readRangeContinuousMillimeters(void);

uint16_t VL53L0X_readRangeSingleMillimeters(void);

inline void VL53L0X_setTimeout(uint16_t timeout) { io_timeout =

timeout; }

inline uint16_t VL53L0X_getTimeout(void) { return io_timeout; }

bool VL53L0X_timeoutOccurred(void);

/* * * * * * * * * * * * * * LED Display Functions * * * * * * * * * *

* * * */

void showBinary(uint8_t n);

void showStartup(void);

void showStartupRGB(void);

void showDistanceRGB(uint16_t dist, LED_posn LED);

void showInitRGB(int index);

void showConcussion(void);

void showCount(void);

void showError(void);

/* * * * * * * * * * * * * Accelerometer Variables * * * * * * * * * *

* * */

// <Nick>

int16_t x_1, y_1, z_1;

int16_t x_2, y_2, z_2;

int16_t x_3, y_3, z_3;

int16_t x_4, y_4, z_4;

int16_t x_5, y_5, z_5;

int16_t thresh = 50; // impact threshold (in Gs)) // set to 50 for

actual use

int16_t max = 0x0000; // current maximum axis reading

// timestamps of readings

unsigned long timer1, timer2, timer3, timer4, timer5;

// c-strings for writing data to SD card

char data1[255];

char data2[255];

char data3[255];

char data4[255];

char data5[255];

// </Nick>

// set TRUE to automatically clear the interrupt of each ToF sensor

upon reading

94

bool auto_int_clr = false;

/*

 Main application

*/

int main(void) {

 /* * * * * * * * * * * * * * * ToF * * * * * * * * * * * * * * */

 address = VL53L0X_I2CADDR;

 io_timeout = 0;

 did_timeout = false;

 // distances from each ToF sensor

 int ToF_to_test = 2; // 0, 1, 2, 3, 4, 5

 uint8_t dist_8; // 8-bit integer used to display the 8 LSBs of

distance

 uint16_t distances[NUM_TOF] = { 0xFFFF, 0xFFFF, 0xFFFF,

 0xFFFF, 0xFFFF, 0xFFFF};

 /* * * * * * * * * * * * * * * SETUP * * * * * * * * * * * * * *

*/

 SYSTEM_Initialize(); // MCC: I2C1, TMR1, SPI1 initialization

 Start_Initialization(); // for pins/LEDs

 I2C1_MESSAGE_STATUS I2C_Status = I2C1_MESSAGE_COMPLETE;

 //showStartup(); // run on-board LED startup pattern

 showStartupRGB(); // run RGB LED startup pattern

 //writeTemplateToSD();

 /* * * * * * * * * * * * * * ToF Setup * * * * * * * * * * * * *

*/

// initSingleToF(ToF_to_test, distances); // initialize a single

ToF sensor

 initAllToF(distances); // initialize all ToF sensors

 uint8_t index; // hold the index of the sensor detecting the

nearest object

 /* * * * * * * * * * * Accelerometer Setup * * * * * * * * * * */

 selectPort2(0x00, 0x03); // select Accelerometer port (Mux 0, Port

3)

 H3LIS200DL_begin();

 msTimerDelay(5);

 while (1) {

 /* * * * * * * * * * * * * * Accelerometer * * * * * * * * * *

* * * */

 if(getAccelPoints2()) { // get accel data, returns true if max

>= thresh

 writeAccelToSD();

 }

95

 /*************** I2C Time-of-Flight **************/

 getAllToF(distances); // get the distances from all ToF

sensors

 // get the distance from the ToF_to_test sensor

// getSingleToF(ToF_to_test, distances);

 /************** SHOW READING **************/

// dist_8 = distances[ToF_to_test] & 0xFF;

 // show reading LSBs via on-board LEDs

// showBinary(dist_8);

// msTimerDelay(10);

 // show RGB corresponding to reading of ToF_to_test

// showDistanceRGB(distances[ToF_to_test], LEDs[ToF_to_test]);

 // find the sensor detecting the closest obstacle

 index = getNearestObstacleIndex(distances);

 // show RGB corresponding to reading of said sensor

 if(index == 0xFF) {

 showBinary(0x00);

 }

 else {

 showDistanceRGB(distances[index], LEDs[index]);

 }

 }

 return 0;

}

// displays the byte value in binary on the LEDs

void showBinary(uint8_t n) {

 LED1 = n;

 LED2 = n >> 1;

 LED3 = n >> 2;

 LED4 = n >> 3;

 LED5 = n >> 4;

 LED6 = n >> 5;

 LED7 = n >> 6;

 LED8 = n >> 7;

}

// a fun visual to do at boot

void showStartup(void) {

 uint16_t delay = 25;

 uint8_t display = 0x01;

 while(display != 0x80) { // run one LED "up"

 display = display << 1;

 showBinary(display);

 msTimerDelay(delay);

 }

96

 while(display > 0x00) { // run one LED back "down"

 display = display >> 1;

 showBinary(display);

 msTimerDelay(delay);

 }

 display = 0x00; // reset to 0

 while(display < 0xFF) { // "fill" LEDs

 display = display << 1;

 showBinary(++display);

 msTimerDelay(delay);

 }

 while(display > 0x00) { // "empty" LEDs

 display = display >> 1;

 showBinary(display);

 msTimerDelay(delay);

 }

}

void showStartupRGB(void) {

 uint16_t delay = 200;

 showBinary(LR_RED | LR_ON | MID_RED);

 msTimerDelay(delay);

 showBinary(LR_PRP | LR_ON | MID_PRP);

 msTimerDelay(delay);

 showBinary(LR_BLU | LR_ON | MID_BLU);

 msTimerDelay(delay);

 showBinary(LR_BLU | LR_GRN | LR_ON | MID_BLU | MID_GRN);

 msTimerDelay(delay);

 showBinary(LR_GRN | LR_ON | MID_GRN);

 msTimerDelay(delay);

}

void showDistanceRGB(uint16_t dist, LED_posn LED) {

 if(1900 < dist) {

 showBinary(0x00);

 }

 else if(LED == LED_C) {

 if(dist <= 500) {

 showBinary(MID_RED);

 } else if(500 < dist && dist <= 1000) {

 showBinary(MID_GRN);

 } else if(1000 < dist && dist <= 1500) {

 showBinary(MID_BLU);

 }

 }

97

 else if(LED == LED_L) {

 if(dist <= 500) {

 showBinary(LR_RED | R_OFF);

 } else if(500 < dist && dist <= 1000) {

 showBinary(LR_GRN | R_OFF);

 } else if(1000 < dist && dist <= 1500) {

 showBinary(LR_BLU | R_OFF);

 }

 }

 else if(LED == LED_R) {

 if(dist <= 500) {

 showBinary(LR_RED | L_OFF);

 } else if(500 < dist && dist <= 1000) {

 showBinary(LR_GRN | L_OFF);

 } else if(1000 < dist && dist <= 1500) {

 showBinary(LR_BLU | L_OFF);

 }

 }

}

void showInitRGB(int index) {

 int clr = index % 3; // determines what color to turn the LED

 // 0 -> RED

 // 1 -> YELLOW

 // 2 -> WHITE

 if(index < (NUM_TOF/2)) { // left side sensors

 if(clr == 0) {

 showBinary(LR_RED | R_OFF); // red

 } else if(clr == 1) {

 showBinary(LR_RED | LR_GRN | R_OFF); // yellow

 } else if(clr == 2) {

 showBinary(LR_RED | LR_GRN | LR_BLU | R_OFF); // white

 }

 }

 else if(((NUM_TOF/2) <= index) && (index < NUM_TOF)) { //

right side sensors

 if(clr == 0) {

 showBinary(LR_RED | L_OFF); // red

 } else if(clr == 1) {

 showBinary(LR_RED | LR_GRN | L_OFF); // yellow

 } else if(clr == 2) {

 showBinary(LR_RED | LR_GRN | LR_BLU | L_OFF); // white

 }

 }

}

void showConcussion(void) {

 uint16_t delay = 1000;

 // show all red

 showBinary(LR_RED | LR_ON | MID_RED);

98

 msTimerDelay(delay);

 // show all purple

 showBinary(LR_PRP | LR_ON | MID_PRP);

 msTimerDelay(delay);

 // show all red

 showBinary(LR_RED | LR_ON | MID_RED);

 msTimerDelay(delay);

 // show all purple

 showBinary(LR_PRP | LR_ON | MID_PRP);

 msTimerDelay(delay);

 // show all red

 showBinary(LR_RED | LR_ON | MID_RED);

 msTimerDelay(delay);

}

// a visual for errors

void showError(void) {

 uint16_t delay = 50;

 uint8_t i = 0x00;

 while(i < 3) { // flash alternating LEDs 3 times

 showBinary(0x55);

 msTimerDelay(delay);

 showBinary(0xAA);

 msTimerDelay(delay);

 i++;

 }

}

/* * * * * * * * * * * * I2C Bus Read/Write Functions * * * * * * * *

* * * */

void selectPort(muxPort_t sensorPort) {

 if(sensorPort.mux == 0x00) {

 writeRegister(MUX_1, 0x00, 0x00); // disable mux 1

 }

 else if(sensorPort.mux == 0x01) {

 writeRegister(MUX_0, 0x00, 0x00); // disable mux 0

 }

 // base mux address is 0x70

 writeRegister((MUX_0 + sensorPort.mux), 0x00, (0x04 +

sensorPort.port));

}

void selectPort2(uint8_t mux, uint8_t port) {

 // base mux address is 0x70

 if(mux == 0x00) {

 writeRegister(MUX_1, 0x00, 0x00);

99

 writeRegister(MUX_0, 0x00, (0x04 + port));

 }

 else if(mux == 0x01) {

 writeRegister(MUX_0, 0x00, 0x00);

 writeRegister(MUX_1, 0x00, (0x04 + port));

 }

}

// read the interrupts from mux

uint8_t getMuxCtrlReg(uint8_t mux) {

 // read the control register of mux

 return readReg((MUX_0 + mux), 0x00);

}

// writes to the device a byte of data to the register

void writeRegister(uint8_t dev, uint8_t reg, uint8_t data) {

 uint8_t config[] = {reg, data};

 while(I2C_Status != I2C1_MESSAGE_COMPLETE);

 I2C1_MasterWrite(config, sizeof(config), dev, &I2C_Status);

 while(I2C_Status != I2C1_MESSAGE_COMPLETE);

 // showBinary(I2C_Status);

 msTimerDelay(5);

}

// writes to the device a byte of data to the register

void writeRegister_16b(uint8_t dev, uint8_t reg, uint16_t data) {

 // send MSB then LSB

 uint8_t config[] = {reg, data >> 8, data & 0x00FF};

 while(I2C_Status != I2C1_MESSAGE_COMPLETE);

 I2C1_MasterWrite(config, sizeof(config), dev, &I2C_Status);

 while(I2C_Status != I2C1_MESSAGE_COMPLETE);

 msTimerDelay(5);

}

void writeRegister_32b(uint8_t dev, uint8_t reg, uint32_t data) {

 // send MSB, ..., then LSB

 uint8_t config[] = {reg, data >> 24, data >> 16 & 0x00FF, data >>

8 & 0x00FF, data & 0x00FF};

 while(I2C_Status != I2C1_MESSAGE_COMPLETE);

 I2C1_MasterWrite(config, sizeof(config), dev, &I2C_Status);

 while(I2C_Status != I2C1_MESSAGE_COMPLETE);

 msTimerDelay(5);

}

// reads from the device a byte of data from the given register

void readRegister(uint8_t dev, uint8_t reg, uint8_t* data) {

 while(I2C_Status != I2C1_MESSAGE_COMPLETE);

 I2C1_MasterWrite(®, 1, dev, &I2C_Status);

100

 while(I2C_Status != I2C1_MESSAGE_COMPLETE);

 I2C1_MasterRead(data, 1, dev, &I2C_Status);

 while(I2C_Status != I2C1_MESSAGE_COMPLETE);

 msTimerDelay(5);

}

uint16_t readRegister_16b(uint8_t dev, uint8_t reg) {

 uint8_t data[2];

 while(I2C_Status != I2C1_MESSAGE_COMPLETE);

 I2C1_MasterWrite(®, 1, dev, &I2C_Status);

 while(I2C_Status != I2C1_MESSAGE_COMPLETE);

 I2C1_MasterRead(data, 2, dev, &I2C_Status);

 while(I2C_Status != I2C1_MESSAGE_COMPLETE);

 msTimerDelay(5);

 return ((data[0] << 8) + data[1]); // MSB first (VL53L0X pg. 15)

 //return (data[0] >> 8 + data[1]); // LSB first

 // TODO: switch endianness if need be

}

uint8_t data;

uint8_t readReg(uint8_t dev, uint8_t reg) {

 while(I2C_Status != I2C1_MESSAGE_COMPLETE);

 I2C1_MasterWrite(®, 1, dev, &I2C_Status);

 while(I2C_Status != I2C1_MESSAGE_COMPLETE);

 I2C1_MasterRead(&data, 1, dev, &I2C_Status);

 while(I2C_Status != I2C1_MESSAGE_COMPLETE);

 msTimerDelay(5);

 return data;

}

/*

* * * */

/* * * * * * * * * * * * * * ToF Helper Functions * * * * * * * * * *

* * * */

void initSingleToF(int ToF_num, uint16_t *dists) {

 selectPort(ToF[ToF_num]);

 msTimerDelay(1);

 VL53L0X_init();

 dists[ToF_num] = VL53L0X_readRangeSingleMillimeters();

}

void initAllToF(uint16_t *dists) {

 int i = 0;

 for(i = 0; i < 6; i++) {

 selectPort(ToF[i]);

 msTimerDelay(1);

101

 VL53L0X_init();

 dists[i] = VL53L0X_readRangeSingleMillimeters();

 if(!auto_int_clr) {

 writeRegister(VL53L0X_I2CADDR, SYSTEM_INTERRUPT_CLEAR,

0x01); // clear interrupt

 }

 showInitRGB(i); // show RGB LED change on each side as sensors

init

 }

 // turn all on white for 1 second to show initialization is done

 showBinary(LR_RED | LR_GRN | LR_BLU | LR_ON | MID_RED | MID_GRN |

MID_BLU);

 msTimerDelay(1000);

}

void initAllToF2(uint16_t *dists) {

 int i = 1;

// selectPort(ToF[i]);

// msTimerDelay(1);

// VL53L0X_init();

// dists[i] = VL53L0X_readRangeSingleMillimeters();

// if(!auto_int_clr) {

// writeRegister(VL53L0X_I2CADDR, SYSTEM_INTERRUPT_CLEAR,

0x01); // clear interrupt

// }

 i = 3;

 selectPort(ToF[i]);

 msTimerDelay(1);

 VL53L0X_init();

 dists[i] = VL53L0X_readRangeSingleMillimeters();

 if(!auto_int_clr) {

 writeRegister(VL53L0X_I2CADDR, SYSTEM_INTERRUPT_CLEAR, 0x01);

// clear interrupt

 }

 i = 4;

 selectPort(ToF[i]);

 msTimerDelay(1);

 VL53L0X_init();

 dists[i] = VL53L0X_readRangeSingleMillimeters();

 if(!auto_int_clr) {

 writeRegister(VL53L0X_I2CADDR, SYSTEM_INTERRUPT_CLEAR, 0x01);

// clear interrupt

 }

 i = 5;

 selectPort(ToF[i]);

 msTimerDelay(1);

 VL53L0X_init();

 dists[i] = VL53L0X_readRangeSingleMillimeters();

102

 if(!auto_int_clr) {

 writeRegister(VL53L0X_I2CADDR, SYSTEM_INTERRUPT_CLEAR, 0x01);

// clear interrupt

 }

}

void getSingleToF(int ToF_num, uint16_t *dists) {

 selectPort(ToF[ToF_num]); // Select Multiplexer 0, Port 0

 msTimerDelay(1);

 dists[ToF_num] = VL53L0X_readRangeSingleMillimeters();

 msTimerDelay(1);

}

void getAllToF(uint16_t *dists) {

 int i = 0;

 for(i = 0; i < 6; i++) {

 selectPort(ToF[i]);

 msTimerDelay(1);

 dists[i] = VL53L0X_readRangeSingleMillimeters();

 msTimerDelay(1);

 }

}

void getAllToF2(uint16_t *dists) {

 int i = 1;

// selectPort(ToF[i]); // Select Multiplexer 0, Port 1

// msTimerDelay(1);

// VL53L0X_startContinuous(0);

// dists[i] = VL53L0X_readRangeSingleMillimeters();

// msTimerDelay(1);

 i = 3;

 selectPort(ToF[i]); // Select Multiplexer 1, Port 0

 msTimerDelay(1);

 dists[i] = VL53L0X_readRangeSingleMillimeters();

 msTimerDelay(1);

 i = 4;

 selectPort(ToF[i]); // Select Multiplexer 1, Port 1

 msTimerDelay(1);

 dists[i] = VL53L0X_readRangeSingleMillimeters();

 msTimerDelay(1);

 i = 5;

 selectPort(ToF[i]); // Select Multiplexer 1, Port 2

 msTimerDelay(1);

 dists[i] = VL53L0X_readRangeSingleMillimeters();

 msTimerDelay(1);

}

// given the array of distances, return the index of the closest

object

103

uint8_t getNearestObstacleIndex(uint16_t *dists) {

 uint8_t index = 0xFF;

 uint16_t min = 0xFFFF; // 65535

 int i = 0;

 for(i = 0; i < NUM_TOF; i++) {

 if(dists[i] < min) { // if this is the minimum value

 min = dists[i]; // min is the minimum value

 index = i; // update the value of index

 }

 }

 return index; // 255 indicates all sensors returned

65535

}

uint8_t getNearestObstacleIndex2(uint16_t *dists) {

 uint8_t index = 0xFF;

 uint16_t min = 0xFFFF; // 65535

 int i = 1;

 if(dists[i] < min) { // if this is the minimum value

 min = dists[i]; // min is the minimum value

 index = i; // update the value of index

 }

 i = 3;

 if(dists[i] < min) { // if this is the minimum value

 min = dists[i]; // min is the minimum value

 index = i; // update the value of index

 }

 i = 4;

 if(dists[i] < min) { // if this is the minimum value

 min = dists[i]; // min is the minimum value

 index = i; // update the value of index

 }

 i = 5;

 if(dists[i] < min) { // if this is the minimum value

 min = dists[i]; // min is the minimum value

 index = i; // update the value of index

 }

 return index; // 255 indicates all sensors returned

65535

}

/*

* * * */

104

/* * * * * * * * * * * * * * ToF Sensor Functions * * * * * * * * * *

* * * */

uint8_t VL53L0X_init(void) {

 uint8_t success = 0;

 if(VL53L0X_config()) { // configure ToF

 success = 1;

 }

 VL53L0X_setTimeout(200); // was 500

 // Start continuous back-to-back mode (take readings as

 // fast as possible). To use continuous timed mode

 // instead, provide a desired inter-measurement period in

 // ms (e.g. sensor.startContinuous(100))

 VL53L0X_setMeasurementTimingBudget(200000); // was 200000

 //VL53L0X_startContinuous(0); // was 0

 VL53L0X_stopContinuous();

 return success;

}

bool VL53L0X_config(void) {

 // VL53L0X_DataInit() begin

 uint8_t io_2v8 = 0;

 // sensor uses 1V8 mode for I/O by default; switch to 2V8 mode if

necessary

 if (io_2v8) {

 writeRegister(VL53L0X_I2CADDR,

VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV,

 readReg(VL53L0X_I2CADDR, VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV) |

0x01); // set bit 0

 }

 // "Set I2C standard mode"

 writeRegister(VL53L0X_I2CADDR, 0x88, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x80, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0x00, 0x00);

 stop_variable = readReg(VL53L0X_I2CADDR, 0x91);

 writeRegister(VL53L0X_I2CADDR, 0x00, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x80, 0x00);

 // disable SIGNAL_RATE_MSRC (bit 1) and SIGNAL_RATE_PRE_RANGE (bit

4) limit checks

 writeRegister(VL53L0X_I2CADDR, MSRC_CONFIG_CONTROL,

readReg(VL53L0X_I2CADDR, MSRC_CONFIG_CONTROL) | 0x12);

105

 // set final range signal rate limit to 0.25 MCPS (million counts

per second)

 VL53L0X_setSignalRateLimit(0.25);

 writeRegister(VL53L0X_I2CADDR, SYSTEM_SEQUENCE_CONFIG, 0xFF);

 // VL53L0X_DataInit() end

 // VL53L0X_StaticInit() begin

 uint8_t spad_count;

 bool spad_type_is_aperture;

 if (!VL53L0X_getSpadInfo(&spad_count, &spad_type_is_aperture)) {

return false; }

 // The SPAD map (RefGoodSpadMap) is read by

VL53L0X_get_info_from_device() in

 // the API, but the same data seems to be more easily readable

from

 // GLOBAL_CONFIG_SPAD_ENABLES_REF_0 through _6, so read it from

there

 uint8_t ref_spad_map[6];

 VL53L0X_Read(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6);

 // -- VL53L0X_set_reference_spads() begin (assume NVM values are

valid)

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x01);

 writeRegister(VL53L0X_I2CADDR, DYNAMIC_SPAD_REF_EN_START_OFFSET,

0x00);

 writeRegister(VL53L0X_I2CADDR,

DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x00);

 writeRegister(VL53L0X_I2CADDR, GLOBAL_CONFIG_REF_EN_START_SELECT,

0xB4);

 uint8_t first_spad_to_enable = spad_type_is_aperture ? 12 : 0; //

12 is the first aperture spad

 uint8_t spads_enabled = 0;

 uint8_t i;

 for (i = 0; i < 48; i++) {

 if (i < first_spad_to_enable || spads_enabled == spad_count) {

 // This bit is lower than the first one that should be

enabled, or

 // (reference_spad_count) bits have already been enabled, so

zero this bit

 ref_spad_map[i / 8] &= ~(1 << (i % 8));

 }

 else if ((ref_spad_map[i / 8] >> (i % 8)) & 0x1) {

106

 spads_enabled++;

 }

 }

 // TODO: ?

 //writeMulti(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6);

 uint8_t ad[] = {GLOBAL_CONFIG_SPAD_ENABLES_REF_0}; // this is a

dumb workaround

 while(I2C_Status != I2C1_MESSAGE_COMPLETE);

 I2C1_MasterWrite(ad, 1, VL53L0X_I2CADDR, &I2C_Status);

 while(I2C_Status != I2C1_MESSAGE_COMPLETE);

 I2C1_MasterWrite(ref_spad_map, sizeof(ref_spad_map),

VL53L0X_I2CADDR, &I2C_Status);

 while(I2C_Status != I2C1_MESSAGE_COMPLETE);

 // -- VL53L0X_set_reference_spads() end

 // DefaultTuningSettings from vl53l0x_tuning.h

 // -- VL53L0X_load_tuning_settings() begin

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0x00, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x09, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x10, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x11, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x24, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0x25, 0xFF);

 writeRegister(VL53L0X_I2CADDR, 0x75, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0x4E, 0x2C);

 writeRegister(VL53L0X_I2CADDR, 0x48, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x30, 0x20);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x30, 0x09);

 writeRegister(VL53L0X_I2CADDR, 0x54, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x31, 0x04);

 writeRegister(VL53L0X_I2CADDR, 0x32, 0x03);

 writeRegister(VL53L0X_I2CADDR, 0x40, 0x83);

 writeRegister(VL53L0X_I2CADDR, 0x46, 0x25);

 writeRegister(VL53L0X_I2CADDR, 0x60, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x27, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x50, 0x06);

 writeRegister(VL53L0X_I2CADDR, 0x51, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x52, 0x96);

 writeRegister(VL53L0X_I2CADDR, 0x56, 0x08);

 writeRegister(VL53L0X_I2CADDR, 0x57, 0x30);

 writeRegister(VL53L0X_I2CADDR, 0x61, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x62, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x64, 0x00);

107

 writeRegister(VL53L0X_I2CADDR, 0x65, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x66, 0xA0);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0x22, 0x32);

 writeRegister(VL53L0X_I2CADDR, 0x47, 0x14);

 writeRegister(VL53L0X_I2CADDR, 0x49, 0xFF);

 writeRegister(VL53L0X_I2CADDR, 0x4A, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x7A, 0x0A);

 writeRegister(VL53L0X_I2CADDR, 0x7B, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x78, 0x21);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0x23, 0x34);

 writeRegister(VL53L0X_I2CADDR, 0x42, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x44, 0xFF);

 writeRegister(VL53L0X_I2CADDR, 0x45, 0x26);

 writeRegister(VL53L0X_I2CADDR, 0x46, 0x05);

 writeRegister(VL53L0X_I2CADDR, 0x40, 0x40);

 writeRegister(VL53L0X_I2CADDR, 0x0E, 0x06);

 writeRegister(VL53L0X_I2CADDR, 0x20, 0x1A);

 writeRegister(VL53L0X_I2CADDR, 0x43, 0x40);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x34, 0x03);

 writeRegister(VL53L0X_I2CADDR, 0x35, 0x44);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0x31, 0x04);

 writeRegister(VL53L0X_I2CADDR, 0x4B, 0x09);

 writeRegister(VL53L0X_I2CADDR, 0x4C, 0x05);

 writeRegister(VL53L0X_I2CADDR, 0x4D, 0x04);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x44, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x45, 0x20);

 writeRegister(VL53L0X_I2CADDR, 0x47, 0x08);

 writeRegister(VL53L0X_I2CADDR, 0x48, 0x28);

 writeRegister(VL53L0X_I2CADDR, 0x67, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x70, 0x04);

 writeRegister(VL53L0X_I2CADDR, 0x71, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0x72, 0xFE);

 writeRegister(VL53L0X_I2CADDR, 0x76, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x77, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0x0D, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x80, 0x01);

108

 writeRegister(VL53L0X_I2CADDR, 0x01, 0xF8);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0x8E, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0x00, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x80, 0x00);

 // -- VL53L0X_load_tuning_settings() end

 // "Set interrupt config to new sample ready"

 // -- VL53L0X_SetGpioConfig() begin

 writeRegister(VL53L0X_I2CADDR, SYSTEM_INTERRUPT_CONFIG_GPIO,

0x04);

 writeRegister(VL53L0X_I2CADDR, GPIO_HV_MUX_ACTIVE_HIGH,

readReg(VL53L0X_I2CADDR, GPIO_HV_MUX_ACTIVE_HIGH) & ~0x10); // active

low

 if(auto_int_clr) {

 writeRegister(VL53L0X_I2CADDR, SYSTEM_INTERRUPT_CLEAR, 0x01);

// clear interrupt

 }

 // -- VL53L0X_SetGpioConfig() end

 measurement_timing_budget_us =

VL53L0X_getMeasurementTimingBudget();

 // "Disable MSRC and TCC by default"

 // MSRC = Minimum Signal Rate Check

 // TCC = Target CentreCheck

 // -- VL53L0X_SetSequenceStepEnable() begin

 writeRegister(VL53L0X_I2CADDR, SYSTEM_SEQUENCE_CONFIG, 0xE8);

 // -- VL53L0X_SetSequenceStepEnable() end

 // "Recalculate timing budget"

 VL53L0X_setMeasurementTimingBudget(measurement_timing_budget_us);

 // VL53L0X_StaticInit() end

 // VL53L0X_PerformRefCalibration() begin

(VL53L0X_perform_ref_calibration())

 // -- VL53L0X_perform_vhv_calibration() begin

 writeRegister(VL53L0X_I2CADDR, SYSTEM_SEQUENCE_CONFIG, 0x01);

 if (!VL53L0X_performSingleRefCalibration(0x40)) { return false; }

 // -- VL53L0X_perform_vhv_calibration() end

 // -- VL53L0X_perform_phase_calibration() begin

 writeRegister(VL53L0X_I2CADDR, SYSTEM_SEQUENCE_CONFIG, 0x02);

109

 if (!VL53L0X_performSingleRefCalibration(0x00)) { return false; }

 // -- VL53L0X_perform_phase_calibration() end

 // "restore the previous Sequence Config"

 writeRegister(VL53L0X_I2CADDR, SYSTEM_SEQUENCE_CONFIG, 0xE8);

 // VL53L0X_PerformRefCalibration() end

 return true;

}

bool VL53L0X_setSignalRateLimit(float limit_Mcps) {

 if (limit_Mcps < 0 || limit_Mcps > 511.99) { return false; }

 // Q9.7 fixed point format (9 integer bits, 7 fractional bits)

 writeRegister_16b(VL53L0X_I2CADDR,

FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT, limit_Mcps * (1 << 7));

 return true;

}

// Get reference SPAD (single photon avalanche diode) count and type

// based on VL53L0X_get_info_from_device(),

// but only gets reference SPAD count and type

bool VL53L0X_getSpadInfo(uint8_t * count, bool * type_is_aperture) {

 uint8_t tmp;

 writeRegister(VL53L0X_I2CADDR, 0x80, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0x00, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x06);

 writeRegister(VL53L0X_I2CADDR, 0x83, readReg(VL53L0X_I2CADDR, 0x83)

| 0x04);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x07);

 writeRegister(VL53L0X_I2CADDR, 0x81, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0x80, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0x94, 0x6b);

 writeRegister(VL53L0X_I2CADDR, 0x83, 0x00);

 startTimeout();

 // HELP

 while (readReg(VL53L0X_I2CADDR, 0x83) == 0x00) {

 if (checkTimeoutExpired()) { return false; }

 }

 writeRegister(VL53L0X_I2CADDR, 0x83, 0x01);

 readRegister(VL53L0X_I2CADDR, 0x92, &tmp);

 *count = tmp & 0x7f;

 *type_is_aperture = (tmp >> 7) & 0x01;

110

 writeRegister(VL53L0X_I2CADDR, 0x81, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x06);

 writeRegister(VL53L0X_I2CADDR, 0x83, readReg(VL53L0X_I2CADDR, 0x83)

& ~0x04); //(3) for this

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0x00, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x80, 0x00);

 return true;

}

// Get the measurement timing budget in microseconds

// based on VL53L0X_get_measurement_timing_budget_micro_seconds()

// in us

uint32_t VL53L0X_getMeasurementTimingBudget(void) {

 SequenceStepEnables enables;

 SequenceStepTimeouts timeouts;

 uint16_t const StartOverhead = 1910; // note that this is

different than the value in set_

 uint16_t const EndOverhead = 960;

 uint16_t const MsrcOverhead = 660;

 uint16_t const TccOverhead = 590;

 uint16_t const DssOverhead = 690;

 uint16_t const PreRangeOverhead = 660;

 uint16_t const FinalRangeOverhead = 550;

 // "Start and end overhead times always present"

 uint32_t budget_us = StartOverhead + EndOverhead;

 VL53L0X_getSequenceStepEnables(&enables);

 VL53L0X_getSequenceStepTimeouts(&enables, &timeouts);

 if (enables.tcc) {

 budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead);

 }

 if (enables.dss) {

 budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead);

 }

 else if (enables.msrc) {

 budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead);

 }

 if (enables.pre_range) {

 budget_us += (timeouts.pre_range_us + PreRangeOverhead);

 }

 if (enables.final_range) {

 budget_us += (timeouts.final_range_us + FinalRangeOverhead);

111

 }

 measurement_timing_budget_us = budget_us; // store for internal

reuse

 return budget_us;

}

// Get sequence step enables

// based on VL53L0X_GetSequenceStepEnables()

void VL53L0X_getSequenceStepEnables(SequenceStepEnables * enables) {

 uint8_t sequence_config;

 readRegister(VL53L0X_I2CADDR, SYSTEM_SEQUENCE_CONFIG,

&sequence_config);

 enables->tcc = (sequence_config >> 4) & 0x1;

 enables->dss = (sequence_config >> 3) & 0x1;

 enables->msrc = (sequence_config >> 2) & 0x1;

 enables->pre_range = (sequence_config >> 6) & 0x1;

 enables->final_range = (sequence_config >> 7) & 0x1;

}

// Get sequence step timeouts

// based on get_sequence_step_timeout(),

// but gets all timeouts instead of just the requested one, and also

stores

// intermediate values

void VL53L0X_getSequenceStepTimeouts(SequenceStepEnables const *

enables, SequenceStepTimeouts * timeouts) {

 timeouts->pre_range_vcsel_period_pclks =

VL53L0X_getVcselPulsePeriod(VcselPeriodPreRange);

 timeouts->msrc_dss_tcc_mclks = readReg(VL53L0X_I2CADDR,

MSRC_CONFIG_TIMEOUT_MACROP) + 1;

 timeouts->msrc_dss_tcc_us =

 VL53L0X_timeoutMclksToMicroseconds(timeouts->msrc_dss_tcc_mclks,

 timeouts-

>pre_range_vcsel_period_pclks);

 timeouts->pre_range_mclks =

 VL53L0X_decodeTimeout(readRegister_16b(VL53L0X_I2CADDR,

PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI));

 timeouts->pre_range_us =

 VL53L0X_timeoutMclksToMicroseconds(timeouts->pre_range_mclks,

 timeouts-

>pre_range_vcsel_period_pclks);

 timeouts->final_range_vcsel_period_pclks =

VL53L0X_getVcselPulsePeriod(VcselPeriodFinalRange);

 timeouts->final_range_mclks =

 VL53L0X_decodeTimeout(readRegister_16b(VL53L0X_I2CADDR,

FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI));

112

 if (enables->pre_range) {

 timeouts->final_range_mclks -= timeouts->pre_range_mclks;

 }

 timeouts->final_range_us =

 VL53L0X_timeoutMclksToMicroseconds(timeouts->final_range_mclks,

 timeouts-

>final_range_vcsel_period_pclks);

}

// Get the VCSEL pulse period in PCLKs for the given period type.

// based on VL53L0X_get_vcsel_pulse_period()

uint8_t VL53L0X_getVcselPulsePeriod(vcselPeriodType type) {

 if (type == VcselPeriodPreRange) {

 return decodeVcselPeriod(readReg(VL53L0X_I2CADDR,

PRE_RANGE_CONFIG_VCSEL_PERIOD));

 }

 else if (type == VcselPeriodFinalRange) {

 return decodeVcselPeriod(readReg(VL53L0X_I2CADDR,

FINAL_RANGE_CONFIG_VCSEL_PERIOD));

 }

 else { return 255; }

}

// Convert sequence step timeout from MCLKs to microseconds with given

VCSEL period in PCLKs

// based on VL53L0X_calc_timeout_us()

uint32_t VL53L0X_timeoutMclksToMicroseconds(uint16_t

timeout_period_mclks, uint8_t vcsel_period_pclks) {

 uint32_t macro_period_ns = calcMacroPeriod(vcsel_period_pclks);

 return ((timeout_period_mclks * macro_period_ns) + (macro_period_ns

/ 2)) / 1000;

}

// Convert sequence step timeout from microseconds to MCLKs with given

VCSEL period in PCLKs

// based on VL53L0X_calc_timeout_mclks()

uint32_t VL53L0X_timeoutMicrosecondsToMclks(uint32_t

timeout_period_us, uint8_t vcsel_period_pclks) {

 uint32_t macro_period_ns = calcMacroPeriod(vcsel_period_pclks);

 return (((timeout_period_us * 1000) + (macro_period_ns / 2)) /

macro_period_ns);

}

// Decode sequence step timeout in MCLKs from register value

// based on VL53L0X_decode_timeout()

// Note: the original function returned a uint32_t, but the return

value is

// always stored in a uint16_t.

113

uint16_t VL53L0X_decodeTimeout(uint16_t reg_val) {

 // format: "(LSByte * 2^MSByte) + 1"

 return (uint16_t)((reg_val & 0x00FF) <<

 (uint16_t)((reg_val & 0xFF00) >> 8)) + 1;

}

bool VL53L0X_setMeasurementTimingBudget(uint32_t budget_us) {

 SequenceStepEnables enables;

 SequenceStepTimeouts timeouts;

 uint16_t const StartOverhead = 1320; // note that this is

different than the value in get_

 uint16_t const EndOverhead = 960;

 uint16_t const MsrcOverhead = 660;

 uint16_t const TccOverhead = 590;

 uint16_t const DssOverhead = 690;

 uint16_t const PreRangeOverhead = 660;

 uint16_t const FinalRangeOverhead = 550;

 uint32_t const MinTimingBudget = 20000;

 if (budget_us < MinTimingBudget) { return false; }

 uint32_t used_budget_us = StartOverhead + EndOverhead;

 VL53L0X_getSequenceStepEnables(&enables);

 VL53L0X_getSequenceStepTimeouts(&enables, &timeouts);

 if (enables.tcc) {

 used_budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead);

 }

 if (enables.dss) {

 used_budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead);

 }

 else if (enables.msrc) {

 used_budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead);

 }

 if (enables.pre_range) {

 used_budget_us += (timeouts.pre_range_us + PreRangeOverhead);

 }

 if (enables.final_range) {

 used_budget_us += FinalRangeOverhead;

 // "Note that the final range timeout is determined by the timing

 // budget and the sum of all other timeouts within the sequence.

 // If there is no room for the final range timeout, then an error

 // will be set. Otherwise the remaining time will be applied to

 // the final range."

114

 if (used_budget_us > budget_us) {

 // "Requested timeout too big."

 return false;

 }

 uint32_t final_range_timeout_us = budget_us - used_budget_us;

 // set_sequence_step_timeout() begin

 // (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE)

 // "For the final range timeout, the pre-range timeout

 // must be added. To do this both final and pre-range

 // timeouts must be expressed in macro periods MClks

 // because they have different vcsel periods."

 uint16_t final_range_timeout_mclks =

 VL53L0X_timeoutMicrosecondsToMclks(final_range_timeout_us,

timeouts.final_range_vcsel_period_pclks);

 if (enables.pre_range) {

 final_range_timeout_mclks += timeouts.pre_range_mclks;

 }

 writeRegister_16b(VL53L0X_I2CADDR,

FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI,

 VL53L0X_encodeTimeout(final_range_timeout_mclks));

 // set_sequence_step_timeout() end

 measurement_timing_budget_us = budget_us; // store for internal

reuse

 }

 return true;

}

// Encode sequence step timeout register value from timeout in MCLKs

// based on VL53L0X_encode_timeout()

// Note: the original function took a uint16_t, but the argument

passed to it

// is always a uint16_t.

uint16_t VL53L0X_encodeTimeout(uint16_t timeout_mclks) {

 // format: "(LSByte * 2^MSByte) + 1"

 uint32_t ls_byte = 0;

 uint16_t ms_byte = 0;

 if (timeout_mclks > 0) {

 ls_byte = timeout_mclks - 1;

 while ((ls_byte & 0xFFFFFF00) > 0) {

 ls_byte >>= 1;

115

 ms_byte++;

 }

 return (ms_byte << 8) | (ls_byte & 0xFF);

 }

 else { return 0; }

}

// based on VL53L0X_perform_single_ref_calibration()

bool VL53L0X_performSingleRefCalibration(uint8_t vhv_init_byte) {

 writeRegister(VL53L0X_I2CADDR, SYSRANGE_START, 0x01 |

vhv_init_byte); // VL53L0X_REG_SYSRANGE_MODE_START_STOP

 startTimeout();

 while ((readReg(VL53L0X_I2CADDR, RESULT_INTERRUPT_STATUS) & 0x07)

== 0) {

 if (checkTimeoutExpired()) { return false; }

 }

 if(auto_int_clr) {

 writeRegister(VL53L0X_I2CADDR, SYSTEM_INTERRUPT_CLEAR, 0x01);

// clear interrupt

 }

 writeRegister(VL53L0X_I2CADDR, SYSRANGE_START, 0x00);

 return true;

}

// FOR TOF READS:

// Start continuous ranging measurements. If period_ms (optional) is 0

or not

// given, continuous back-to-back mode is used (the sensor takes

measurements as

// often as possible); otherwise, continuous timed mode is used, with

the given

// inter-measurement period in milliseconds determining how often the

sensor

// takes a measurement.

// based on VL53L0X_StartMeasurement()

void VL53L0X_startContinuous(uint32_t period_ms) {

 writeRegister(VL53L0X_I2CADDR, 0x80, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0x00, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x91, stop_variable);

 writeRegister(VL53L0X_I2CADDR, 0x00, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x80, 0x00);

 if (period_ms != 0) {

 // continuous timed mode

116

 // VL53L0X_SetInterMeasurementPeriodMilliSeconds() begin

 uint16_t osc_calibrate_val = readRegister_16b(VL53L0X_I2CADDR,

OSC_CALIBRATE_VAL);

 if (osc_calibrate_val != 0) {

 period_ms *= osc_calibrate_val;

 }

 writeRegister_32b(VL53L0X_I2CADDR, SYSTEM_INTERMEASUREMENT_PERIOD,

period_ms);

 // VL53L0X_SetInterMeasurementPeriodMilliSeconds() end

 writeRegister(VL53L0X_I2CADDR, SYSRANGE_START, 0x04); //

VL53L0X_REG_SYSRANGE_MODE_TIMED

 }

 else {

 // continuous back-to-back mode

 writeRegister(VL53L0X_I2CADDR, SYSRANGE_START, 0x02); //

VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK

 }

}

// Stop continuous measurements

// based on VL53L0X_StopMeasurement()

void VL53L0X_stopContinuous(void) {

 writeRegister(VL53L0X_I2CADDR, SYSRANGE_START, 0x01); //

VL53L0X_REG_SYSRANGE_MODE_SINGLESHOT

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0x00, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x91, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x00, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x00);

}

// Returns a range reading in millimeters when continuous mode is

active

// (readRangeSingleMillimeters() also calls this function after

starting a

// single-shot range measurement)

uint16_t VL53L0X_readRangeContinuousMillimeters(void) {

 startTimeout();

 while ((readReg(VL53L0X_I2CADDR, RESULT_INTERRUPT_STATUS) & 0x07)

== 0) {

 if (checkTimeoutExpired()) {

 did_timeout = true;

 return 65535;

 }

 }

117

 // assumptions: Linearity Corrective Gain is 1000 (default);

 // fractional ranging is not enabled

 uint16_t range = readRegister_16b(VL53L0X_I2CADDR,

RESULT_RANGE_STATUS + 10);

 if(auto_int_clr) {

 writeRegister(VL53L0X_I2CADDR, SYSTEM_INTERRUPT_CLEAR, 0x01);

// clear interrupt

 }

 return range;

}

// Performs a single-shot range measurement and returns the reading in

// millimeters

// based on VL53L0X_PerformSingleRangingMeasurement()

uint16_t VL53L0X_readRangeSingleMillimeters(void) {

 writeRegister(VL53L0X_I2CADDR, 0x80, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0x00, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x91, stop_variable);

 writeRegister(VL53L0X_I2CADDR, 0x00, 0x01);

 writeRegister(VL53L0X_I2CADDR, 0xFF, 0x00);

 writeRegister(VL53L0X_I2CADDR, 0x80, 0x00);

 writeRegister(VL53L0X_I2CADDR, SYSRANGE_START, 0x01);

 // "Wait until start bit has been cleared"

 startTimeout();

 while (readReg(VL53L0X_I2CADDR, SYSRANGE_START) & 0x01) {

 if (checkTimeoutExpired()) {

 did_timeout = true;

 return 65535;

 }

 }

 return VL53L0X_readRangeContinuousMillimeters();

}

// Did a timeout occur in one of the read functions since the last

call to

// timeoutOccurred()?

bool VL53L0X_timeoutOccurred() {

 bool tmp = did_timeout;

 did_timeout = false;

 return tmp;

}

/*

* * * */

118

/* * * * * * * * * * * * * Accelerometer Functions * * * * * * * * * *

* * */

//<Nick>

void H3LIS200DL_begin()

{

 H3LIS200DL_setPowerMode(NORMAL);

 H3LIS200DL_axesEnable(true);

 uint8_t data = 0;

 uint8_t i = 0x21;

 for (i = 0x21; i < 0x25; i++) {

 writeRegister(H3LIS200DL_I2CADDR, i, data);

 }

 uint8_t j = 0x30;

 for (j = 0x30; j < 0x37; j++) {

 writeRegister(H3LIS200DL_I2CADDR, j, data);

 }

}

void H3LIS200DL_axesEnable(bool enable)

{

 uint8_t data;

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_CTRL_REG1, &data);

 if (enable)

 {

 data |= 0x07;

 }

 else

 {

 data &= ~0x07;

 }

 writeRegister(H3LIS200DL_I2CADDR, H3LIS200DL_CTRL_REG1, data);

}

void H3LIS200DL_setPowerMode(power_mode pmode)

{

 uint8_t data;

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_CTRL_REG1, &data);

 // The power mode is the high three bits of CTRL_REG1. The mode

 // constants are the appropriate bit values left shifted by five,

so we

 // need to right shift them to make them work. We also want to mask

off the

 // top three bits to zero, and leave the others untouched, so we

only

 // affect the power mode bits.

 data &= ~0xe0; // Clear the top three bits

 data |= pmode<<5; // set the top three bits to our pmode value

119

 writeRegister(H3LIS200DL_I2CADDR, H3LIS200DL_CTRL_REG1, data); //

write the new value to CTRL_REG1

}

void H3LIS200DL_setODR(data_rate drate)

{

 uint8_t data;

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_CTRL_REG1, &data);

 // The data rate is bits 4:3 of CTRL_REG1. The data rate constants

are the

 // appropriate bit values; we need to right shift them by 3 to

align them

 // with the appropriate bits in the register. We also want to mask

off the

 // top three and bottom three bits, as those are unrelated to data

rate and

 // we want to only change the data rate.

 data &=~0x18; // Clear the two data rate bits

 data |= drate<<3; // Set the two data rate bits appropriately.

 writeRegister(H3LIS200DL_I2CADDR, H3LIS200DL_CTRL_REG1, data); //

write the new value to CTRL_REG1

}

void H3LIS200DL_readAxes(int16_t* x, int16_t* y, int16_t* z)

{

 uint8_t data[6]; // create a buffer for our incoming data

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_OUT_X_L, &data[0]);

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_OUT_X_H, &data[1]);

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_OUT_Y_L, &data[2]);

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_OUT_Y_H, &data[3]);

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_OUT_Z_L, &data[4]);

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_OUT_Z_H, &data[5]);

 // The data that comes out is 12-bit data, left justified, so the

lower

 // four bits of the data are always zero. We need to right shift by

four,

 // then typecase the upper data to an integer type so it does a

signed

 // right shift.

 *x = data[0] | data[1] << 8;

 *y = data[2] | data[3] << 8;

 *z = data[4] | data[5] << 8;

 *x = (*x>>4) ;

 *y = (*y>>4) ;

 *z = (*z>>4) ;

}

int16_t H3LIS200DL_Read_x(int16_t x)

{

 uint8_t data[6];

120

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_OUT_X_L, &data[0]);

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_OUT_X_H, &data[1]);

 x = data[0] | data[1] << 8;

 x = x >> 4;

 return(x);

}

int16_t H3LIS200DL_Read_y(int16_t y)

{

 uint8_t data[6];

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_OUT_Y_L, &data[2]);

 //I2C1_MasterRead(&data[2], 2, H3LIS200DL_I2CADDR, &I2C_Status);

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_OUT_Y_H, &data[3]);

 //I2C1_MasterRead(&data[3], 2, H3LIS200DL_I2CADDR, &I2C_Status);

 y = data[2] | data[3] << 8;

 y = y >> 4;

 return(y);

}

int16_t H3LIS200DL_Read_z(int16_t z)

{

 uint8_t data[6];

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_OUT_Z_L, &data[4]);

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_OUT_Z_H, &data[5]);

 z = data[4] | data[5] << 8;

 z = z >> 4;

 return(z);

}

int16_t H3LIS200DL_convertToG(int16_t maxScale, int16_t reading)

{

 maxScale = (float)maxScale;

 reading = (float)reading;

 float result = ((maxScale * reading)/2047);

 return ((int16_t)result);

}

void H3LIS200DL_setHighPassCoeff(high_pass_cutoff_freq_cfg hpcoeff)

{

 // The HPF coeff depends on the output data rate. The cutoff

frequency is

 // is approximately fs/(6*HPc) where HPc is 8, 16, 32 or 64,

corresponding

 // to the various constants available for this parameter.

 uint8_t data;

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_CTRL_REG2, &data);

 data &= ~0xfc; // Clear the two low bits of the CTRL_REG2

 data |= hpcoeff;

 writeRegister(H3LIS200DL_CTRL_REG2, data, 1);

}

void H3LIS200DL_enableHPF(bool enable)

121

{

 // Enable the high pass filter

 uint8_t data;

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_CTRL_REG2, &data);

 if (enable)

 {

 data |= 1<<5;

 }

 else

 {

 data &= ~(1<<5);

 }

 writeRegister(H3LIS200DL_CTRL_REG2, data, 1);

}

void H3LIS200DL_HPFOnIntPin(bool enable, uint8_t pin)

{

 // Enable the hpf on signal to int pins

 uint8_t data;

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_CTRL_REG2, &data);

 if (enable)

 {

 if (pin == 1)

 {

 data |= 1<<3;

 }

 if (pin == 2)

 {

 data |= 1<<4;

 }

 }

 else

 {

 if (pin == 1)

 {

 data &= ~1<<3;

 }

 if (pin == 2)

 {

 data &= ~1<<4;

 }

 }

 writeRegister(H3LIS200DL_CTRL_REG2, data, 1);

}

void H3LIS200DL_intActiveHigh(bool enable)

{

 // Are the int pins active high or active low?

 uint8_t data;

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_CTRL_REG3, &data);

 // Setting bit 7 makes int pins active low

 if (!enable)

122

 {

 data |= 1<<7;

 }

 else

 {

 data &= ~(1<<7);

 }

 writeRegister(H3LIS200DL_CTRL_REG3, data, 1);

}

void H3LIS200DL_intPinMode(pp_od _pinMode)

{

 uint8_t data;

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_CTRL_REG3, &data);

 // Setting bit 6 makes int pins open drain.

 if (_pinMode == OPEN_DRAIN)

 {

 data |= 1<<6;

 }

 else

 {

 data &= ~(1<<6);

 }

 writeRegister(H3LIS200DL_CTRL_REG3, data, 1);

}

void H3LIS200DL_latchInterrupt(bool enable, uint8_t intSource)

{

 // Latch mode for interrupt. When enabled, you must read the

INTx_SRC reg

 // to clear the interrupt and make way for another.

 uint8_t data;

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_CTRL_REG3, &data);

 // Enable latching by setting the appropriate bit.

 if (enable)

 {

 if (intSource == 1)

 {

 data |= 1<<2;

 }

 if (intSource == 2)

 {

 data |= 1<<5;

 }

 }

 else

 {

 if (intSource == 1)

 {

 data &= ~1<<2;

 }

 if (intSource == 2)

123

 {

 data &= ~1<<5;

 }

 }

 writeRegister(H3LIS200DL_CTRL_REG3, data, 1);

}

void H3LIS200DL_intSrcConfig(int_sig_src src, uint8_t pin)

{

 uint8_t data;

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_CTRL_REG3, &data);

 // Enable latching by setting the appropriate bit.

 if (pin == 1)

 {

 data &= ~0xfc; // clear the low two bits of the register

 data |= src;

 }

 if (pin == 2)

 {

 data &= ~0xe7; // clear bits 4:3 of the register

 data |= src<<4;

 }

 writeRegister(H3LIS200DL_I2CADDR, H3LIS200DL_CTRL_REG3, data);

}

void H3LIS200DL_setFullScale(fs_range range)

{

 uint8_t data;

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_CTRL_REG4, &data);

 data &= ~0xcf;

 data |= range<<4;

 writeRegister(H3LIS200DL_CTRL_REG4, data, 1);

}

bool H3LIS200DL_newXData()

{

 uint8_t data;

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_STATUS_REG, &data);

 if (data & 1<<0)

 {

 return true;

 }

 else

 {

 return false;

 }

}

bool H3LIS200DL_newYData()

{

 uint8_t data;

124

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_STATUS_REG, &data);

 if (data & 1<<1)

 {

 return true;

 }

 else

 {

 return false;

 }

}

bool H3LIS200DL_newZData()

{

 uint8_t data;

 readRegister(H3LIS200DL_I2CADDR, H3LIS200DL_STATUS_REG, &data);

 if (data & 1<<2)

 {

 return true;

 }

 else

 {

 return false;

 }

}

void H3LIS200DL_enableInterrupt(int_axis axis, trig_on_level

trigLevel,

 uint8_t interrupt, bool enable)

{

 uint8_t data, reg, mask;

 mask = 0;

 if (interrupt == 1)

 {

 reg = H3LIS200DL_INT1_CFG;

 }

 else

 {

 reg = H3LIS200DL_INT2_CFG;

 }

 readRegister(H3LIS200DL_I2CADDR, reg, &data);

 if (trigLevel == TRIG_ON_HIGH)

 {

 mask = 1<<1;

 }

 else

 {

 mask = 1;

 }

 if (axis == Z_AXIS) mask = mask<<4;

 if (axis == Y_AXIS) mask = mask<<2;

 if (enable)

 {

125

 data |= mask;

 }

 else

 {

 data &= ~mask;

 }

 writeRegister(H3LIS200DL_I2CADDR, reg, data);

}

void H3LIS200DL_setIntDuration(uint8_t duration, uint8_t intSource)

{

 if (intSource == 1)

 {

 writeRegister(H3LIS200DL_I2CADDR, H3LIS200DL_INT1_DURATION,

duration);

 }

 else

 {

 writeRegister(H3LIS200DL_I2CADDR, H3LIS200DL_INT2_DURATION,

duration);

 }

}

void H3LIS200DL_setIntThreshold(uint8_t threshold, uint8_t intSource)

{

 if (intSource == 1)

 {

 writeRegister(H3LIS200DL_I2CADDR, H3LIS200DL_INT1_THS, threshold);

 }

 else

 {

 writeRegister(H3LIS200DL_I2CADDR, H3LIS200DL_INT2_THS, threshold);

 }

}

//</Nick>

// returns true if one of the axes exceeds the set threshold

bool getAccelPoints(void) {

 uint8_t delay = 5;

 selectPort2(0x00, 0x03); // select Accelerometer port (Mux 0, Port

3)

 // <Nick>

 H3LIS200DL_readAxes(&x_1, &y_1, &z_1);

 timer1 = millis();

 msTimerDelay(delay);

 H3LIS200DL_readAxes(&x_2, &y_2, &z_2);

 timer2 = millis();

 msTimerDelay(delay);

 H3LIS200DL_readAxes(&x_3, &y_3, &z_3);

126

 timer3 = millis();

 msTimerDelay(delay);

 H3LIS200DL_readAxes(&x_4, &y_4, &z_4);

 timer4 = millis();

 msTimerDelay(delay);

 H3LIS200DL_readAxes(&x_5, &y_5, &z_5);

 timer5 = millis();

 msTimerDelay(delay);

 // find the maximum value of the 3 axes

 if(x_3 > y_3) {

 if(x_3 > z_3) {

 max = x_3;

 }

 else {

 max = z_3;

 }

 }

 else {

 if(y_3 > z_3) {

 max = y_3;

 }

 else {

 max = z_3;

 }

 }

 // </Nick>

 // if the maximum value is at or above the preset threshold,

return true

 return (max >= thresh);

}

bool getAccelPoints2(void) {

 uint8_t delay = 1;

 selectPort2(0x00, 0x03); // select Accelerometer port (Mux 0, Port

3)

 // <Nick>

 int16_t max1 = 0x0000;

 int16_t max2 = 0x0000;

 int16_t max3 = 0x0000;

 int16_t max4 = 0x0000;

 int16_t max5 = 0x0000;

 int16_t truemax = 0x0000;

 H3LIS200DL_readAxes(&x_1, &y_1, &z_1);

 timer1 = millis();

 if(x_1 > y_1) {

 if(x_1 > z_1) {

127

 max1 = x_1;

 }

 else {

 max1 = z_1;

 }

 }

 else {

 if(y_1 > z_1) {

 max1 = y_1;

 }

 else {

 max1 = z_1;

 }

 }

 msTimerDelay(delay);

 H3LIS200DL_readAxes(&x_2, &y_2, &z_2);

 timer2 = millis();

 if(x_2 > y_2) {

 if(x_2 > z_2) {

 max2 = x_2;

 }

 else {

 max2 = z_2;

 }

 }

 else {

 if(y_2 > z_2) {

 max2 = y_2;

 }

 else {

 max2 = z_2;

 }

 }

 msTimerDelay(delay);

 H3LIS200DL_readAxes(&x_3, &y_3, &z_3);

 timer3 = millis();

 if(x_3 > y_3) {

 if(x_3 > z_3) {

 max3 = x_3;

 }

 else {

 max3 = z_3;

 }

 }

 else {

 if(y_3 > z_3) {

 max3 = y_3;

 }

 else {

 max3 = z_3;

128

 }

 }

 msTimerDelay(delay);

 H3LIS200DL_readAxes(&x_4, &y_4, &z_4);

 timer4 = millis();

 if(x_4 > y_4) {

 if(x_4 > z_4) {

 max4 = x_4;

 }

 else {

 max4 = z_4;

 }

 }

 else {

 if(y_4 > z_4) {

 max4 = y_4;

 }

 else {

 max4 = z_4;

 }

 }

 msTimerDelay(delay);

 H3LIS200DL_readAxes(&x_5, &y_5, &z_5);

 timer5 = millis();

 if(x_5 > y_5) {

 if(x_5 > z_5) {

 max5 = x_5;

 }

 else {

 max5 = z_5;

 }

 }

 else {

 if(y_5 > z_5) {

 max5 = y_5;

 }

 else {

 max5 = z_5;

 }

 }

 msTimerDelay(delay);

 //showBinary(y << 1);

 if(max1 > max2)

 {

 if(max1 > max3)

 {

 if(max1 > max4)

 {

 if(max1 > max5)

 {

129

 truemax = max1;

 }

 else

 {

 truemax = max5;

 }

 }

 else if(max4 > max5)

 {

 truemax = max4;

 }

 else

 {

 truemax = max5;

 }

 }

 else if(max3 > max4)

 {

 if(max3 > max5)

 {

 truemax = max3;

 }

 else

 {

 truemax = max5;

 }

 }

 else

 {

 if(max4 > max5)

 {

 truemax = max4;

 }

 else

 {

 truemax = max5;

 }

 }

 }

 else if(max2 > max3)

 {

 if(max2 > max4)

 {

 if(max2 > max5)

 {

 truemax = max5;

 }

 else

 {

 truemax = max5;

 }

 }

130

 else if(max4 > max5)

 {

 truemax = max4;

 }

 else

 {

 truemax = max5;

 }

 }

 else if(max3 > max4)

 {

 if(max3 > max5)

 {

 truemax = max3;

 }

 else

 {

 truemax = max5;

 }

 }

 else if(max4 > max5)

 {

 truemax = max4;

 }

 else

 {

 truemax = max5;

 }

 // </Nick>

 // if the maximum value is at or above the preset threshold,

return true

 return (truemax >= thresh);

}

/*

* * * */

// write a .CSV template to the SD card

// pass SD status and File Write status variables for debugging

purposes

void writeTemplateToSD(void) {

 uint8_t SD_status;

 uint8_t FW_status;

 FATFS drive; // Work area (filesystem object) for logical

drive

 FIL file; // File to write

 UINT actualLength; // Actual length of

 char data0[] = "X, Y, Z, T\r\n";

 char data1[] = "x1, y1, z1, t1\r\n";

 char data2[] = "x2, y2, z2, t2\r\n";

 char filename[] = "DUMMY.CSV";

131

 msTimerDelay(5);

 if(SD_SPI_IsMediaPresent() == false) {

 return;

 }

 SD_status = f_mount(&drive,"0:", 1);

 if (SD_status == FR_OK) { //mount

 if (f_open(&file, filename, FA_WRITE | FA_CREATE_NEW) ==

FR_OK) { //Open or Create TEST.TXT file

 FW_status = f_write(&file, data0, sizeof(data0)-1,

&actualLength); //write the first line

 FW_status = f_write(&file, data1, sizeof(data1)-1,

&actualLength);

 FW_status = f_write(&file, data2, sizeof(data2)-1,

&actualLength);

 f_close(&file);

 }

 f_mount(0,"0:",0); //unmount disk

 msTimerDelay(5);

 }

}

// write a .CSV containing accelerometer data to the SD card

// pass SD status and File Write status variables for debugging

purposes

void writeAccelToSD(void) {

 // <Nick>

 uint8_t SD_status;

 uint8_t FW_status;

 FATFS drive; // Work area (filesystem object) for logical

drive

 FIL file; // File to write

 UINT actualLength; // Actual length of

 char data0[] = "X, Y, Z, t\r\n";

 char filename[] = "ACCEL.CSV";

 // write 5 data strings in .CSV format for X, Y, and Z axes

 // with millis() timestamps to plot

 sprintf(data1, "%f, %f, %f, %f \r\n", (double)x_1, (double)y_1,

(double)z_1, (double)timer1);

 sprintf(data2, "%f, %f, %f, %f \r\n", (double)x_2, (double)y_2,

(double)z_2, (double)timer2);

 sprintf(data3, "%f, %f, %f, %f \r\n", (double)x_3, (double)y_3,

(double)z_3, (double)timer3);

 sprintf(data4, "%f, %f, %f, %f \r\n", (double)x_4, (double)y_4,

(double)z_4, (double)timer4);

 sprintf(data5, "%f, %f, %f, %f \r\n", (double)x_5, (double)y_5,

(double)z_5, (double)timer5);

 // write the data strings to a file

 if(SD_SPI_IsMediaPresent() == false) {

 return;

 }

132

 SD_status = f_mount(&drive,"0:", 1);

 if (SD_status == FR_OK) { // mount disk

 //Open or Create <filename> file

 if (f_open(&file, filename, FA_WRITE | FA_CREATE_NEW) ==

FR_OK) {

 // write column headers

 FW_status = f_write(&file, data0, sizeof(data0)-1,

&actualLength);

 // write each line of data

 FW_status = f_write(&file, data1, sizeof(data1)-1,

&actualLength);

 FW_status = f_write(&file, data2, sizeof(data2)-1,

&actualLength);

 FW_status = f_write(&file, data3, sizeof(data3)-1,

&actualLength);

 FW_status = f_write(&file, data4, sizeof(data4)-1,

&actualLength);

 FW_status = f_write(&file, data5, sizeof(data5)-1,

&actualLength);

 f_close(&file); // close the file

 }

 f_mount(0,"0:",0); // unmount disk

 msTimerDelay(5);

 }

 // </Nick>

 showConcussion(); // 5 second LED display:

RED/PURPLE/RED/PURPLE/RED

}

/**

End of File

*/

Appendix B: Datasheets

 The following datasheet figures are from various subsystems on the H.A.L.O. design. All

subsystem datasheets and schematics have use in either board design, schematic design, or

code creation. For the physical circuits of the charging, converter, processor, I2C

Multiplexers, Accelerometer, and Time-of-Flight sensors, the pin connections, specifications

for use and requirements are in use. The schematics in these datasheets references also reflect

the creation of eagle schematics in the H.A.L.O. Though not a comprehensive list of all

133

datasheet components in use, the following figures convey majority of the information used in

designs so far. -NK

134

Processor datasheet:

135

136

137

Minimum recommended connections:

138

Accelerometer datasheet:

139

Max ratings:

140

I2C Multiplexer datasheet:

141

142

Charging circuit datasheet:

143

144

Pin functions:

145

Buck boost datasheet:

Max ratings

146

Time-of-Flight datasheet:

147

Appendix C: Parts Order Forms

 The following spreadsheets depict which parts were ordered on what day, the amount

ordered, and the cost per unit. -BT

21 January 2021 Parts Order Form:

2 February 2021 Parts Order Form:

DT # 4 Project Leader: Brian Thomson Email: bat61@uakron.edu

Qty. Refdes Part Num. Description Suggested Vendor Vendor Part Num. Catalog #/Page #/Hyperlink Cost Total Cost

12 C1~C6 CL21B104KBCNNNC 0.1uF Ceramic Capacitor 0805 Digi-Key 1276-1003-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL21B104KBCNNNC/3886661$0.05 $0.56

4 C7~C8 CL21A475KACLRNC 4.7uF Ceramic Capacitor 0805 Digi-Key 1276-2415-1-ND https://www.digikey.com/en/products/detail/CL21A475KACLRNC/1276-2415-1-ND/3890501?itemSeq=350941722$0.24 $0.96

2 C9 CL21A106MQFNNNE 10uF Ceramic Capacitor 0805 Digi-Key 1276-1298-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL21A106MQFNNNE/3886956$0.10 $0.20

2 C10 CL21A226MAQNNNE 22uF Ceramic Capacitor 0805 Digi-Key 1276-2908-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL21A226MAQNNNE/3888566$0.34 $0.68

3 C11 TCP1A106M8R CAP TANT 10UF 20% 10V 0805 Digi-Key 511-1685-1-ND https://www.digikey.com/en/products/detail/rohm-semiconductor/TCP1A106M8R/4571569$0.56 $1.68

16 R17~R24 RC2012J102CS 1.00kOhm Resistor 0805 Digi-Key 1276-5531-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/RC2012F102CS/3965579$0.13 $2.08

6 R2, R25~R26, R61~R68RC2012J103CS 10.0kOhm Resistor 0805 Digi-Key 1276-5552-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/RC2012J103CS/3965859$0.13 $0.78

36 R27~R44 RC2012J222CS 2.20kOhm Resistor 0806 Digi-Key 1276-5537-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/RC2012J222CS/3965844$0.13 $4.68

4 R1, R45 RC2012J471CS 470Ohm Resistor 0805 Digi-Key 1276-5523-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/RC2012J471CS/3965830$0.14 $0.56

2 R46 ERA-6AEB202V 2.00kOhm Resistor 0805 Digi-Key P2.0KDACT-ND https://www.digikey.com/en/products/detail/panasonic-electronic-components/ERA-6AEB202V/1465756$0.31 $0.62

4 R47~R48 RC2012F270CS 27.0Ohm Resistor 0805 Digi-Key 1276-5198-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/RC2012F270CS/3965505$0.14 $0.56

2 R49 RMCF0805JT560R 560kOhm Resistor 0805 Digi-Key RMCF0805JT560RCT-ND https://www.digikey.com/en/products/detail/stackpole-electronics-inc/RMCF0805JT560R/1757876$0.10 $0.20

2 R50 ERA-6AEB104V 100kOhm Resistor 0805 Digi-Key P100KDACT-ND https://www.digikey.com/en/products/detail/panasonic-electronic-components/ERA-6AEB104V/1465797$0.31 $0.62

16 D1~D8 LY R976-PS-36 LED YELLOW DIFFUSED 0805 SMD Digi-Key 475-2560-1-ND https://www.digikey.com/en/products/detail/osram-opto-semiconductors-inc/LY-R976-PS-36/1228052$0.27 $4.32

2 D9 LG R971-KN-1 LED GREEN DIFFUSED 0805 SMD Digi-Key 475-1410-1-ND https://www.digikey.com/en/products/detail/osram-opto-semiconductors-inc/LG-R971-KN-1/1227925?s=N4IgjCBcoMwOxVAYygMwIYBsDOBTANCAPZQDaIMArGGJQBwgC6hADgC5QgDKbATgJYA7AOYgAvoQC0AFkQgUkDDgLEyIAGwAmaZRhNWHSCHESQmtQAY6FygAIkAC34tbmXABMmYoA$0.25 $0.50

18 J1~J2, J5~J12 2011-1X05TSD025B Connector Header Through Hole 5 position 0.100" Digi-Key 2553-2011-1X05TSD025B-ND https://www.digikey.com/en/products/detail/oupiin/2011-1X05TSD025B/13251511$0.84 $15.12

2 J3 DM3D-SF CONN MICRO SD CARD PUSH-PULL Digi-Key HR1941CT-ND https://www.digikey.com/en/products/detail/hirose-electric-co-ltd/DM3D-SF/1786510$1.65 $3.30

1 J 2011-1X03G00SD025B PIN HEADER, SINGLE ROW, 3 PIN, S Digi-Key 2553-2011-1X03G00SD025B-ND https://www.digikey.com/en/products/detail/oupiin/2011-1X03G00SD025B/13251631$0.06 $0.06

1 J14 2011H-1X06G01SB PIN HEADER, SINGLE ROW, 6 PIN, S Digi-Key 2553-2011H-1X06G01SB-ND https://www.digikey.com/en/products/detail/oupiin/2011H-1X06G01SB/13252030$0.87 $0.87

4 J15~J16 2011-1X02TSH035B PIN HEADER, SINGLE ROW, 2 PIN, T Digi-Key 2553-2011-1X02TSH035B-ND https://www.digikey.com/en/products/detail/oupiin/2011-1X02TSH035B/13251456$0.51 $2.04

2 J17 473460001 CONN RCPT USB2.0 MICRO B SMD R/A Digi-Key WM17141CT-ND https://www.digikey.com/en/products/detail/molex/0473460001/1782470?s=N4IgTCBcDaICwHYDMcBsBaADNgjCAugL5A$0.95 $1.90

3 IC1 DSPIC33EP512GM706-I/PT Microchip DSPIC33EP512GM706-I/PT, 16bit dsPIC Microcontroller, 60MHz, 512 kB Flash, 64-Pin TQFP Digi-Key DSPIC33EP512GM706-I/PT-ND https://www.digikey.com/en/products/detail/microchip-technology/DSPIC33EP512GM706-I-PT/4079810$6.17 $18.51

3 U$1 VLCF4020T-2R2N1R7 FIXED IND 2.2UH 1.72A 59 MOHM Digi-Key 445-VLCF4020T-2R2N1R7CT-ND https://www.digikey.com/en/products/detail/tdk-corporation/VLCF4020T-2R2N1R7/1132608$0.29 $0.87

4 U1~U2 PCA9544APW,118 I2C Multiplexer Digi-Key 568-1861-1-ND https://www.digikey.com/en/products/detail/PCA9544APW,118/568-1861-1-ND/789993?utm_campaign=buynow&utm_medium=aggregator&curr=usd&utm_source=octopart$1.78 $7.12

2 U3 TXB0104PWR Voltage Level Translator Bidirectional 1 Circuit 4 Channel 100Mbps 14-TSSOP Digi-Key 296-21929-2-ND https://www.digikey.com/en/products/detail/TXB0104PWR/296-21929-1-ND/1629282?itemSeq=346026841$0.92 $1.84

2 U4 STBB1-APUR Buck Boost Converter Digi-Key 497-11971-1-ND https://www.digikey.com/en/products/detail/stmicroelectronics/STBB1-APUR/2772215$2.34 $4.68

2 U5 STC4054GR Battery Charging Digi-Key 497-5809-2-ND https://www.digikey.com/en/products/detail/stmicroelectronics/STC4054GR/1506421$0.63 $1.26

2 U8 H3LIS200DLTR H3LIS200DL Series 3.6 V 400 Hz Low-Power 3-Axis Digital Accelerometer -TFLGA-16L Digi-Key 497-15698-1-ND https://www.digikey.com/en/products/detail/stmicroelectronics/H3LIS200DLTR/5268010?s=N4IgTCBcDaIBIGYAyBJAymADJgIkgKgEogC6AvkA$6.68 $13.36

2 S1 CT11025.0F160 Momentary Switch Digi-Key 2449-CT11025.0F160-ND https://www.digikey.com/en/products/detail/cit-relay-and-switch/CT11025-0F160/12418891$0.12 $0.24

12 U1 (ToF Brd) VL53L0CXV0DH/1 Time-of-Flight ranging sensor ST VL53L0CXV0DH/1 https://estore.st.com/en/vl53l0cxv0dh-1-cpn.html$3.88 $46.56

2 C1 CL21A475KACLRNC 4.7uF Ceramic Capacitor 0805 Digi-Key 1276-2415-1-ND https://www.digikey.com/en/products/detail/CL21A475KACLRNC/1276-2415-1-ND/3890501?itemSeq=350941722$0.24 $0.48

2 C2 CL21B104KBCNNNC 0.1uF Ceramic Capacitor 0805 Digi-Key 1276-1003-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL21B104KBCNNNC/3886661$0.05 $0.09

4 R1~R2 RC2012J103CS 10.0kOhm Resistor 0805 Digi-Key 1276-5552-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/RC2012J103CS/3965859$0.13 $0.52

2 R3 RC2012J102CS 1.00kOhm Resistor 0805 Digi-Key 1276-5531-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/RC2012F102CS/3965579$0.13 $0.26

4 J1~J2 2011-1X05TSD025B Connector Header Through Hole 5 position 0.100" Digi-Key 2553-2011-1X05TSD025B-ND https://www.digikey.com/en/products/detail/oupiin/2011-1X05TSD025B/13251511$0.84 $3.36

6 LED1 (RGB Brd) 1655 ADDRESS LED DISC SERIAL RGB 1=10 Digi-Key 1528-1104-ND https://www.digikey.com/en/products/detail/adafruit-industries-llc/1655/5154679$4.50 $27.00

6 J1~J2 2011-1X03G00SD025B PIN HEADER, SINGLE ROW, 3 PIN, S Digi-Key 2553-2011-1X03G00SD025B-ND https://www.digikey.com/en/products/detail/oupiin/2011-1X03G00SD025B/13251631$0.06 $0.36

6 C1 CL21B105KAFNFNE CAP CER 1UF 25V X7R 0805 Digi-Key 1276-2926-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL21B105KAFNFNE/3888584$0.10 $0.60

Total $169.41

DT # 4 Project Leader: Brian Thomson Email: bat61@uakron.edu

Qty. Refdes Part Num. Description Suggested Vendor Vendor Part Num. Catalog #/Page #/Hyperlink Cost Total Cost

5 IC1 DSPIC33EP512GM706-I/PTMicrochip DSPIC33EP512GM706-I/PT, 16bit dsPIC Microcontroller, 60MHz, 512 kB Flash, 64-Pin TQFPDigi-Key DSPIC33EP512GM706-I/PT-NDhttps://www.digikey.com/en/products/detail/microchip-technology/DSPIC33EP512GM706-I-PT/4079810$6.17 $30.85

5 U$1 VLCF4020T-2R2N1R7FIXED IND 2.2UH 1.72A 59 MOHM Digi-Key 445-VLCF4020T-2R2N1R7CT-NDhttps://www.digikey.com/en/products/detail/tdk-corporation/VLCF4020T-2R2N1R7/1132608$0.29 $1.45

36 R27~R44 RC2012J222CS 2.20kOhm Resistor 0806 Digi-Key 1276-5537-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/RC2012J222CS/3965844$0.12 $4.32

2 R49 RMCF0805JT560R560kOhm Resistor 0805 Digi-Key RMCF0805JT560RCT-NDhttps://www.digikey.com/en/products/detail/stackpole-electronics-inc/RMCF0805JT560R/1757876$0.10 $0.20

Total $36.82

148

4 February 2021 Parts Order Form:

11 February 2021 Parts Order Form:

16 February 2021 Parts Order Form:

22 February 2021 Parts Order Form:

DT # 4 Project Leader: Brian Thomson Email: bat61@uakron.edu

Qty. Refdes Part Num. Description Suggested Vendor Vendor Part Num. Catalog #/Page #/Hyperlink Cost Total Cost

3 U$1 VLCF4020T-2R2N1R7FIXED IND 2.2UH 1.72A 59 MOHM Digi-Key 445-VLCF4020T-2R2N1R7CT-NDhttps://www.digikey.com/en/products/detail/tdk-corporation/VLCF4020T-2R2N1R7/1132608$0.68 $2.04

4 U1~U2 PCA9544APW,118I2C Multiplexer Digi-Key 568-1861-1-ND https://www.digikey.com/en/products/detail/PCA9544APW,118/568-1861-1-ND/789993?utm_campaign=buynow&utm_medium=aggregator&curr=usd&utm_source=octopart$1.78 $7.12

3 U4 STBB1-APUR Buck Boost Converter Digi-Key 497-11971-1-ND https://www.digikey.com/en/products/detail/stmicroelectronics/STBB1-APUR/2772215$2.48 $7.44

2 U8 H3LIS200DLTR H3LIS200DL Series 3.6 V 400 Hz Low-Power 3-Axis Digital Accelerometer -TFLGA-16LDigi-Key 497-15698-1-ND https://www.digikey.com/en/products/detail/stmicroelectronics/H3LIS200DLTR/5268010?s=N4IgTCBcDaIBIGYAyBJAymADJgIkgKgEogC6AvkA$8.01 $16.02

16 D1~D8 LY R976-PS-36 LED YELLOW DIFFUSED 0805 SMD Digi-Key 475-2560-1-ND https://www.digikey.com/en/products/detail/osram-opto-semiconductors-inc/LY-R976-PS-36/1228052$0.15 $2.45

5 D9 LG R971-KN-1 LED GREEN DIFFUSED 0805 SMD Digi-Key 475-1410-1-ND https://www.digikey.com/en/products/detail/osram-opto-semiconductors-inc/LG-R971-KN-1/1227925?s=N4IgjCBcoMwOxVAYygMwIYBsDOBTANCAPZQDaIMArGGJQBwgC6hADgC5QgDKbATgJYA7AOYgAvoQC0AFkQgUkDDgLEyIAGwAmaZRhNWHSCHESQmtQAY6FygAIkAC34tbmXABMmYoA$0.27 $1.35

6 U1 (ToF Brd) VL53L0CXV0DH/1 Time-of-Flight ranging sensor ST VL53L0CXV0DH/1 https://estore.st.com/en/vl53l0cxv0dh-1-cpn.html$4.58 $27.48

Total $63.90

DT # 4 Project Leader: Brian Thomson Email: bat61@uakron.edu

Qty. Refdes Part Num. Description Suggested Vendor Vendor Part Num. Catalog #/Page #/Hyperlink Cost Total Cost

10 R49 RMCF0603FT560KTR-ND560kOhm Resistor 0805 Digi-Key RMCF0603FT560KTR-NDhttps://www.digikey.com/en/products/detail/RMCF0603FT560K/RMCF0603FT560KCT-ND/2418091?itemSeq=354326479$0.02 $0.16

5 U8 H3LIS200DLTR H3LIS200DL Series 3.6 V 400 Hz Low-Power 3-Axis Digital Accelerometer -TFLGA-16LDigi-Key 497-15698-1-ND https://www.digikey.com/en/products/detail/stmicroelectronics/H3LIS200DLTR/5268010?s=N4IgTCBcDaIBIGYAyBJAymADJgIkgKgEogC6AvkA$8.01 $40.05

15 C1 CL21A475KACLRNC4.7uF Ceramic Capacitor 0805 Digi-Key 1276-2415-1-ND https://www.digikey.com/en/products/detail/CL21A475KACLRNC/1276-2415-1-ND/3890501?itemSeq=350941722$0.16 $2.40

4 U5 STC4054GR Battery Charging Digi-Key 497-5809-2-ND https://www.digikey.com/en/products/detail/stmicroelectronics/STC4054GR/1506421$1.58 $6.32

Total $48.93

DT # 4 Project Leader: Brian Thomson Email: bat61@uakron.edu

Qty. Refdes Part Num. Description Suggested Vendor Vendor Part Num. Catalog #/Page #/Hyperlink Cost Total Cost

20 C1~C6 CL21B104KBCNNNC 0.1uF Ceramic Capacitor 0805 Digi-Key 1276-1003-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL21B104KBCNNNC/3886661$0.05 $0.94

4 U1~U2 PCA9544APW,118 I2C Multiplexer Digi-Key 568-1861-1-ND https://www.digikey.com/en/products/detail/PCA9544APW,118/568-1861-1-ND/789993?utm_campaign=buynow&utm_medium=aggregator&curr=usd&utm_source=octopart$1.89 $7.56

3 U5 STC4054GR Battery Charging Digi-Key 497-5809-2-ND https://www.digikey.com/en/products/detail/stmicroelectronics/STC4054GR/1506421$1.58 $4.74

Total $13.24

DT # 4 Project Leader: Brian Thomson Email: bat61@uakron.edu

Qty. Refdes Part Num. Description Suggested Vendor Vendor Part Num. Catalog #/Page #/Hyperlink Cost Total Cost

2 HTSW-150-08-L-S-LA-006CONN HEADER R/A 50POS 2.54MM Digi-Key HTSW-150-08-L-S-LA- https://www.digikey.com/en/products/detail/samtec-inc/HTSW-150-08-L-S-LA-006/8085399$4.48 $8.96

10 VL53L3CXV0DH/1 Optical Sensor 196.85" (5m) I²C Output Digi-Key 497-VL53L3CXV0DH/1TR-NDhttps://www.digikey.com/en/products/detail/stmicroelectronics/VL53L3CXV0DH-1/11658305?s=N4IgTCBcDaIGoBkCsBmBKDCANEBdAvkA$3.78 $37.84

Total $46.80

149

23 February 2021 Parts Order Form:

1 March 2021 Parts Order Form:

DT # 4 Project Leader: Brian Thomson Email: bat61@uakron.edu

Qty. Refdes Part Num. Description Suggested Vendor Vendor Part Num. Catalog #/Page #/Hyperlink Cost Total Cost

2 HTSW-150-08-L-S-LA-006 CONN HEADER R/A 50POS 2.54MM Digi-Key HTSW-150-08-L-S-LA- https://www.digikey.com/en/products/detail/samtec-inc/HTSW-150-08-L-S-LA-006/8085399$4.48 $8.96

10 VL53L3CXV0DH/1 Optical Sensor 196.85" (5m) I²C Output Digi-Key 497-VL53L3CXV0DH/1TR-NDhttps://www.digikey.com/en/products/detail/stmicroelectronics/VL53L3CXV0DH-1/11658305?s=N4IgTCBcDaIGoBkCsBmBKDCANEBdAvkA$3.78 $37.84

10 WP154A4SUREQBFZGC LED RGB CLEAR T-1 3/4 T/H Digi-Key 754-1615-ND https://www.digikey.com/en/products/detail/kingbright-company-llc/WP154A4SUREQBFZGC/3084119?utm_adgroup=LED%20Indication%20-%20Discrete&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Product_Optoelectronics_NEW&utm_term=&utm_content=LED%20Indication%20-%20Discrete&gclid=CjwKCAiAyc2BBhAaEiwA44-wW-MHronuMs6aDbs1McixXBHufHPntWrCn_Sa4n7CT98dQr9jJWArbBoCvRMQAvD_BwE$1.25 $12.51

50 C1~C6 CL21B104KBCNNNC 0.1uF Ceramic Capacitor 0805 Digi-Key 1276-1003-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL21B104KBCNNNC/3886661$0.03 $1.28

20 C7~C8 CL21A475KACLRNC 4.7uF Ceramic Capacitor 0805 Digi-Key 1276-2415-1-ND https://www.digikey.com/en/products/detail/CL21A475KACLRNC/1276-2415-1-ND/3890501?itemSeq=350941722$0.16 $3.20

2 C9 CL21A106MQFNNNE 10uF Ceramic Capacitor 0805 Digi-Key 1276-1298-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL21A106MQFNNNE/3886956$0.11 $0.22

2 C10 CL21A226MAQNNNE 22uF Ceramic Capacitor 0805 Digi-Key 1276-2908-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL21A226MAQNNNE/3888566$0.35 $0.70

2 C11 TCP1A106M8R CAP TANT 10UF 20% 10V 0805 Digi-Key 511-1685-1-ND https://www.digikey.com/en/products/detail/rohm-semiconductor/TCP1A106M8R/4571569$0.59 $1.18

2 J3 DM3D-SF CONN MICRO SD CARD PUSH-PULL Digi-Key HR1941CT-ND https://www.digikey.com/en/products/detail/hirose-electric-co-ltd/DM3D-SF/1786510$1.65 $3.30

2 J17 473460001 CONN RCPT USB2.0 MICRO B SMD R/A Digi-Key WM17141CT-ND https://www.digikey.com/en/products/detail/molex/0473460001/1782470?s=N4IgTCBcDaICwHYDMcBsBaADNgjCAugL5A$0.95 $1.90

5 R1, R45 RC2012J471CS 470Ohm Resistor 0805 Digi-Key 1276-5523-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/RC2012J471CS/3965830$0.13 $0.65

100 R2, R25~R26, R61~R68RC2012J103CS 10.0kOhm Resistor 0805 Digi-Key 1276-5552-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/RC2012J103CS/3965859$0.04 $4.41

30 R17~R24 RC2012J102CS 1.00kOhm Resistor 0805 Digi-Key 1276-5531-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/RC2012F102CS/3965579$0.11 $3.33

30 R27~R44 RC2012J222CS 2.20kOhm Resistor 0806 Digi-Key 1276-5537-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/RC2012J222CS/3965844$0.12 $3.45

3 R46 RT0805BRD072KL 2.00kOhm Resistor 0805 Digi-Key YAG1859TR-ND https://www.digikey.com/en/products/detail/yageo/RT0805BRD072KL/1075799$0.36 $1.08

5 R47~R48 RC2012F270CS 27.0Ohm Resistor 0805 Digi-Key 1276-5198-1-ND https://www.digikey.com/en/products/detail/samsung-electro-mechanics/RC2012F270CS/3965505$0.13 $0.65

3 R50 ERA-6AEB104V 100kOhm Resistor 0805 Digi-Key P100KDACT-ND https://www.digikey.com/en/products/detail/panasonic-electronic-components/ERA-6AEB104V/1465797$0.31 $0.93

3 S1 CT11025.0F160 Momentary Switch Digi-Key 2449-CT11025.0F160-NDhttps://www.digikey.com/en/products/detail/cit-relay-and-switch/CT11025-0F160/12418891$0.12 $0.36

1 U3 TXB0104PWR Voltage Level Translator Bidirectional 1 Circuit 4 Channel 100Mbps 14-TSSOPDigi-Key 296-21929-2-ND https://www.digikey.com/en/products/detail/TXB0104PWR/296-21929-1-ND/1629282?itemSeq=346026841$0.98 $0.98

8 U1~U2 PCA9544APW,118 I2C Multiplexer Digi-Key 568-1861-1-ND https://www.digikey.com/en/products/detail/PCA9544APW,118/568-1861-1-ND/789993?utm_campaign=buynow&utm_medium=aggregator&curr=usd&utm_source=octopart$1.89 $15.12

5 TSW-101-08-T-D-RA CONN HEADER R/A 2POS Digi-Key SAM1049-01-ND https://www.digikey.com/en/products/detail/samtec-inc/TSW-101-08-T-D-RA/1102323$0.18 $0.90

3 A700V106M006ATE055 CAP ALUM POLY 10UF 20% 6.3V SMD Digi-Key 399-5494-2-ND https://www.digikey.com/en/products/detail/kemet/A700V106M006ATE055/1931870$2.07 $6.21

Total $109.16

DT # 4 Project Leader: Brian Thomson Email: bat61@uakron.edu

Qty. Refdes Part Num. Description Suggested Vendor Vendor Part Num. Catalog #/Page #/Hyperlink Cost Total Cost

4 N/A TAJA106K010RNJ CAP TANT 10UF 10% 10V 1206 Digi-Key 478-1654-2-ND https://www.digikey.com/en/products/detail/avx-corporation/TAJA106K010RNJ/364911$0.35 $1.40

10 R49 RT0805BRD07560KL RES SMD 560K OHM 0.1% 1/8W 0805 Digi-Key YAG1930TR-ND https://www.digikey.com/en/products/detail/yageo/RT0805BRD07560KL/1075960$0.26 $2.59

3 N/A ECS-240-20-33-TR CRYSTAL 24.0000MHZ 20PF SMD Digi-Key XC1141TR-ND https://www.digikey.com/en/products/detail/ecs-inc/ECS-240-20-33-TR/813228$1.07 $3.21

6 N/A C0805C300K5GAC7800 CAP CER 30PF 50V NP0 0805 Digi-Key 399-17443-2-ND https://www.digikey.com/en/products/detail/kemet/C0805C300K5GAC7800/2212478$0.27 $1.62

5 N/A M55342K06B1F00RS3 RES SMD 1M OHM 1% 0.15W 0705 Digi-Key 1135-1009-2-ND https://www.digikey.com/en/products/detail/vishay-dale/M55342K06B1F00RS3/2941807$1.54 $7.70

3 N/A PRT-00127 MicroSD Socket Sparkfun PRT-00127 https://www.sparkfun.com/products/127$3.95 $11.85

1 N/A Y11-3419632A H.A.L.O. Main Board r3 JLCPCB Y11-3419632A https://cart.jlcpcb.com/cart $2.00 $2.00

1 N/A SO2103026022-3419632AH.A.L.O. Main Board r3 Stencil JLCPCB SO2103026022-3419632Ahttps://cart.jlcpcb.com/cart $7.05 $7.05

1 N/A Y12-3419632A H.A.L.O. RGB Board r3 JLCPCB Y12-3419632A https://cart.jlcpcb.com/cart $4.00 $4.00

1 N/A SO2103026026-3419632AH.A.L.O. ToF Board r2 Stencil JLCPCB SO2103026026-3419632Ahttps://cart.jlcpcb.com/cart $7.05 $7.05

Total $48.47

	Hard Hat Ambient Liability Observer (HALO)
	Recommended Citation

	tmp.1619470167.pdf.lgEkx

