The University of Akron

IdeaExchange@UAkron

Williams Honors College, Honors Research The Dr. Gary B. and Pamela S. Williams Honors
Projects College
Spring 2021

Hard Hat Ambient Liability Observer (HALO)

Hunter Hykes
The University of Akron

Nathan Kish
The University of Akron

Brian Thomson
The University of Akron

Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

b Part of the Electrical and Electronics Commons, Power and Energy Commons, Signal Processing
Commons, Systems and Communications Commons, and the VLSI and Circuits, Embedded and Hardware
Systems Commons

Please take a moment to share how this work helps you through this survey. Your feedback will
be important as we plan further development of our repository.

Recommended Citation

Hykes, Hunter; Kish, Nathan; and Thomson, Brian, "Hard Hat Ambient Liability Observer (HALO)"
(2021). Williams Honors College, Honors Research Projects. 1329.
https://ideaexchange.uakron.edu/honors_research_projects/1329

This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela
S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University
of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College,
Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more
information, please contact mjon@uakron.edu, uapress@uakron.edu.

https://ideaexchange.uakron.edu/
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/1329
https://ideaexchange.uakron.edu/honors_research_projects/1329?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1329&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Hard Hat Ambient Liability Observer (H.A.L.O.)

Senior Project Final Report

DT04
Hunter Hykes
Nathan Kish
Brian Thomson

Nicklaus Walsh

Dr. French

4/23/2021

Table of Contents

SECHION O ADSTIACT ... bbbttt b bbbt 5
Section 1 Problem STAteMENT..........ccuiiiiie e 5
LLL NBRAS ..ttt bbb bbb bRt R £ bbb bbb e ne et 5
@ o =T o1 - RSP S 6
IR I T Uod (0 {01 o T PSP 6
1.4 Marketing REQUITEMENTSc.eiiiieieieite sttt 12
Section 2 ENGINEEITNG ANAIYSIS.....cciiiiiiiiieie ettt esbeebesneennees 13
0 R 1 o{ U | RSSO 13
A = [T (0]] ot RS UPSTRRR 13
Section 3 Engineering Requirements SPecCifiCationcc.ccvveiiiieiieeie i 18
Section 4 Engineering Standards SPecification............ccccocviiiieiiic s 20
A1 SAFELY ...ttt e re et et e e re et e areenreenrennes 20
4.2 Communication = 12C @Nd SPIooiiiiiiiiieieee s 20
4.3 Programming LANQUAGES.coueverterteriertirtesiesieeieseesse sttt sttt e s sse st bbb ssesseeneeneennes 21
O O T g =Tt (0]] = Fo {0 KSR 21
Section 5 Accepted TeChNICal DESIGNc..oiviiiiiiiiiiiieee e 21
5.1 HArdWAare DESIONcouveeetiitiitisieee ettt bbbttt b e bbbt nes 21
5.2 SOTEWAIE DIBSIGN ...ttt bbbttt ettt ettt b e b ne e e 41
5.3 FINAl DESIGN IMAGES......cueeiveeiiitie ittt ettt st e et et e e b e sra e re e e e sbeesteennenneas 57
5.4 Testing and DemMONSIFALIONScoviiieieeie ittt e e e re e sbeenaeenaesreas 59
Section 6 Mechanical SKetch of SYSteM ... 67
Section 7 Team INFOrmMAationccooiiiiiiii e 69
LTt o] TR = U N) PSSR 70
SECLION 9 PrOJECT SCREAUIE.........eeeerreeeereesesssssssssseessesssssssssssssssssss s sssssssssssss s 71
Section 10 Conclusions and RecommMENdAations...............ccooocv.ueresunesssssessssssessssssssssssssesssssssssssssaseees 82
SECLION 11 REFEIEIICEScoeeeeevernerveseseeessssessssssssssssssssasessssssssssassssssssesssassssssssssssasssssbassssssasssssssessssasessssssssssasesssssnes 84
Section 12 Appendices and Data SREELS...............ccoocwureeriinsessissssssssss s sssssssssssssssssssssasenes 86
APPENTIX A SYSEM COUBviiiiiieiie ittt e e e st e e e ae e saeeabeesnne s 86
APPENAIX B DAtASNEELS ... veeiii ettt 132
AppPendiX C: PartS Order FOIMS.........cooviiiiiie ettt 147

List of Figures

Figure 1: Power System Circuit SCNEMALIC..........cccovveiiiicieee e 13
Figure 2: Block Diagram LEVel O.........c.oooiiiiiiie ettt 22
Figure 3: Block Diagram Level 1: Time-of-Flight Subsystem............ccccooviiiieiiciiciicee, 23
Figure 4: Block Diagram Level 1: Accelerometer SUDSYStEMccccvveveevviieiecce e, 25
Figure 5: Block Diagram Level 1: Processor SUDSYSTEMccccveveiiieieeie e, 26
Figure 6: Block Diagram Level 1: LED SUbSYStEMcccccveiiiiiiiieiicie e 27
Figure 7: Block Diagram Level 1: SD Card SubSYStemcccccevveveiiieiieie e 28
Figure 8: Block Diagram Level 1: Power SUDSYStEMccccccviiiiiiieiiccecce e, 29
Figure 9: Block Diagram Level 2: Overall SyStemccccoveiiiiiiiieiecc e, 31
Figure 10: LTspice Schematic of Full Power CirCUltc.cccooviiviiiiieieece e, 32
Figure 11: LTspice Schematic of Charging CirCUit...........ccccoviiiiiieii i, 33
Figure 12: LTspice Schematic of BUCK-B0OOSt CONVEITErcccvvireiiiiiiiiceseeeeeee 33
Figure 13: LTspice Waveform of POWEr CIFCUITcccoiviiiiiiiiiiieeee e 34
Figure 14: Eagle Accelerometer SChemMALIC..........c.coeiiiiiiiiiii e 35
Figure 15: Eagle SD Card SCNEMALIC...........cooiiiiieieieie st 36
Figure 16: Eagle RGB LED SCNEMATIC..........ccciiiiiiiiieieiese e 37
Figure 17: Eagle Processor SChemMALiCcccuiiiiiiiiiiii e 38
Figure 18: Eagle Charging Circuit SChemMatiCcccooviiiiiiiiiieeeee e 39
Figure 19: Eagle Converter CirCuit SChEMALICccoiiiviiiiiiiiieieeee e 40
Figure 20: Eagle Time-of-Flight SChEMALIC..........cccoeiiiiiiii e 41
Figure 21: Micro-SD Card Write FUNCLIONAIITYcccoiviiiiiiiiieece e 43
Figure 22: HALO Main Board Schematic-Processor and SDccccccevveveivievecve e, 44
Figure 23: HALO Main Board Schematic-Peripherals.............ccocoiiiiiniiiiieeen, 45
Figure 24: HALO Time-of-Flight Board SChematiC............c.cooiiiiiiiiiieieeeeeees 46
Figure 25: HALO RGB LED Board SChematiC...........cccceeiiiiiiieiie e 46
Figure 26: Accelerometer ConfiguIration...........ccoooviiie i 47
Figure 27: Accelerometer Data ACQUISITIONccooiiiiiiiiiiieiiniesieeeee e 48
Figure 28: Time-0f-Flight FUNCHIONS ..ot 49
Figure 29: Time-of-Flight Configuration.............cccovoiiiii i 49
Figure 30: Time-of-Flight Data ACQUISITIONcccviiieiiiciie e 50

Figure 31: Time-of-Flight Data ACQUISITIONcciiiiiiiccece e 51

Figure 32: getNearestObStacleINdeX()coveveeieiieiiee e 52
Figure 33: SHOWDISTANCERGB() ...vveivieiiiieiiieieee ettt et 53
Figure 34: Software Design FIOWCNAITcoooiiiiiiiie e 54
Figure 35: SD Card State Diagramcccciveiieieiie ettt re e 56
Figure 36: LED State DIAgIramMcccccveiiiiieieeie et ste et sae e te e sraesneeneesneenae e 56
Figure 37: Frontal View of Housing Unit, ToF Sensors and LEDS..........ccccccoccevvevviicieeneen, 57
Figure 38: Detached HOUSING UNIT.........ccooiiiiiic e 57
Figure 39: Main Board FIONTcooiiiiiiee e 58
Figure 40: Main BOard BaACKcccooiiiiiiiiiiiie e 58
Figure 41: Time-of-Flight and LED BOArds............cccoeviiiiiieie e 58
Figure 42: LED and ToF RIght Side GFeeN.........cccciveiieiiesie ettt 59
Figure 43: LED and ToF Right Side Redccooiiiiiiiiieeeee s 60
Figure 44: LED and TOF Left SIde GIreeNccoiiiiiiieciseseesee e 60
Figure 45: LED and ToF Left Side Red..........ccoviiiiiic e 61
Figure 46: LED and TOF FroNt REc.coviiiiiie i 61
Figure 47: LED and TOF Front BIUE..........cccooiiiiii e 61
Figure 48: LED and TOF Max DiStance TeSTcoeieiiririiinieiiseeieeie e 62
Figure 49: LED and ToF Max Distance 49 inches (~1245mm)........ccccccceivveieiieiieie e, 62
Figure 50: Initial Voltage Before DiSCharge...........cccovooeiieie e, 63
Figure 51: Final Voltage After 8 HOUTSccoiiiiiiiee e 64
Figure 52: Mechanical Sketch of System (Overall) ... 67
Figure 53: Mechanical Sketch of System (Rear VIEW)ccccovviiriiieiiie e 68
Figure 54: Mechanical Sketch of System (Front VIeW) ... 69
List of Tables

Table 1: ENgineering REQUITEMENTS.cooiiiiiiiiieieiese e 18
Table 2: Safety STANAAIScooiiiie e 20
Table 3: CommuNICatioN PrOtOCOIS........c.ciiv i 20
Table 4: ConNECtor STANAANS.........cccoviiieiiee e enes 21
Table 5: Functional REQUITEMENTSciiiiiiiiiecie et be e 22

Table 6: Processor FUNCHIONAIITYc.ocuiiiii e 24

Table 7: Accelerometer FUNCLIONALITY..........ccooiiiieie e 25
Table 8: Time-of-Flight FUNCLIONAIITYcoveiiiiec e 27
Table 9: LED FUNCHONAITYc.oiiiiiie et 28
Table 10: SD Card FUNCLIONAIITY.........cciiiiiiiiiiieee e 29
Table 11: Power System FUNCHIONAIITY ..o 30
Table 12: Overall System FUNCLIONAITYcccoviiiiiieieiceee e, 31
Table 13: SPI FUNCHONAITYc..ooiiiicc e 55
Table 14: 12C FUNCLIONAIITYooeiecc e e 55
Table 15: Discharge Testing RESUILScooiiiiiiii i 64
Table 16: Recharge Testing RESUILSc.covoiiiiiii e 65
Table 17: Main Board Bill of Materialsccooeiiiiiiiicecee e 70

0.) Abstract.

Capturing workplace incident information is a growing area of concern for most companies.
To assist with this, the design team proposed the H.A.L.O. This design uses time-of-flight
sensors connected to LEDSs to create a proximity-based hazard warning system. It also records
incident data using an accelerometer and micro-SD card. This helps workers avoid some of the
most common workplace injuries, slips, trips, and falls and accidental collisions.

Students have created a design with engineering, and marketing requirements that
accomplish this task. The proposed design allows for this monitoring and mitigation systems to
be attached to hard hats. Team members developed software and hardware subsystems to fit on
any hardhat without hindering worker safety.

The completed design uses the systems listed above register hazardous objects within 1.5m
and color shifts depending on distance. Within the 150-degree FOV, any objects approaching the
device are registered. In case of a possible concussive event, collision data writes to a SD card
for use during an incident investigation. After a semester of development and integration, the
H.A.L.O. system met the engineering requirements to assist with preventing workplace injury in
a cost-effective manner. -NK

1.) Problem Statement.

1.1 Need.

Incident information in the workplace is difficult to capture due to the unpredictable nature
of accidents. TapRoot, which is a method for identifying and correcting the root causes of an
accident, and investigation analysis can only eliminate causal factors when understood and
documented. Presently, reports come from firsthand accounts without numerical backing. With

slips trips and falls, being 26.6% of workplace injuries, and another 23.3% being accidental

collision with objects in 2018, prevention and data collection are the best methods to create a safe
workspace.
-NK

1.2 Objective.

A device that can assist with incident prevention and document occurrences provides a
safer working environment for everyone. The team’s objective is to create a device attachable to
a standard hardhat to provide enhanced sensory feedback, log sensor data related to the working
environment, and record incident data. This provides a means to both prevent and more
accurately document incidents.

-HH, NW

1.3 Background.

The basic theory behind the concept of a smart, hard hat attachment is to increase the
amount of information gleaned from an incident or accident in the workplace, specifically those
in construction. Worker safety is an essential aspect of any industry, especially in dangerous
fields such as construction and manufacturing. In most manufacturing facilities and construction
sites, reporting an incident or an accident is rudimentary nonexistent at worst. Most reporting
systems rely on the memory of the worker or a witness to describe the incident, leading to an
often unreliable and unhelpful report. These reports will often not include crucial information
such as the conditions when the accident took place, the exact location at which the accident
occurred, or whether workers followed OSHA regulations. Without this crucial data, these

accidents are likely to happen again, putting more workers in harm’s way unnecessarily.

-BT

The team plans to resolve this issue using data collection and real-time monitoring of the
user’s surroundings using various sensors. Time-of-flight sensors will provide the individual
wearing the helmet with a visual indication of hazards at the head level within some pre-
specified range to help prevent accidental collisions to the head. A data logging system will use a
micro SD card via an SPI interface to record relevant data, with assistance by a real-time clock
module (Veeramani Kandasamy) to provide relevant timestamps when the incident occurred.
These readings could then locate and address the source of these abnormalities, making it much

easier to correct any infraction or spill.

In the unfortunate scenario in which the wearer suffers injury, specifically a collision to
the head because of an unseen hazard or from a fall, an accelerometer measures the severity of
the impact. This will provide relevant information regarding what medical treatment the victim
should undergo, specifically focusing on the possibility of a concussion. One study conducted on
concussions using helmeted devices in various sports shows that multiple accelerometers would
provide more accurate data (O’Connor). Because of the shape of the team’s initially proposed

design, more accelerometers are available.

-HH

Time-of-flight sensors work “by illuminating the scene with a modulated light source and
observing the reflected light. The phase shift between the illumination and the reflection is
measured and translated to distance” (Li). This means that these sensors can sense the distance of
the nearest object in their line of sight. By positioning three sensors on a helmet, it will be
possible to detect any hazards that may come close to the individual’s head and provide visual

sign via a set of RGB LEDs. These LEDs are a commonplace component in modern electronics

and can produce a variety of different colors from a ‘single’ RGB LED, which is three LEDs
(one red, one green, and one blue) within a close distance to each other on one component. It will
use this feature to show how close a hazard is to the wearer’s head by changing color as

obstacles get closer.

-HH

Accelerometers are sensors that “measure the physical acceleration experienced by an
object because of inertial forces or mechanical excitation” (Accelerometer Theory & Design). In
aerospace applications, these sensors with gyroscopes for navigational and flight control
purposes are widespread. In short, accelerometers act as a damped object of mass on a spring,
therefore, when there is acceleration mass displaces, and it measures the displacement. Adding
one to the helmet allows investigators to view the acceleration data of workers wearing the

helmet after an incident. This will allow for a better determination of medical treatment.

-NW

Ambient Light Sensors (ALS) monitors and measures the level of ambient lighting
surrounding the sensor. These devices primarily detect the amount of visible light surrounding
the sensor. However, infrared and ultraviolet light can skew the readings of the sensor, as it does
not limit the sensor to the bandwidth of the human eye. To remedy this, this sensor can also filter
out infrared and ultraviolet light as to give a more accurate reading (Ambient Light Sensor (ALS)
Applications in Portable Electronics). This sensor allows a safety inspector to see the lighting
conditions at the scene of an incident or accident. This will help safety inspectors to find the root

cause of an accident and will help them prevent a similar incident or accident from occurring

again. After considerations of cost, complexity, and the lack of necessity, the team removed ALS

sensors from the device design.

-BT

The goals of this safety device are to record all the pertinent data relating to an incident
or accident without impeding the worker, and to be an affordable alternative to other solutions
currently on the market. This device design fits around the top of any hardhat with a few built in
clips that fit onto the rim of the hardhat. This device will be low-profile and lightweight, as to
perform all its tasks without impeding the worker. Along with that, this device will contain a
battery cell that will last an entire workday on a single charge, removing the need for the worker
to worry about battery levels during the workday. This device is rather simple as far as
components go, as it only uses low-cost components such as a battery, a microprocessor, an
accelerometer, a micro SD card slot, a micro USB port, a plastic band, a light sensor, and a few
RGB LEDs, so the cost per unit will be low (less than $80). This device will also allow
supervisors to check for adherence to OSHA guidelines. Failing to comply with OSHA
guidelines is a driving factor in many accidents. According to the Commonly used Statistics page
on the Occupational Safety and Hazard Administration’s webpage, the top causes of worksite
fatalities are falls and being struck by an object, both of which are preventable, following proper
safety standards. This device uses a combination of monitoring and recording to ensure workers

create more safe working environments.

-BT

There are a few variations of “smart hard hats” in existence, many of which focus on
monitoring the wearer of the device with features such as heart-rate sensors, GPS, Wi-Fi
reporting of data, and map navigation of a site. Of these existing designs, many are permanent
fixtures on the hardhat themselves, limiting the number of devices used to a specific set of
individuals. Although the features of these designs are convenient, the modules are quite costly
for the information they provide. Something else to consider is that GPS and Wi-Fi features have
limited usefulness to specific types of worksites. Power plants and similar facilities are typically
multiple story indoor facilities constructed out of metal—yielding any GPS features useless.
Wireless communications at such sites are typically restricted or prohibited for security reasons.
For these reasons, the team elected to log data via a micro-SD card to avoid these unnecessary

and power-hungry modules.

-HH

Issues with limitations for the existing designs available arise since there are no similar
designs. Other designs to the hard hat and non-removable. This strays from the team’s design
and is costly to implement. Once a hard hat is no longer usable, workers must replace the
complete system. (Temperature Measurement Inside Protective Headgear). One device that
seems like our design, being an in-hat temperature sensor to prevent heat-related illnesses for
workers in the field, has the limitations of needing to be inside the hat. Other designs like that of
the in-helmet temperature sensor require the devices fixed to the helmet making repair or even
powering the system difficult (Temperature Measurement Inside Protective Headgear). The

team’s design however is an attachment to the outside of the helmet and can detach from the

10

helmet. This design being easily detachable from the helmet makes the repair of the system and

the recharging for batteries of the device a smoother, easier task to perform.

-NW

The present designs found and listed in the patent references; current systems focus more
on passive data tracking rather than incident prevention. The passive data tracking that most
current designs are tracking is location, whether the user is wearing the helmet, and the activity
of the worker based on their movement. This is good information, but costly, and overbearing for
every worker on a site. Rather than a focus on the activity of the worker, this design is based
around the safety of said worker. Also, other designs focus on the use of augmented reality
assistance with communications capabilities (Hard Hat with Additional Technical Features). The
design concept instead focuses on recording or eliminating the possibility of accidents occurring
by using time-of-flight sensors, light sensors, and accelerometers. Present designs integrate the
system onto the helmet for each device. As mentioned previously, a fundamental difference is
that that design being created is removable. Discarding compromised helmets is possible with

this design, making it better than current models.

-NK

The recording of data is the greatest design similarity to modern iterations of smart
helmets. As mentioned, current systems also use removable SD cards that record the information
desired. Many existing designs use real-time readings for location and other sensory details
centered on worker output. Although both designs share the similarity of utilizing this

technology, the designed system has focus on incident mitigation. The real time signals being

11

used in this design are time-of-flight readings that connect to LEDs. Alongside the time-of-flight

sensors, accelerometer data assists with safety precaution and reporting.

There is a lot of research around smart hard hats. The usage of several real time sensors is
already in existence, which is like the concept being designed. However, the systems already in
use and patented center on the addition of augmented reality and monitoring of worker
effectiveness. Some other systems are focusing on the usage of closed-circuit camera monitoring
and communication systems/ subsystems for real-time interactions and direction of workers
(Smart Helmet). These are relevant as they use similar technology to monitor these data points,
but the overall system has different goals. The addition of these systems and subsystems also
increases complexity and affordability of the incident monitoring system being proposed. In
preliminary research, there were no designs that focused on incident prevention and risk
management in a cost-effective manner like the design being proposed.

-NK

1.4 Marketing Requirements.

1.) The device assists with prevention of collision with objects in the working environment.
2.) The system will record impacts above a determined threshold for incident monitoring.
3.) The System is portable and rechargeable.

4.) The system will have a workday battery life of 8 hours.

5.) The system will detect objects in the user’s field of vision using sensors.

6.) Does not change a standard hard hat’s integrity.

12

2.) Engineering Analysis.

2.1 Circuit.

. Mcp73s3i - .. . L
3200mAh_Battery

voD — VBAT : : s VIN vouTt Vout_3.3VDC >
o J__cz_ = J—“ . .lu. .L:s ce . L R
TR EEE o | . de B “R3 | p2 p3
- REES v A e g;u" @"." 1000 <"1k N7 7Y
ALY eroc FEES ST : vina LY v AR v AR R4

—|EN

B B MODE/SYNC -
':::::.::.:::::::::::JjGND PG,.,.,j'7..::::::::

Figure 1.) Power System Circuit Schematic.

2.2 Electronics.
Time-of-Flight Sensors:

For monitoring, there were two possibilities for distance sensors. IR triangulation was the
first method researched for potential sensors. IR triangulation has benefits such as being
compact, lightweight, and capable of detecting objects in real-time with a wide range of view.
However, despite their ability to detect objects in real time, and a wide field of view on most
models, they do not capture objects moving at a high speed. Their refresh rate is lower than other
possibilities, making them less accurate at shorter distances. Also, part of the issue is the
inability to use them in unison with other sensors. They provide less reliable measurements when
used in conjunction. The intention of this design is not to detect high-speed objects moving
towards the sensors in this aspect. The design requirements focus on detecting overhead objects
in a predetermined FOV around the design, assisting with hazard detection.

The second sensors examined for this project were IR time-of-flight sensors. They use IR

LEDs like the previously explored option. However, these use the sensors with a higher

13

transmission and reception time, a better distance detection limit, and better refresh rate. Some
models explored were capable of refresh rates around 160 frames per second. A refresh rate that
high is perfect for real time situations and with a fixed FOV, time-of-flight sensors were by far
the best avenue for detections based on design requirements. -NK

A time-of-flight sensor uses infrared light to determine depth information. By emitting a
pulse of infrared light and observing the reflected light pulse, the sensor can make a conclusion
about the distance to the object light reflected from. The speed of light being approximately
300,000,000 m/s allows for readings taken in very little time. For reference, detecting an object

approximately 100m away from the sensor would take 660ns. -HH

Accelerometer:

The team will use an accelerometer to measure incident data. This is because of the
component’s ability to track tilt and angular changes, force and acceleration over time, and
collisions. It does this via a combination of a spring, damper, and a mass. A displacement sensor
is in the system to measure the mass movement relative to its attachment point. This tracks the
inertial forces on the mass. It compensates these forces with the springs and damper. The tension
from the combination of these two attachments keeps the mass in stasis to record.

With this system in place, when a collision occurs, a sensor on the accelerometer then
calculates the displacement of the mass. This converts into measurements for acceleration (m/s?).
With this data from the accelerometer, the second order response forms regarding displacement
over time.

The system designed for incident recording uses an accelerometer that can track this

response for plotting. As for how the data is captured by the accelerometer, capacitance is the

14

main method. In explored designs, the accelerometer has capacitor plates that attach to the mass.
When the mass moves, and the capacitor plates, the capacitance does. Modern accelerometers
have circuitry that takes this capacitance difference into account and presents an output voltage
that represents the desired data.

-NK

Concussion Analysis:

The most common form of head injury is a concussion. A concussion occurs when the
head sustains a significant impact or blow that creates a chemical imbalance or physical damage
within the brain. According to research by Kevin Guskiewicz, director of the Carolina’s Sports
Medicine Research Laboratory at UNC, concussions can result from impacts of 60g of force or
more. As concussions are the most common form of workplace head injuries, it is important that
workers are adequately protected from falling objects and falls. In many industries, the solution
for this is to wear a hard hat. They design hard hats to mitigate the impact of falling objects or
contact with the ground during a fall. The Occupational Safety and Health Administration
(OSHA) requires employers with ten or more employees to keep a record of serious work-related
injuries, concussions included. As stated above, the current methods in many workplaces around

the country are rudimentary and non-existent at worst. -BT

LEDs Component Analysis:

The need for a lighting-based warning system on the helmet led to the choice to use
LEDs. A simple setup of three LEDs, that are receiving signals from the time-of-flight sensor
and processor, is sufficient. The team decided this using two methods of reasoning, operation
hours, and power efficiency. Despite more upfront cost for the bulbs, on average LEDs have an

average rated life of roughly 50,000 hours which can be up to 50 times longer than incandescent

15

bulbs. LEDs also have a longer lifespan than CFLs and Halogens. The second reasoning behind
picking LEDs is because of their efficiency with power consumption compared to other bulbs.
On average, based on information from the department of energy, to produce a similar
luminosity to other designs, LEDs consume 75% less power. This decision weighed heavily on
the choice of component because of the powering requirements of the system.

The main reason that LEDs are so efficient with energy is because of their composition.
An LED emits light when it is forward biased, and it applies a voltage across the junction. In the
proposed design, the 3.3V signal from the processor comes from the time-of-flight sensor. As
LEDs are a PN junction, the light forms when energy releases when holes and electrons combine
at the junction, allowing current to flow. This is a much more energy efficient process than using
filaments or halogen bulbs that burn out after a thousand hours of operation. Another important
aspect of the design of the diode is their ability to change color based on the input signal. An
orange or yellow light emits at a wavelength of 590 to 610 nanometers when the LED receives a
signal of 2 (V) at 20 (mA). A red light radiates from most LEDs at a frequency of 610 to 760
nanometers when applied with a 1.6 to 2 (V) signal at (20 mA). The efficiency and ability for the
input signal to change color of the diode will assist in the goal of avoiding hazards in proximity
of the time-of-flight sensors.
-NK
Power Analysis:

The system should have a 3.7V DC lithium battery and hold a charge for a minimum 8-
hour workday. The battery charges using a 5V DC Micro-USB charger. Based on spec sheets for
potential processors, their consumption comes at an average of 150 to 200 (mA). The (ToF)

time-of-flight sensors has an average consumption of 18 (mA) per sensor. Six ToF sensors

16

combine for the expected average consumption of 108 (mA). The consumption of accelerometer
specs is roughly 140 (uA). For the LEDs, each individual LED consumes on average 45 (mA)
when activated with either the red or green diodes. A max consumption of power for the LEDs
would be 135 (mA) with all three LEDs on. However, all three LEDs will probably not be on,
since the ToF sensors spread apart at equal angles and don’t link to each light. At most, expected
consumption for the LEDs is 90 (mA). Taking the analysis for power consumption of all the
components of the device, a total mA requirement is just below 400 (mA).

With an expected operation time of 8 hours, the battery required is (8hrs)* (400mA) =
3200 (mAh) Since the system is being converted from a 3.7V battery to a 3.3V system, the power
consumption steps down to ((3.3V/3.7V)*3200mAh). This consumption is then 2854 (mAh).
With the 168 (mAh) loss from the DC to DC converter over an eight-hour period and other
minor losses in mind, a battery of 3200 (mANh) is necessary. The power losses of the charging
circuit are irrelevant, as that circuit does not draw any power from the battery. In practicality, the
consumption of these components is much lower, so these calculations are max estimates of the
power consumption in the absolute worst-case scenario.

The power system charges with a 5VDC Micro-USB cable. This will allow for a simpler
design for the charging circuit, as Micro-USB charging circuits are already on the market and are
cheap and easy to use. These charging circuits are also simple to integrate into a larger circuit, so
they will work perfectly for our intended application. This will also allow for easy charging. If
the charging process is easy and self-explanatory for the user, they will be more likely to charge
the device. If the charging process is cumbersome or complicated, workers will be less likely to
charge the devices. The team selected a design to run for a minimum of 8 hours. This accounts

for a normal workday time frame. Using a 5\VDC Micro-USB cable will also allow for cheap and

17

easy installation for the employers setting up charging stations for these devices. Micro-USB
cables are easy to install. Therefore, designing the charging circuit to use a 5\VDC Micro-USB
cable will benefit us as the designers, the workers, and the employers alike.

One concern with using a 3200mAnh battery is its physical size. 3200mAh batteries are
3.19” by 2.48” by 0.18”, which could present some difficulties with physical design. The weight
of a 3200mAnh battery is 56 grams, which is insignificant as far as the weight of the device goes.
If the team can get a more accurate power analysis or reduce the number of components in this
device, the size of the battery would decrease. For the time-being, however, a 3200mAh battery
is acceptable.

-BT/-NK
3.) Engineering Requirements Specification.

Below is a table showing the engineering requirements for the design. A justification why
these requirements are needed for the design are also present. Finally, the associated marketing
requirement is shown to depict the reasoning why the engineering requirement was chosen.
Attached to the bottom of the engineering requirement are the marketing requirements for
reference.

Table 1.) Engineering Requirements Table.

Engineering Requirements: Justification Marketing
Requirement:

1.) Must be able to last an entire 8- Allows for the worker to use the @4
hour workday without needing to charge. helmet for an entire shift without
having to worry about battery
life.
2.) The battery charges via a standard charging [This should be enough timeto |3
cable within 8 hours. charge the system using a

standard 500mA charge rate.

18

3.) Will write suspected impact/injury data to a {Information regarding injury is |2
n on-board storage system for data retrieval. [easily accessible and can be
assessed after an incident.
4.) Provides time-stamp data relating to Allows for waveform generation |2
impact/injury. and data pertaining to when an
incident happened.
5.) Does not interfere with Makes it so companies do not |6
existing standard hardhat hardware or need to buy special helmets to
functionality. use this
product while allowing for simpl
e installation.
6.) Communication busses remain idle until |When relevant data is not being [1,2,5
sensors detect relevant data, keeping detected, the communication
communication lines available. busses are available. This allows
relevant data transmission in a
timely manner.
7.) LEDs illuminate with respect to a The system provides an intuitive (1,5
detected hazard’s position relative to the user. [display to assist users in locating
a hazard.
8.) LEDs change color (yellow to red) as This will allow the worker to 1,5
hazards approach between 1.5m and the user. |assess the proximity of
an existing hazard.
0.) 150-degree FOV deploys to detect Provides field of coverage 5
hazards. relevant to where the user
travels.
10.) Impact data above a predetermined Data above a threshold of 2

threshold will indicate an incident.

(459) will show an incident is
within a margin of error of force
that suggests a potential
concussion.

1.) The device assists with prevention of collision with objects in the working environment.
2.) The system will record impacts above a determined threshold for incident monitoring.

3.) The System is portable and rechargeable.

4.) The system will have a workday battery life of 8 hours.
5.) The system will detect objects in the user’s field of vision using sensors.
6.) Does not change a standard hard hat’s integrity.

19

4.) Engineering Standards Specification.
4.1. Safety.
The table below depicts the safety standards relevant to this design. Both standards listed in
this table are provided and created by OSHA. -BT

Table 2.) Safety Standards.

Safety Title

OSHA Part Number: 1926 Safety and Health Regulations for
Construction

Standard Number: 1926.100 | Personal Protective and Life Saving
Equipment

Since the project is dealing with electrical equipment, students must ensure that standard
1926.100 (b) (2) applies. The team must implement electrical insulation of the device around the
hard hat to keep within guidelines of OSHA requirements. For other safety standard

considerations, the safety standards of selected electrical components will also apply. -NK

4.2. Communication- 12C and SPI.
The table below depicts the communications protocols relevant to this design. These
protocols include I°C and SPI. -BT

Table 3.) Communication Protocols.

Communication .
Implementation
Protocol
- Time-of-Flight Sensors
1C - Accelerometer
- 12C Multiplexers
SPI - Micro-SD Card

Because of the difference in needs for communication, there are two separate

communication methods. For the Time-of-Flight sensors, since there are multiple of them, an

20

addressed based system is required. For SPI, the standard means of embedded projects to
interface with an SD card is using this method. Following this standard makes communication
with the Micro-SD much more reliable and simpler.

4.3. Programming Languages.

This project uses embedded C because of its commonplace implementation among
Microchip devices. This language also offers a simple interface for the communication protocols
by which it will communicate to the sensors, 12C and SPI. Team members have experience in C,
making this the most “universal” language for interpretation for the team. - HH

4.4. Connector Standards.

The table below depicts the connector standards relevant to this design. These connectors
include the SD card receiver, a micro-USB connector for the charging cable, and a ICSP
connector for the PICkit programming interface. -BT

Table 4.) Connector standards.

SD-Card -SD Card Receiver
USB -Charging cables
ICSP -PICKit programing interface

5.) Accepted Technical Design.
5.1. Hardware Design.
Block Diagram Level 0:
The figure below shows the level 0 block diagram. This is a generalized overview of the
H.A.L.O design. The design features six time-of-flight sensors, an accelerometer, a micro-SD

car, and three RGB LEDs. The inputs to the processor are the time-of-flight sensors for multi-

21

directional distance measurements, and an accelerometer for measuring force to the helmet. The

outputs of the LEDs and SD card assist with hazard recognition or incident recording.

Time-of-Flight Sensors (x6) RGE LED (x3)

™~

 J

Accelerometer
Real-Time Clock Module

Frocessor
Micro-50 Card -

-~

Yy ¥

Figure 2.) Block Diagram Level 0.

- HH,NW

Functional Requirement Table:

The processor functional requirements table is shown below. Provided is a listing of
inputs, outputs and a parts description. The inputs of the time-of-flight sensor, accelerometer,
connect to the processor and go to the outputs of the LED and Micro SD card. The processor
takes the data from the sensors and sends it to the proper system to assist with incident
monitoring and mitigation. -NK

Table 5.) Functional Requirements Table.

Module Processor
Designer Hunter Hykes, Nathan Kish, Brian Thomson, Nicklaus Walsh
Inputs Time-of-Flight Sensors: detect head-level hazards

Accelerometer: collect collision data if the wearer suffers from
an impact to the head
Real-Time Clock: provide relevant timestamps for data logging

Outputs RGB LED: one light is present for each Time-of-Flight sensor
and the color will show the proximity of the hazard
Micro SD Card: will log sensor data as for review.

22

Description | Time-of-flight (TOF) sensors will operate when the light sensors
determine the user is indoors and in a low-light area. Two RGB
LEDs respond to the TOF sensor readings to show a hazard
detected within some proximity to the wearer’s head. LEDs from
each side to help determine where the hazard is present. The
LEDs will change color (likely yellow to red) as the hazard
approaches. An accelerometer will be present on the device to
record data if the wearer suffers an impact to the head. A volatile
organic compound sensor will be present to take consistent
readings as the wearer walks around the work environment,
noting any abnormal conditions. A real-time clock assists a micro
SD card to log all this data with timestamps.

-HH, NW, BT

Block Diagram Level 1 | Processor Subsystem:

A preliminary processor subsystem diagram is seen below. The power system’s
3V3 inputs, the 12C and SPI communication lines are all visible. The interrupts signal to
the processor that some event happened. This is done for both the accelerometer and
time-of-flight sensor, allowing the processor to know when either a hazard is

approaching, or an incident occurred. -NK

33 -
GMND 2C
e e 2
Frocessor
ToF interrupts <0:5= =H
o o

Accelerometer Interrupt | [pT0

Figure 3.) Block Diagram Level 1: Time-of-Flight Subsystem.

23

The table below depicts the inputs, outputs, and functionality of the processor used in this
design. The inputs for this processor are 3.3V power and a ground wire, and the outputs from this
processor are communication lines that run to the other subsystems, and 1/O interrupt pin, and
the SD card communication lines. -BT

Table 6.) Processor Functionality Table.

Module Subsystem Processor
Designer Nicklaus Walsh
Inputs 3.3V input
Ground wire
Outputs Communication lines between each other subsystem

I/O interrupt pin
SD card communication lines

Functionality | The processor controls each subsystem and gathers information from each
of the ToF sensors and the accelerometer. Based on the data relayed back
to the processor, it will alert the user and record the data from the
accelerometer to the SD card.

Block Diagram Level 1 | Accelerometer Subsystem:

A closer look at the connections between the accelerometer and the processor is below.
The outputs from the accelerometer are the serial data line, the serial clock line, and the
interrupts. These allow the data from an incident where the accelerometer is used to be

interpreted and used by the processor. -NK

24

V3 N
SDA -
SCL "
Accelerometer v > Processor
INT -
- RTC

Figure 4.) Block Diagram Level 1: Accelerometer Subsystem.

The table below depicts the inputs, outputs, and functionality of the accelerometer used in
this design. The inputs for this accelerometer are 3.3V power and a ground wire, and the outputs
from this accelerometer are 3.3V power, SDA communications to the processor, SCL
communications to the processor, and a ground wire. -BT

Table 7.) Accelerometer Functionality Table.

Module Accelerometer
Designer Brian Thomson

3.3V power from the power system
Inputs Ground Wire

3.3V power

SDA communications to the processor
SCL communications to the processor
Outputs Ground Wire

To measure and quantify the acceleration of the device, and to communicate
Functionality | and relay that information to the main processor.

25

Block Diagram Level 1 | Time-of-Flight Sensor Subsystem:

Below is a representation of the connections between the processor and the time-of-flight
sensors. The same communication scheme used for the accelerometer is present here.
Communication lines from the SCL and SDA allow the time-of-flight sensors to send
information to the processor. This information is then sent to the LEDs, creating the proximity

warning system for the H.A.L.O. design. -NK

AT} -
SCL -
- sha 1
TOF <0:5> - » Processor (Main)
INT «0:5= ;
G RTC

Figure 5.) Block Diagram Level 1: Processor Subsystem.

The table below depicts the inputs, outputs, and functionality of the time-of-flight sensor
used in this design. The inputs for this time-of-flight sensor reflect light from a surface, 3.3V
power, and a ground wire, and the outputs from this time-of-flight sensor are serial data lines to

the processor. -BT

26

Table 8.) Time-of-Flight Functionality Table.

Module Time-of-Flight Sensors
Designer Nate Kish
Inputs 3.3V power
Ground Wire
Reflected Light from a Surface
Outputs Serial data pertaining to the distance between the sensor and object in view.

Functionality | Acts as a measuring tool for distances from the sensors to potential hazards.
Delivers data to the registers in the processors upon request.

Block Diagram Level 1 | RGB LED Subsystem:

The following block diagram is a representation of the LED subsystem. The H.A.L.O.
uses three LEDs at equal spacing on the brim of the hard hat, all powered by the power
subsystem at 3.3V. The 10 pins allow for communication with the processor and time-of-flight

sensors to vary the intensity of the light, acting as a warning device. -NK

=3V3—» IVI—» IVI—»
—orn—> LEDO ——orm—> LED1 |——0rm— LED 2
[GND—» ——=GND—» f—GND—»

Figure 6.) Block Diagram Level 1: LED Subsystem.

The table below depicts the inputs, outputs, and functionality of the LEDs used in this

design. The inputs for the LEDs are 3.3V power, an 1/O pin, and a ground wire, and the outputs

from the LEDs are red, orange, and yellow light. -BT

27

Table 9.) LED Functionality Table.

Module LED

Designer Nathan Kish

Inputs 3.3V input
1O Pin

Ground cable

Outputs Orange or yellow light emits at a wavelength of 590 to 610 nanometers
when the LED receives a signal of 2 (V) at 20 (mA).

Red lights at a frequency of 610 to 760 nanometers

Functionality | The functionality of the LEDs is to act as a warning system for hazards in
the immediate area around the user. Input distance data from the time-of-
flight sensor goes to the LED and produces one of two colors depending
on distance.

Block Diagram Level 1 | Micro-SD Card Subsystem:

The diagram below shows the interface of the processor and SD card. As seen in the
figure, the SD card and processor communicate using MISO and MOSI communication scheme
using SPI. The SD card connects to the processor using a serial clock line, following SPI

standards to assist with data capturing. -NK

VI
[MISO—]
Processor (Main) —os— SD Card
SCK—»
GHO—»

RTC

Figure 7.) Block Diagram Level 1: SD Card Subsystem.

28

The table below depicts the inputs, outputs, and functionality of the SD card used in this
design. The inputs for the SD card are 3.3V power, a MOSI communication line, and a ground

wire, and the output from the SD card is a MISO communication line. -BT

Table 10.) SD Card Functionality Table.

Module SD Card

Designer Nicklaus Walsh

Inputs 3.3V, GND power input from battery slave select line from processor
Master Out Slave In (MOSI) communication line

Outputs Master In Slave Out (MISO) communication line

Functionality | Collect data from accelerometer if it is substantial contact and store on SD
card in a CSV file for analysis.

The CSV file generates a waveform to capture the severity of collisions
should an incident occur.

Block Diagram Level 1 | Power Subsystem:
The figure below depicts a level 1 block diagram of the power circuit. Starting
with a 5V micro-usb, the power circuit uses a charging circuit to step down the voltage to
4.2 and charge a battery of equal voltage. From said battery, voltage is then set to 3.3V
using a DC to DC buck-boost converter. This subsystem powers the rest of the

subsystems on the H.A.LO. design. -NK

——| Charging e o . Y+ DCtoDC v

- ano—>»| Circuit —cuo—>| - auio—»| Converter —cuip—>

USB Port

Figure 8.) Block Diagram Level 1: Power Subsystem.

29

The table below depicts the inputs, outputs, and functionality of the power system used in

this design. The inputs for the power system are 5.0V power and a ground wire, and the outputs

from the power system are 3.3V power and a ground wire. -BT

Table 11.) Power System Functionality Table.

Module Power System

Designer Brian Thomson

Inputs 5V DC input from Micro USB Charging Cable
Ground Wire

Outputs 3.3V DC Power distributed throughout the system
Ground Wire

Functionality

To store and distribute power of a uniform voltage throughout the circuit.
Power comes into the charging circuit at 5V DC, then steps down to 4.2V to
charge the battery. The battery itself has an average voltage of 3.7V. From the
battery, power flows through a DC/DC converter to regulate the voltage to
3.3V. This system will also provide a universal ground for the entire circuit.

Block Diagram Level 2:

The following figure depicts an implementation of the whole H.A.L.O system. The level 2

diagram shows connections between the subsystems designed previously and the processor. It also

depicts connection pins and lines in this diagram. Though a simplified version of the system using

blocks, the flow of power, information, and data is now visible between all subsystems. -NK

30

Accelerometer

GND | scL
SDA | 3v3

INT

VI [avi—>

—om— LEDO |—or—s LED1 |—om—s LED2

IVI—>

3 GND- GND—%|
DCtoDC [7 P SR
Battery Converter | Processor (Main) 0|
[MOS——»{
RTC | e SD Card
7
v, GHD
I I
USBPort | | Charging
Circuit
V3
SCL
TOF <0:5> | S0
GND
INT <0:5> EC
Figure 9.) Block Diagram Level 2: Overall System.
-HH

The table below describes the input, output, and functionality of the overall system.

Table 12.) Overall System Functionality Table.

Module System Overview

Designer Hunter Hykes

Inputs 5V DC input from Micro-USB Charging Cable
Time-of-Flight Sensors (x6)
Real-Time Clock
Accelerometer

Outputs RGB LEDs (x3)

Micro-SD Card

Functionality

The system’s battery charges via the Micro-USB cable’s 5V and GND inputs.
Time-of-Flight sensors will sense hazards within a predetermined spatial
radius and send back detailed distance readings to the processor. The
processor will then drive the respective RGB LEDs based on how close the
hazard is.

The accelerometer will log data determined to be around the threshold for a
concussion to the Micro-SD card. This assists with recording incident data.

31

Hardware Design-Power System:

The power circuit is complete using the LTspice schematic shown in Figure 10. This
circuit is three parts: the charging circuit, the battery, and the buck-boost converter. This circuit
takes an input of 5V from a universal charging cable. This input goes into the charging circuit,
which reduces the voltage from 5V down to 4.2V. This circuit also regulates the charging current
to 500mA. The current then flows from the charging circuit into a 3200mAh lithium lon battery.
This battery stores a nominal voltage of 4.2V.

The charging circuit is in Figure 11. The charging circuit implemented in the physical
circuit is a model TP4056 made by MClIglcM. From there, power flows through the buck-boost
converter. The input voltage from the battery will vary, depending on power stored within it. If
the battery is fully charged, it will have a voltage of 4.2V. But as the battery drains, the voltage
will drop, eventually dropping to around OV. The average voltage of the battery while in use is
3.7V.

The buck-boost converter will yield a 3.3V output, regardless of the input voltage (so
long as the battery voltage does not drop below 2V, as this is the minimum required voltage for
the buck-boost converter to operate). The buck-boost converter is in Figure 12. The buck-boost
converter in the physical circuit is a model STBB1-AXX made by STMicroelectronics. From
there, a constant 3.3V output goes to the rest of the device. -BT

Kill1l121:
{Vbatte:

co D5
I£ I

e [
T 33p MBRS130L
Vi : i : :
i : i T :
SHDN sw
5 U1

T el

* : = Ve LT1513 IFB :
c12° 100 o
lmnn =

MCIgIM | [0 : E‘m" =
TP4056

.tran 0 20m 0 .aAm

Figure 10.) LTspice Schematic of Full Power Circuit.

32

Figure 11.) LTspice Schematic of Charging Circuit.

Figure 12.) LTspice Schematic of Buck-Boost Converter.

The waveform for this circuit is in Figure 13. In this waveform figure, the teal line is the
input voltage, which is a constant 5V. The red line is the voltage of the battery, which is around
4.2V after a brief transient phase. For demonstrations, the battery gains a full charge nearly
instantaneously. In reality, this process would have taken around six and a half hours, which

would have taken days to simulate, considering it took nearly a minute to simulate 20ms. The

33

blue line is the current flowing into the battery, which is 500mA after a brief transient phase. The
green line represents the output voltage, which is 3.3V, after the same transient phase. For proof
of concept, any student educated in Spice schematic creation can follow these schematics to

create a similar power circuit. -BT

Eg Power Circuit Schematic Updated E@

V(vout)

Figure 13.) LTspice Waveform of Power Circuit.

Hardware Software Eagle Schematic:
Accelerometer:

The accelerometer in Figure 14 is the H3LIS200DLTR. It can operate in either 1°C or SPI
but for this design it’s using I?C. The 1°C is used to write data into registers in which the content
also writes back. There are two signals associated with this 1°C set up, the serial clock line SCL2
and the serial data line SDA2. Both lines connect to the processor to transmit and receive data
using pull-up resistors connecting the 3V3 VDD of the processor. The accelerometer acts as the
slave device following the initial instruction of the processor which starts transfer, generates
clock signals, and then terminates the transfer as needed. It does this through the SDA2 and
SCL2 lines, as mentioned. Like the Time-of-Flight sensors, the accelerometer complies with a

400kHZ fast mode and a normal mode of operation. -NK

34

Figure 14.) Eagle Accelerometer Schematic.

SD Card:

The SD card interface has been connected according to standard SD Card to SPI pin
mappings. As is shown in Figure 15, there are four pins utilized by the SPI interface: Slave
Select (SS), Serial Clock (SCK), Master Out Slave In (MOSI), and Master In Slave Out (MISO).
These connections are made between the processor’s SPI1 interface and a level shifter. This level
shifter ensures connections going to the SD card do not exceed 3.3V. As the level shifter is
shown now, VCCB is the same as VCCA; however, if the final design uses a VDD greater than
3.3V, then VCCB will be connected to this VDD and VCCA, the output voltage of data lines
going into the SD card, will remain at 3.3V.

-HH

35

Figure 15.) Eagle SD Card Schematic.

LED:

The RGB LED schematic shown in Figure 16 depicts the basic connections needed to
interface with an RGB LED. One board will be used per RGB LED. Each board has a connector
for power, ground, and data in, and a connector for power, ground, and data out. This will allow
for the boards to be connected in series, meaning only one connector will be needed on the main

board to connect to the entire series of RGB LEDs. A 0.1uF capacitor is used to reduce noise on

the power lines. -HH

36

DTO4: HA.L.O. - RGB LED Board

1 | 2 | 3 | 4 | 5
B ap— B
A —E Gl a—C . 1R A
g = R R
1 2 | 3 | 4 5
Mounting Hole
r3
Figure 16.) Eagle RGB LED Schematic.
Processor:

The processor used is the dsPIC33EP512GM706. Figure 17 illustrates the base schematic
for the peripherals and features used by the H.A.L.O.. On the left of the processor are the basic
components recommended for basic usage: a programming header for a PICKit device, a reset
button circuit, and the power capacitors specified by the recommended minimum connection
figure in the datasheet (Appendix B). Several extra capacitor footprints will be added to the
board in case noise proves to be an issue later on. The schematic also includes the peripherals
used by the product: 1°C and SPI. A UART connection is also included, hoping to use a USB
interface for debugging purposes. One RGB_LED pin is used to send the data to the external
RGB LEDs. Lastly, eight debug LEDs are also present for development and will not have to be
installed on the final product.

-HH

37

pice Progamming Heades P ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

1
12c
a4

HHIIIIIIII‘

e
|

ERNTEE 1:spl

Pa. 22, Figure 2-1

EFl bebug

1l
21
h|
i
|
/1
h1|
i
h1|
21

IEREER]

dsPIC33ER512 Catasheat
4= UARTY Pg. 166, Figure 11-2

Figure 17.) Eagle Processor Schematic.

Charging Circuit:

The charging circuit in Figure 18. shows the 5V. input to charging 4.2V circuit from the
hardware design power circuit. This is the first section of the power schematic designed in eagle,
accounting for the circuit elements required by datasheet specs. The resistors labeled RA, RB,
and RPROG all have varying values depending on the charging requirements. They are presently
blank since the physical circuit design may require different values depending on current use to
meet design needs. The charging device is the TP4056. The input of the 5V. input comes from a
micro-usb port. It goes through the series of resistors and capacitors, into the TP4056 device, and

connects to two LEDs. These LEDs and their resistors show the circuit is charging or charged

38

with a RED and Green LED. The output of this circuit outputs 4.2V. directly into a Lithium-lon
Battery that is 3200 (mAH.) With the design below, the charging circuit meets the requirement
of charging the battery within 8 hours. The outputs of BAT_NEG and BAT_POS are the inputs

directly to the battery used in the Battery and Converter Circuit Below. -NK

Figure 18.) Eagle Charging Circuit Schematic.

Battery and Converter:

The battery and converter circuit in Figure 19. follow directly after the charging circuit.
The tags from the output of the charging circuit, BAT_POS and BAT_NEG, connect to the
battery and buck boost circuit. This schematic has a placeholder 5V battery but will operate at
4.2 in the final design. Circuit components shown assist with operation of converter as described
in datasheets. The most important elements besides the converter STBB1-AXX are the resistors
acting as a voltage regulator. With 100k and 560k the output voltage V_OUT, the voltage will be

roughly 3.3V to power the rest of the circuits. -NK

39

Figure 19.) Eagle Converter Circuit Schematic.

Time-of-Flight:

The time-of-flight schematic in Figure 20. Is the VL53L0X. The layout of the time-of-
flight sensor includes a serial clock line and serial data line that connects to the processor
A5/SCL - 12C Serial Clock line, SCL1 and A4/SDA - I2C Serial Data line SDA1. The 3.3V
inputs connect to these lines using two resistors of 10K as pull-ups. The pins of AVDD and
AVDDVSEL. connect to the 3V3 tag, which connects to the processors VDD2 output. The GND
pins on the processor connect to the GND and the AVSSVCSEL of the time-of-flight. The time-
of-flight sensor below can measure up to 2 meters with a potential sampling rate of 400kHZ.

Finally, the GPIO. connects to the Interrupt with a 1.0K resistor buffer. -NK

40

DTO4: H.A.L.O. - Time-of-Flight Board

1 | 2 | 3 | 4

Til"l"le-of-Flight Power Capacitars
(ToF) Sensor

Outer Connectors

| . A L
. Lf 1 |
S this pin must float!
— I2c Refer to VL53L3CX Datasheet
JA - Pg. &, Figure 3.
C = L S C
1 2 | 3 4

Mounting Hole
k1)

Figure 20.) Eagle Time-of-Flight Schematic.

5.2. Software Design:
SD Card Subsystem:

The micro-SD card interface uses the SPI1 interface of the dsPIC33EP512GM706. SPI1
was configured using Microchip Code Configurator (MCC) and uses the following libraries:
spil_driver, sd_spi, and fatfs. Setup is handled within the SYSTEM _Initialize() function called
at startup. The code in Figure 21 achieves a write to the micro-SD card containing accelerometer
data in .csv format. The file “ACCEL.CSV” is written with the content of the character arrays
datal[], data2[], data3[], data4[], and data5[] which are populated with five consecutive X, Y,
and Z axis readings from the accelerometer. The information in each of these arrays is followed

by a carriage return and a newline, per .csv formatting. This function is called when the

41

getAccelPoints () function returns true, indicating that an accelerometer reading has

exceeded the set threshold.

// write a

.CSV containing accelerometer data to the SD card

// pass SD status and File Write status variables for debugging

purposes
vold writeAccelToSD (void) {
// <Nick>
uint8 t SD status;
uint8 t FW status;
FATFS drive;

// Work area

(filesystem object)

for logical

drive
FIL file; // File to write
UINT actualLength; // Actual length of
char data0O[] = "X, Y, Z, t\r\n";
char filename[] = "ACCEL.CSV";

// write 5 data strings in

// with millis() timestamps
sprintf (datal, "%f, %$f, %f,

(double)z 1, (double)timerl);
sprintf (data2, "%f, %$f, %f,
(double)z 2, (double)timer2);
sprintf (data3, "% $f, %f,
(double)z 3, (double)timer3);
sprintf (data4d, "% $f, %f,
(double)z 4, (double)timer4d);
sprintf (datab5, "% $f, %f,

(double)z 5, (double)timer));

to
$f

o©

f

o

i} h

o°

o°

// write the data strings to a

if(SD_SPI IsMediaPresent ()
return;

}
SD_status

f mount (&drive,"0:",

.CSV format for X, Y,

plot
\r\n

\r\n

\r\n

\r\n

\r\n

file
fals

1),

and Z axes

", (double)x 1, (double)y 1,
", (double)x 2, (double)y 2,
", (double)x 3, (double)y 3,

", (double)x 4, (double)y 4,

", (double)x 5, (double)y 5,

e) {

4

if (SD status == FR OK) { // mount disk
//Open or Create <filename> file
if (f open(&file, filename, FA WRITE | FA CREATE NEW) ==
FR_OK) {
// write column headers
FW status = f write(&file, datal, sizeof (datal)-1,
&actuallength);
// write each line of data
FW status = f write(&file, datal, sizeof (datal)-1,
&actuallength);
FW status = f write(&file, data2, sizeof (data2)-1,
&actuallength);

42

FW status = f write(&file, data3, sizeof (data3)-1,
&actuallength);

FW status
&actuallLength);

FW status = f write(&file, datab, sizeof(datab)-1,

&actuallLength);

f write(&file, data4, sizeof(datad)-1,

f close(&file); // close the file

}
f mount (0,"0:",0); // unmount disk
msTimerDelay (5) ;

}
// </Nick>

showConcussion(); // 5 second LED display:
RED/PURPLE/RED/PURPLE/RED
}
Figure 21.) Micro-SD Card Write Functionality.

-HH

43

1 2
Mounting
Holes

12 -
L & BE & RN
»r r:..t
il [3
o

el

1 z

DT04: H.A.L.O. - Main Board

=
)

3 4

SD Card (SPI)

i
- +dy e -
—eugl Sadar s +dhi MOT0.50 CARD 50
- COT
2 CET .
E L
e oo S0Ch
[
- co:
THEIIEPWER | |
st ar pecs o bypass avel st EHD

™
[
|
I

1

[Z 3

dsPIC33EP512GM706 Processor

A
TOITWHELTRDS
RMLHTWH1ATE
RTINS
B
v
i
Fa.
N
c

TENT M amieed

7 o
& EEE . I
E FEL lartal I-j}-‘,.'.ﬂq"m
= .
£ izd :
52 L
Il 1=
Axg -
Za TOPATDRWET
52 L
CNE
TN EITWREFL RS SO A N T IR SE
i 3
E L L=PSARCS
SOALISH BAHL
A ELLHET s AR AL TS B

e

IHCEIERS LT Dalusl e
<3, e, bigarz 112

Figure 22.) HALO Main Board Schematic — Processor and SD.

44

1 Z | 3 E
A
B|=
[
L H 3 [4 1 T z T] =
A Battery Charger e o B B .
micro-USE Port
| P s
w w \\ WL ISE E WEATT - £ 3 -1
B i) Im._.. saa lmme _©) msE :
gedesey g | N ™~ BB MS 1l
3 CiN g
n_n_..\.,u ATHE-I00L T
IEREREE = 3 = APLUR
| L IW ane D GND GHE
CHE CHE CHD
Buck Boost Converter
L 2 3 | 4 1 2 | 3 £
T H T T B T 3 El 5 & 7] T T B
PICkit Accelerometer (12C) " A |a RGB LEDs
A Programming M L Serial Opion
Header &
Loty |z —
TT c
A1 I c
N | s U
B -
I —
E [n]
N 1 [B I 3 El 5 3 7 g
s 1 1 |
c w
c +)a.ﬂ.ﬂ_ FACLR -
— = AL
2 ...u... -T=
T Fm
B
1 2
1 2
External Oscillator
A c %
— &
B B R
c L 12C Multiplexer 1 12C Multiplexer 2 =33
o Address <0:2> = 0x0 Address <0:2= = Ox1 —
1 z il 1 I 3 I

Figure 23.) HALO Main Board Schematic — Peripherals.

45

DTO4: HA.L.O. - Time-of-Flight Board

1 | 2 | 3 | 4
A A
5 Tlme-of-FIight Power Capacitors
uter Connectors
{ToF) Sensor 33
|| i +3V3 -
vz 1
cip Z]= u1
T TS ASHUT ayDDWCSEL | —
B Shal 4l GRIOL P — el - B
SCLL e [=K]
_— this pin must float!_8 | - AYSSVCSEL 2 4. 7uF | 0AuF
11 3
L — SCL1 101 scL oy | L]
a3va 10, sDal 21 soa GuDE 2 GHD
GMD 2] GND4 12
LT EX M 12C Refer to VLE3L3CK Datasheet
C gDﬁj—‘;_— WLE3LOX Pg. 5, Figure 3. c
[~ GND
1z
1 | 2 | 3 | 4
Figure 24.) HALO Time-of-Flight Board Schematic.
1 | 2 | 3 | 4 | 5
220
J1 a Y¥YY
R1 LED1
R=|.Ni.- 220 G 4 3B
A Gt 3 | G Appp— G | ANODE_GREEN ANODE BLUE [——p A
B_LN_i- R2 COMMOM_CATHODE AMODE_RED
r’ BN asaaC B WP154A4SUREQBFZGC
a R GMND
GND
1 2 | 3 | 4 5

Mounting Hole
EHZL

Figure 25.) HALO RGB LED Board Schematic.

Accelerometer Subsystem:
The accelerometer subsystem uses the 12C1 interface of the dsPIC33EP512GM706. 12C1

was configured using MCC and uses the i2cl library. The interface also uses the 12C_Handler

46

library, which was created from lightly changing the previously commented functions from

MCC which deal with reading consecutive bytes of data from the 12C bus. Figure 26 shows the

basic setup routine for the accelerometer, configuring two internal registers for acceleration

range and sample update time following a soft reset of the device.

void H3LIS200DL begin()

{

H3LISZ00DL setPowerMode (NORMLL) :

H3LIS5200DL axesEnabkle(trus):

ainti t© data = 0;

uint® t i = 0x21;

for (i = 0x21; i < Ox25; i++) {

writeRegister (H3LISZ00DL TZCADDR, i, data):;

nint® t©t j = 0x30;

for (3 = 0x30; 7 < 0OxX3T; Jj++) {

writeRegister (H3LISZ00DL IZCADDE, j, data):

Figure 26.) Accelerometer Configuration.

Figure 27 illustrates the process for acquiring data from the accelerometer. The processor

moves the memory pointer in the accelerometer device to the start location for each byte of data

and the accelerometer then sends each byte of data to the processor, consisting of two bytes per

acceleration axis.

47

wold H3LIS200DL readAxes (intle ©* x, intle ©* y, intle ©* z)
{

uintf t© datal[e]:

readRegister (H3LISZ00DL IZCRDDR, H3LISZ0C &data[d]):
readRegister (H3LIS200DL TZCADDR, H3LISZOC , &data[l]):
readRegister (H3LIS200DL TZCADDR, H3LISZ0(gdatal[2]) -
readRegister (H3LIS200DL TZCADDR, H3LISZ0(. &datal[3]):
readRegister (H3LIS200DL TZCADDR, H3LISZ0(&data[4])»
readRegister (H3LIS200DL TZCADDR, H3LISZ0(&data[5])»

*x = data[0] | data[l] << &
¥y = data[2] | data[3] << B
¥z = data[4] | data[5] << B
Fx o= (*H=>:4)
Yy = (T4
kz = (¥z>>4)

Figure 27.) Accelerometer Data Acquisition.
The data acquired by the H31.15200DL_readaxes () function is then interpreted by
getAccelPoints2 (), which will return true if any of the values in the five data sets sampled
exceed the set threshold of 50Gs, indicating that a concussion may have occurred.

-HH

Time-of-Flight Subsystem:

The Time-of-Flight subsystem uses a great number of configuration helper functions.
These functions were developed regarding ST’s application programming interface (API) for the
VL53L0X Time-of-Flight sensor. They never made an official register map for the device public,
so a crowd sourced register map reference. This reference held true to the definitions found in
the official API. Figure 28 lists all helper functions used for configuration and interfacing with

the VL53L0X Time-of-Flight sensor.

48

ol WLB3LOX config(wvoid);

1 VL53LOX setSignalRatelimit(float limic_Mcps):

2ol VL33LDX getSpadInfo(uints t© * count, bool * type 1s aperture);
uint3Z_t VL53LDX getMeasurementTimingBudget (void);

vold VL33L0X getSequenceStepTimeonts (S
uintf t VL33LDX getVeselPulsePeriod(vose odType type);
bool VLS3LOX setMeasurementTimingBudget (u budget_us):

18

vold VL33L0X getSeguenceStepEnables (5= pEnables * enables);
uintlé_t VLS3LOX encodeTimeout (uintlé t timeout mclks);
bool VL33LO0X performSingleRefCalibration(uintf t vhv_init byte);

© VL53LODX timeoutMclksToMicroseconds (uintlé t© timeout_period mclks, uwinti

bles const * enables, SequenceStepTimecuts * timeouts) !

t vesel _period pclks):

uir T VL33L0X timeontMicrosecondsToMclks (uint3Z t timeout pericod us, uintf t wcsel period polks):

uintlé t VL53LDX decodeTimeount(uintlé t reg wal):
vold VL33LO0X startContinmons (ui 3Z2_t period ms):;
void VL53LOX stopContinuous (void);

uintle t VL53L0X readRangeContinmousMillimeters (void):;
uintlé © VLE3LDX readRangeSingleMillimeters (void):;

inline woid VL53LO0X setTimeount(uintlé_t timecut) { io_timeout = timeout; }
inline uintlé t VL5S3LOX getTimeout (void) { return io timeout; }
ool VLS3LOX timeoutOcourred (void);

Figure 28.) Time-of-Flight Functions.

Several of the functions listed above are called by the vL.531.0x _init () function in

Figure 29 via VL53L0X _config () to do most of the configurations to use the sensor. The

timeout and measurement timing budgets are then set, and the sensor can sample data.

uints t VL33LOX init(void) {

uints t success = 0;

if (VL53LOX config(}) {
success = 1;

VLS53LOX setTimecut (200) ; was S00

VL53LOX setMeasurementTimingBudget (200000); was 200000

VLS3LOX stopContinuous();

return Success;

Figure 29.) Time-of-Flight Configuration.

49

Once the device is configured as described, the sensor is prepared to provide the
processor with a continuous stream of data at a rate determined in the configuration process.
Figure 30 breaks down the VL531.0X readRangeSingleMillimeters () function, which is
to be called when the program needs to read new data from the sensor while in continuous mode.
This returns a sixteen-bit value describing the distance in millimeters between the object in view
of the sensor and the sensor itself. If the timeout interval expires before the sensor receives a
reflected infrared beam, it is concluded that no object has been detected and the function will

return a value of 65535, the maximum value for a sixteen-bit unsigned integer.

uintle © VL33LOX readRangeSingleMillimeters (void) |
writeRegister (VLS3LOX TZCADDE, 0Ox80, 0x01);:

writeRegister (VL5: IZCADDE, OxFF, 0Ox0l1):
0¥ IZCRDDE, 0Ox00, 0Ox00):

W

writeRegister (VL5:

L
o

writeRegister (VL53LOX IZCRDDE, 0Ox%1, stop variable);
writeRegister (VLSILOX IZCADDE, O0Ox00, 0OxO0l1):;
writeRegister (VLS: OxFF, 0Ox00);
writeRegister (VLS3LOX TZCADDE, 0Ox80, 0x00);
writeRegister (VLS3LOX TZCADDE, SYSRANGE START, Ox01):
startTimeout () ;
while (readReg(VL53LO0OX TZCADDER, SYSRANWNGE START) & Ox01) {
if (checkTimeoutExpired()) {
did timeout = trus;

return 655357

return VLS3LOX readRangeContinucusMillimeters():

Figure 30.) Time-of-Flight Data Acquisition.

50

The process of reading each Time-of-Flight sensor is run continuously by the
getAll1ToF () function, detailed in Figure 31, which populates an array of six distance values,
one per sensor. This data can then be interpreted by the RGB LED subsystem to display the
appropriate lighting patterns to the user.

woid getAllToF (uintle t *dists) {
int 1 = 0;
for(i =0y i < 6; i++) |
selectPort (ToF[i]):
msTimerDelay (1) :

dists[i] = VL53LOX readRangeSingleMillimeters():
msTimerDelay (1) :

Figure 31.) Time-of-Flight Data Acquisition.
-HH
RGB LED Subsystem:

The RGB LED subsystem responds dependent on the readings from the set of six Time-
of-Flight sensors. The two ToF sensors to the left drive the left LED, the two ToF sensors in the
front drive the middle LED, and the two ToF sensors to the right drive the right LED. As
readings are acquired from all six Time-of-Flight sensors, the
getNearestObstacleIndex () function shown in Figure 32 determines which sensor is

detecting the nearest obstacle.

51

11ntE € getNearestObstaclelndex(uintle © *dists) {
intE_t index = OxFF:
ntle © min = OxXFFFF;

int i = 0;
for(i = 0; i < HUOM TOF; i++) {
if(dists[i] < min) {
min = dists[i];

index = i;

return index;

Figure 32.) getNearestObstaclelndex().

This index returned by getNearestObstacleIndex () is passed to the
showDistanceRGB () function which will drive the appropriate LED and illuminate it with a
different color depending on how far away the nearest obstacle is. If an obstacle is within
500mm (0.5m), the LED will turn red; if an obstacle is within 2000mm (1.0m), the LED will
turn green; if an obstacle is within 1500mm (1.5m) the LED will turn blue; and if no obstacle is

within 1900mm (1.9m), the LED will turn off. The showDistanceRGB () function is shown in

detail in Figure 33.

52

void showDistanceRGB (uintle
if (1900 < dist) {
showBinary (0Ox00) ;

_ T dist, LED posn LED) |

else if (LED = LED C) {
if (dist <= 500) {
showBinary (MID RED);
} else if (500 < dist && dist <= 1000) {
showBinary (MID GRN);
} else if (1000 <« dist && dist <= 1500) {
showBinary (MID BLI);

else if(LED == LED L) {

if (dist <= 500) {
showBinary (LR _RED | R _OFF):

} else if (500 < dist && dist <= 1000) {
showBinary (LR _GEN | R _OFF):

} else if (1000 < dist && dist <= 1500) {
showBinary (LR _ELU | R _OFF):

else if (LED == LED R) {

if (dist <= 500) {
showBinary (LR _RED | L OFF}:

} else if (500 < dist && dist <= 1000) {
showBinary (LR _GEN | L OFF):

} else if (1000 < dist && dist <= 1500) {
showBinary (LR _BLT | L OFF):

Figure 33.) showDistanceRGB().

Software System Overview:

The flow chart in figure 34 below describes how the system will work in the field. Once
the system is powered on there will be an interrupt check for the accelerometer to reach a
threshold to write the data to the SD card of a potential head injury. If nothing is detected by the
accelerometer, there is another check that is made by the interrupt lines of the time-of-flight

sensors as to if a hazard is within range. If there is, then the interrupts trigger the LED’s turning

53

on for the corresponding time-of-flight sensors. If not, then the accelerometer starts its checks
again. This is a constant loop until the system is powered off.

-NW

Halo iz

turned
on

A

A
L4
did the send data
accelerometer YES collected Processor
register an from _ sends
impact of impact to > data to
imporiance the the SdD
processor car
¥
sD
i card o
e stores =
data
does a
time of
flight YES alert the Processaor
=Ensor rocessor > friggers
detect P the LEDs
an
object
MO
¥
) LEDs o
e blink =

Halo

powered
off

-NW

Figure 34.) Software Design Flowchart.

54

The table below depicts the inputs, outputs, and functionality of the SPI bus used in this

design. The inputs and outputs for the SPI bus communication signals with a frequency of up to

10MHz. -BT

Table 13.) SPI Functionality Table.

Communication Type | SPI

Designer Hunter Hykes, Nicklaus Walsh

Inputs Up to 10 MHz communication input
Outputs Up to 10 MHz communication output.

Functionality

SPI is a bus style communication method used to write data to a micro-
SD card.

The table below depicts the inputs, outputs, and functionality of the 12C bus used in this

design. The inputs and outputs for the 12C bus communication signals with a frequency of up to

1IMHz. -BT

Table 14.) 12C Functionality Table.

Communication Type

12C

Designer Hunter Hykes, Nicklaus Walsh
Inputs Up to 1 MHz communication input
Outputs Up to 1 MHz communication output

Functionality

12C is a bus style communication method used to communicate with
accelerometer and time-of-flight sensors.

Figures 35 and 36 below describe the different states for the accelerometer, SD card,

LED’s, and Time-of-Flight sensors. The first figure, the SD card and accelerometer, describes

the different states of writing for the data going to the accelerometer to the SD card. If the

accelerometer is writing data, then the SD card is being written to. The next diagram for the

time-of-flight sensors describes the state of an LED being on or off in response to a ToF

detecting a hazard.

55

-NW

Accelerometer Virite Data to
Event 5D
Detected?
0 0
1 1

g

Figure 35.) SD Card State Diagram.

-HH
TOF_A|TOF_B| LED

0 0 0

| 0 1 1

1 0 1

1 1 1

Figure 36.) LED State Diagram.
-HH

56

5.3. Final Design Images:

Figure 37.) Frontal View of Housing Unit, ToF Sensors and LEDs.

Figure 38.) Detached Housing Unit.

57

J19632A_Y13-210306

000000 0000606 f o

Lot

SO0
QOO0

Figure 41.) Time of Flight and LED Boards.

58

5.4. Testing and Demonstrations:

Time of Flight and LED Subsystems:

The following images depict the testing for the engineering requirements of 6,7,8,9. The
testing procedure was to ensure that the LEDs light up with respect to the distancing of potential
hazards and that they change colors between 1.5m to the user. For the furthest distance of 1.5m a
blue light is used, from (1m) to (.5m) a green light is used and (.5m) to the user, a red light is
illuminated. Another requirement that is shown in these testing images is that the FOV for the
time-of-flight sensors is 150-degrees. For the demonstration in these images, a clipboard was
used as the mock hazardous object.

-NK

Figure 42.) LED and ToF Right Side Green.

59

Figure 43.) LED and ToF Right Side Red.

Figure 44.) LED and ToF Left Side Green.

60

Figure 45.) LED and ToF Left Side Red.

Figure 47.) LED and ToF Front Blue.

61

Figure 48.) LED and ToF Max Distance Test.

Figure 49.) LED and ToF Max Distance 49 inches (~1245mm).

As can be seen above in the testing images, the engineering requirements were met for the

FOV and color shifting. The only one that wasn’t exactly reached was the distance requirement

for the ToF sensor. The range was 1.25 shy. This could be easily fixed in future designs by using

62

a ToF sensor with slightly larger range. With minimal changes to the code, this could be

implemented with the new sensor. -NK

Power System Testing:

For the power system engineering requirements, it was needed that the battery must last for
an 8-hour workday and that the battery can recharge within 8 hours. The testing procedure for
both of these was simple. First the battery was discharged over the designated time frame while
voltage readings were taken every 30 minutes. After that was done, the battery was then hooked
up to a standard micro-usb charging cable and recorded until it recharged to full capacity. Below

are images of the recording set up and tables depicting the discharge and recharge times. -NK

Figure 50.) Initial Voltage Before Discharge.

63

Figure 51.) Final Voltage After 8 Hours.

Table 15.) Discharge Testing Recordings.

Time Passed Voltage
Initial 4.062 V
.5 Hour 4.058 V
1 Hour 4,053V
1.5 Hours 4,045V
2 Hours 4,032V
2.5 Hours 4013V
3 Hours 4.005V
3.5 Hours 3.999V
4 Hours 3.976 V
4.5 Hours 3.960 V
5 Hours 3.943V

64

5.5 Hours 3.931V
6 Hours 3.923V
6.5 Hours 3.914V
7 Hours 3.900 V
7.5 Hours 3.985V
8 Hours 3.880 V

As can be seen from the slow discharge rate of the battery, the system consumes much less
power than initially assumed. Conservative power estimations were done to ensure that the
battery life lasts a full 8-hour workday. With the usage of a buck boost converted, the battery
would be able to supply power to the system until it discharges to roughly two volts. However,
recharging after an 8-hour use, it took roughly 7.5 hours to completely recharge. The battery is
able to supply the system with power much longer than the 8-hour requirement. In future designs
it would be possible to reduce the battery size in order to accommodate a smaller less intrusive
design for the housing. -NK

Table 16.) Recharge Testing Recordings.

Time Passed Voltage
Initial 3.783V
1.5 Hours 4012V
3 Hours 4,097V
4.5 Hours 4123V
6 Hours 4.142

7.5Hours 4.159

65

Accelerometer and SD Card Testing:

The engineering requirements for the SD card and the Accelerometer systems we had to
write suspected impact or injury data to an on-board storage system that could be retrieved later.
This was in the form of the on-board SD card located on the main board. This data should also
include relative timestamps relating to the impact or injury data. This was handled in the coding
of the Accelerometer and SD card. Finally, the data should only be recorded if the accelerometer
measures an impact at or above a predetermined threshold these reading will be the indicator for
an incident.

The way these were tested was, initially, to use the onboard LEDs to get the
Accelerometer data. This was done to make sure we were getting actual data from what the
Accelerometer was measuring that was shown on the LEDs. We then tested to make sure the SD
card could write dummy data on our board similar to how the proof of concept had shown to
make sure it would work on the developed PCB rather than a development board. Once that was
done we then transitioned to integrating the two sub-systems so that they interact in the way we
want. This involved having to format the C-strings to be written as a CSV file. Then we wrote
the data measured from the Accelerometer to the SD card only if it was reading a value at or
above the threshold we chose for testing. We did not want to use the actual value for a
concussion for the reasons of not wanting to actually hurt someone or potentially break another
sub-system on the board. We then set that threshold and with a relatively hard smack to the
helmet, the impact routine would start. The impact routine was that the LEDs for the vision
detection would flash showing the Accelerometer measured a reading at or above the pre-set
threshold then within the coding that took the data from the Accelerometer and formatted it and

wrote it to the SD card for analysis at a later time. -NW

66

6.) Mechanical Sketch of System:

The following mechanical sketches in figure 52 through 54 show the proposed
implementation of the H.A.L.O. system. The first hand-drawn sketch shows the band and
placement of the sensors, LEDs, and board on the back of the system. The second figure shows a
more detailed design, showing the back of the helmet and symbols representing the circuit
elements that will be on the main board. Finally, the last sketch shows a frontal view of how the
sensors and LEDs fit to the helmet. Note that for the final image, not every sensor or LED is

shown. There are in total six ToF sensors and three LEDs in the final design. -NK

s

Figure 52.) Mechanical Sketch of System (Overall).

67

Accelerometer-

Legend:

,,,,,,,,,,,,,

Processor-

12C MUX-

'SD Card-

Back of Helmet

Figure 53.) Mechanical Sketch of System (Rear View).

68

Legend: Front of Helmet

-
s e
ToF Sensor =

LED- —p{—

Figure 54.) Mechanical Sketch of System (Front View).
-NK

7.) Team Information:
Hunter Hykes — Computer Engineer
Nathan Kish — Electrical Engineer
Brian Thomson — Electrical Engineer

Nicklaus Walsh — Computer Engineer

69

8.) Parts List:

Table 17.) Main Board Bill of Materials.

Qty. Refdes Part Num. Description Cost Total
Cost
12 C1-~-C6 CL21B104KBCNNN | 0.1uF Ceramic Capacitor 0805 $0.05 | $0.56
C
4 C7~C8 CL21A475KPFNNN | 4.7uF Ceramic Capacitor 0805 $0.10 | $0.40
E
2 Cco CL21A106MQFNNN | 10uF Ceramic Capacitor 0805 $0.10 | $0.20
E
2 Cc10 CL21A226MAQNNN | 22uF Ceramic Capacitor 0805 $0.34 | $0.68
E
16 R17~R24 RC2012J102CS 1.00kOhm Resistor 0805 0.13 $2.08
6 R2, R25~R26 RC2012J103CS 10.0kOhm Resistor 0805 0.13 $0.78
36 R27~R44 RC2012J222CS 2.20kOhm Resistor 0806 0.13 $4.68
4 R1, R45 RC2012J471CS 4700hm Resistor 0805 0.14 $0.56
2 R46 ERA-6AEB202V 2.00kOhm Resistor 0805 0.31 $0.62
4 R47~R48 RC2012F270CS 27.00hm Resistor 0805 0.14 $0.56
2 R49 RMCF0805JT560R | 560kOhm Resistor 0805 0.10 $0.20
2 R50 ERA-6AEB104V 100kOhm Resistor 0805 0.31 $0.62
16 D1~D8 LY R976-PS-36 LED YELLOW DIFFUSED 0805 0.27 $4.32
SMD
2 D9 LG R971-KN-1 LED GREEN DIFFUSED 0805 SMD | 0.25 $0.50
18 J1~J2,J5~J12 | 2011- Connector Header Through Hole 5 0.84 $15.12
1X05TSD025B position 0.100”
2 J3 DM3D-SF CONN MICRO SD CARD PUSH- 1.65 $3.30
PULL
1 J13 2011- PIN HEADER, SINGLE ROW, 3 0.06 $0.06
1X03G00SD025B PIN, S
1 J14 2011H-1X06G01SB | PIN HEADER, SINGLE ROW, 6 0.87 $0.87
PIN, S
4 J15~J16 2011- PIN HEADER, SINGLE ROW, 2 0.51 $2.04
1X02TSHO35B PIN, T
2 J17 473460001 CONN RCPT USB2.0 MICRO B 0.95 $1.90
SMD R/A
3 IC1 DSPIC33EP512GM Microchip DSPIC33EP512GM706- 6.17 $18.51
706-1/PT I/PT, 16bit dsPIC Microcontroller,
60MHz, 512 kB Flash, 64-Pin TQFP
4 ul~u2 PCA9544APW,118 12C Multiplexer 1.78 $7.12
2 u3 TXB0104PWR Voltage Level Translator 0.92 $1.84
Bidirectional 1 Circuit 4 Channel
100Mbps 14-TSSOP
2 U4 STBB1-APUR Buck-Boost Converter 2.34 $4.68
2 us MCP73831T- Battery Charging 0.56 $1.12
2ACI/OT

70

2 us H3LIS200DLTR H3LIS200DL Series 3.6 V 400 Hz 6.68 $13.36
Low-Power 3-Axis Digital
Accelerometer -TFLGA-16L
2 S1 CT11025.0F160 Momentary Switch 0.12 $0.24
(ToF Brd)
12 Ul VL53LOCXVODH/1 Time-of-Flight ranging sensor 3.88 $46.56
2 C1l CL21A475KPFNNN | 4.7uF Ceramic Capacitor 0805 $0.10 | $0.20
E
2 Cc2 CL21B104KBCNNN | 0.1uF Ceramic Capacitor 0805 $0.05 | $0.09
C
4 R1~R2 RC2012J103CS 10.0kOhm Resistor 0805 0.13 $0.52
2 R3 RC2012J102CS 1.00kOhm Resistor 0805 0.13 $0.26
4 J1~J2 2011- Connector Header Through Hole 5 0.84 $3.36
1X05TSD025B position 0.100”
(RGB Brd)
6 LED1 1655 ADDRESS LED DISC SERIAL RGB | 4.50 $27.00
1=10
6 J1~J2 2011- PIN HEADER, SINGLE ROW, 3 0.06 $0.36
1X03G00SD025B PIN, S
6 C1 CL21B105KAFNFN | CAP CER 1UF 25V X7R 0805 0.10 $0.60
E
Total | $165.88

9.) Project Schedule:

Mid-Semester Gantt Chart

This section shows the beginning of the semester to the mid-point. This part of the Gantt

chart covers the initial engineering requirements research and beginning of the technical design.

During this portion of the Gant chart, the split of work is visible, assigning each team member a

subsystem and engineering requirements research required for mid-term presentations. -NK

71

[0 rask Name Duration Start Finish
1 SDP 12020
Z | Project Design 93 days Mon 8/24/20 Wed 11/25/20
3 | Midterm Report 40days Wed 8/26/20 Mon 10/5/20"
4 Cover page 40 days ‘Wed 8/26/20 Mon 10/5/20
5 TofC,LofT,LofF 40 days Wed 8/26/20 Mon 10/5/20
6 Problem Statement 40 days Wed 8/26/20 Mon 10/5/20
7 Meed 40 days Wed 8/26/20 Mon 10/5/20
8 Objective 40 days Wed 8/26/20 Mon 10/5/20
9 Background 40 days Wed 8/26/20 Mon 10/5/20
10 Marketing Requirements 40 days Wed 8/26/20 Mon 10/5/20
1 Engineering Requirements Specification 40 days Wed 8/26/20 Mon 10/5/20
12 Engineering Analysis 40.38 days Wed 8/26/20 Mon 10/5/20
13 Circults (DC, AC, Power, ...) 40,38 days Wed 8/26/20 Mon 10/5/20
14 Electronics (analog and digital) 40,38 days Wed 8/26/20 Mon 10/5/20
15
18
17
13
19 Embedded Systems 40.38 days Wed 8/26/20 Mon 10/5/20
20 Accepted Technical Design 40.38 days Wed 8/26/20 Mon 10/5/20
21 Hardware Design: Phase 1 32.38days Wed8/26/20 Sun 9/27/20
22 Hardware Block Diagrams Levels O thru N (w/ FR tab 32.38 days Wed 8/26/20 Sun 9/27/20
23 Software Design: Phase 1 32.38 days Wed 8/26/20 Sun 9/27/20
24 Software Behavior Models Levels 0 thru M (w/FR tab 32.38 days Wed 8/26/20 Sun 9/27/20
25 Mechanical Sketch 40 days Wed 8/26/20 Mon 10/5/20
26 Team information 40 days ‘Wed 8/26/20 Mon 10/5/20
27 Project Schedules 40 days Mon 8/24/20 Sat 10/3/20
28 7.38days Wed 9/30/20 Wed 10/7/20
29
30 Midterm Design Gantt Chart 40 days Wed 8/26/20 Mon 10/5/20
Ed References 40 days Wed 8/26/20 Mon 10/5/20
32 47 days Wed 8/26/20
33 738days Wed 9/23/20 =
34
35 Project Poster 14 days Wed 10/21/20 Wed 11/4/20
36 Final Design Report 50 days Tue 10/6/20 Wed 11/25/20
a7 Abstract 48 days Tue 10/6/20 Mon 11/23/20
38 | Hardware Design: Phase 2 48 days Tue 10/6/20 Mon 11/23/20
39 Modules 1..n 48 days Tue 10/6/20 Mon 11/23/20
40 Simulations 48 days Tue 10/6/20 Mon 11/23/20
a1 Schematics 48 days Tue 10/6/20 Mon 11/23/20
42 | Software Design: Phase 2 48 days Tue 10/6/20 Mon 11/23/20
43 Modules 1...n 48 days Tue 10/6/20 Mon 11/23/20

Page 1

72

% Complete Wiork Stage Team Member
0%

69%

95% Complete Everyone
100% Complete Everyone
100% Complete Brian

100% Complete

100% Complete Nate

100% Complete Hunter, Nick
100% Complete Everone
100% Complete Nate

100% Complete Everyone
83% Preliminary Calculations

7A4% Preliminary Calculations Brian, Mate
94% Preliminary Calculations Everyone
79% Preliminary Calculations Nick, Hunter
100%

100%

100% Everyone
100%

100% Nick, Hunter
50% Rough Draft Hunter
100% Complete Everyone
20% Preliminary Schedule Complete Nate

100%

100% Nate

30% Background Refrences Everyone
0%

0% Team 4 Presented

0%

0%

0%

5%

5%

0%

10% Power Circuit Schematic Designed Brian

0%

0%

73

D

44
45
46

48
49
50
51
52

54

47

Task Mame

Code (working subsystems)
System integration Behavior Models
Parts Lists
Parts list(s) for Schematics

Materials Budget list

' Proposed Implementation Gantt Chart

Conclusions and Recommendations
Final Parts Request Form

' Subsystems Demonstrations Day 1
53

Subsystems Demonstrations Day 2
Parts Request Form for Spring Semester

Duration

48 days
48 days
48 days
48 days
48 days
48 days
48 days
13 days
0 days

0 days

9 days

Final Design Gantt Chart

Start

Tue 10/6/20
Tue 10/6/20
Tue 10/6/20
Tue 10/6/20
Tue 10/6/20
Tue 10/6/20
Tue 10/6/20

Finish

Mon 11/23/20
Mon 11/23/20
Mon 11/23/20
Mon 11/23/20
Mon 11/23/20
Mon 11/23/20
Mon 11/23/20

Sun 10/11/20 Sat 10/24/20
Tue 11/10/20 Tue 11/10/20
Tue 11/17/20 Tue 11/17/20
Mon 11/23/20 Wed 12/2/20

This section shows the progress from the mid-point of the semester onwards.

Team members worked on the subsystems to prepare for demonstrations at this point.

The engineering hardware and software work split between the two groups, with a

member of the Electrical and Computer teams working on both. Subsystem assignment

dates were met and demonstrations completed within the timeframe given. -NK

74

D Task Task Name Duration ‘Start Finish % Complete
O Mode
1) SDP 12020 0%
2 A Project Design 93 days? Mon 8/24/20 Wed 11/25/20 94%
3 W Midterm Report 40 days Wed 8/26/20 Mon 10/5/20 100%
4 W 3 Cover page 40 days Wed 8/26/20 Mon 10/5/20 100%
5 W 4 TofC,Lof T,Lof F 40 days Wed 8/26/20 Mon 10/5/20 100%
6 [™ Problem Statement 40 days Wed 8/26/20 Mon 10/5/20 100%
7 W Need 40 days Wed 8/26/20 Mon 10/5/20 100%
8 W 4 Objective 40 days Wed 8/26/20 Mon 10/5/20 100%
9 | Background 40 days Wed 8/26/20 Mon 10/5/20 100%
10 | 7 Marketing Reguirements 40 days Wed 8/26/20 Mon 10/5/20 100%
11 | 4 Engineering Requirements Specification 40 days Wed 8/26/20 Men 10/5/20 100%
12 | s Engineering Analysis 40.38 days Wed 8/26/20 Mon 10/5/20 100%
13 | Circuits (DC, AC, Power, ...} 40.38 days Wed 8/26/20 Mon 10/5/20 100%
4 Electronics (analog and digital) 40.38 days Wed 8/26/20 Mon 10/5/20 100%
15 »
16 »
17 »
18 »
19 | 3 Working Subsystems 40.38 days Wed 8/26/20 Mon 10/5/20 100%
20 | 4 Accepted Technical Design 40.38 days? Wed 8/26/20 Mon 10/5/20 100%
21 | wm Hardware Design: Phase 1 32.38 days Wed 8/26/20 Sun 9/27/20 100%
2 | Hardware Block Diagrams Levels O thru N (w/ FR tab/32.38 days Wed 8/26/20 5un9/27/20 100%
23 | Software Design: Phase 1 32.38 days Wed 8/26/20 Sun 9/27/20 100%
24 | Software Behavior Models Levels O thru N (w/FR tab32.38 days Wed 8/26/20 5un9/27/20 100%
ELY S Mechanical Sketch 40 days Wed 8/26/20 Mon 10/5/20 100%
26 | Team information 40 days Wed 8/26/20 Mon 10/5/20 100%
27 | mm Project Schedules 40 days Mon 8/24/20 Sat10/3/20 100%
28 W s Midterm Design Presentations Day 2 7.38days Wed 9/30/20 Wed 10/7/20 100%
29 -
30 | Midterm Design Gantt Chart 40 days Wed 8/26/20 Mon 10/5/20 100%
31 | 4 References 40 days Wed 8/26/20 Mon 10/5/20 100%
Page 1

75

Work Stage

Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete

Final Calculations
Working Subsytems
Working Subsytems

Preliminary Calculations

Final Draft
Complete

Fall Semester Schedule Complete Nate

Background Refrences / Datasheets GEveryone

Team Member

Everyone
Everyone
Brian

Nate
Hunter, Nick
Everone
Nate
Everyone

Brian, Nate
Everyone

Nick, Hunter

Everyone

Nick, Hunter

Hunter,Nate
Everyone

Nate

D Task Task Name Duration Start Finish % Complete
O Mode

2 . Midterm Parts Request Form 47 days Wed 8/26/20 Mon 10/12/20 0%
EERN IV aE Midterm Design Presentations Day 1 7.38days Wed9/23/20 Wed 9/30/20 100%
34 -
35 A Project Poster 14 days Wed 10/21/20 Wed 11/4/20 30%
EL Y Final Design Report 50 days Tue 10/6/20 Wed 11/25/20 100%
37 W Abstract 50.38 days Tue 10/6/20 Wed 11/25/20 100%
B [= Hardware Design: Phase 2 41.38days Tue10/6/20 Mon 11/16/20 100%
9 | wg Modules 1...n 41.38days Tue10/6/20 Mon 11/16/20 100%
40 v Simulations 41.38days Tue 10/6/20 Mon 11/16/20 100%
41 W Hardware P-spice Design: Charging Circuit 41.38days Tue 10/6/20 Mon 11/16/20 100%
42 |3 4 Hardware P-spice Design: Converter Circuit 41.38 days Tue 10/6/20 Mon 11/16/20 100%
FERN Y Hardware Eagle Cad Design: Charging Circuit 41.38 days Tue 10/6/20 Meon 11/16/20 100%
4 v Hardware Eagle Cad Design: Converter Circuit 41.38 days Tue 10/6/20 Mon 11/16/20 100%
45 8 Hardware Eagle Cad Design: LED 41.38 days Tue 10/6/20 Mon 11/16/20 100%
% W 2 Hardware Eagle Cad Design: Processor / SD Interface 41.38 days Tue 10/6/20 Mon 11/16/20 100%
47 & s Hardware Eagle Cad Design: Time of Flight 41.38 days Tue 10/6/20 Men 11/16/20 100%
48 | s Hardware Eagle Cad Design: Accelerometer 41.38 days Tue 10/6/20 Mon 11/16/20 100%
49 v 4 Schematics 41.38 days Tue 10/6/20 Mon 11/16/20 100%
50 [A Software Design: Phase 2 41.38 days? Tue 10/6/20 Mon 11/16/20 100%
51 | Modules 1...n 41.38 days? Tue 10/6/20 Mon 11/16/20 100%
52 W 2 Code (working subsystems) 41.38 days Tue 10/6/20 Mon 11/16/20 100%
53 [Subsystem Software Code: LEDs 1day Sun 11/15/20 Mon 11/16/20 100%
54 | 4 Subsystem Software Code: Time of Flight Sensors 1 day Sun 11/15/20 Mon 11/16/20 100%
LIV Subsystem Software Code: Accelerometer 1 day Sun 11/15/20 Mon 11/16/20 100%
56 (W 3 Subsystem Software Code: Processor 1 day Sun 11/15/20 Mon 11/16/20 100%
57 oW 2 Subsystem Software Code: SD Card 1 day Sun 11/15/20 Mon 11/16/20 100%
8 |[vw 7 Subsystem Software Code: 1day Sun 11/15/20 Mon 11/16/20 100%
59 | 4 Board Schematic for Final Design 71.38 days Tue 9/15/20 Wed 11/25/20 100%
60 |& =g Parts Lists 50.38 days Tue 10/6/20 Wed 11/25/20 100%
61 [2 Parts list(s) for Schematics 48 days Tue 10/6/20 Mon 11/23/20 100%
62 [A Materials Budget list 50.38 days Tue 10/6/20 Wed 11/25/20 100%

Page 2

76

Work Stage

'Team 4 Presented

Schematics and Sketeches on paper

Power Circuit spice simulation
Working Spice Circuit

Working Spice Circuit

Eagle Schematic Completed

Eagle Schematic Completed

Eagle Schematic Completed

Eagle Schematic Completed

Eagle Schematic Completed

Eagle Schematic Completed
Power Circuit Schematic Designed

Preliminary Subsystem Code

Team Member

MNate, Nick

Everyone

Brian,Hunter
Brian

Brian

Nate

Nate

Hunter
Hunter
Hunter, Nate
Hunter, Nate
Brian

Hunter
Hunter
Hunter,Nate
Nick, Hunter
Nick, Hunter

Hunter,Nate

Attached to Final Report Nick, Hunter
Attached to Final Report Nick, Hunter
1] Task Task Name Duration Start Finish % Complete
@ Mode
63 » Proposed Implementation Gantt Chart 50.38 days Tue 10/6/20 Wed 11/25/20 0%
64 S A Conclusions and Recommendations 50.38 days Tue 10/6/20 Wed 11/25/20 100%
65 W A Final Parts Request Form 13.38 days 5Sun 10/11/20 S5at10/24/20 100%
66 W A Subsystems Demonstrations Day 1 6.38 days Tue 11/10/20 Mon 11/16/20 100%
67 b 4 Parts Reguest Form for Spring Semester 9 days Mon 11/23/20 Wed 12/2/20 50%

Work Stage

Mot completed till next semester
Attached to Final Report

Presented 11/16/20
Finalizing parts list

Teamn Member

-Nate
MNate
Mick
Everyone
Everyone

77

Initial (Spring) Project Gantt Chart

Test Software
Verify ToF distance reading is accurate
Ensure ToF interrupt lines are being driven within the appropriate range

Check that accelerometer readings are within reason

39 days
28 days
28 days
28 days

Ensure accelerometer drives interrupt line when the specified threshold is reacl28 days
Verify that the appropriate colors are produced by LEDs from the given RGB val 28 days

Successfully open .csv file from SD card on a desktop computer
Revise Software

Acquire ToF readings dependent on the interrupt line triggered

Acquire accelerometer values when interrupt is triggered

Create full .csv file from concatenating C-strings

Write .csv C-string to SD card

28 days
49 days
14 days
14 days
21 days
21 days

ID Task. Task Name Duration Start Finish Pry
Mode
1 - SDP2 Implementation 2020 103 days Mon 1/11/21 Fri 4/23/21
2 7 Revise Gantt Chart 14days Mon 1/11/21 Sun 1/24/21
3 - Implement Project Design 90days Mon 1/11/21 Sat 4/10/21
4 b Hardware Implementation 48 days Mon 1/11/21 Sat 2/27/21
5 b Breadhoard Components 7 days Mon 1/11/21 Sun 1/17/21
6 ' b Breadboard RGB LED circuit 7 days Mon 1/11/21 Sun 1/17/21
7 |45 Set up buck-boost converter and demonstrate proper regulation of voltage 7 days Mon 1/11/21 Sun 1/17/21
8 |V A Layout and Generate PCB(s) 7 days Mon 1/11/21 Sun 1/17/21
9 |V Route and order Main Board 14 days Mon 1/11/21 Sun 1/24/21
10 |[/=5 Route and order Time of Flight Sensor Boards 14 days Mon 1/11/21 Sun 1/24/21
1 |v/= Route and order RGB LED Boards 14 days Mon 1/11/21 Sun 1/24/21
12 | Assemble Hardware 35days Mon1/11/21 Sun 2/14/2:
13 (Ew Populate Main Board Circuit components: SD card slot, Accelerometer, 12C 14 days Mon 2/1/21 Sun
Multiplexers 2/14/21
Populate Main Board: Power Circuit, Charging Circuit, and Buck-boost Converte 35 days Mon 1/11/21 Sun 2/14/21
Populate Time of Flight Sensor Board 14 days Mon 2/1/21 Sun 2/14/21
Populate RGB LED Board 14 days Mon 2/1/21 Sun 2/14/21
Prepare wiring for subsytem integration 35 days Mon 1/11/21 Sun 2/14/21
Protoype housing unit assemblies for boards on helment 35 days Mon 1/11/21 Sun 2/14/21
19 | Test Hardware 42days Mon 1/11/21 Sun 2/21/2:
20 |f mm Verify the battery is charging within specifications 14 days Fri 2/5/21 Thu 2/18/21
x5 Make sure buck-boost converter is outputing 3.3V given the bettery's nominal 14 days Fri 2/5/21 Thu
[voltage input 2/18/21
22 |E RGB LED Board: Verify that onboard capacitors are reducing noise (unintended 39 days Mon 1/11/21 Thu
L] flickering does not accur) 2/18/21
23 | § 5 Verify accelerometer readings with orientation diagram in datasheet 39days Mon 1/11/21 Thu 2/18/21
24 ’ A Main Board: Check that I2C Multiplexers can be addressed as defined by 39 days Mon 1/11/21 Thu
hardware address jumpers 2/18/21
25 |EEmm ToF Board: Check that Time of Flight sensors communications are established 7 days Fri2/12/21 Thu
with main board 2/18/21
26 - Revise Hardware 39 days Mon 1/18/21 Thu 2/25/2:25
Page 1
ID Task Task Name Duration Start Finish Pre
Mode
27 | ToF Boards: Adjust area of coverage as needed by adjusting positioning of sens(7 days Fri2/19/21 Thu 2/25/2125
28 |§ - Main Board: Battery/Charging: Adjust battery capacity dependent on intial test 39 days Mon 1/18/21 Thu
results for operating hours 2/25/21
29 - Main Board: SD Card: Determine if level shifter is needed (dependent on 7 days Fri2/19/21 Thu 25
buck-boost output) 2/25/21
MIDTERM: Demonstrate Hardware Subsystems 5 days Thu 2/18/21 Mon 2/22/2
SDC & FA Hardware Approval 0 days Sat2/27/21 Sat2/27/21 3C
Software Implementation 49 days Mon 1/11/21 Sun 2/28/2!
Develop Software 35 days Mon 1/11/21 Sun 2/14/2]
Create function to acquire distance readings from Time-of-Flight sensors 28 days Mon 1/18/21 Sun 2/14/21
Trigger interrupts when ToF sensor detects object within range 28 days Mon 1/18/21 Sun 2/14/21
Create function to acquire accelerometer axis readings 28 days Mon 1/18/21 Sun 2/14/21
Configure accelerometer to send interrupt signal when significant impact is 28 days Mon 1/18/21 Sun
detected 2/14/21
Create function to output specific RGB value to LED 35 days Mon 1/11/21 Sun 2/14/21
Create function to initialize real-time-clock 35 days Mon 1/11/21 Sun 2/14/21
Create function to format accelerometer data to a C-string for output to SD cari35 days Mon 1/11/21 Sun 2/14/21
Create function to format real-time clock data to a C-string for output to SD car 35 days Mon 1/11/21 Sun 2/14/21

Mon 1/11/21 Thu 2/18/2:

Fri1/22/21
Fri 1/22/21
Fri 1/22/21
Fri 1/22/21
Fri1/22/21
Fri 1/22/21

Mon 1/11/21 Sun 2/28/2133

Mon 2/15/21
Men 2/15/21
Mon 2/8/21
Mon 2/8/21

Thu 2/18/21
Thu 2/18/21
Thu 2/18/21
Thu 2/18/21
Thu 2/18/21
Thu 2/18/21

Sun 2/28/2133
Sun 2/28/2133
Sun 2/28/2133
Sun 2/28/2133

Page 2

78

MIDTERM: Demonstrate Software Subsystems 5 days Tue 2/23/21 Sat2/27/21
SDC & FA Software Approval 0 days Sat 2/27/21 Sat 2/27/21 5€
System Integration 43 days Sat2/27/21 Sat4/10/21
Assemble Complete System Integration 15 days Sat2/27/21 Sat3/13/2156
Connect ToF boards to their respective 12C Multiplexer interface header 14 days Sun 2/28/21 Sat 3/13/21 5¢
Connect RGB LEDs in series to the RGB LED header 14 days Sun 2/28/21 Sat 3/13/21 5¢
Provide power to the entire system from the battery 14 days Sun 2/28/21 Sat 3/13/21 5¢
Attach ToF Boards to helmet at appropriate angles 14 days Sat2/27/21 Fri3/12/21
Test Complete System Integration 8 days Sat 3/13/21 Sat3/20/2159
Ensure ToF boards cover full field of view 7 days Sun 3/14/21 Sat 3/20/21 59
Ensure appropriate RGB LEDs light up corresponding to the ToF sensor 7 days Sun 3/14/21 Sat 3/20/21 59
detecting an object
Ensure Accelerometer event causes full .csv file report to be written to SD card 7 days Sun 3/14/21 Sat 3/20/21 59
Ensure battery charges at appropriate rate when connected to circuit 7 days Sat 3/13/21 Fri3/19/21 59
Ensure ToF sensors detect objects up to 1.5m 7 days Sun 3/14/21 Sat 3/20/21 59
Revise Complete System Integration 17 days Sat 3/20/21 Mon4/5/2164
Adjust ToF sensors to eliminate blind spots in field of view 16 days Sun 3/21/21 Mon 4/5/2164
Ensure RGB LEDs react to ToF object detection in a timely manner 16 days Sun 3/21/21 Mon 4/5/2164
Ensure .csv logged to SD card after Accelerometer event can be read on a 16 days Sun 3/21/21 Mon 64
desktop PC 4/5/21
74 | § Ensure battery lasts a full 8 hours with the system runnung and detecting objec 16 days Sat 3/20/21 Sun4/4/21 64
75 | . Demonstration of Complete System 5 days Tue 4/6/21 Sat 4/10/21 7C|
7% | s Develop Final Report 103 days Mon 1/11/21 Fri4/23/21
77 - Write Final Report 103 days Mon 1/11/21 Fri4/23/21
78 L Submit Final Report 0 days Fri4/23/21 Fria/23/21 77
79 # Spring Recess 7 days Mon 4/12/21 Sun 4/18/21
Page

Resource Names 5% Work Complete Resource Names % Work Complete Resource Names % Work Complete
3% All Team Members 0%| Nick W. 0%
0% Brian T. / Nate K 0%,
4% Hunter H. 0%,
10 |HunterH. / Nick W. 0%|
% o 0%
Nate K. / Brian T. 0% o gz/j
Nate K. / Brian T. 0% b
100% % 0%
Hunter H. /Brian T. 100%| 0% Nate K. 0%
Nate K./ Brian T. 100% [Hunter H. 0% Nate K. 0%
Nick W. 1009 |Nick W 0% Brian T. 0%
o |Nickw. 0% Nate K. 0%
Hunter H. / Nick W. 0% |Natek. 0% 0%
Nick W. 0%
Nate K. / Brian T, 0% [Natek. 0% Hunter H. 0%
Nate K. / Brian T. 0% |NickW. 0%
Nick W. 0% |NickW. 0%| Nick W. 0%
Brian T. / Nate K. 0% Nick w. 0%, Brian T. / Nate K 0%,
Brian T. / Nate K 0% 0%| Nick W. 0%
0% Hunter H. 0%| 0%
Nate K. / Brian T. 0% Nick W. 0%| Brian T. 0%
Nate K. / Brian T. 0% |Hunter H. 0%, Hunter H. 0%
Nick W. 0%| Nate K. 0%,
Nick W. 0%; Nate K. 0%
Nate K. 0%| Brian T. 0%,
Hunter H. 0% o 0%|
Hunter H. 0%,
Nick W. 0%) 0%
Hunter H. / Nate K 0% [Nick W. 0% Nate K. / Hunter H 0%
Hunter H 0% Brian T. 0%|
0% |Hunter H. 0%| 0%

The charts above show the initial Gantt charts from the beginning of the semester. Though the
outline and subsystem division remained relatively similar, the actual Gantt charts depicted

below show the difference in scheduling and division in work.

79

The reasoning for the change in schedules for the Gantt chart were based upon the difficulties in
implementing subsystems for the midterm presentation. Due to the inability to demonstrate the
Accelerometer, LEDs, full range of time-of-flight sensors, the latter half of the workload was
changed as follows:

Spring Final Adjustments/ System Integration Design Gantt:

30 |EEwm

System Integration 43days Sat2/27/21 Sat4/10/21
31 A Software Implementation 88days Mon 1/11/21 Thu4/8/21
2 A Develop Software 8ldays Mon 1/11/21 Thu4/1/21
33 Create function to acquire distance readings from Time-of-Flight sensors 28 days Fri 3/5/21 Thu 4/1/21
34 Trigger interrupts when ToF sensor detects object within range 28 days Fri3/5/21 Thu4/1/21
35 Create function to acquire accelerometer axis readings 28days Fri3/5/21 Thud/1/21
36 Configure accelerometer to send interrupt signal when significant impactis ~ 28days Fri3/5/21 Thu4/1/21
detected
37 Create function to output specific RGB value to LED 81 days Mon 1/11/21 Thu 4/1/21
38 Create function to initialize real-time-clock 81 days Mon 1/11/21 Thu 4/1/21
39 Create function to format accelerometer data to a C-string for output to SD car(81 days Mon 1/11/21 Thu4/1/21
40 Create function to format real-time clock data to a C-string for output to SD car 81 days Mon 1/11/21 Thu4/1/21
Test Software 85days Mon 1/11/21 Mon 4/5/21
Verify ToF distance reading is accurate 28days Tue3/9/21 Mon 4/5/21
Ensure ToF interrupt lines are being driven within the appropriate range 28days Tue3/9/21 Mon 4/5/21
Check that accelerometer readings are within reason 28days Tue3/9/21 Mon 4/5/21
Ensure accelerometer drives interrupt line when the specified threshold is reacl28 days Tue3/9/21 Mon 4/5/21
Verify that the appropriate colors are produced by LEDs from the given RGBval 28 days ~ Tue 3/9/21 Mon 4/5/21
Successfully open .csv file from SD card on a desktop computer 28days Tue3/9/21 Mon 4/5/21
Revise Software 85days Mon 1/11/21 Mon 4/5/21 32
Acquire ToF readings dependent on the interrupt line triggered l4days Fri4/2/21 Thu4/15/21 32
Acquire accelerometer values when interrupt is triggered l4days Fri4/2/21 Thu4/15/21 32
Create full .csv file from concatenating C-strings 57days Mon2/8/21 Mon 4/5/21 32
Write .csv C-string to SD card 57days Mon2/8/21 Mon 4/5/21 32
Page 2
ID Task [TaskName Duration [Start Finish Pre
Mode
53 A Create function to determine the appropriate RGB value dependent on 85 days Mon 1/11/21 Mon 4/5/21
distance reading
[54 | ¥ Create function to drive a specific LED dependent on the ToF sensor detecting 85days ~ Mon 1/11/21 Mon 4/5/21
an object
SDC & FA Software Approval Odays Sat2/27/21 Sat2/27/21
Assemble Complete System Integration 85days Mon 1/11/21 Mon 4/5/21
Connect ToF boards to their respective 12C Multiplexer interface header ladays Tue3/23/21 Mon 4/5/21
Connect RGB LEDs in series to the RGB LED header ladays Tue3/23/21 Mon 4/5/21
Provide power to the entire system from the battery 14 days Tue 3/23/21 Mon 4/5/21
Attach ToF Boards to helmet at appropriate angles 38days Sat2/27/21 Mon4/5/21
Test Complete System Integration 24days Sat3/13/21 Mon4/5/21 57
Ensure ToF boards cover full field of view 2ldays Sat3/13/21 Frid/2/21
Ensure appropriate RGB LEDs light up corresponding to the ToF sensor 9 days Thu3/25/21 Fri4f2/21
detecting an object
Ensure Accelerometer event causes full .csv file report to be written to SD card 24 days Sat 3/13/21 Mon 4/5/21
Ensure battery charges at appropriate rate when connected to circuit 24 days Sat 3/13/21 Mon 4/5/21 57
Ensure ToF sensors detect objects up to 1.5m 24days Sat3/13/21 Mon4/5/21
Revise Complete System Integration 17days Sat3/20/21 Mon4/5/21 62
Adjust ToF sensors to eliminate blind spots in field of view 5 days Thu4/1/21 Mon 4/5/21
Ensure RGB LEDs react to ToF object detection in a timely manner 5 days Thu4/1/21 Mon 4/5/21
Ensure .csv logged to SD card after Accelerometer event can be read ona 5 days Thu4/1/21 Mon 4/5/21
desktop PC
Ensure battery lasts a full 8 hours with the system runnung and detecting objec 24 days Sat 3/20/21 Mon 4/12/21 62
Demonstration of Complete System 5 days Tued/6/21 Sat4/10/21 68
Develop Final Report 103days Mon 1/11/21 Fri4/23/21
Write Final Report 103 days Mon 1/11/21 Fri4/23/21
Submit Final Report 0days Fri4/23/21 Fri4/23/21 75
77 # Spring Recess 7 days Mon 4/12/21 Sun 4/18/21

80

[Resource Names % Work Complete Resource Names % Work Complete
IAll Team Members 0% |Nick W. 0%
Brian T. / Nate K. 0%
Hunter H. 0%
Hunter H. / Nick W. 0%
0%j
0 0%|
0% 0%
0% |Nate K. 0%
Hunter H. 0% [Nate K. 0%
Nick W. 0% [BrianT. 0%,
Nick W. 0% |[Nate K. 0%
Nick W. 0% 0%,
Nick W. 0%
Nate K./Hunter H. 0% |HunterH. 0%
Nick W. 0%

o o Nick w. 0%
fick L:‘,‘ % lerianT. / Nate k. 0%
Nick W. 0% Nick W o

" %
Hunter H ﬂ Brian T 0%
Pick W- Y% JHunter H. 0%
Hunter H 0% Nick W. %l
Nick W. 0%
Nate K. 0% |Brian T./Nate K. 0%)|
Nate K./Hunter H. 0% 0%

0% 0%
Nick W. 0% |Nate K./ Hunter H. 0%
Nick W. 0% [BrianT. 0%,
Hunter H. 0% 0%|
Hunter H. 0% 0%|

As mentioned previously, the subsystem design was not completed at the midterm goals as
initially intended. The power subsystems among other systems worked but mainly the LEDs and
accelerometer still needed adjustments before the final. Through reallocating the work from the
Gantt chart to the figure above, the design goals were reached for the final presentation. Many of
the goals not reached during the mid-term demonstration could be attributed to either poor
connections for the ToF and LED system. For the accelerometer, the subsystem was reading but
writing to the SD card was more difficult than anticipated. Still, with a joint effort from team
members, the project ultimately got back on track and succeeded in meeting its requirements. -

NK

81

10.) Conclusions and Recommendations:

Workplace injury is still of great consideration to most companies. The ability to track
and mitigate these injuries is always a growing concern and call to improve. To assist with this
need, the design team proposes the H.A.L.O. This is an affordable and simplistic design that has
several benefits to other solutions created previously. Other models or designs focus on different
aspects of work monitoring, such as employee location and productivity. Current designs also
prioritize inclusive models that are built into the hard hat. Since OSHA standards require
helmets are replaced after an incident, smart hard hats in collisions are not reusable, causing
large amounts of waste.

Given these circumstances, the development of the H.A.L. O includes engineering and
marketing requirements that offer a cost-effective solution. The H.A.L.O. design is replaceable
and reusable, reducing waste and still offering the services of smart helmet devices. The
requirements of battery life being 8 hours and rechargeable, time of flight sensors reading their
designated distances, LEDs shifting colors, and accelerometers reading and writing collision data
to a SD card have all been met. All of the housing, hardware, and software have been integrated,
accomplishing the engineering and marketing requirements.

With the design implemented, there are some recommendations that can be made. If
given more time, revisions to the housing unit and wire management would be important.
Reducing the overall size of the H.A.L.O. the number of wires going to sensors would be
beneficial. Redesign of the P.C.B. would allow for further reduction of the size as well. Future of
the project could potentially see a gradient color shift instead of a hard shift a given intervals for

the time of flight and LEDs. In future designs, better formatting and graphing of the

82

accelerometer data is recommended. Finally, with the subsystems working, reducing the cost of
construction for a unit would also be beneficial in future designs.

The design of the H.A.L.O system ran into implementation issues mainly with the
accelerometer and time-of-flight subsystems. Due to issues with hardware and coding, the
communication and implementation of multiple time-of-flight sensors to the LED subsystem
were not finished in time for the midterm presentation. This was also the case with the
accelerometer. The time-of-flights were able to read but integration of both systems together was
not completed until the final design demonstration. Causes of initial difficulties can be attributed
in part to issues with the soldering of the surface mount components, PCBs needing redesigned,
and code revision.

However, despite these issues, all the subsystems worked and were demonstrated for the
final. The engineering requirements were met and the H.A.L.O. system assists with incident
recording and mitigation as intended. The project success relied heavily on software and
embedded systems work which caused the team dynamic to shift towards the computer
engineering side of the project. This caused and imbalanced team dynamic that initially was
unforeseen. The hardware and power systems saw less issues with implementation mainly due to
the simplistic nature of their function.

As a recommendation, a better division of subsystems and better planning in regard to
workload division would have benefitted the project. With a project that largely relied on
embedded systems, small components on the PCBs, and programming, all students having a
background in Embedded systems classes such as Embedded Systems Interfacing, and

programming classes is recommended. For students that wish to work on projects that deal with

83

sensors and recording their inputs, such as time-of-flights and accelerometers, understanding of
programming in C or C++ would be beneficial.

Another recommendation for all senior design students is to have backgrounds in
soldering. Some of the components breaking due to mistakes with soldering slowed work on the
project leaving gaps where little progress was made. One final recommendation to students for
future students would be to order spares of components in order to avoid losing out on valuable
work time.

This project taught all members the value of properly applying concepts and theory
learned in academics in a realistic work environment. Dealing with deadlines, setbacks, and
monetary restrictions provided an important test to the skills students have developed throughout
their time in the college of engineering. Thanks to the assistance of their senior design professors
and coordinator, students were able to complete their design and gain experience in the

engineering process. -NK

11.) References:

Occupational Injury and IlIness Classification System 2.01 developed by the Bureau of Labor

Statistics. Source: U.S. Bureau of Labor Statistics, U.S. Department of Labor, November 2019.
1.) Commonly used statistics | occupational safety and health administration. (17 December

2019). Retrieved March 31, 2020, from https://www.osha.gov/data/commonstats

2.) Hard Hat with Additional Technical Features.
https://patents.google.com/patent/US20140208487A1/en. Accessed 29 Mar. 2020.

3.) Li, Larry. Time-of-Flight Camera — An Introduction. Technical White Paper,
SLOA190B, Texas Instruments, May 2014, p. 10,

http://www.ti.com/lit/wp/sloal190b/sloal90b.pdf.

84

https://www.osha.gov/data/commonstats
http://www.ti.com/lit/wp/sloa190b/sloa190b.pdf

4.) Mitchell, Joel. B., et al. “Temperature Measurement Inside Protective Headgear:
Comparison With Core Temperatures and Indicators of Physiological Strain During
Exercise in a Hot Environment.” Journal of Occupational & Environmental Hygiene, vol.
12, no. 12, Dec. 2015, pp. 866—74. EBSCOhost, doi:10.1080/15459624.2015.1072631.

5.) O’Connor, Kathryn L., et al. “Head-Impact—Measurement Devices: A Systematic
Review.” Journal of Athletic Training, vol. 52, no. 3, Mar. 2017, pp. 206-27. PubMed
Central, doi:10.4085/1062-6050.52.2.05.

6.) Smart Helmet. https://patents.google.com/patent/US20170048496A1/en. Accessed 29
Mar. 2020.

7.) US EPA, OAR. “Basic Information about Oil and Natural Gas Air Pollution Standards.”

U.S. EPA, 20 Sept. 2016, https://www.epa.gov/controlling-air-pollution-oil-and-natural-

gas-industry/basic-information-about-oil-and-natural-gas.

8.) Veeramani Kandasamy, Dr T. (2016). Microcontroller and SD Card Based Standalone
Data Logging System using SPI and 12C Protocols for Industrial Application. 5. 2208-
2214. 10.5281/zen0d0.3543657.

9.) Accelerometer Theory & Design. (2008). Retrieved April 3, 2020, from
https://shodhganga.inflibnet.ac.in/bitstream/10603/2272/8/08_chapter 2.pdf.

10.) Spinelle, Laurent, et al. “Review of Portable and Low-Cost Sensors for the Ambient Air
Monitoring of Benzene and Other Volatile Organic Compounds.” Sensors (Basel,
Switzerland), vol. 17, no. 7, June 2017. PubMed Central, doi:10.3390/s17071520.

11.) Ambient Light Sensor (ALS) Applications in Portable Electronics. Rohm Semiconductor.

https://www.rohm.com/documents/11308/12928/CNA09016 wp.pdf. Accessed 3 Apr.

2020.

85

https://www.epa.gov/controlling-air-pollution-oil-and-natural-gas-industry/basic-information-about-oil-and-natural-gas
https://www.epa.gov/controlling-air-pollution-oil-and-natural-gas-industry/basic-information-about-oil-and-natural-gas
https://www.rohm.com/documents/11308/12928/CNA09016_wp.pdf.%20Accessed%203%20Apr.%202020
https://www.rohm.com/documents/11308/12928/CNA09016_wp.pdf.%20Accessed%203%20Apr.%202020

12.) Appendices / Datasheets.

Appendix A: System Code

/**

Section: Included Files
*/
#include <xc.h>
#include <stdbool.h>
#include <stdlib.h>

#define FCY 4000000UL // clock frequency
#include <libpic30.h>

#include "mcc generated files/mcc.h"

//#include "mcc generated files/system.h"

#include "mcc generated files/fatfs/fatfs demo.h"
#include "mcc generated files/pwm module features.h"
#include "I2C Handler.h"

#include "Initialize.h"

// Address Definitions
#define MUX 0 0x70
#define MUX 1 0x71

// number of ToF sensors
#define NUM TOF 6

// pairing of mux numbers and port numbers
typedef struct {

uint8 t mux;

uint8 t port;
} muxPort t;

// store (mux, port) pairs in an array

muxPort t ToF[NUM TOF] = {
{0x00, 0x00}, // Left Center --> MID LED
{0x00, 0x01}, // Left --> LEFT LED
{0x00, 0x02}, // Left Left --> LEFT LED
{0x01, 0x00}, // Right Center --> MID LED
{0x01, 0xO01}, // Right --> RIGHT LED
{0x01, 0x02} // Right Right --> RIGHT LED

}i

// LEFT LED == , MID LED == , RIGHT LED == 2

int LEDS[NUM_TOF] = {

1, 0, 0, 1, 2, 2
b

/* x % Kk x % & x % & x RGB LED Color Definitions * * * * * x x % % x

*/

86

// These are utilizing the same I/0 pins as the on-board LEDs

(0x01) LED1 <==> L/R RED
* (0x02) LED2 <==> L/R GRN
* (0x04) LED3 <==> L/R BLU
* (0x08) LED4 <==> R ENABLE (ENABLEs are active LOW)
* (0x10) LED5 <==> I ENABLE
* (0x20) LED6 <==> MID RED
* (0x40) LED7 <==> MID GRN
* (0x80) LED8 <==> MID BLU (MID LED has no ENABLE, is tied to GND)
*/

#define LR RED 0x01
#define LR GRN 0x02
#define LR BLU 0x04
#define LR YLW 0x03
#define LR PRP 0x05
#define LR ON 0x00 // both L and R on

#define R ON 0x00
#define R OFF 0x10
#define L ON 0x00

#define L OFF 0x08
#define MID RED 0x20
#define MID GRN 0x40
#define MID BLU 0x80
#define MID YLW 0x60
#define MID PRP 0xA0

typedef enum { LED L, LED C, LED R } LED posn;
/* *x X X X*x X*x X*x X*x X*x *x % TOF Sensor Deflnltlons *x X X X X X X X X % */
define MAX DISTANCE 1500 // 1500mm = 1.5m, the maximum range of

interest

#define VL53LOX_IZCADDR 0x29
// Record the current time to check an upcoming timeout against

#define startTimeout () (timeout start ms = millis())
// Check if timeout is enabled (set to nonzero value) and has expired
#define checkTimeoutExpired() (io timeout > 0 && ((uintlé t)millis() -

timeout start ms) > io timeout)

// Decode VCSEL (vertical cavity surface emitting laser) pulse period
in PCLKs

// from register value

// based on VL53L0X decode vcsel period()

#define decodeVcselPeriod(reg val) (((reg val) + 1) << 1)

// Encode VCSEL pulse period register value from period in PCLKs

// based on VL53L0X encode vcsel period()

#define encodeVcselPeriod(period pclks) (((period pclks) >> 1) - 1)
// Calculate macro period in *nanoseconds* from VCSEL period in PCLKs
// based on VL53L0X calc macro period ps()

// PLL period ps = 1655; macro period vclks = 2304

87

#define calcMacroPeriod(vcsel period pclks) ((((uint32 t)2304 *
(vcsel period pclks) * 1655) + 500) / 1000)

enum regAddr {

SYSRANGE_START = 0x00,
SYSTEM THRESH HIGH = 0x0C,
SYSTEM THRESH LOW = 0x0E,
SYSTEM SEQUENCE_CONFIG = 0x01,
SYSTEM RANGE CONFIG = 0x09,
SYSTEM INTERMEASUREMENT PERIOD = 0x04,
SYSTEM_ INTERRUPT CONFIG GPIO = 0x03,
GPIO_HV MUX ACTIVE HIGH = 0x84,
SYSTEM INTERRUPT CLEAR = 0x0B,
RESULT INTERRUPT STATUS = 0x13,
RESULT RANGE STATUS = 0x14,
RESULT CORE_AMBIENT WINDOW EVENTS RTN = 0xBC,
RESULT CORE_RANGING TOTAL EVENTS RTN = 0xCO,
RESULT CORE_AMBIENT WINDOW EVENTS REF = 0xDO,
RESULT CORE_RANGING TOTAL EVENTS REF = 0xD4,
RESULT PEAK SIGNAL RATE REF = 0xB6,
ALGO PART TO PART RANGE OFFSET MM = 0x28,
I2C_SLAVE DEVICE ADDRESS = 0x8a,
MSRC_CONFIG CONTROL = 0x60,
PRE_RANGE CONFIG MIN SNR = 0x27,
PRE_RANGE CONFIG VALID PHASE LOW = 0x56,
PRE_RANGE CONFIG VALID PHASE HIGH = 0x57,
PRE_RANGE MIN COUNT RATE RTN LIMIT = 0x64,
FINAL RANGE CONFIG MIN SNR = 0x67,
FINAL RANGE CONFIG VALID PHASE LOW = 0x47,
FINAL RANGE CONFIG VALID PHASE HIGH = 0x48,

FINAL RANGE CONFIG MIN COUNT RATE RTN LIMIT = 0x44,

PRE_RANGE CONFIG SIGMA THRESH HI = 0x61,
PRE_RANGE CONFIG SIGMA THRESH LO = 0x62,
PRE_RANGE CONFIG VCSEL PERIOD = 0x50,
PRE_RANGE CONFIG TIMEOUT MACROP HI = 0x51,
PRE_RANGE CONFIG TIMEOUT MACROP LO = 0x52,
SYSTEM HISTOGRAM BIN = 0x81,

88

HISTOGRAM CONFIG INITIAL PHASE SELECT =
HISTOGRAM CONFIG_READOUT CTRL =

FINAL RANGE CONFIG VCSEL PERIOD =
FINAL RANGE CONFIG TIMEOUT MACROP HI =
FINAL RANGE CONFIG_TIMEOUT MACROP LO =
CROSSTALK _COMPENSATION PEAK RATE MCPS =

MSRC CONFIG TIMEOUT MACROP =

SOFT RESET GO2_ SOFT RESET N =
IDENTIFICATION MODEL ID =
IDENTIFICATION REVISION ID =

OSC_CALIBRATE VAL =

GLOBAL_CONFIG VCSEL_WIDTH =
GLOBAL_CONFIG_SPAD ENABLES REF 0
GLOBAL_CONFIG_SPAD ENABLES REF 1
GLOBAL_CONFIG_SPAD ENABLES REF 2 =
GLOBAL_CONFIG_SPAD ENABLES REF 3
GLOBAL_CONFIG_SPAD ENABLES REF 4
GLOBAL CONFIG SPAD ENABLES REF 5 =

GLOBAL CONFIG REF EN START SELECT =
DYNAMIC_ SPAD NUM REQUESTED REF SPAD =
DYNAMIC SPAD REF EN START OFFSET =
POWER MANAGEMENT GOl POWER FORCE =

VHV_CONFIG_PAD SCL_SDA EXTSUP_HV =
ALGO PHASECAL LIM =

ALGO PHASECAL CONFIG TIMEOUT =
b

0x33,
0x55,

0x70,
0x71,
0x72,
0x20,

Ox46,

0xBF,
0xCo,
0xC2,

0xF8,

0x32,
0xBO,
0xB1,
0xB2,
0xB3,
0xB4,
0xB5,

0xBo6,
O0x4E,
0x4F,
0x80,

0x89,

0x30,
0x30,

typedef enum { VcselPeriodPreRange, VcselPeriodFinalRange }

vcselPeriodType;

uint8 t last status; // status of last I2C transmission

typedef struct {
bool tcc, msrc, dss, pre range, final range;
// TCC: Target CentreCheck
// MSRC: Minimum Signal Rate Check
// DSS: Dynamic Spad Selection
} SequenceStepEnables;

typedef struct {
uintlé t pre range vcsel period pclks,

final range vcsel period pclks;

uintl6é t msrc dss tcc mclks, pre range mclks,

89

final range mclks;

uint32 t msrc_dss_tcc us, pre_ range us, final range us;
} SequenceStepTimeouts;

uint8 t address;

uintlé t io timeout;

bool did timeout;

uintlé t timeout start ms;

uint8 t stop variable; // read by init and used when starting
measurement; is StopVariable field of VL53L0OX DevData t structure in
API

uint32 t measurement timing budget us;

J*ox kokox ok ok % k& % % T2C Bus Read/Write Functions * * * * % x * &
* Kk % */

T2C1 _MESSAGE STATUS I2C Status = I2C1 MESSAGE COMPLETE; // I2C Bus
Status

void selectPort (muxPort t sensorPort);

void selectPort2 (uint8 t mux, uint8 t port); // select mux port
uint8 t getMuxCtrlReg (uint8 t mux); // read interrupt values
from mux

uint8 t getInterrupts (uint8 t mux);

void writeRegister (uint8 t dev, uint8 t reg, uint8 t data);

void writeRegister 16b(uint8 t dev, uint8 t reg, uintlé t data);
void writeRegister 32b(uint8 t dev, uint8 t reg, uint32 t data);
uint8 t readReg(uint8 t dev, uint8 t regq);

void readRegister (uint8 t dev, uint8 t reg, uint8 t* data);
uintl6é t readRegister 16b(uint8 t dev, uint8 t reg);

/* * K*x k% *x k% *x X% * *x * *x * *x TOF Helper Functions * *x k% * *x * *x * *x %
* *x % */

void initSingleToF (int ToF num, uintl6 t *dists);

void initAllToF (uintl6 t *dists);

void initAllToF2 (uintl6 t *dists);

void getSingleToF (int ToF num, uintl6 t *dists);

void getAllToF (uintl6 t *dists);

void getAllToF2 (uintl6 t *dists);

uint8 t getNearestObstacleIndex(uintl6 t *dists);

uint8 t getNearestObstaclelIndex2 (uintl6 t *dists);

/* ox kokox k& x & & x Accelerometer Definitions * % x x ok ok ok koxox
*/

//<Nick>

#define H3LIS200DL I2CADDR 0x19

#define H3LIS200DL_WHO AM I OxOF

#define H3LIS200DL CTRL REG1 0x20

#define H3LIS200DL CTRL REG2 0x21

#define H3LIS200DL_CTRL REG3 0x22

#define H3LIS200DL_CTRL REG4 0x23

90

#define H3LIS200DL_CTRL REG5 0x24
#define H3LIS200DL_HP FILTER RESET 0x25
#define H3LIS200DL_REFERENCE 0x26
#define H3LIS200DL_STATUS REG 0x27

#define H3LIS200DL OUT X H
#define H3LIS200DL OUT X L
#define H3LIS200DL OUT Y H
#define H3LIS200DL OUT Y L
#define H3LIS200DL _OUT 7 H
#define H3LIS200DL OUT 7 L

#define H3LIS200DL_INT1 CFG 0x30

used)

#define H3LIS200DL_INT1 SRC 0x31
#define H3LIS200DL_INT1 THS 0x32

0x29
0x28
0x2B
O0x2A
0x2D
0x2C

#define H3LIS200DL INT1 DURATION 0x33

#define H3LIS200DI,_ INT2 CFG 0x34
#define H3LIS200DI,_ INT2 SRC 0x35
#define H3LIS200DI, INT2 THS 0x36

#define H3LIS200DL INT2 DURATION 0x37

#define H3LIS200DI, PWR_ DWN

0x00

#define H3LIS200DL NRML 0x01

#define H3LIS200DL_LP 0 5HZ 0x02

#define H3LIS200DL_LP 1HZ 0x03
#define H3LIS200DL_LP 2HZ 0x04
#define H3LIS200DL_LP 5HZ 0x05

#define H3LIS200DL_LP_ 10HZ

#define H3LIS200DL DR 50HZ

#define H3LIS200DI, DR 100HZ 0x01
#define H3LIS200DI, DR 400HZ 0x02
#define H3LIS200DL, DR 1000HZ 0x03

0x06

0x00

#define H3LIS200DL_EN X 0x01
#define H3LIS200DL_EN Y 0x02
#define H3LIS200DL_EN 7 0x04
#define H3LIS200DL_EN XYZ 0x07

J* * x Kk *x x * *x x * *x¥ Accelerometer Function Definitions * * *x * *

*x X X % */

//
//
//
//
//
//
//

Pow
Nor
Low
Low
Low
Low
Low

// X Data
// Y Data
// 7 Data

// Interrupt 1 (Pin 11,

// Interrupt 2

// POWER MODES

er Down Mode

mal Mode
Power 0.5Hz
Power 1.0Hz
Power 2.0Hz
Power 5.0Hz
Power 10.Hz

OUTPUT DATA RATES
// 50Hz
// 100Hz
// 400Hz
// 1000Hz

Enable
Enable
Enable
Enable

typedef enum {USE I2C, USE SPI} comm mode;
typedef enum {POWER DOWN, NORMAL, LOW POWER O 5HZ, LOW POWER 1HZ,
LOW _POWER 2HZ, LOW POWER 5HZ, LOW POWER 10HZ}

power mode;

X Data
Y Data
Z Data
X, Y, and Z Data

typedef enum {DR 50HZ, DR 100HZ, DR 400HZ, DR 1000HZ} data rate;
typedef enum {HPC 8, HPC 16, HPC 32, HPC 64}

high pass cutoff freq cfg;

typedef enum {PUSH PULL, OPEN DRAIN} pp od;
DRDY, BOOT} int sig src;
typedef enum {LOW RANGE, MED RANGE, NO RANGE, HIGH RANGE} fs range;

typedef enum {INT SRC, INT1 2 SRC,

typedef enum {X AXIS, Y AXIS,

91

Z AXIS} int axis;

*

typedef enum {TRIG ON HIGH, TRIG ON LOW} trig on level;

void H3LIS200DL begin();

void H3LIS200DL axesEnable (bool enable);

void H3LIS200DL setPowerMode (power mode pmode) ;

void H3LIS200DL setODR(data rate drate);

void H3LIS200DL readAxes (intl6 t* x, intlé t* y, intlée t* z);
uint8 t H3LIS200DL readReg(uint8 t reg address);

intlé t H3LIS200DL convertToG(intl6 t maxScale, intlé t reading);
void H3LIS200DL setHighPassCoeff (high pass cutoff freq cfg hpcoeff);
void H3LIS200DL enableHPF (bool enable);

void H3LIS200DL HPFOnIntPin (bool enable, uint8 t pin);

void H3LIS200DL intActiveHigh (bool enable);

void H3LIS200DL intPinMode (pp_od pinMode) ;

void H3LIS200DL latchInterrupt (bool enable, uint8 t intSource);

void H3LIS200DL intSrcConfig(int sig src src, uint8 t pin);

void H3LIS200DL setFullScale(fs range range);

bool H3LIS200DL newXData();

bool H3LIS200DL newYData();

bool H3LIS200DL newZData();

void H3LIS200DL enablelInterrupt (int axis axis, trig on level
trigLevel,uint8 t interrupt, bool enable);

void H3LIS200DL setIntDuration(uint8 t duration, uint8 t intSource);
void H3LIS200DL setIntThreshold(uint8 t threshold, uint8 t intSource);
intl6 t H3LIS200DL Read x(intlé6 t x);

intl6e t H3LIS200DL Read y(intlé t y);

intl6 t H3LIS200DL Read =z (intlé6 t z);

//</Nick>

bool getAccelPoints (void);

bool getAccelPoints2 (void);

/* *x *x k* k% *x *x X% X% * % SD Card Functions *x *x k* * *x *x X% % * % */
volid writeTemplateToSD (void) ;
void writeAccelToSD (void) ;

/*F k& x x ok ok ox k% Time-of-Flight Sensor Functions * * * * o & & &
***/

uint8 t VL53LOX init (void);

bool VL53L0X config(void);

bool VL53L0OX setSignalRatelLimit (float limit Mcps) ;

bool VL53L0OX getSpadInfo(uint8 t * count, bool * type is aperture);
uint32 t VL53L0X getMeasurementTimingBudget (void);

void VL53L0X getSequenceStepTimeouts (SequenceStepEnables const *
enables, SequenceStepTimeouts * timeouts);

uint8 t VL53LOX getVcselPulsePeriod(vcselPeriodType type);

bool VL53L0X setMeasurementTimingBudget (uint32 t budget us);

void VL53LOX getSequenceStepEnables (SequenceStepEnables * enables);
uintlé t VL53L0X encodeTimeout (uintl6é t timeout mclks);

bool VL53L0X performSingleRefCalibration(uint8 t vhv init byte);

92

uint32 t VL53L0X timeoutMclksToMicroseconds (uintl6 t

timeout period mclks, uint8 t vcsel period pclks);

uint32 t VL53L0X timeoutMicrosecondsToMclks (uint32 t

timeout period us, uint8 t vcsel period pclks);

uintlé t VL53L0X decodeTimeout (uintlé t reg wval);

void VL53LOX startContinuous(uint32 t period ms);

void VL53LOX stopContinuous (void);

uintlé t VL53L0X readRangeContinuousMillimeters (void) ;

uintlé t VL53L0X readRangeSingleMillimeters (void);

inline void VL53L0X setTimeout (uintl6 t timeout) { io timeout =
timeout; }

inline uintl6é_t VL53LOX getTimeout (void) { return io timeout; }
bool VL53L0OX timeoutOccurred(void);

/* * * k% *x k% *x % * *x * *x * % LED DlSplay Functions * *x k* *x k% *x *x * *x %
* *x % */

void showBinary (uint8 t n);

void showStartup (void) ;

void showStartupRGB (void) ;

void showDistanceRGB (uintl6 t dist, LED posn LED);

void showInitRGB (int index);

void showConcussion (void) ;

void showCount (void) ;

void showError (void);

/*k*k*k*******k*k*k*Accelerometervariables**********
***/

// <Nick>
intle t x 1, vy
intle t x 2, y
intle t x 3, y
intle t x 4, y
intle t x 5, y
intl6 t thresh
actual use
intl6 t max = 0x0000; // current maximum axis reading

; // impact threshold (in Gs)) // set to 50 for

// timestamps of readings
unsigned long timerl, timer2, timer3, timer4, timer5;

// c-strings for writing data to SD card
char datal[255];

char data2[255];
char data3[255];
]
]

4

char datad[255
char datab5[255
// </Nick>

’

— /o

// set TRUE to automatically clear the interrupt of each ToF sensor
upon reading

93

bool auto _int clr = false;

/*
Main application
*/
int main (void) {
/***************TOF***************/
address = VL53L0X I2CADDR;
io timeout = 0;
did timeout = false;
// distances from each ToF sensor
int ToF to test =2; // 0, 1, 2, 3, 4, 5
uint8 t dist 8; // 8-bit integer used to display the 8 LSBs of
distance
uintl6 t distances[NUM TOF] = { OxFFFF, OxFFFF, OxFFFF,
OXFFFF, OXFFFF, OXFFFF};

/* *x X X K*x K*x X*x X*x X*x X*x *x *x *x *x % SETUP *x X X K*x K*x X*x X*x X*x X*x *x *x *x *x %

*/
SYSTEM Initialize(); // MCC: I2Cl, TMR1l, SPIl1 initialization
Start Initialization(); // for pins/LEDs
IZCl_MESSAGE_STATUS IZC_StatuS = IZCl_MESSAGE_COMPLETE;
//showStartup () ; // run on-board LED startup pattern
showStartupRGB () ; // run RGB LED startup pattern
//writeTemplateToSD() ;
/* * K*x k% *x k% *x X% * *x * *x * *x TOF Setup * *x k% *x k% *x % *x *x * *x * %
*/
// initSingleToF (ToF to test, distances); // initialize a single
ToF sensor

initAl1ToF (distances); // initialize all ToF sensors
uint8 t index; // hold the index of the sensor detecting the
nearest object

/‘k * *x k* * *x *x * * *x *x Accelerometer Setup * *x k* * *x *x * * *x *x ‘k/
selectPort2 (0x00, 0x03); // select Accelerometer port (Mux 0, Port

H3LIS200DL begin();
msTimerDelay (5) ;

while (1) {

/* *x X X K*x K*x X*x X*x *x *x *x *x * % Accelerometer *x X X K*x K*x X*x *x *x * %
* k% */

if (getAccelPoints2()) { // get accel data, returns true if max
>= thresh
writeAccelToSD() ;

94

/*************** I2C Tlme_of_Fllght **************/

getAllToF (distances) ; // get the distances from all ToF
sensors
// get the distance from the ToF to test sensor
// getSingleToF (ToF to test, distances);
/************** SHOW READING **************/
// dist 8 = distances[ToF to test] & OxFF;
// show reading LSBs via on-board LEDs
// showBinary (dist 8);
// msTimerDelay (10) ;
// show RGB corresponding to reading of ToF to test
// showDistanceRGB (distances[ToF to test], LEDs[ToF to test]);
// find the sensor detecting the closest obstacle
index = getNearestObstaclelIndex (distances):;
// show RGB corresponding to reading of said sensor
if (index == O0xFF) {
showBinary (0x00) ;
}
else {

showDistanceRGB (distances[index], LEDs[index]);

}
}

return O;

}

// displays the byte value in binary on the LEDs
void showBinary (uint8 t n) {

LED]1 = n;

LED2 = n >> 1;
LED3 = n >> 2;
LED4 = n >> 3;
LED5 = n >> 4;
LED6 = n >> 5;
LED7 = n >> 6;
LED8 = n >> 7;

}

// a fun visual to do at boot
void showStartup (void) {
uintl6e t delay = 25;

uint8 t display = 0x01;

while (display != 0x80) { // run one LED "up"
display = display << 1;
showBinary (display) ;
msTimerDelay (delay) ;

95

while (display > 0x00) { // run one LED back

display = display >> 1;
showBinary (display) ;
msTimerDelay (delay) ;

}

display = 0x00; // reset to 0
while (display < O0xFF) { // "fill" LEDs
display = display << 1;
showBinary (++display) ;
msTimerDelay (delay) ;

}

while (display > 0x00) { // "empty" LEDs
display = display >> 1;
showBinary (display) ;
msTimerDelay (delay) ;

}

void showStartupRGB (void) {
uintle t delay = 200;

showBinary (LR RED | LR _ON | MID RED);
msTimerDelay (delay) ;

showBinary (LR PRP | LR _ON | MID PRP);
msTimerDelay (delay) ;

showBinary (LR BLU | LR ON | MID BLU);
msTimerDelay (delay) ;

showBinary (LR BLU | LR GRN | LR ON | MID BLU
msTimerDelay (delay) ;

showBinary (LR GRN | LR ON | MID GRN);
msTimerDelay (delay) ;
}

void showDistanceRGB (uintl6 t dist, LED posn LED)

1£(1900 < dist) {
showBinary (0x00) ;
}
else if(LED == LED C) {
if (dist <= 500) {
showBinary (MID RED) ;
} else 1f (500 < dist && dist <= 1000) {
showBinary (MID GRN) ;
} else 1if(1000 < dist && dist <= 1500) {
showBinary (MID BLU) ;
}

96

"down"

MID GRN) ;

else 1f(LED == LED_L) {
if (dist <= 500) {
showBinary (LR RED | R OFF);
} else 1f(500 < dist && dist <= 1000) {
showBinary (LR GRN | R OFF);
} else 1f(1000 < dist && dist <= 1500) {
showBinary (LR BLU | R OFF);
}
}
else 1f(LED == LED_R) {
if (dist <= 500) {
showBinary (LR RED | L OFF);
} else if (500 < dist && dist <= 1000) {
showBinary (LR GRN | L OFF);
} else 1if (1000 < dist && dist <= 1500) {
showBinary (LR BLU | L OFF);
}

}

void showInitRGB (int index) {
int clr = index % 3; // determines what color to turn the LED
// 0 -> RED
// 1 => YELLOW
// 2 -> WHITE

if (index < (NUM TOF/2)) { // left side sensors

if(clr == 0) {

showBinary (LR RED | R OFF); // red
} else if(clr == 1) {

showBinary (LR _RED | LR GRN | R OFF); // yellow
} else if(clr == 2) {

showBinary (LR RED | LR GRN | LR BLU | R OFF); // white
}
}

else if (((NUM TOF/2) <= index) && (index < NUM TOF)) { //
right side sensors
if(clr == 0) {
showBinary (LR RED | L OFF); // red
} else if(clr == 1) {
showBinary (LR RED | LR GRN | L OFF); // yellow
} else if(clr == 2) {

showBinary (LR _RED | LR GRN | LR BLU | L OFF); // white
}

}

voilid showConcussion (void) {
uintl6 t delay = 1000;

// show all red
showBinary (LR RED | LR ON | MID RED);

97

msTimerDelay (delay) ;

// show all purple
showBinary (LR PRP | LR ON | MID PRP);
msTimerDelay (delay) ;

// show all red
showBinary (LR RED | LR ON | MID RED);
msTimerDelay (delay) ;

// show all purple
showBinary (LR _PRP | LR _ON | MID PRP);
msTimerDelay (delay) ;

// show all red
showBinary (LR RED | LR ON | MID RED);
msTimerDelay (delay) ;

}

// a visual for errors
void showError (void) {
uintl6 t delay = 50;

uint8 t i = 0x00;
while(i < 3) { // flash alternating LEDs 3 times
showBinary (0x55) ;
msTimerDelay (delay) ;
showBinary (0xAA) ;
msTimerDelay (delay) ;
i++;

}

Jxox kokox ok ok ox ok ok x % T2C Bus Read/Write Functions * * * * % x * &
****/

void selectPort (muxPort t sensorPort) ({
if (sensorPort.mux == 0x00) {
writeRegister (MUX 1, 0x00, 0x00); // disable mux 1
}
else if(sensorPort.mux == 0x01) {
writeRegister (MUX 0, 0x00, 0x00); // disable mux O
}
// base mux address is 0x70
writeRegister ((MUX 0 + sensorPort.mux), 0x00, (0x04 +
sensorPort.port));

}

void selectPort2(uint8 t mux, uint8 t port) {
// base mux address is 0x70
if (mux == 0x00) {
writeRegister (MUX 1, 0x00, 0x00);

98

writeRegister (MUX 0, 0x00, (0x04 + port));
}
else if (mux == 0x01) {
writeRegister (MUX 0, 0x00, 0x00);
writeRegister (MUX 1, 0x00, (0x04 + port));

}

// read the interrupts from mux

uint8 t getMuxCtrlReg (uint8 t mux) {
// read the control register of mux
return readReg((MUX 0 + mux), 0x00);

}

// writes to the device a byte of data to the register
void writeRegister (uint8 t dev, uint8 t reg, uint8 t data) {

uint8 t config[] = {reg, data};

while(IZC_Status I = IZCl_MESSAGE_COMPLETE);

I2C1l MasterWrite(config, sizeof (config), dev, &I2C Status);
while(IZC_Status = I2C1 MESSAGE COMPLETE) ;

// showBinary (I2C Status);
msTimerDelay (5) ;

}

// writes to the device a byte of data to the register
void writeRegister 16b(uint8 t dev, uint8 t reg, uintlé t data) {
// send MSB then LSB

uint8 t config[] = {reg, data >> 8, data & O0x00FF};
while(IZC_StatuS I = IZCI_MESSAGE_COMPLETE);

I2C1 MasterWrite(config, sizeof(config), dev, &I2C Status);
while(IZC_StatuS I = IZCI_MESSAGE_COMPLETE);

msTimerDelay (5) ;

}

void writeRegister 32b(uint8 t dev, uint8 t reg, uint32 t data) {

// send MSB, ..., then LSB

uint8 t config[] = {reg, data >> 24, data >> 16 & 0x00FF, data >>
8 & O0xO00FF, data & O0xO00FF};

while (I2C_Status != I2C1 MESSAGE COMPLETE) ;
I2Cl1 MasterWrite(config, sizeof(config), dev, &I2C Status);
while (I2C_Status != I2C1 MESSAGE COMPLETE) ;

msTimerDelay (5) ;

}

// reads from the device a byte of data from the given register
void readRegister (uint8 t dev, uint8 t reg, uint8 t* data) {
while(I2C_Status I= I2C1_MESSAGE_COMPLETE);
I2Cl1 MasterWrite(®, 1, dev, &I2C Status);

99

while (I2C_Status != I2C1 MESSAGE COMPLETE) ;
I2Cl1 MasterRead(data, 1, dev, &I2C Status);
while (I2C_Status != I2C1 MESSAGE COMPLETE) ;
msTimerDelay (5) ;

}

uintlé t readRegister lé6b(uint8 t dev, uint8 t reg) {
uint8 t datal2];

while (I2C_Status != I2C1 MESSAGE COMPLETE) ;
I2Cl1 MasterWrite(®, 1, dev, &I2C Status);
while (I2C_Status != I2C1 MESSAGE COMPLETE) ;
)
)

14

I2Cl1 MasterRead(data, 2, dev, &I2C_ Status
while (I2C_Status != I2C1 MESSAGE COMPLETE

msTimerDelay (5) ;

return ((data[0] << 8) + datal[l]); // MSB first (VL53LOX pg. 15)
//return (data[0] >> 8 + data[l]); // LSB first
// TODO: switch endianness if need be

}

uint8 t data;
uint8 t readReg(uint8 t dev, uint8 t reg) ({

while (I2C_Status != I2C1 MESSAGE COMPLETE) ;
I2Cl1 MasterWrite(®, 1, dev, &I2C Status);
while (I2C_Status != I2C1 MESSAGE COMPLETE) ;
I2C1 MasterRead(&data, 1, dev, &I2C Status);
while(IZC_StatuS = I2C1_MESSAGE_COMPLETE);
msTimerDelay (5) ;

return data;

}

/**k*k*k*k*k*****************************

****/

/**************TOFHelperFunctionS**********
****/

void initSingleToF (int ToF num, uintlé t *dists) {
selectPort (ToF[ToF num]);
msTimerDelay (1) ;
VL53L0X init();
dists[ToF num] = VL53L0X readRangeSingleMillimeters();
}

void initAllToF (uintlé t *dists) {
int 1 = 0;
for(i = 0; i < 6; 1i++) {
selectPort (ToF[i]);
msTimerDelay (1) ;

100

VL53L0X_init();
dists[i] = VL53L0X readRangeSingleMillimeters();
if(lauto_int clr) {
writeRegister(VL53LOX_I2CADDR, SYSTEM INTERRUPT CLEAR,
0x01); // clear interrupt
}

showInitRGB(i); // show RGB LED change on each side as sensors
init

}

// turn all on white for 1 second to show initialization is done
ShowBinary(LR_RED | LR_GRN | LR BLU | LR_ON | MID RED | MID_GRN |
MID BLU) ;
msTimerDelay (1000) ;
}

void 1initAllToF2 (uintl6 t *dists) {

int 1 = 1;
// selectPort (ToF[1i]);
// msTimerDelay (1) ;
// VL53LO0X init();
// dists[i] = VL53L0OX readRangeSingleMillimeters();
// if (lauto_int clr) {
// writeRegister(VL53LOX_I2CADDR, SYSTEM_INTERRUPT_CLEAR,
0x01); // clear interrupt
// }
i = 3;

selectPort (ToF[i]);
msTimerDelay (1) ;
VL53L0X init();
dists[i] = VL53L0X readRangeSingleMillimeters();
if(lauto _int clr) {
writeRegister(VL53LOX_I2CADDR, SYSTEM INTERRUPT CLEAR, 0x01);
// clear interrupt

}

i = 4;

selectPort (ToF[i]);

msTimerDelay (1) ;

VL53L0X init();

dists[i] = VL53L0X readRangeSingleMillimeters();

if(lauto_int clr) {

writeRegister(VL53LOX_I2CADDR, SYSTEM_INTERRUPT_CLEAR, 0x01);

// clear interrupt

}

i =5;

selectPort (ToF[1]);

msTimerDelay (1) ;

VL53L0X_init ();

dists[i] = VL53L0X readRangeSingleMillimeters();

101

if(lauto_int clr) {
writeRegister (VL53LOX_IZCADDR, SYSTEM INTERRUPT CLEAR,
// clear interrupt
}
}

void getSingleToF (int ToF num, uintl6é t *dists) {
selectPort (ToF[ToF num]); // Select Multiplexer 0, Port 0
msTimerDelay (1) ;
dists[ToF num]
msTimerDelay (1) ;

I~

VL53L0X readRangeSingleMillimeters();

}

void getAllToF (uintl6 t *dists) {
int i = 0;
for(i = 0; i < 6; i++) {
selectPort (ToF[i]);
msTimerDelay (1) ;
dists[i] = VL53L0X readRangeSingleMillimeters();
msTimerDelay (1) ;

}

void getAllToF2 (uintl6 t *dists) {

int 1 = 1;
// selectPort (ToF[i]); // Select Multiplexer 0, Port 1
// msTimerDelay (1) ;
// VL53L0X startContinuous(0);
// dists[i] = VL53L0X readRangeSingleMillimeters();
// msTimerDelay (1) ;
i = 3;

selectPort (ToF[i]); // Select Multiplexer 1, Port 0

msTimerDelay (1) ;
dists[i] = VL53L0X readRangeSingleMillimeters();

msTimerDelay (1) ;

i = 4;

selectPort (ToF[i]); // Select Multiplexer 1, Port 1
msTimerDelay (1) ;

dists[i] = VL53L0X readRangeSingleMillimeters();
msTimerDelay (1) ;

i =5;

selectPort (ToF[i]); // Select Multiplexer 1, Port 2
msTimerDelay (1) ;

dists[i] = VL53L0X readRangeSingleMillimeters();
msTimerDelay (1) ;

}

0x01);

// given the array of distances, return the index of the closest

object

102

uint8 t getNearestObstacleIndex(uintl6 t *dists) {
uint8 t index = OxFF;

uintlé t min = OxFFFF; // 65535
int 1 = 0;
for(i = 0; 1 < NUM TOF; i++) |
if(dists[i] < min) { // 1f this is the minimum value
min = dists[i]; // min is the minimum value
index = i; // update the value of index
}
}
return index; // 255 indicates all sensors returned
65535

}

uint8 t getNearestObstaclelIndex2 (uintl6 t *dists) {
uint8 t index = OxFEF;

uintl6 t min = OxFFFF; // 65535

int 1 = 1;

if (dists[i] < min) { // 1f this is the minimum value
min = dists[i]; // min is the minimum value
index = 1i; // update the value of index

}

i = 3;

1if(dists[1i] < min) { // 1f this is the minimum value
min = dists[i]; // min is the minimum value
index = 1i; // update the value of index

}

i=4;

if(dists[1i] < min) { // 1f this is the minimum value
min = dists[i]; // min is the minimum value
index = 1i; // update the value of index

}

i =25;

1if(dists[1i] < min) { // 1f this is the minimum value
min = dists[i]; // min is the minimum value
index = i; // update the value of index

}

return index; // 255 indicates all sensors returned

65535

}

/****‘k‘k‘k‘k‘k‘k‘k‘k‘k*‘k‘k‘k*‘k*‘k‘k*‘k*‘k‘k‘k*‘k*‘k‘k*‘k
****/

103

/* *x kX kX kX K*X x Kk * X*x * * * % ToF Sensor Functions *x kX kX K*x kX k* Kk K*x * *
*x k% */
uint8 t VL53LOX init(void) ({

uint8 t success = 0;

if (VL53L0X config()) { // configure ToF
success = 1;

}

VL53L0X setTimeout (200); // was 500

// Start continuous back-to-back mode (take readings as
// fast as possible). To use continuous timed mode

// instead, provide a desired inter-measurement period in
// ms (e.g. sensor.startContinuous (100))

VL53L0X setMeasurementTimingBudget (200000); // was 200000
//VL53L0X startContinuous(0); // was 0
VL53L0X stopContinuous () ;

return success;

}

bool VL53L0X config(void) {
// VL53LOX DataInit() begin
uint8 t io 2v8 = 0;

// sensor uses 1V8 mode for I/0 by default; switch to 2V8 mode if
necessary
if (io 2v8) {
writeRegister (VL53L0X I2CADDR,
VHV_CONFIG PAD SCL SDA EXTSUP HV,
readReg (VL53L0X_I2CADDR, VHV CONFIG PAD SCI, SDA EXTSUP HV) |
0x01); // set bit 0
}

// "Set I2C standard mode"
writeRegister (VL53L0X I2CADDR, 0x88, 0x00);

writeRegister (VL53L0X I2CADDR, 0x80, 0x01);
writeRegister (VL53L0X I2CADDR, OxFF, 0x01);
writeRegister (VL53L0OX I2CADDR, 0x00, 0x00);

stop_variable = readReg(VL53L0X I2CADDR, 0x91);

writeRegister (VL53L0X I2CADDR, 0x00, 0x01);
writeRegister (VL53L0X I2CADDR, OxFF, 0x00);
writeRegister (VL53L0X I2CADDR, 0x80, 0x00);

// disable SIGNAL RATE MSRC (bit 1) and SIGNAL RATE PRE RANGE (bit

4) limit checks
writeRegister(VL53LOX_I2CADDR, MSRC_CONFIG_CONTROL,
readReg(VL53LOX_I2CADDR, MSRC_CONFIG_CONTROL) | 0x12);

104

// set final range signal rate limit to 0.25 MCPS (million counts
per second)
VL53L0X setSignalRateLimit (0.25);

writeRegister(VL53LOX_I2CADDR, SYSTEM SEQUENCE CONFIG, OXFF) ;
// VL53LOX DatalInit() end
// VL53LOX_StatiCInit() begin

uint8 t spad count;

bool spad type is aperture;

if (!VL53L0X getSpadInfo(&spad count, &spad type is aperture)) {
return false; }

// The SPAD map (RefGoodSpadMap) is read by
VL53L0X get info from device() in

// the API, but the same data seems to be more easily readable
from

// GLOBAL CONFIG SPAD ENABLES REF O through 6, so read it from
there

uint8 t ref spad mapl[6];

VL53L0X Read (GLOBAL CONFIG SPAD ENABLES REF 0, ref spad map, 6);

// -- VL53L0X set reference spads() begin (assume NVM values are
valid)

writeRegister (VL53L0X I2CADDR, OxFF, 0x01);

writeRegister (VL53L0OX I2CADDR, DYNAMIC SPAD REF EN START OFFSET,
0x00) ;

writeRegister (VL53L0X I2CADDR,
DYNAMIC SPAD NUM REQUESTED REF SPAD, 0x2C);

writeRegister (VL53L0X I2CADDR, OxFF, 0x00);

writeRegister(VL53LOX_IZCADDR, GLOBAL CONFIG REF EN START SELECT,
0xB4) ;

uint8 t first spad to enable = spad type is aperture ? 12 : 0; //
12 is the first aperture spad
uint8 t spads enabled = 0;

uint8 t i;
for (i = 0; 1 < 48; 1i++) {
if (1 < first spad to enable || spads enabled == spad count) ({
// This bit is lower than the first one that should be
enabled, or
// (reference spad count) bits have already been enabled, so
zero this bit
ref spad map[i / 8] &= ~(1 << (1 % 8));
}
else if ((ref spad map[i / 8] >> (i % 8)) & O0xl) {

105

spads_enabled++;
}
}

// TODO: ?

//writeMulti (GLOBAL CONFIG SPAD ENABLES REF 0, ref spad map, 6);

uint8 t ad[] = {GLOBAL CONFIG SPAD ENABLES REF 0}; // this is a
dumb workaround

while(I2C_Status != I2C1 MESSAGE COMPLETE) ;

I2Cl1 MasterWrite(ad, 1, VL53LOX I2CADDR, &I2C Status);

while (I2C_Status != I2C1 MESSAGE COMPLETE) ;

I2C1 MasterWrite (ref spad map, sizeof (ref spad map),
VL53L0X I2CADDR, &I2C Status);

while(IZC_Status I= IZCl_MESSAGE_COMPLETE);

// —-- VL53LOX set reference spads() end

// DefaultTuningSettings from v15310x tuning.h
// —- VL53LOX load tuning settings() begin
writeRegister (VL53L0X I2CADDR, OxFF, 0x01);
writeRegister (VL53L0OX I2CADDR, 0x00, 0x00);

writeRegister (VL53L0OX I2CADDR, OxFF, 0x00)
writeRegister (VL53L0X I2CADDR, 0x09, 0x00);
writeRegister (VL53L0X I2CADDR, 0x10, 0x00)
writeRegister (VL53L0X I2CADDR, 0x11, 0x00)

writeRegister (VL53L0X I2CADDR, 0x24, 0x01);
writeRegister (VL53L0X I2CADDR, 0x25, OxFF);
writeRegister (VL53L0OX I2CADDR, 0x75, 0x00);

writeRegister
writeRegister
writeRegister
writeRegister

VL53L0X_I2CADDR, OxFF, 0x01)
VL53L0X_I2CADDR, Ox4E, 0x2C)
VL53L0X_I2CADDR, 0x48, 0x00);
VL53L0X_I2CADDR, 0x30, 0x20)

— o~ o~ —~

writeRegister (VL53L0X I2CADDR, OxFF, 0x00)
writeRegister (VL53L0X I2CADDR, 0x30, 0x09)
writeRegister (VL53L0X I2CADDR, 0x54, 0x00)
writeRegister (VL53L0X I2CADDR, 0x31, 0x04)
writeRegister (VL53L0X I2CADDR, 0x32, 0x03)
writeRegister (VL53L0OX I2CADDR, 0x40, 0x83)
writeRegister (VL53L0X I2CADDR, 0x46, 0x25)
writeRegister (VL53L0X I2CADDR, 0x60, 0x00)
writeRegister (VL53L0X I2CADDR, 0x27, 0x00);
writeRegister (VL53L0X I2CADDR, 0x50, 0x06)
writeRegister (VL53L0X I2CADDR, 0x51, 0x00)
writeRegister (VL53L0X I2CADDR, 0x52, 0x96)
writeRegister (VL53L0X I2CADDR, 0x56, 0x08)
writeRegister (VL53L0X I2CADDR, 0x57, 0x30)
writeRegister (VL53L0X I2CADDR, 0x61, 0x00)
writeRegister (VL53L0X I2CADDR, 0x62, 0x00)
writeRegister (VL53L0X I2CADDR, 0x64, 0x00)

106

writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,

writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,

writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,

writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,

writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,

writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,

writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,

writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,

writeRegister (VL53L0X I2CADDR,
writeRegister (VL53L0X I2CADDR,

0x65,
0x66,

OXFF,
0x22,
0x47,
0x49,
0x4A,

OxFF,
0x7A,
0x7B,
0x78,

OxFF,
0x23,
0x42,
0x44,
0x45,
0x46,
0x40,
0x0E,
0x20,
0x43,

OxFF,
0x34,
0x35,

OxFF,
0x31,
0x4B,
0x4cC,
0x4D,

OxFF,
0x44,
0x45,
0x47,
0x48,
0x67,
0x70,
0x71,
0x72,
0x76,
0x77,

OxXFF,
0x0D,

OxFF,
0x80,

107

writeRegister (VL53L0X I2CADDR, 0x01, OxF8);

writeRegister (VL53L0X I2CADDR, OxFF, 0x01)
writeRegister(VL53LOX_I2CADDR, O0x8E, 0x01)
writeRegister (VL53L0X I2CADDR, 0x00, 0x01);
writeRegister(VL53LOX_I2CADDR, OxXFF, 0x00)
writeRegister(VL53LOX_I2CADDR, 0x80, 0x00)
// —-= VL53L0X load tuning settings() end

// "Set interrupt config to new sample ready"

// —-- VL53L0X SetGpioConfig() begin

writeRegiSter(VL53LOX_IZCADDR, SYSTEM INTERRUPT CONFIG GPIO,
0x04) ;

writeRegiSter(VL53LOX_IZCADDR, GPIO _HV MUX ACTIVE HIGH,
readReg (VL53L0X_I2CADDR, GPIO HV MUX ACTIVE HIGH) & ~0x10); // active
low

if(auto_int clr) {

writeRegister (VL53L0X I2CADDR, SYSTEM INTERRUPT CLEAR, 0x01);

// clear interrupt

}
// == VL53L0X SetGpioConfig() end

measurement timing budget us =
VL53L0X getMeasurementTimingBudget () ;

// "Disable MSRC and TCC by default"

// MSRC = Minimum Signal Rate Check

// TCC = Target CentreCheck

// —-— VL53L0X SetSequenceStepEnable () begin

writeRegister (VL53L0X I2CADDR, SYSTEM SEQUENCE CONFIG, OxES8);
// —-— VL53L0X SetSequenceStepEnable () end

// "Recalculate timing budget"
VL53L0X setMeasurementTimingBudget (measurement timing budget us);

// VL53LOX StaticInit () end

// VL53LOX PerformRefCalibration() begin
(VL53L0X perform ref calibration())

// —- VL53LOX perform vhv calibration() begin

writeRegister (VL53L0X I2CADDR, SYSTEM SEQUENCE CONFIG, 0x01);
if (!VL53L0X performSingleRefCalibration(0x40)) { return false; }

// —- VL53LOX perform vhv calibration() end
// —-- VL53LOX perform phase calibration() begin

writeRegister (VL53L0X I2CADDR, SYSTEM SEQUENCE CONFIG, 0x02);

108

if (!VL53L0X performSingleRefCalibration(0x00)) { return false; }
// —-- VL53LOX perform phase calibration() end

// "restore the previous Sequence Config"
writeRegister(VL53LOX_IZCADDR, SYSTEM SEQUENCE CONFIG, O0xES8);

// VL53LOX PerformRefCalibration() end

return true;

}

bool VL53L0OX setSignalRateLimit (float limit Mcps) {
if (limit Mcps < O || limit Mcps > 511.99) { return false; }

// Q9.7 fixed point format (9 integer bits, 7 fractional bits)
writeRegister 16b (VL53L0OX I2CADDR,

FINAL RANGE CONFIG MIN COUNT RATE RTN LIMIT, limit Mcps * (1 << 7));
return true;

}

// Get reference SPAD (single photon avalanche diode) count and type

// based on VL53L0OX get info from device(),

// but only gets reference SPAD count and type

bool VL53L0X getSpadInfo(uint8 t * count, bool * type is aperture) {
uint8 t tmp;

writeRegister (VL53L0X I2CADDR, 0x80, 0x01);
writeRegister (VL53L0X I2CADDR, OxFF, 0x01);
writeRegister (VL53L0OX I2CADDR, 0x00, 0x00);

writeRegister (VL53L0OX I2CADDR, OxFF, 0x06);

writeRegister (VL53L0X I2CADDR, 0x83, readReg(VL53L0OX I2CADDR, 0x83)
| 0x04);

writeRegister (VL53L0X I2CADDR, OxFF, 0x07);

writeRegister (VL53L0X I2CADDR, 0x81, 0x01);

writeRegister (VL53L0X I2CADDR, 0x80, 0x01);
writeRegister (VL53L0X I2CADDR, 0x94, 0x6b);

writeRegister (VL53L0OX I2CADDR, 0x83, 0x00);
startTimeout () ;

// HELP
while (readReg(VL53L0X I2CADDR, 0x83) == 0x00) {
if (checkTimeoutExpired()) { return false; }

}
writeRegister (VL53L0X I2CADDR, 0x83, 0x01);
readRegister (VL53L0X I2CADDR, 0x92, &tmp);

*count = tmp & O0x7f;
*type 1is aperture = (tmp >> 7) & 0x01;

109

writeRegister (VL53L0OX I2CADDR, 0x81, 0x00);
writeRegister (VL53L0X I2CADDR, OxFF, 0x06);

writeRegister (VL53L0X I2CADDR, 0x83, readReg(VL53L0X I2CADDR, 0x83)
& ~0x04); //(3) for this
writeRegister (VL53L0X I2CADDR, OxFF, 0x01);
writeRegister (VL53L0X I2CADDR, 0x00, 0x01);
writeRegister (VL53L0X I2CADDR, OxFF, 0x00);
writeRegister (VL53L0X I2CADDR, 0x80, 0x00);
return true;
}
// Get the measurement timing budget in microseconds
// based on VL53LOX get measurement timing budget micro seconds ()
// in us
uint32 t VL53L0X getMeasurementTimingBudget (void) {
SequenceStepEnables enables;
SequenceStepTimeouts timeouts;
uintl6_t const StartOverhead = 1910; // note that this is
different than the value in set
uintl6é t const EndOverhead = 960;
uintl6 t const MsrcOverhead = 660;
uintl6é t const TccOverhead = 590;
uintl6 t const DssOverhead = 690;
uintl6 t const PreRangeOverhead = 660;
uintl6 t const FinalRangeOverhead = 550;
// "Start and end overhead times always present"
uint32 t budget us = StartOverhead + EndOverhead;
VL53L0X getSequenceStepEnables (&enables);
VL53L0X getSequenceStepTimeouts (&enables, &timeouts);
if (enables.tcc) {
budget us += (timeouts.msrc dss tcc us + TccOverhead);
}
if (enables.dss) {
budget us += 2 * (timeouts.msrc dss tcc us + DssOverhead);
}
else if (enables.msrc) {
budget us += (timeouts.msrc dss tcc us + MsrcOverhead);
}
if (enables.pre range) {
budget us += (timeouts.pre range us + PreRangeOverhead);
}
if (enables.final range) {
budget us += (timeouts.final range us + FinalRangeOverhead) ;

110

}

measurement timing budget us = budget us; // store for internal
reuse
return budget us;

}

// Get sequence step enables

// based on VL53L0X GetSequenceStepEnables ()

void VL53L0OX getSequenceStepEnables (SequenceStepEnables * enables) {
uint8 t sequence config;
readRegiSter(VL53LOX_I2CADDR, SYSTEM SEQUENCE CONFIG,

&sequence config);

enables->tcc = (sequence config >> 4) & 0x1;
enables->dss = (sequence config >> 3) & 0x1;
enables->msrc = (sequence config >> 2) & 0x1;
enables->pre range = (sequence config >> 6) & 0x1;
enables->final range = (sequence config >> 7) & 0x1;

}

// Get sequence step timeouts

// based on get sequence step timeout (),

// but gets all timeouts instead of just the requested one, and also

stores

// intermediate values

void VL53L0X getSequenceStepTimeouts (SequenceStepEnables const *

enables, SequenceStepTimeouts * timeouts) {
timeouts->pre range vcsel period pclks =

VL53L0X getVcselPulsePeriod(VcselPeriodPreRange) ;

timeouts->msrc dss tcc mclks = readReg (VL53L0OX I2CADDR,
MSRC CONFIG TIMEOUT MACROP) + 1;
timeouts->msrc dss tcc us =
VL53L0X timeoutMclksToMicroseconds (timeouts->msrc dss tcc mclks,
timeouts-
>pre range vcsel period pclks);

timeouts->pre range mclks =
VL53L0X decodeTimeout (readRegister 16b (VL53L0X I2CADDR,
PRE RANGE CONFIG TIMEOUT MACROP HI));
timeouts->pre range us =
VL53L0X timeoutMclksToMicroseconds (timeouts->pre range mclks,
timeouts-
>pre range vcsel period pclks);

timeouts->final range vcsel period pclks =
VL53L0X getVcselPulsePeriod (VcselPeriodFinalRange);

timeouts->final range mclks =

VL53L0X decodeTimeout (readRegister 16b(VL53L0X I2CADDR,
FINAL RANGE CONFIG TIMEOUT MACROP HI));

111

if (enables->pre range) {
timeouts->final range mclks -= timeouts->pre range mclks;

}

timeouts->final range us =
VL53L0X timeoutMclksToMicroseconds (timeouts->final range mclks,
timeouts-
>final range vcsel period pclks);

}

// Get the VCSEL pulse period in PCLKs for the given period type.
// based on VL53L0OX get vcsel pulse period()
uint8 t VL53LOX getVcselPulsePeriod(vcselPeriodType type) {
if (type == VcselPeriodPreRange) {
return decodeVcselPeriod(readReg (VL53L0X I2CADDR,
PRE_RANGE_CONFIG _VCSEL PERIOD)) ;
}
else 1if (type == VcselPeriodFinalRange) {
return decodeVcselPeriod(readReg (VL53L0X I2CADDR,
FINAL RANGE CONFIG VCSEL PERIOD));
}
else { return 255; }

}

// Convert sequence step timeout from MCLKs to microseconds with given
VCSEL period in PCLKs
// based on VL53L0X calc timeout us()
uint32 t VL53L0X timeoutMclksToMicroseconds (uintl6 t
timeout period mclks, uint8 t vcsel period pclks) {
uint32 t macro period ns = calcMacroPeriod(vcsel period pclks);

return ((timeout period mclks * macro period ns) + (macro period ns
/ 2)) / 1000;
}

// Convert sequence step timeout from microseconds to MCLKs with given
VCSEL period in PCLKs
// based on VL53L0X calc timeout mclks ()
uint32 t VL53L0X timeoutMicrosecondsToMclks (uint32 t
timeout period us, uint8 t vcsel period pclks) {
uint32 t macro period ns = calcMacroPeriod(vcsel period pclks);

return (((timeout period us * 1000) + (macro period ns / 2)) /
macro_period ns);

}

// Decode sequence step timeout in MCLKs from register value

// based on VL53LOX decode timeout ()

// Note: the original function returned a uint32 t, but the return
value is

// always stored in a uintl6 t.

112

uintl6 t VL53L0X decodeTimeout (uintlé t reg val) {
// format: " (LSByte * 2"MSByte) + 1"
return (uintl6_t) ((reg val & Ox00FF) <<
(uintlé t) ((reg val & OxFFO00) >> 8)) + 1;
}

bool VL53L0X setMeasurementTimingBudget (uint32 t budget us) {
SequenceStepEnables enables;
SequenceStepTimeouts timeouts;

uintl6_t const StartOverhead = 1320; // note that this is
different than the value in get
uintl6_t const EndOverhead = 960;
uintl6 t const MsrcOverhead = 660;
uintl6é t const TccOverhead = 590;
uintl6_t const DssOverhead = 690;
uintl6 t const PreRangeOverhead = 660;
uintl6 t const FinalRangeOverhead = 550;

uint32 t const MinTimingBudget = 20000;
if (budget us < MinTimingBudget) { return false; }
uint32 t used budget us = StartOverhead + EndOverhead;

VL53L0X getSequenceStepEnables (&enables);
VL53L0X getSequenceStepTimeouts (&enables, &timeouts);

if (enables.tcc) {
used budget us += (timeouts.msrc dss tcc us + TccOverhead);

}

if (enables.dss) {

used budget us += 2 * (timeouts.msrc dss tcc us + DssOverhead);
}
else 1f (enables.msrc) {

used budget us += (timeouts.msrc dss tcc us + MsrcOverhead);

}

if (enables.pre range) {
used budget us += (timeouts.pre range us + PreRangeOverhead);

}

if (enables.final range) {
used budget us += FinalRangeOverhead;

// "Note that the final range timeout is determined by the timing
// budget and the sum of all other timeouts within the sequence.
// If there is no room for the final range timeout, then an error
// will be set. Otherwise the remaining time will be applied to
// the final range."

113

—~

if (used budget us > budget us)
// "Requested timeout too big.
return false;

}

uint32 t final range timeout us budget us - used budget us;
// set sequence step timeout () begin
// (SequenceStepId == VL53L0X SEQUENCESTEP FINAL RANGE)

// "For the final range timeout, the pre-range timeout
// must be added. To do this both final and pre-range
// timeouts must be expressed in macro periods MClks
// because they have different vcsel periods."

uintl6 t final range timeout mclks =
VL53L0X timeoutMicrosecondsToMclks (final range timeout us,

timeouts.final range vcsel period pclks);

if (enables.pre range) {
final range timeout mclks += timeouts.pre range mclks;

}

writeRegister 16b (VL53L0OX I2CADDR,
FINAL RANGE CONFIG TIMEOUT MACROP HI,
VL53L0X encodeTimeout (final range timeout mclks));

// set sequence step timeout () end

measurement timing budget us = budget us; // store for internal
reuse
}
return true;

}

// Encode sequence step timeout register value from timeout in MCLKs
// based on VL53LOX encode timeout ()
// Note: the original function took a uintlé t, but the argument
passed to it
// 1s always a uintlé t.
uintl6 t VL53L0X encodeTimeout (uintl6é t timeout mclks) {

// format: " (LSByte * 2"MSByte) + 1"

uint32 t 1s byte = 0;
uintl6 t ms byte 0;

if (timeout mclks > 0) {
ls byte = timeout mclks - 1;

while ((ls byte & OxFFFFFFO00) > 0) {
1s byte >>= 1;

114

ms byte++;
}

return (ms byte << 8) | (ls byte & O0xFF);
}
else { return 0; }

}

// based on VL53LOX perform single ref calibration()

bool VL53L0OX performSingleRefCalibration(uint8 t vhv init byte) {
writeRegister (VL53L0X I2CADDR, SYSRANGE START, 0x01 |

vhv_init byte); // VL53L0X REG SYSRANGE MODE START STOP

startTimeout () ;
while ((readReg(VL53LOX_IZCADDR, RESULT_INTERRUPT_STATUS) & 0x07)
== 0) {
if (checkTimeoutExpired()) { return false; }

}

if(auto_int clr) {
writeRegister (VL53L0X I2CADDR, SYSTEM INTERRUPT CLEAR, 0x01);
// clear interrupt

}

writeRegister (VL53L0X I2CADDR, SYSRANGE START, 0x00);

return true;

}

// FOR TOF READS:

// Start continuous ranging measurements. If period ms (optional) is 0
or not
// given, continuous back-to-back mode is used (the sensor takes
measurements as
// often as possible); otherwise, continuous timed mode is used, with
the given
// inter-measurement period in milliseconds determining how often the
sensor
// takes a measurement.
// based on VL53L0X StartMeasurement ()
void VL53L0OX startContinuous(uint32 t period ms) {
writeRegister (VL53L0X I2CADDR, 0x80, 0x01);
writeRegister (VL53L0X I2CADDR, OxFF, 0x01);
writeRegister (VL53L0X I2CADDR, 0x00, 0x00);
writeRegister (VL53L0X I2CADDR, 0x91, stop variable);
writeRegister (VL53L0X I2CADDR, 0x00, 0x01)
writeRegister (VL53L0X I2CADDR, OxFF, 0x00);
writeRegister (VL53L0X I2CADDR, 0x80, 0x00)

if (period ms != 0) {
// continuous timed mode

115

// VL53LOX SetInterMeasurementPeriodMilliSeconds () begin

uintlé t osc calibrate val = readRegister 16b(VL53L0X I2CADDR,
OSC CALIBRATE VAL);

if (osc_calibrate val != 0) {
period ms *= osc calibrate val;

}

writeRegister 32b (VL53L0OX I2CADDR, SYSTEM INTERMEASUREMENT PERIOD,
period ms);

// VL53LOX SetInterMeasurementPeriodMilliSeconds () end

writeRegister (VL53L0X I2CADDR, SYSRANGE START, 0x04); //
VL53L0X_REG_SYSRANGE MODE_TIMED
}
else {
// continuous back-to-back mode
writeRegister (VL53L0X I2CADDR, SYSRANGE START, 0x02); //
VL53LOX_REG_SYSRANGE_MODE_BACKTOBACK
}
}

// Stop continuous measurements
// based on VL53L0X StopMeasurement ()
void VL53L0X stopContinuous (void) {
writeRegister (VL53L0X I2CADDR, SYSRANGE START, 0x01); //
VL53L0X REG SYSRANGE MODE SINGLESHOT

writeRegister (VL53L0OX I2CADDR, OxFF, 0x01)
writeRegister (VL53L0X I2CADDR, 0x00, 0x00)
writeRegister (VL53L0OX I2CADDR, 0x91, 0x00);
writeRegister (VL53L0X I2CADDR, 0x00, 0x01)
writeRegister (VL53L0X I2CADDR, OxFF, 0x00)

}

// Returns a range reading in millimeters when continuous mode is
active
// (readRangeSingleMillimeters () also calls this function after
starting a
// single-shot range measurement)
uintl6 t VL53L0X readRangeContinuousMillimeters (void) {
startTimeout () ;
while ((readReg(VL53LOX_IZCADDR, RESULT_INTERRUPT_STATUS) & 0x07)
== 0) {
if (checkTimeoutExpired()) {
did timeout = true;
return 65535;

116

// assumptions: Linearity Corrective Gain is 1000 (default);
// fractional ranging is not enabled
uintlé t range = readRegister 16b(VL53L0X I2CADDR,

RESULT RANGE STATUS + 10);

if (auto_int clr) {
writeRegister(VL53LOX_IZCADDR, SYSTEM INTERRUPT CLEAR, 0x01) ;
// clear interrupt

}

return range;

}

// Performs a single-shot range measurement and returns the reading in

// millimeters

// based on VL53LOX PerformSingleRangingMeasurement ()

uintlé t VL53L0X readRangeSingleMillimeters (void) {
writeRegister (VL53L0OX I2CADDR, 0x80, 0x01);
writeRegister (VL53L0OX I2CADDR, OxFF, 0x01);
writeRegister (VL53L0OX I2CADDR, 0x00, 0x00);
writeRegister (VL53L0OX TI2CADDR, 0x91, stop variable);
writeRegister (VL53L0X I2CADDR, 0x00, 0x01);
writeRegister (VL53L0X I2CADDR, OxFF, 0x00);
writeRegister (VL53L0X I2CADDR, 0x80, 0x00);

writeRegister (VL53L0X I2CADDR, SYSRANGE START, 0x01);

// "Wait until start bit has been cleared"
startTimeout () ;
while (readReg(VL53LOX_IZCADDR, SYSRANGE START) & 0x01) {
if (checkTimeoutExpired()) {
did timeout = true;
return 65535;

}

return VL53L0X readRangeContinuousMillimeters();

}

// Did a timeout occur in one of the read functions since the last
call to
// timeoutOccurred()?
bool VL53L0OX timeoutOccurred() {
bool tmp = did timeout;
did timeout = false;
return tmp;

}

/****‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k*‘k*‘k‘k‘k‘k***********
****/

117

/* *x X X K*x K*x K*x *x *x *x *x *x % Accelerometer Functions *x X X K*x K*x K*x *x *x *x %
*x X% */

//<Nick>

void H3LIS200DL begin ()

{
H3LIS200DL setPowerMode (NORMAL) ;
H3LIS200DL axesEnable (true);

uint8 t data = O;

uint8 t i = 0x21;
for (1 = 0x21; 1 < 0x25; i++) {

writeRegister (H3LIS200DL I2CADDR, i, data);
}

uint8 t j = 0x30;
for (j = 0x30; 3 < 0x37; j++) {
writeRegister (H3LIS200DL IZCADDR, j, data);
}
}

void H3LIS200DL axesEnable (bool enable)
{
uint8 t data;

readRegister (H3LIS200DL I2CADDR, H3LIS200DL CTRL REG1, &data);
if (enable)
{
data |= 0x07;
}
else
{
data &= ~0x07;
}
writeRegister(H3LISZOODL_IZCADDR, H3LISZOODL_CTRL_REG1, data) ;
}

void H3LIS200DL setPowerMode (power mode pmode)
{
uint8 t data;

readRegister (H3LIS200DL I2CADDR, H3LISZ200DL CTRL REG1, &data);

// The power mode is the high three bits of CTRL REGl. The mode

// constants are the appropriate bit values left shifted by five,
so we

// need to right shift them to make them work. We also want to mask
off the

// top three bits to zero, and leave the others untouched, so we
only

// affect the power mode bits.

data &= ~0xe0; // Clear the top three bits

data |= pmode<<5; // set the top three bits to our pmode value

118

writeRegister(H3LISZOODL_IZCADDR, H3LISZOODL_CTRL_REG1, data); //
write the new value to CTRL REGI
}

void H3LIS200DL setODR(data rate drate)
{
uint8 t data;
readRegister(H3LISZOODL_I2CADDR, H3LISZOODL_CTRL_REG1, &data) ;

// The data rate is bits 4:3 of CTRL REGl. The data rate constants
are the

// appropriate bit values; we need to right shift them by 3 to
align them

// with the appropriate bits in the register. We also want to mask
off the

// top three and bottom three bits, as those are unrelated to data
rate and

// we want to only change the data rate.

data &=~0x18; // Clear the two data rate bits

data |= drate<<3; // Set the two data rate bits appropriately.

writeRegister (H3LIS200DL I2CADDR, H3LIS200DL CTRL REG1l, data); //
write the new value to CTRL REGI1
}

void H3LIS200DL readAxes (intlé t* x, intl6 t* y, intl6 t* z)
{

uint8 t data[6]; // create a buffer for our incoming data

readRegister (H3LIS200DL I2CADDR, H3LIS200DL OUT X L, &datal

readRegister (H3LIS200DL I2CADDR, H3LIS200DL OUT X H, &datal

readRegister (H3LIS200DL I2CADDR, H3LIS200DL OUT Y L, &datal

readRegister (H3LIS200DL I2CADDR, H3LIS200DL OUT Y H, &datal

readRegister (H3LIS200DL I2CADDR, H3LIS200DL OUT 7 L, &datal

readRegister (H3LIS200DL I2CADDR, H3LIS200DL OUT 7 H, &datal

// The data that comes out is 12-bit data, left justified, s
lower

// four bits of the data are always zero. We need to right shift by
four,

// then typecase the upper data to an integer type so it does a
signed

// right shift.

*x = data[0] | datal[l] << 8;
*y = data[2] | data[3] << 8;
*z = datal[4] | datal5] << 8;
*x o= (*x>>4) ;
xy = (ry>>4) ;
*z o= (*z>>4) ;

}
intlée t H3LIS200DL Read x(intl6 t x)

{
uint8 t datal6];

119

readRegister (H3LIS200DL I2CADDR, H3LIS200DL OUT X L, &datal[0]);
readRegister (H3LIS200DL I2CADDR, H3LIS200DL OUT X H, &datal[l]);
X data[0] | datall] << 8;

X = x > 4;

return (x) ;

}

intlé t H3LIS200DL Read y(intl6 t vy)

{
uint8 t datal6];
readRegister (H3LIS200DL I2CADDR, H3LIS200DL OUT Y L, &datal[2]);
//12Cl MasterRead(&data[2], 2, H3LIS200DL_ I2CADDR, &I2C Status);
readRegister (H3LIS200DL I2CADDR, H3LIS200DL OUT Y H, &datal[3]);
//12Cl MasterRead(&data[3], 2, H3LIS200DL_ I2CADDR, &I2C Status);
y = data[2] | data[3] << 8;
y =y >> 4;
return(y) ;

}

intl6 t H3LIS200DL Read z(intl6 t z)

{
uint8 t datafl6];
readRegister (H3LIS200DL I2CADDR, H3LIS200DL OUT Z L, &datal4]):
readRegister (H3LIS200DL I2CADDR, H3LIS200DL OUT Z H, &datal[5]);
z = datal4] | datal[b] << 8;
z =z >> 4;
return(z);

}

intl6 t H3LIS200DL convertToG(intl6 t maxScale, intlé t reading)
{
maxScale = (float)maxScale;
reading = (float)reading;
float result = ((maxScale * reading)/2047);
return ((intl6 t)result);

}

void H3LIS200DL setHighPassCoeff (high pass cutoff freq cfg hpcoeff)
{
// The HPF coeff depends on the output data rate. The cutoff
frequency is
// 1s approximately fs/(6*HPc) where HPc is 8, 16, 32 or 64,
corresponding
// to the various constants available for this parameter.
uint8 t data;
readRegister (H3LIS200DL I2CADDR, H3LIS200DL CTRL REGZ, &data) ;
data &= ~0xfc; // Clear the two low bits of the CTRL_REG2
data |= hpcoeff;
writeRegister (H3LIS200DL CTRL REG2, data, 1);
}

void H3LIS200DL enableHPF (bool enable)

120

}

// Enable the high pass filter

uint8 t data;

readRegister (H3LIS200DL I2CADDR, H3LIS200DL CTRL REGZ,
if (enable)

{

data |= 1<<5;
}
else
{
data &= ~(1<<5);

}
writeRegister (H3LIS200DL CTRL REG2, data, 1);

void H3LIS200DL HPFOnIntPin (bool enable, uint8 t pin)

{

}

// Enable the hpf on signal to int pins

uint8 t data;

readRegister (H3LIS200DL I2CADDR, H3LIS200DL CTRL REGZ,
if (enable)

{

if (pin == 1)
{
data |= 1<<3;
}
if (pin == 2)
{
data |= 1<<4;
}
}
else
{
if (pin == 1)

{

data &= ~1<<3;
}
if (pin == 2)
{

data &= ~1<<4;
}

}
writeRegister (H3LIS200DL CTRL REG2, data, 1);

void H3LIS200DL intActiveHigh (bool enable)

{

// Are the int pins active high or active low?
uint8 t data;

readRegister (H3LIS200DL I2CADDR, H3LIS200DL CTRL REG3,
// Setting bit 7 makes int pins active low

if (!enable)

121

&data) ;

&data) ;

&data) ;

}

{
data |= 1<<7;

}

else

{
data &= ~ (1<<7);

}
writeRegister (H3LIS200DL CTRL REG3, data, 1);

void H3LIS200DL intPinMode (pp_od pinMode)

{

}

uint8 t data;
readRegister(H3LIS2OODL_12CADDR, H3LIS2OODL_CTRL_REG3,
// Setting bit 6 makes int pins open drain.

if (pinMode == OPEN DRAIN)
{
data |= 1<<6;
}
else
{
data &= ~(1<<6);

}
writeRegister (H3LIS200DL CTRL REG3, data, 1);

&data) ;

void H3LIS200DL latchInterrupt (bool enable, uint8 t intSource)

{

// Latch mode for interrupt. When enabled, you must read the
INTx SRC reg

// to clear the interrupt and make way for another.
uint8 t data;

readRegister (H3LIS200DL I2CADDR, H3LIS200DL CTRL REG3,
// Enable latching by setting the appropriate bit.

if (enable)

{

if (intSource == 1)
{
data |= 1<<2;
}
if (intSource == 2)
{
data |= 1<<5;
}
}
else

{
if (intSource == 1)
{
data &= ~1<<2;

}

if (intSource == 2)

122

&data) ;

{
data &= ~1<<5;
}
}
writeRegister (H3LIS200DL CTRL REG3, data, 1);
}

void H3LIS200DL intSrcConfig(int sig src src, uint8 t pin)
{

uint8 t data;

readRegister (H3LIS200DL I2CADDR, H3LIS200DL CTRL REG3, &data) ;
// Enable latching by setting the appropriate bit.

if (pin == 1)

{

data &= ~0xfc; // clear the low two bits of the register
data |= src;

if (pin == 2)

data &= ~0xe7; // clear bits 4:3 of the register
data |= src<<4;

}
writeRegister (H3LIS200DL I2CADDR, H3LIS200DL CTRL REG3, data);
}

void H3LIS200DL setFullScale(fs range range)
{
uint8 t data;
readRegister (H3LIS200DL I2CADDR, H3LIS200DL CTRL REG4, &data) ;
data &= ~0xcf;
data |= range<<4;
writeRegister (H3LIS200DL CTRL REG4, data, 1);
}

bool H3LIS200DL newXData ()
{
uint8 t data;
readRegister (H3LIS200DL I2CADDR, H3LIS200DL STATUS REG, ¢&data);
if (data & 1<<0)
{

return true;

}

else

{

return false;
}
}

bool H3LIS200DL newYData ()

{
uint8 t data;

123

}

readRegister (H3LIS200DL I2CADDR, H3LIS200DL STATUS REG, ¢&data);

if (data & 1<<1)
{

return true;

}

else

{

return false;

}

bool H3LIS200DL newZData ()

{

}

uint8 t data;

readRegister (H3LIS200DL I2CADDR, H3LIS200DL STATUS REG, ¢&data);

if (data & 1<<2)
{

return true;

}

else

{

return false;

}

void H3LIS200DL enablelInterrupt (int axis axis, trig on level
triglLevel,

{

uint8 t interrupt,

uint8 t data, reg, mask;
mask = 0;
if (interrupt == 1)

{

reg = H3LIS200DL INT1 CFG;
}
else
{

reg = H3LISZOODL_INT2_CFG;

}
readRegister (H3LIS200DL I2CADDR, reg,
if (trigLevel == TRIG_ON HIGH)
{
mask = 1<<1;
}

else
{
mask = 1;
}
if (axis == 7Z AXIS) mask = mask<<4;
if (axis == Y AXIS) mask = mask<<2;

if (enable)
{

124

bool enable)

&data) ;

data |= mask;

}

else

{

data &= ~mask;

}
writeRegister (H3LIS200DL I2CADDR, reg, data);

}

void H3LIS200DL setIntDuration (uint8 t duration, uint8 t intSource)
{
if (intSource == 1)

{
writeRegister (H3LIS200DL IZ2CADDR, H3LIS200DL_INT1 DURATION,

duration) ;

}

else

{
writeRegister (H3LIS200DL IZ2CADDR, H3LIS200DL_ INTZ DURATION,

duration);
}
}

void H3LIS200DL setIntThreshold(uint8 t threshold, uint8 t intSource)
{
if (intSource == 1)

{
writeRegister (H3LIS200DL I2CADDR, H3LIS200DL INT1 THS, threshold);

}

else

{
writeRegister (H3LIS200DL I2CADDR, H3LIS200DL INTZ THS, threshold);

}

}
//</Nick>

// returns true if one of the axes exceeds the set threshold
bool getAccelPoints (void) {

uint8 t delay = 5;

selectPort2 (0x00, 0x03); // select Accelerometer port (Mux 0, Port
3)

// <Nick>

H3LIS200DL readAxes(&x 1, &y 1, &z 1);
timerl = millis();

msTimerDelay (delay) ;

H3LIS200DL readAxes(&x 2, &y 2, &z 2);
timer2 = millis();

msTimerDelay (delay) ;

H3LIS200DL readAxes (&x 3, &y 3, &z 3);

125

timer3 = millis();
msTimerDelay (delay) ;

H3LIS200DL readAxes (&x 4,
timerd4d = millis () ;
msTimerDelay (delay) ;

H3LIS200DL readAxes (&x 5,
timer5 = millis () ;
msTimerDelay (delay) ;

&y 4, &z 4);

&y 5, &z 5);

// find the maximum value of the 3 axes

if(x 3 >y 3) {
if(x 3 > z 3

max = x
}
else {
max = z 3;
}
}
else {
if(y 3 >z 3) {
max =y 37
}
else {
max = z_ 37
}
}
// </Nick>

// 1if the maximum value is at or above the preset threshold,

return true
return (max >= thresh);

}

bool getAccelPoints2 (void) {
uint8 t delay = 1;

selectPort?2 (0x00, 0x03);
3)

// <Nick>

intl6_t maxl = 0x0000;

intl6_t max2 = 0x0000;

intl6_t max3 = 0x0000;

intl6_t max4 = 0x0000;

intl6_t max5 = 0x0000;

intl6_t truemax = 0x0000;

H3LIS200DL readAxes (&x 1,
timerl = millis();
if(x 1 >y 1) {

if(x 1 >z 1) {

// select Accelerometer port

&y 1, &z 1);

126

(Mux O,

bPort

maxl

else {
max1l

else {
if(y 1 >
max1l

else {
max1l
}
}

= x 1;

Il |
|L<
}—\

Il
N
=

~.

msTimerDelay (delay) ;

H3LIS200DL readAxes (&x 2,
timer?2 = millis();
if(x 2 >y 2) {
if(x 2 >z 2) |
max2 = x 2;
}
else {
max2 = z_2;
}
}
else {
if(y 2 >z 2) |
maxz2 =y 2;
}
else {
maxz2 = z_2;
}
}
msTimerDelay (delay) ;
H3LIS200DL readAxes (&x 3,
timer3 = millis () ;
if(x 3 >y 3) {
if(x 3 >z 3) {
max3 = x 37
}
else {
max3 = z_3;
}
}
else {
if(y 3 > z 3) {
max3 =y 3;
}
else {
max3 = z 3;

127

&y 2,

&y_3,

&z 2);

&z 3);

}

}
msTimerDelay (delay) ;

H3LIS200DL readAxes (&x 4, &y 4,
timerd4d = millis () ;
if(x 4 >y 4) {

if(x 4 > z 4) |

max4 = x 4;
}
else {

max4d = z 4;

}

else {
if(y 4 > z 4) {
max4d =y 4;

else {
max4 = z 4;
}

}
msTimerDelay (delay) ;

H3LIS200DL readAxes (&x 5, &y 5,
timer5 = millis();
if(x 5 >y 5) |

if(x 5 >z 5) {

max5 = x 5;
}
else {

max5 = z 5;

}

else {
if(y 5 > z 5) {
max5 =y 5;

else {
maxb = z 5;
}
}
msTimerDelay (delay) ;
//showBinary(y << 1);
if (maxl > max?2)

{

if (maxl > max3)

{

if (maxl > max4)

{

if (maxl > max5b)

{

128

&z _4);

&z _5);

}

else if (max2 > max3)

{

}

}

truemax =

}

else

{

truemax =

}

maxl;

max5;

else i1f (max4 > maxb)

{

}

truemax

else

{

}

truemax

max4;

max5;

else if(max3 > max4)

{

}

if (max3 > maxb)

{
}

truemax

else

{

}

else

{

}

truemax

max3;

max5;

if (max4 > maxb)

{
}
else

{

}

truemax

truemax

if (max2 > max4)

{

max4;

max5;

if (max2 > maxb)

{
}
else

{

}

truemax

truemax

max5;

max5;

129

else if (max4 > maxb)

{

truemax = max4;

}
else
{
truemax = max5;
}
}
else if (max3 > max4)
{
if (max3 > maxb)
{
truemax = max3;
}
else

{

truemax = maxb5;

}
}

else if(max4 > maxb)

{

truemax = max4;
}
else
{
truemax = maxb;
}
// </Nick>

// 1if the maximum value is at or above the preset threshold,
return true
return (truemax >= thresh);

}

/**k*k*k*k*k*****************************

****/

// write a .CSV template to the SD card
// pass SD status and File Write status variables for debugging
purposes
void writeTemplateToSD (void) {
uint8 t SD status;
uint8 t FW status;

FATFS drive; // Work area (filesystem object) for logical
drive

FIL file; // File to write

UINT actualLength; // Actual length of

char data0O[] = "X, Y, Z, T\r\n";

char datal[] = "x1, yl1, zl1l, tl\r\n";

char data2[] = "x2, y2, z2, t2\r\n";

char filename[] = "DUMMY.CSV";

130

msTimerDelay (5) ;

if(SD_SPI IsMediaPresent () == false) {
return;

}

SD status = f mount (&drive,"0:", 1);

if (SD_status == FR OK) ({ //mount

if (f open(&file, filename, FA WRITE | FA CREATE NEW) ==
FR OK) { //Open or Create TEST.TXT file
FW status = f write(&file, datal, sizeof(datal)-1,

&actuallength); //write the first line

FW status = f write(&file, datal, sizeof (datal)-1,
&actuallength);

FW status = f write(&file, data2, sizeof (data2)-1,
&actuallength);

f close(&file);
}
f mount (0,"0:",0); //unmount disk
msTimerDelay (5) ;

}

// write a .CSV containing accelerometer data to the SD card
// pass SD status and File Write status variables for debugging
purposes
void writeAccelToSD (void) {
// <Nick>
uint8 t SD status;
uint8 t FW status;

FATFS drive; // Work area (filesystem object) for logical
drive

FIL file; // File to write

UINT actualLength; // Actual length of

char datalO[] = "X, Y, 7, t\r\n";

char filename[] = "ACCEL.CSV";

// write 5 data strings in .CSV format for X, Y, and Z axes

// with millis () timestamps to plot

sprintf (datal, "%f, %f, %f, %f \r\n", (double)x 1, (double)y 1,
(double)z 1, (double)timerl);

sprintf (data2, "%$f, %f, %f,
(double)z 2, (double)timer2);

sprintf (data3, "%$f, %f,
(double)z 3, (double)timer3);

sprintf (data4, "%$f, %f,
(double)z 4, (double)timerd);

sprintf (datab, "%$f, %f,
(double)z 5, (double)timer));

o°

f \r\n", (double)x 2, (double)y 2,

o0 ~

£,

o

f \r\n", (double)x 3, (double)y 3,

o

£,

o°
h

\r\n", (double)x 4, (double)y 4,

o

£,

o
h

\r\n", (double)x 5, (double)y 5,

// write the data strings to a file
if(SD SPI IsMediaPresent () == false) {
return;

}

131

SD _status = f mount (&drive,"0:", 1);
if (SD_status == FR _OK) { // mount disk
//0Open or Create <filename> file
if (f open(&file, filename, FA WRITE | FA CREATE NEW) ==
FR OK) {
// write column headers
FW status = f write(&file, datal, sizeof(datal)-1,
&actuallLength);

// write each line of data

FW status = f write(&file, datal, sizeof (datal)-1,
&actuallength);

FW status
&actuallength);

FW status
&actualLength);

FW status = f write(&file, datad4, sizeof (data4)-1,
&actualLength);

FW status

&actuallLength);

f write(&file, data2, sizeof(data2)-1,

f write(&file, data3, sizeof(data3l)-1,

f write(&file, datab, sizeof(datab)-1,

f close(&file); // close the file
}
f mount (0,"0:",0); // unmount disk
msTimerDelay (5) ;
}
// </Nick>

showConcussion(); // 5 second LED display:
RED/PURPLE/RED/PURPLE/RED
}

/**

End of File
*/

Appendix B: Datasheets

The following datasheet figures are from various subsystems on the H.A.L.O. design. All

subsystem datasheets and schematics have use in either board design, schematic design, or

code creation. For the physical circuits of the charging, converter, processor, 12C

Multiplexers, Accelerometer, and Time-of-Flight sensors, the pin connections, specifications

for use and requirements are in use. The schematics in these datasheets references also reflect

the creation of eagle schematics in the H.A.L.O. Though not a comprehensive list of all

132

datasheet components in use, the following figures convey majority of the information used in

designs so far. -NK

133

Processor datasheet:

64-Pin TQFP1:23)

TOUPWAMLEMISRAT
RPEEFWM 1 HTICK TTCKPMOSRE 14
RAATPWIMILTSCKTECKPMOTRES
ANTIRPTIEPMASRES [
ANTBASCLIRPHISPMALRET [
AN1TIASDA URP120PMAIRGE
MCLR
ANTERPIIZIPMAZRES]

vez[]

mm-nm:aﬁ.sz
ANSRFIZTIRAT
CAZOUTIANDICIINGSCAN-RPHERAD]
OAZINHANLICHN1RPHTIRAI[]
PEEDIVREF-IOAZN-ANICINI- S 1RPII2ICTEDRRED
PEEC IVREHOVREROA 1 DUTIANIC INS-CANZ-RPEYCTEDMRE

Mote 1:

Ports" for more information.

Wom e bW b o= O

=g

1z
132
14
1=

15

M SLRCa
FAMGLPMEERCT

3 [l RPMSFAM UG TRLEPND IRETS
ez [l RFALFAM PP MRS 2
43 [T TMEICASHAAMETICE M- IRPARED

&1 Jll RPARFAMILEMDIRE N
53] RPSRPAM SHPMNR IRCS

0 Jl] RP4ZF W SHIFMDVRE 1D
=9
=1 W RPER

4 [l TOOPWMHPMDERA 10
sa Jl] ReoTiR

55 [l RPREIRFD

57 [e

s vese

=5 |l ResT

s [l RETOvROG

£l RPeRFMRIRD S

=0 [l RPSRFAMEHRCE

dsPICIIEP128GM306/T06
dsPICIIEP256GM306T0E
dsPICIIEPS12GMI0GT0G

O
LTAEMA I RoH [T 24
vas[] 2

oo [e

LTI IRER [T 27

Moo [T 18
LTRPMAIORE: [T 28

avss[]

CASOU TIANBNI M- A WRPAROCFERCD [T 21
LTHPMaIREN [T

AHISREESFLTREMARETS [T 20

soasmrearMaass Il 21
ATazSCLaRPErPMe AR I 12

ARCIEU CTE

ANTERPIM)

AN AAMNTACEM - A SRPRCT [T 22
ANI2CINZ-C SNE-LERTSBC L2

PEED A IHANSIS I -NCTMUCHRPSRTCCRE [T 18
A RTENZUZCTE

PEECDA I AMEC N SN N RPoREs [T 17
WG AR BICIINEAC 3N 1 S RPISOUN RTSBCLK AL TRIRC2

This pin iz not available as an input when OPMODE (CMxCON<10=) = 1.

B = Pins are up to 5% tolerant

A

HER BB BEEENEES RS

[] TCKIAM2EICY REF s S DS CORPANTACKRES

[] soSCIRPISIRC 12

[] CASCAUTIANISICSINA-RPIVINTORET
ANASCVRE2ORPISSPMCS IRCTD
PGEC2ASCLIRPIRFPMCSIREE
PGEDASDAZRPITIRES
RPITZRDE
Vaz

[oscarcl KORPEIRE S

[] AR42M0SCICLKURPIGDRE 12

[]Woa

[] AN31:SCLARPISIRCS

[] ANIVSDALRAISTRCL

[] ANZVSCEURPISTRCS

[] akzssniREEsRas

[SN ANDACSINGC SN HSDOURPANT 1CKIRAL

\.

The RPr/RPIn ping can be used by any remappable peripheral with some limitation. See Section 11.4 “Peripheral
Pin Select (PPS)” for available perpherals and for information on limitations.
Every /O port pin (RAx-RGx) can be uged as a Change Nofification pin {CNAX-CNGx). See Section 11.0 “IO

134

Fin # Full Fin Mame Pin # Full Pin Name
Al TDOPWMIHPMDS/RAD EB8 AM4TIINTARA1S
A2 RP45PWMZL/CTPLS/FPMD3/RB13 =] RPITZRD8
A3 RP12BRG13 E10 PGED2ASDAXRPITRES
Ad RP42/PWM3IHPMDOVRB10 Ef1 AM4BNNTIRAS
A5 RPI112RG0 F MCLR
AR RPE7RF1 F2 ANTTIASDATRP120PMAIRGE
AT VDD F3 AMN1B/RPI1Z1/PMAZ/RGE
AR Mo Connect F4 ANTEASCLURPIT18/PMAYRGT
AR RPITE&/RD12 F5 VES
AlD RP54/RCE F& No Connect
Al TMSIDASINAANZTICEINI-/RP41/RBES Fr Mo Connect
B1i Mo Connect Fa& VoD
B2 AMZIRP1IT/RG15 Fa AMAROSCT/CLEIRPIBDRCIZ
B3 RPI44PWMZHPMD2/RB12 F1i0 VES
B4 RP43/PWMILPMD1/RE11 F11 OSCHCLEO/RPIGARCIS
BS RF7 G AMZ1/RES
BE RPI28RFO G2 AMZINRES
BT iaR G3 AMNZ2IRG10
BE RPEFPMRINRDS 4 Mo Connect
B2 RPSS/FPMBERCT &5 Voo
B10 V5s e VES
B11 TCHANZB CVREF10/505CO/RP40T4CH/RBE GT VES
Ci RPI48PWMIHTICHKTTCK/PMDE/RE 14 =8 Mo Connect
c2 VDD &8 AM4ERFS
c3 RPI124/RG12 G10 AM4IRG3
C4 RP126MRG14 G11 AMN44/RF4
C5 RFE H1 AN1IVRPIZ&RA1Z
CH Mo Connect H2 AMNBRFIZTIRAT
cT RPSTIRCS H3 No Connect
CE RPSEPMWRRCS H4 No Connect
ca Mo Connect HE5 Mo Connect
c10 S0SCIRPIBTRC13 Ha Voo
c1 AM48ICVReEFzo/RPISB/PMCS1/RC10 HT Mo Connect
D PWMSEL/RD1 He AMNZAISDIRPIZERAD
D RPMTPWMILTECK TECK/PMDT/RB15 Ha AMZSCHK1/RPIS1/RC3
D TOUPWMALPMDERAT H10 AMN3USCL1/RPISHRCS
D4 Mo Connect H11 AMNAXRG2
D Mo Connect J1 OAZOUTIANDICZINA- CHNI-RPIG/RAD
D Mo Connect J2 OAZINHANTCZINI-CZINTHRPIT/IRAT
D RPTIVRDA J3 PGED1/OATIN-FANSCTINI-/CTMUC/RPIS/IRTCC/RB3
D RPITTRD13 J4 A\DD
D OASOUTIANZSCSING-/RPININTIVRET J5 AMTICT INZ-UICTSFLT4/PMATZRC T
D10 Mo Connect Jg AM3SRGT1
D11 PGEC2ASCLYRPIBFPMCS2RES JT AM1ZCHM2HCEINZ-UZRTS/BCLK2FLTS/PMA11/RET2

135

Fin # Full Pin Name Pin & Full Fin Name

Et PWMBHITECK/RDS J5 Mo Connect

EZ FWMBLTECK/RDS o Mo Connect

E3 AMTRP11E/PMASRGE J1o AMNS1RFE1RET

E4 PWMSH/RD2 Ji AMNISDANRFPISZRCS

ES Mo Connect K1 PGEDANOAZINGANZIC2INI-SS1/RPIZZCTEDZRBO
Ef RP113RG K2 PGECCVREFHOATOUTIANICTING-CHINI-RPI33/

CTED1/RB1

ET Mo Connect K3 WREFHANISPMAT/IRF10

K4 OAZ0UTIANBIC INCHNA-CAIN 1 +RP48/OCFB/RCD L3 AES

K5 Mo Connect L4 OASINLANTICIINI-/CHIN1-RPAAIRCT

K6 AMITIRF12 LS CAZINHANSCINCIN+RPISHITRTS/BCLK/FLTS

PMATIRCE

KT AN14RPISUFLTTPMATRE4 L8 AMBRF1Z

K& VDD L7 AN1NCIMNZ-UZCTSFLTEPMAIINRE TS

Ka AMNIVRDS L8 AMN1SRFISS/FLTSFMALRE! S
K10 OASINHANZHCEINI-CSINI+SDOURP2ZOTICK/RAS LS AMNRD14

K11 AMAWRPIZ0RED L10 SDAZRFIZ4PMARAS

L1 PGEC1/OATINSANKCTINZC1IN1+/CNIHAPI34/RE2 L1t FLT3Z/SCLARPIAPMASRES

L2 WREF-(ANIAPMAGIRFS

136

Minimum recommended connections:

As an option, instead of a hard-wired connection, an
inductor (L1) can be substituted betwesn Voo and
AVoo to improve ADC noise rejection. The inductor
impedance should be le=s than 10 and the inductor

capacity greater than 10 maéA.

Where:

Fenv _ _

f= " (i.e., ADC Conversion Ratef2)

1

7= (2m./LC)
i 2

.E- = ||_ ;.—-I
(2mfSCY

10 pF i 0.1 pF
VoD Tantalum Ceramic
T
- [
=R 3 s &
R1 . =
A MCLR
—C
I dsPIC3I3EP
T Voo VDD T
. =
0.1 pF o w 0.1 pF
Ceramic g 2 = 7 Ceramic
= =1 = =
) 4._| 0.1 uF 0.1 pyF
P —m = — Ceramic Ceramic
T T 8
AL
Mote 1:

137

Accelerometer datasheet:

|h' Z
[
q Fir1 indicator
|- gpbo e
13| T 1
I O
) O
||]
9T oon s
(TOPVIEW)
BOTTOM WIE
DIFECTION COF THE E W)
DETECTAELE
ACCELERATIONS
BN
Ping# MName Function
1 Vidd_10 Power supply for WO pins
2 NC Mot connected
3 NC Mot connected
p SCL e serial clock (SCL)
SPC 5P| serial port clock [SPC)
5 GMND 0V supply
SDA ¢ serial data [SDA)
8 S0l 5P| serial data input (S0}
SDO 3-wire interface serial data output (SDO)
7 SDO 5P| serial data output (SO}
S5AD0 12C less significant bit of the device address (SAD)
a o 5Pl enable
= [2CiSP1 mode selection (1: 12C mode; Ok SPI enabled)
I INT 2 Imertial interrupt 2
10 Reserved Connect to GND
11 INT 1 Inertial interrupt 1
12 GMHD 0V supply
GMND 0V supply
14 ‘dd Power supply
15 Reserved Connect to Vidd
18 GMND 0V supply

138

Max ratings:

Symbol Ratings Maximum value L it
"Widd Supply voltage 0348 W
Widd 1D | KO pims supply woltage d3 48 W
Input voltage on any conirol pin
Wi -0.3 to Vdd_10 +0.3 W
™ |(cs. SCLSPC, SDASDISDO, SDOSAD) -
000 g for 0.5 ms
fomy | Acceleration (any ads, powered, Wdd = 2.5 V)
10000 g fior 0.1 mis
000 g for 0.5 ms
Agnp |Acceleration (any ais, unpowered)
10000 g for 0.1 mis
Top Crperating temperature range -4t +85
TsTe Storage femperature range -40 to +125
4 (HEM) kv
ESD Electrostatic dischange protection 1.5 (CDM) kW
200 (MM W

139

12C Multiplexer datasheet:

" i
a0 [1] [20] Voo AD L) TN [20] Voo
a1 2] [13] sDA a1 [z] N/ 19] sDA
a2 [a] [18] scL a2 [3] (18] sCL
INTO [4 | [17] TNT INTO [4 17] INT
500 [5 | 18] sc3 spo [5 18] 53
sco [6] PCA9544AD 5] s cco [PCA9544APW 5] so3
INT1 [T | [14] INT3 INT1 [7 [14] INT3
501 [&] [13] sc2 sp1 [8 13] 52
sc1 [9] [12] so2 sc1[9 [12] so2
vss [10] 1] INT2 Vss [10] [11] InT2
002552293 D0 Zaaeld
Fig 2. Pin configuration for S0O20 Fig 3. Pin configuration for TSSOP20
terminal 1 - 8 2 3
Ermmina -
index area z : z &
gllelly
A2 (5| W
INTD | 2) (4] sc3
spo [3) | PcA9s44aBS | (13] sD3
SCO0 (iz] W73
INTT (11] sc2
QARAAA
a0 BE 3
L, 3 = |E . D02aael95

Transparent top view

Fig 4. Pin configuration for HVQFN20

140

Symbol Pin Description
$020, TSSOP20 |HVQFN20
AD 1 19 address input 0
Al 2 20 address input 1
A2 3 1 address input 2
INTO 4 2 active LOW interrupt input 0
SD0 5 3 serial data 0
5CO0 6 4 senal clock 0
INTT 7 5 active LOW interrupt input 1
sD1 8 6 serial data 1
SC1 9 7 senal clock 1
Vss 10 alt supply ground
INT2 11 9 active LOW interrupt input 2
sDz2 12 10 senal data 2
5cC2 13 11 senal clock 2
INT3 14 12 active LOW interrupt input 3
sD3 15 13 seral data 3
SC3 16 14 senal clock 3
INT 17 15 active LOW interrupt output
SCL 18 16 senal clock line
SDA 19 17 serial data line
Voo 20 18 supply voltage
Symbol Parameter Conditions Min Max Unit
Voo supply voltage 0.5 +7.0 W
Vi input voltage 0.5 +7.0 W
1, input current - +20 mA
lo output cumrent - 125 mA
loo supply current - +100 mA
les ground supply cumrent - =100 mA
Pt total power dissipation - 400 mwW
Tj(max) maximum junction temperature o |- 125 °C
Tatg storage temperature —60 +150 C
Tamb ambient temperature operating =40 +85 °C

141

Charging circuit datasheet:

500 mA Li-lon Batt Ch
m 1ion Estiery Arger MCPT383172 MCPT3831/2
Voo Vaar T_‘_ EI-I'EIE 23 DFN* S50T-23-5
'“F‘I— Voo[1: 2 ___.1E|PROG sSTAT[] — [ElPros
PHDGE‘_‘ Vop 21: EP E'Tf NC UBBE

1T ia 2

2240 Vaoldl P v Vel ElVeo
—Hstar VesF—y Vear [41 L5] STAT

MCPT3831 N * Includes Exposed Thermal Pad (EP); see Table 3-1.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated. all limits apply for Vg = Vg itypical) + 1.0V] to 8V, T = 20°C to £85°C
Typical values are at +25°C
Parameters | Sym._ | Min. Typ. Max. | Units | Conditions
Supply Input
Supply Valtage Voo 75 — i} v
Supply Current lgg — 510 1500 pA | Charging
— 5 200 pA | Charge Complete,
No Battery
— 25 50 pA | PROG Floating
— 1 5 pA [Voo = Vgar - 50 mV)
— 01 2 A Voo = Varor
UNLO Start Threshold VeramT 3.3 345 38 WV | Vpg Low-to-High
UNLO Stop Threshold Vetor 3.2 338 35 WV | Vpg High-to-Low
UVLO Hysteresis Viva — 70 — my
Voltage Regulation (Constant-Voltage Mode)
Regulated Output Voltage Vees 4168 4.20 4232 Vo | MCPT333x-2
4317 435 4333 Vo | MCPT333x-3
4387 440 4433 Vo | MCPT333x4
4 465 4 50 4534 V| MCP7383¥-5
Voo = Vaesltypical+1V]
lgyr=10m
Ta =-5°C to +55°C
Line Regulation (AVgar/ - 0.0a 0.20 WM | Vg = Wgeeltypical+1V] to
VaarVaVogl 6V, lgyr=10mA
Load Regulation AV garVearl — 0.05 0.30 % | lgyr =10 mA to 50 mA
Voo = Meeslypical+1V]
Supply Ripple Attenuation PSRR — 5 — dB | lgyr=10 mA, 10Hz to 1 kHz
— 47 — dB | lgy7r=10 m&, 10Hz to 10 kHz
— 22 — dB | lg, =10 mA, 10Hz to 1 MHz
Current Regulation (Fast Charge Constant-Current Mode)
Fast Charge Cument lazs a0 100 110 mA | PROG =10 ki
Regulation 450 505 550 m& | PROG = 2.0 kx, Note 1
12.5 14.5 16.5 mA | PROG =67 ki
Ta =-5°C to +55°C

142

Electrical Specifications: Unless otherwise indicated. all limits apply for Vo= [Vresitypical) + 1.0V] to 8V, Ty = 40°C to +85°C

Typical values are at +25°C

Parameters Sym._ Min. Typ. Max. | Units | Conditions
Preconditioning Current Regulation (Trickle Charge Constant-Current Mode)
Precondition Curment ez lses 7.5 10 12.5 % [PROG =20 kizto 10 kD
Ratio 15 0 25 % |PROG=2.0knto 10k
30 40 50 % [PROG =20 knto 10 ko
— 100 — % | Mo Preconditioning
T, =-5°C to +55°C
Frecondition Voltage Vory I Viaes 64 66.5 &0 % | Vgar Low-to-High
Threshold Ratio 80 T1.5 74 % | Vaar Low-te-High
Precondition Hysteresis Venys — 110 — mV | Vgar High-to-Low
Charge Termination
Charge Termination lrzam { laes 375 5 6.25 % [PROG =20 kfzto 10 k2
Current Ratia 5.6 75 o4 % |PROG=2.0knto 10 kn
B.5 10 15 % [PROG =20 knto 10 ko
5 20 25 % [PROG=20knto 10k
Ta =-5°C to +55°C
Automatic Recharge
Recharge Voltage Veth | Vaes 91.5 240 BE.5 % | Vgar High-to-Low
Threshaold Ratio 04 06.5 oo % | Vgar High-to-Low
Pass Transistor ON-Resistance
OM-Resistancs Romos — 350 — m |".'n:, =37V T,=105°C
Battery Detection
Battery Detection Cumment SAT_DET 0.8 i — pA | Vgar Source Current
No-Battery-Present Vio_gar — Vaes + — V| Vgar Violtage 2 Vg gar for
Threshold 100 mvV Mo Battery condition
No-Battery-Present Zyo_pat T — — Mo | Vgar Impedance 2 Zyo gar
Impedanca for Mo Battery condition,
Hote 1
Battery Discharge Current
Dutput Reverse Leakage DS CHARGE — 015 2 pA | PROG Floating
Current — 0.25 2 pA |Vgo Floating
— 015 2 ph (Voo < Varore
— 5 -15 pA | Charge Complete
Status Indicator - STAT
Sink Current Loy — — 25 ma&
Low Cutput Voltage VoL — 04 1 v i = 4 mA
Source Current lamurce — — 25 mA
High Qutput Voltage Vou — Vpp-04 Voo -1 v soumcs =& mA [MCPT3821)
Input Leakage Current '™ — 0.03 1 pA | High-impedance
PROG Input
Charge Impedance Reros 2 — i) koy
Range
Minimum Shutdown Reras 70 — 200 s]
Impedanca
Automatic Power Down
Automatic Power Down VeoznTER Voo<(Vaar Vop<(Vaar — 3.5V 5 Wpar 5 Vgeo
Entry Threshold +20 m\) +50 m\) Vg Faling

143

Typical values are at +25°C

Electrical Specifications: Unless otherwise indicated. all limits apply for Wop= [Vezsitypical) + 1.0V] to 8V, T, = 40°C to +85°C

Parameters Sym._ Min. Typ. Max. Units Conditions
Automatic Power Down "ir:EEg T —_ UDE “:l:n'lrgl“' l'lrn o= WE_Q'— 38V E ".l'!)‘_ bt VH ES
Exit Threshold +150 mV} +200 '} Vg Rising
Thermal Shutdown
Die Temperature Tag - 150 — *C
Die Temperature Teowya — 10 — =
Hysteresis

AC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, all limits apply for Vg = [Wgeg (typical) + 1.0V] to 6V
Ta=-40°C to +85°C. Typical values are at +25°C.

Farameters Sym. Min. Typ. Max. Units Conditions
UVLO Start Delay tetarT — — 5 ms |Vpp Low-to-High
Constant-Current Regulation
Transition Time Out of toELAY — — 1 ms VAT = VpTH to VEAT * VPTH
Preconditioning
Current Rise Time Cut of tqes — — 1 ms lgyt Rising to 80% of Igpe
Preconditioning
Termination Comparator trERM 0.4 1.3 3.2 ms Average |1 Falling
Filter
Charge Comparator Filter toHARGE 0.4 13 32 ms |Average Vgar
Status Indicator
Status Output Turn-OfF toFF — — 200 us Iz = 1 mA to 0 mA
Status Output Turn-Cn ton — — 200 us ek =0 mAto 1 mA
Pin functions:
Fin No.
Symbaol Function
DFN S50T-23-5
e Voo Battery Management Input Supply

2 — Voo Battery Management Input Supply

3 3 VBAT Battery Charge Control Output

4 — Vear Battery Charge Control Output

5 1 STAT Charge Status Cutput

i} 2 Veg Battery Management 0V Reference

T —_ . No Connection

B 5 PROG Current Regulation Set and Charge Control Enable

a — EF Exposed Thermal Pad (EP); must be connected to Wes

144

Buck boost datasheet:

Max ratings
[Smba | Fammse | Ve | U
WVIMA, VIN nput woltage D37 W
VouT COutput woltage D37 WV
S5W1, 5wz DC woltage D37 Vv
FB DT woitage 03t 15 WV
MODESYNC, EN DC wvoitage D3t WV
T, Maximum junction temperature 150 “C
Tara Storage temperature range -85 o +150 i
Tioe Operating junction termperature range 40 to +85 °C
ESD Human body model 2 (A"
T T1
- Ld P
1 2 r] I_: L 10
25 | ch
ERE | 8
(40 | | 7]
ERNE 5]
) ra I_I
L1 11
= =1 ==]
1 WouT Cutput voltage
2 W2 Switch pin. Intemal switches are connected to this pin. Connect inductor between SW1
to SW2
3 PGMND Powrer ground
4 W1 Swiitch pin. Imtemnal switches are connected to this pin. Connect inductor between SWH1
and SW2
5 ViIN Powrer input voltage. Connect a ceramic bypass capacitor (10 pF minimum) betaeen
this pin and PGND
& EM Enable pin. Connect this pin to GND or 3 voltage lower than 0.4 V to shut dowm the IC.

Avoltage higher than 1.2 V is required to enable the IC

T MODE F'SYMNC Ciperation mode selection. f MODE pin is kow, the STBB1-AXX automatically switches
between pulse skipping and fixed frequency PYWM according to the load level. If MODE
pin is pulled high, the STEB 1-A2X works in PWM mode. When a square waveform is
applied, this pin provides the clock signal for oscilator synchronization

B VIMNA Supply voltage for control stage
ol GND Signal ground
10 FB Feedback voltage

Exposed pad Power ground

145

Time-of-Flight datasheet:

GHND3
GPICA IEI KSHUT
DMC IZ' GHD2
SDa 9 GHD
sCL E AVSSVCSEL
AVDD AVDDVCSEL
GHND4
VDD
AVDD
_ —
=T | x=sur moovoee [1
- 9”"5"":‘1 Ao ; 1 Canz 25 chse as posskie
- soa awvsevesel[b f o _F . fo WLEILAEK
L e Y sno[|-
Wi] 4
oNC GHD2 ——
Recommended for GHD3 £ -
hardwaere Interupt 12

VLE3LICK shHos

I T T N
Y

AVDDVCS Samppl WICSEL supply, to be connected to main supply
2 AVSSVCSEL VCSEL ground, to be connected to main ground
3 GMD Ground T be connected fo main ground
4 GMD2 To be connected o main ground
5 XEHUT Digital input ¥shutdown pin, active bow
i} GMD3 Ground T be connected o main ground
7 GPIO1 Digital output niemupt output. Open drain cutput
a DMC Digital input Do not connect, st be left floating
g SDA Diigital imput/output C senal data
10 SCL Digital input 12C serial clock input
1 AVDD Sanpply Supply, to be connected to main supply
12 GMD4 Ground T be connected o main ground

146

Appendix C: Parts Order Forms

The following spreadsheets depict which parts were ordered on what day, the amount

ordered, and the cost per unit. -BT

21 January 2021 Parts Order Form:

https://www.digikey.com/en/prd $0.95| $1.90)

DT # 4 Project Leader: Brian Thomson Email: pat61@uakron.edu

Qty. Refdes Part Num. Description Suggested Vendor Vendor Part Num. I Catalog #/Page #/Hyperlink | Cost | Total Cosl\
12|C1~C6 CL21B104KBCNNNC 0.1uF Ceramic Capacitor 0805 Digi-Ke! 1276-1003-1-ND https://www.digikey.com/en/prd $0.05| $0.56}
4|C7-C8 CL21A475KACLRNC 4.7uF Ceramic Capacitor 0805 Digi-Ke: 1276-2415-1-ND https://www.digikey.com/en/prd $0.24] $0.96
2|C9 CL21A106MQFNNNE 10uF Ceramic Capacitor 0805 Digi-Ke: 1276-1298-1-ND https://www.digikey.com/en/prd $0.10| $0.20)
2|C10 CL21A226MAQNNNE | 22uF Ceramic Capacitor 0805 Digi-Ke, 1276-2908-1-ND https://www.digikey.com/en/prd $0.34] $0.68]
3|C11 TCP1A106M8R CAP TANT 10UF 20% 10V 0805 Digi-Ke: 511-1685-1-ND \hnps Iiwww.digikey.com/en/prd $0.56) $1.68
16|R17~-R24 RC2012J102C 1.00kOhm Resistor 0805 Digi-Ke! 1276-5531-1-ND https://www.digikey.com/en/prq_$0.13 $2.08
6|R2, R25~R26, R61{RC2012J103CS 10.0kOhm Resistor 0805 Digi-Ke: 1276-5552-1-ND https:/iwww.digike $0.13 $0.78
36|R27~R44 RC2012J222C: 2.20kOhm Resistor 0806 Digi-Ke! 1276-5537-1-ND https://www.digikey.com/en/prq_$0.13 $4.68
4|R1, R45 RC2012J471CS 4700hm Resistor 0805 Digi-Ke: 1276-5523-1-ND https://www.digikey.com/en/prq_$0.14/ $0.56
2|R46 ERA-6AEB202V 2.00kOhm Resistor 0805 Digi-Ke: P2.0KDACT-ND https://www.digikey.com/en/prd $0.31] $0.62
4|R47~R48 RC2012F270CS 27.00hm Resistor 0805 Digi-Ke! 1276-5198-1-ND https:/iwww.digikey.com/en/prq_$0.14| $0.56
2|R49 |RMCF0805JT560R 560kOhm Resistor 0805 Digi-Ke: RMCF0805JT560RCT-ND https://www.digikey.com/en/prd $0.10| $0.20]
2|R50 ERA-6AEB104V 100kOhm Resistor 0805 Digi-Ke: P100KDACT-ND [hnps Ilwww.digikey.com/en/prd $0.31] $0.62
16|D1~D8 LY R976-PS-36 LED YELLOW DIFFUSED 0805 SMD Digi-Ke: 475-2560-1-ND }h»ttps:llwww.dlglkey.com/en/pl $0.27 $4.32
2|D9 LG R971-KN-1 LED GREEN DIFFUSED 0805 SMD Digi-Ke: 475-1410-1-ND https:/iwww.digike $0.25 $0.50
J’JI«JZ, J5~J12 2011-1X05TSD025B | Connector Header Through Hole 5 position 0.100" Digi-Ke: 2553-2011-1X05TSD025B-ND htps://www.digikey.com/en/prq $0.84] $15.12]
2|33 DM3D-SF CONN MICRO SD CARD PUSH-PULL Digi-Ke: HR1941CT-ND https://www.digikey.com/en/prd $1.65) $3.30
13 2011-1X03G00SD025B PIN HEADER, SINGLE ROW, 3 PIN, S Digi-Ke: 2553-2011-1X03G00SD025B-ND ‘hnps Ihwww.digikey.com/en/prq $0.06 $0.06
1]314 2011H-1X06G01SB PIN HEADER, SINGLE ROW, 6 PIN, S Digi-Ke! 2553-2011H-1X06G01SB-ND https://www.digikey.com/en/prd $0.87 $0.87
4|315~J16 2011-1X02TSHO35B PIN HEADER, SINGLE ROW, 2 PIN, T Digi-Ke! 2553-2011-1X02TSHO35B-ND https://www.digikey.com/en/prd $0.51] $2.04

2|17 473460001 [CONN RCPT USB2.0 MICRO B SMD RIA Digi-Ke: WM17141CT-ND

3lic1 DSPIC33EP512GM706-I/PT__|Microchip DSPIC33EP512GM706-I/PT, 16bit dsPIC Mict 60MHz, 512 kB Flash, 64-Pin TQFP | Digi-Key DSPIC33EP512GM706-1/PT-ND _|https://www.digikey.com/en/prd $6.17| $18.51]
3|UsL VLCF4020T-2R2N1R7 FIXED IND 2.2UH 1.72A 59 MOHM Digi-Ke: 445-VLCF4020T-2R2N1R7CT-ND | https://www digikey.com/en/prd $0.29) $0.87|
4|U1~U2 PCA9544APW,118 12C Multiplexer Digi-Ke: 568-1861-1-ND https://www.digikey.com/en/prd $1.78 $7.12
2|U3 TXBO104PWR Voltage Level Translator Bidirectional 1 Circuit 4 Channel 100Mbps 14-TSSOP Digi-Ke: 296-21929-2-ND https://www.digikey.com/en/prd
2|U4 STBB1-APUR Buck Boost Converter Digi-Ke: 497-11971-1-ND https://www digikey.com/en/pr
2|Us STCA4054GR Baller; Charé@ Digi-Ke! 497-5809-2-ND https://www.digikey.com/en/pr
2|U8 H3LIS200DLTR H3LIS200DL Series 3.6 V 400 Hz Low-Power 3-Axis Digital -TFLGA-16L Digi-Ke: 497-15698-1-ND https://www.digikey.com/en/prd $6.
2[s1 CT11025.0F160 Momentary Switch Digi-Ke: 2449-CT11025.0F160-ND hngs:/lwwwvdigikez.com/en/gv%
| |
12|U1 (ToF Brd, VL53LOCXVODH/1 Time-of-Flight ranging sensor ST VL53LOCXVODH/1 https://estore.st.com/en/vi5310c|
2|C1 CL21A475KACLRNC 4.7uF Ceramic Capacitor 0805 Digi-Ke! 1276-2415-1-ND https://www.digikey.com/en/prd
2|C2 CL21B104KBCNNNC 0.1uF Ceramic Capacitor 0805 Digi-Ke: 1276-1003-1-ND https://www.digikey.com/en/prq
4|R1~R2 RC2012J103CS 10.0kOhm Resistor 0805 Digi-Ke, 1276-5552-1-ND https://www.digikey.com/en/pr
2|R3 RC2012J102C 1.00kOhm Resistor 0805 Digi-Ke! 1276-5531-1-ND https://www.digikey.com/en/prq_$0.13 $0.26
4[J1~32 2011-1X05TSD025B | Connector Header Through Hole 5 position 0.100" Digi-Ke 2553-2011-1X05TSD025B-ND https://www.digikey.com/en/prd$0.84 $3.36
1655 ADDRESS LED DISC SERIAL RGB 1=10 Digi-Ke: 1528-1104-ND https://www.digikey.com/en/prq $4.50| $27.00]
2011-1X03G00SD025B PIN HEADER, SINGLE ROW, 3 PIN, S Digi-Ke: 2553-2011-1X03G00SD025B-ND | https://www .digikey.com/en/prd $0.06| $0.36)
CL21B105KAFNFNE CAP CER 1UF 25V X7R 0805 Digi-Ke! 1276-2926-1-ND https://www.digikey.com/en/prd $0.10| $0.60}
Total $169.41]
DT # 4 Project Leader: Brian Thomson Email: bat61@uakron.edu
Qty. Refdes Part Num. Description Suggested Vendor Vendor Part Num. Catalog #/Page #/Hyperlink Cost Total Cost
5/IC1 DSPIC33EP512G | Microchip DSPIC33EP512GM706-1/PT, 16bit dsPIC Microcont|Digi-Key DSPIC33EP512GM7064https://www.digikey.com/en/prod $6.17 $30.85
5|U$1 VLCF4020T-2R2N FIXED IND 2.2UH 1.72A 59 MOHM Digi-Key 445-VLCF4020T-2R2N1] https://www.digikey.com/en/pro $0.29 $1.45
36|R27~R44 RC2012J222CS |2.20kOhm Resistor 0806 Digi-Key 1276-5537-1-ND https://www.digikey.com/en/pro $0.12 $4.32
2|R49 RMCF0805JT560F560kOhm Resistor 0805 Digi-Key RMCF0805JT560RCT-Nhttps://www.digikey.com/en/pros $0.10 $0.20
Total $36.82

147

4 February 2021 Parts Order Form:

DT # 4 Project Leader: Brian Thomson Email: bat61@uakron.edu
Qty. Refdes Part Num. Description Suggested Vendor Vendor Part Num. Catalog #/Page #/Hyperlink Cost | Total Cost
3|Usl VLCF4020T-2R2N/FIXED IND 2.2UH 1.72A 59 MOHM Digi-Key 445-VLCF4020T-2R2N1} https://www .digikey.com/en/pro $0.68 $2.04]
4|U1~U2 PCA9544APW,11§12C Multiplexer Digi-Key 568-1861-1-ND https://www.digikey.com/en/prog $1.78 $7.12
3|U4 STBB1-APUR Buck Boost Converter Digi-Key 497-11971-1-ND https://www.digikey.com/en/prod $2.48 $7.44
2|Us H3LIS200DLTR _ |H3LIS200DL Series 3.6 V 400 Hz Low-Power 3-Axis Digital Ac|Digi-Key 497-15698-1-ND https://www.digikey.com/en/prog $8.01 $16.02
16|D1~D8 LY R976-PS-36 |LED YELLOW DIFFUSED 0805 SMD Digi-Key 475-2560-1-ND https://www.digikey.com/en/pro $0.15 $2.45
5/D9 LG R971-KN-1 LED GREEN DIFFUSED 0805 SMD Digi-Key 475-1410-1-ND https://www.digikey.com/en/pro $0.27 $1.35
6/U1 (ToF Brd) VL53LOCXVODH/1| Time-of-Flight ranging sensor ST VL53LOCXVODH/1 https://estore.st.com/en/vi53I0c: $4.58 $27.48
Total $63.90
11 February 2021 Parts Order Form:
DT# 4 Project Leader: Brian Thomson Email: bat61@uakron.edu
Qty. Refdes Part Num. Description Suggested Vendor Vendor Part Num. Catalog #/Page #/Hyperlink Cost | Total Cost
10|R49 RMCF0603FT56|560kOhm Resistor 0805 Digi-Key RMCF0603FT560KT Hhttps://www.digikey.com/en/pro $0.02 $0.16
5/U8 H3LIS200DLTR |H3LIS200DL Series 3.6 V 400 Hz Low-Power 3-Axis Digital Ac|Digi-Key 497-15698-1-ND https://www.digikey.com/en/prod _ $8.01 $40.05
15/C1 CL21A475KACLRI4.7uF Ceramic Capacitor 0805 Digi-Key 1276-2415-1-ND https://www.digikey.com/en/pro $0.16 $2.40
4|U5 STC4054GR Battery Charging Digi-Key 497-5809-2-ND https://www.digikey.com/en/pro $1.58 $6.32
Total $48.93
16 February 2021 Parts Order Form:
DT # 4 Project Leader: Brian Thomson Email: bate1@uakron.edu
Qty. Refdes Part Num. Description Suggested Vendor Vendor Part Num. Catalog #/Page #/Hyperlink Cost Total Cost
20|C1~C6 CL21B104KBCNNNC 0.1uF Ceramic Capacitor 0805 Digi-Key 1276-1003-1-ND https://www.digikey.com/en/proc $0.05 $0.94
4|U1~U2 PCA9544APW,118 12C Multiplexer Digi-Key 568-1861-1-ND https://www.digikey.com/en/prod $1.89 $7.56]
3|U5 STC4054GR Battery Charging Digi-Key 497-5809-2-ND https://www.digikey.com/en/prod $1.58 $4.74
Total $13.24
22 February 2021 Parts Order Form:
DT # 4 Project Leader: Brian Thomson Email: bat61@uakron.edu
Qty. Refdes Part Num. \ Description Suggested Vendor Vendor Part Num. Catalog #/Page #/Hyperlink Cost Total Cost
2 HTSW—lSOrOS—LdCONN HEADER R/A 50POS 2.54MM Digi-Key HTSW-150-08-L-S-LA-_|https://www.digikey.com/en/pro $4.48 $8.96
10| VL53L3CXVODH/1 Optical Sensor 196.85" (5m) 12C Output Digi-Key 497-VL53L3CXVODH/1T|https://www.digikey.com/en/pro $3.78 $37.84
[
Total $46.80

148

23 February 2021 Parts Order Form:

DT # 4 Project Leader: Brian Thomson Email: bat61@uakron.edu

Qty. Refdes Part Num. Description Suggested Vendor Vendor Part Num. Catalog #/Page #/Hyperlink Cost Total Cost
2 HTSW-150-08-L-S-LA-006 |CONN HEADER R/A 50POS 2.54MM Digi-Key HTSW-150-08-L-S-LA- |https://www.digikey.com/en/prog $4.48 $8.96
10 VL53L3CXVODH/1 Optical Sensor 196.85" (5m) I2C Output Digi-Key 497-VL53L3CXVODH/1T| https://www.digikey.com/en/pro $3.78 $37.84
10 WP154A4SUREQBFZGC LED RGB CLEAR T-1 3/4 T/H Digi-Key 754-1615-ND https://www.digikey.com/en/proc $1.25 $12.51]
50/C1~C6 CL21B104KBCNNNC 0.1uF Ceramic Capacitor 0805 Digi-Key 1276-1003-1-ND https://www.digikey.com/en/prod $0.03 $1.28
20/C7~-C8 CL21A475KACLRNC 4.7uF Ceramic Capacitor 0805 Digi-Key 1276-2415-1-ND https://www.digikey.com/en/pro $0.16 $3.20
2|C9 CL21A106MQFNNNE 10uF Ceramic Capacitor 0805 Digi-Key 1276-1298-1-ND https://www.digikey.com/en/proc $0.11 $0.22
2|C10 CL21A226MAQNNNE 22uF Ceramic Capacitor 0805 Digi-Key 1276-2908-1-ND https://www.digikey.com/en/prod $0.35 $0.70
2/C11 TCP1A106M8R CAP TANT 10UF 20% 10V 0805 Digi-Key 511-1685-1-ND https://www.digikey.com/en/pro $0.59 $1.18
2|33 DM3D-SF CONN MICRO SD CARD PUSH-PULL Digi-Key HR1941CT-ND https://www.digikey.com/en/proc $1.65 $3.30
2317 473460001 CONN RCPT USB2.0 MICRO B SMD R/A Digi-Key \WM17141CT-ND https://www.digikey.com/en/prod $0.95 $1.90
5|R1, R45 RC2012J471CS 4700hm Resistor 0805 Digi-Key 1276-5523-1-ND https://www .digikey.com/en/pro $0.13 $0.65
100/R2, R25~R26, RERC2012J103CS 10.0kOhm Resistor 0805 Digi-Key 1276-5552-1-ND https://www.digikey.com/en/prod $0.04 $4.41
30|R17~R24 RC2012J102CS 1.00kOhm Resistor 0805 Digi-Key 1276-5531-1-ND https://www.digikey.com/en/pro $0.11 $3.33
30|R27~R44 RC2012J222CS 2.20kOhm Resistor 0806 Digi-Key 1276-5537-1-ND https://www.digikey.com/en/pro $0.12 $3.45
3|R46 RT0805BRDO72KL 2.00kOhm Resistor 0805 Digi-Key YAG1859TR-ND https://www.digikey.com/en/prod $0.36 $1.08
5|R47~R48 RC2012F270CS 27.00hm Resistor 0805 Digi-Key 1276-5198-1-ND https://www.digikey.com/en/pro $0.13 $0.65
3|R50 ERA-6AEB104V 100kOhm Resistor 0805 Digi-Key P100KDACT-ND https://www.digikey.com/en/pro $0.31 $0.93
3|S1 CT11025.0F160 Momentary Switch Digi-Key 2449-CT11025.0F160-Nhttps://www.digikey.com/en/prod $0.12 $0.36
1]U3 TXBO104PWR Voltage Level Translator Bidirectional 1 Circuit 4 Channel 100MDigi-Key 296-21929-2-ND https://www.digikey.com/en/prot $0.98 $0.98
8|U1~U2 PCA9544APW, 118 12C Multiplexer Digi-Key 568-1861-1-ND https://www.digikey.com/en/pro $1.89 $15.12]
5 TSW-101-08-T-D-RA CONN HEADER R/A 2POS Digi-Key SAM1049-01-ND https://www.digikey.com/en/pro $0.18 $0.90
3 A700V106M0OO6ATEQ55 CAP ALUM POLY 10UF 20% 6.3V SMD Digi-Key 399-5494-2-ND https://www.digikey.com/en/pro $2.07 $6.21
Total $109.16

1 March 2021 Parts Order Form:
DT # 4 Project Leader: Brian Thomson Email: bat61@uakron.edu

Qty. Refdes Part Num. Description Suggested Vendor Vendor Part Num. Catalog #/Page #/Hyperlink Cost Total Cost
4|N/A TAJA106K010RNJ CAP TANT 10UF 10% 10V 1206 Digi-Key 478-1654-2-ND https://www.digikey.com/en/produl $0.35 $1.40
10|R49 RT0805BRD0O7560KL RES SMD 560K OHM 0.1% 1/8W 0805 Digi-Key YAG1930TR-ND https://www.digikey.com/en/produl $0.26 $2.59
3|NA ECS-240-20-33-TR CRYSTAL 24.0000MHZ 20PF SMD Digi-Key XC1141TR-ND https://www.digikey.com/en/produl $1.07 $3.21
6|N/A C0805C300K5GAC7800 |CAP CER 30PF 50V NP0 0805 Digi-Key 399-17443-2-ND https://www.digikey.com/en/produ| $0.27 $1.62
5|NA M55342K06B1FO0RS3 |RES SMD 1M OHM 1% 0.15W 0705 Digi-Key 1135-1009-2-ND https://www.digikey.com/en/produl $1.54 $7.70]
3|N/A PRT-00127 |MicroSD Socket Sparkfun PRT-00127 https://www.sparkfun.com/produc $3.95! $11.85
1|NA Y11-3419632A H.A.L.O. Main Board r3 JLCPCB Y11-3419632A [https://cart.jlcpcb.com/cart $2.00; $2.00]
1|NA S02103026022-34196324H.A.L.O. Main Board r3 Stencil JLCPCB S02103026022-341963| https://cart.jlcpch.com/cart $7.05 $7.05
1|NA Y12-3419632A H.A.L.O. RGB Board r3 JLCPCB Y12-3419632A |https://cart.jlcpch.com/cart $4.00 $4.00
1NA S$02103026026-34196324H.A.L.O. ToF Board r2 Stencil JLCPCB S$02103026026-341963| https://cart.jlcpch.com/cart $7.05 $7.05
Total $48.47

149

	Hard Hat Ambient Liability Observer (HALO)
	Recommended Citation

	tmp.1619470167.pdf.lgEkx

