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Individual Contribution 

The following document outlines the locomotion system (LS) ultimately responsible for 

controls, movement of the vehicle, user input and feedback of the system. References will be 

made to the navigation system (NS), which is the other half of the team providing suggested 

routes and additional safety information. Together the locomotion and navigation systems 

comprise the lightly loaded automated guided vehicle (LLAGV) as a design project. As the 

computer engineer on the locomotion system (LS) I was responsible for implementing control 

theory for driving the LLAGV as well as the user interface and feedback mechanisms. The 

implementation of this software application was in the Python scripting language. With the 

complexity of this project a more capable embedded processor was permitted, namely a 

Raspberry Pi, to take advantage of its multiple cores and larger RAM options. This allowed for a 

multi-threaded design in the end application as well the use of an in-memory database. The 

software application built handled both a manual control and an autonomous control interface. A 

manual control program was made allowing the user to drive the LLAGV with the triggers of an 

Xbox controller. The autonomous or follow mode control program was built using the NS data to 

follow the user’s cellular device.  

As mentioned, being responsible for the user interface meant creating an interface that 

was responsive, intuitive and provided meaningful feedback. What does that really mean? Well, 

the design was desired to be such that one not knowing of the project could start and use the 

machine with little to no initial guidance, similar to say turning over a brand-new riding mower. I 

was able to accomplish this through the use of push button switches with LED indicators and 

individually addressable LED strips to provide feedback to the user acknowledging the requests. 

One could infer that this style of UI meant button debouncing, synchronization across multiple 

threads as well as keeping safety the top priority. 

One final comment for the locomotion system specifically; much of the control theory 

was developed by Lawrence Shevock and implemented by me, Marcus Radtka, with help from 

Lawrence. The PCB design, harnessing, power source and the power distribution was handled by 

Nazar Paramashchuk. Again, my responsibilities remained within applying the control theory 

and the user interface of the LLAGV. 
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LLAGV – Light Load Autonomous Guided Vehicle 

MC – Motor Controller 

MOSFET – Metal Oxide Semiconductor Field Effect Transistor 

PDM – Power Distribution Module 

PDMCSC – Power Distribution Module Charging State Controller 

PDMOSC – Power Distribution Module Operational State Controller 

Pi – Raspberry Pi 

PIH – Power Interface Harness 

RAS – Risk Addressed State 

SoC – State of Charge 

VIH – Vehicle Interface Harness 

0. Abstract 
 

The objective of the locomotion system was to design and implement the mechanical, 

electrical, and software related functions to ensure the LLAGV had the capability of 

maneuvering its surroundings. The LLAGV’s motors were represented in an open loop transfer 

function to utilize RPM feedback and a compensator when needed. The modeled compensator 

helped control the LLAGV’s speed and acceleration, enabling further control of the LLAGV. 

The internal circuitry has the means to properly distributed power to all components and allowed 

the user to control the LLAGV to their desire. The application software within the LLAGV 

locomotion system (LLAGV-LS) had consideration for distance and angle variation, provided by 

the navigation system (NS) team where this information was pulled from an in-memory 

database. Changing the angle and distance, from the user, was done using motor control theory 

and application. The data along with feedback from the system provided a reliable and 

predictable means of driving the LLAGV’s traction control system as well as incorporating input 

from the user and delivering a source of feedback to the user, ultimately creating a cohesive, 

intuitive interface for the user to take advantage of the convenience the LLAGV offered. The 

LLAGV also had basic object detection features in which the NS informs the LS Team B would 

inform Team A of an object in front of the LLAGV. The LLAGV then conducts the actions 

necessary to avoid the object. Key features are as included below.  
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• LLAGV maintains a distance of 3 to 10 feet with an average of 3 ft/sec  

• LED lights dictate the state of charge and state and direction intent 

• LLAGV lasts for a minimum of two hours at a full charge  

• LLAGV carries a light load of up to 30 pounds  

1. Problem Statement  

1.1. Need  

According to OSHA.gov "Carrying loads on one shoulder, under an arm, or in one hand, 

creates uneven pressure on the spine." The need is to assist individual(s) in 

transporting light loads from a nonspecific source to destination.  

1.2. Objective  

Design an automated guided vehicle (AGV) capable of moving a light load placed on the 

vehicle from a source to destination. LLAGV will be capable of following an individual around 

to deliver the load to the individuals desired source. Detailed safety/object avoidance behavior 

while adaptability to changing surroundings.  

1.3. Background  

There has been an exponential growth of smart technology that changes how people 

interact with the world around them. Within the broad growth of smart technology, there is a 

development of automated guided vehicles (AGV’s) that are seen within the work environment 

such as manufacturing and general public such as transportation. However, there is a lack of 

AGV’s being utilized by the public in which the AGV assists in carrying light loads from a 

source to destination with little to no interaction in an efficient, safe, and cost-effective manner. 

The goal of our team's project is to create and demonstrate an AGV that will transport a light 

load, of up to thirty pounds, around most environments while accounting for efficiency, safety, 

and cost-effectiveness.   

The first AGV was founded in 1954 when Mac Barrett was given credit for the invention 

of the AGV in which a simple towing tractor followed an overhead wire. The advancements 

within technology have led to more sophisticated designs that are seen within manufacturing and 

automation. The basic concept of an AGV can be described as: “An AGV is a mobile 
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robot/vehicle used to transport materials in manufacturing environments, designed to receive and 

execute instructions, follow a path, and receive and distribute materials. The vehicles generally 

follow a path that can go in many directions and can usually be easily reconfigured according to 

the manufacturer’s plant.” [1] The theory of how AGV’s are constructed can be looked at 

through the electronic, mechanical, and software design. There is more than one correct way of 

designing and implementing an AGV. The design will be primarily constructed on what the 

AGV will be tasked to do. The electrical and mechanical design will need to include a supportive 

frame for operation, multiple input sensors to determine exterior parameters, motors, variable 

frequency drives, and controller(s) for processing operations. From a software perspective our 

design will implement more of a free-range routing. “This routing algorithm is based on the route 

choice methodology from a model called NOMAD [10][11], a microscopic pedestrian behavioral 

model also developed at the Delft University of Technology. The algorithm is dynamic, because 

it uses real time information on planned trajectories of other vehicles for the determination of 

new routes. These routes are free range because they make use Dynamic Free-Range Routing for 

Automated Guided Vehicles.” [3] With the compatibility of mechanical, electrical, and software 

implementations the basic theory of an AGV will operate to provide value to customer by 

ensuring the AGV has the necessary means to transport light loads from a non-determined source 

to non-determined destination.  

Currently, one of the most popular applications for AGVs is manufacturing facilities. 

Here the automated vehicle is used “to transport materials, designed to receive and execute 

instructions, follow a path, and receive and distribute materials”, [1]. In this application, AGVs 

are widely utilized as material handlers to replace what once would have been manual labor of 

moving materials across a factory floor. Another source describes AGVs in the manufacturing 

setting [2] as an “intelligent logistics handling robot” with a “predetermined path of travel”. A 

reoccurring theme from both aforementioned sources is that the automated vehicle has a 

predetermined path; this suggests the vehicle has a specific route that has been programmed into 

the LLAGV system. The AGV system here encapsulates a main controller or base station and the 

automated vehicle itself. Both [1] and [2] mention how an AGV system can be divided into three 

main functions: dispatching/navigation, routing/layout, and scheduling /guidance respectively. 

The first function described as dispatching or navigation provides the AGV with a task of 
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picking up a load and delivering to some point on the grounds of the facility. Secondly, routing 

or layout, provides the AGV with a designated path to complete the task given. The third 

function mentioned, scheduling or guidance is the control system involved with the vehicle 

navigating it’s given path. The scheduling attribute to the third function adds synchronization 

with other manufacturing processes, while the guidance attribute encapsulates the sensor data on-

board the vehicle to make aware of the vehicle’s surroundings. An AGV must be outfitted with 

some sort of sensing devices to communicate back to the base station and make internal 

decisions. An example of this may be as simple as an external button to be manually pressed 

when loading or unloading has completed; but as complex as navigating and completing tasks as 

a self-sufficient worker robot. One source, [2], lists four common types of communication that 

may be outfitted on an AGV in the manufacturing application. Those types of communication 

include wired, infrared light, radio, and wireless LAN. Of course, comparing these four examples 

of communication yields many advantages and disadvantages. Interestingly, “Electromagnetic 

guide is one of the more traditional ways of AGV guidance”, utilizing the hardwire 

communication scheme listed earlier, [2]. Not surprisingly, this common hardwired scheme is 

often the cheapest and easiest of the communications schemes listed to implement, however not 

the most robust for large scale applications.  

Even with how advanced technology has become in the modern age there are still many 

limitations to an AGV. As mentioned in the above paragraph [1] and in most designs out right 

now all use “predetermined path of travel”. Now this predetermined path method already has its 

own set of limitations as shown in [3], where in this article the optimization of route length when 

traveling between multiple points of a predetermined path is an issue. Our implementation of an 

AGV with have added limitations because we won’t be using predetermined paths, we will be 

using the AGV to take its load from a non-determined source to non-determined destination. The 

challenges this adds are ones that more fully autonomous vehicles run into, those being 

navigation with by just using terrain senor data along with safety concerns with collision 

avoidance. With navigation unlike most other AGV in the industry today we will be having to 

use strictly positional and terrain mapping sensors to determine where our vehicle is in its 

environment instead of being able to rely on a set path that’s preprogramed into it. As discussed 

in [4], which is an article about automated shuttle vehicles used in coal mines, they talk about the 
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issues with navigation precision when turning to avoid obstacles or to simply turn around a 

corner. Now our vehicle won’t be confined to such small areas as the mining vehicle would be, 

but accuracy of navigation and precision is still a concern. The other main limitation would be 

safety concerns that being collision avoidance with obstacles of any type. This is a limitation for 

both the AGV’s used in the field today along with autonomous vehicles in general. In the article 

“Safety aspects of autonomous guided vehicles in automated warehouses” [5] the author lays out 

a great design method to use. He lists five steps to follow: hazard analysis, identification of the 

safety related systems, determination of the required safety level, design of the safety related 

systems, safety analysis. Following these guidelines, we should be able to avoid safety issues.  

Acknowledging these details about current systems and their implementations, there will 

be many similarities and differences between our concept AGV and current designs. Parallel to 

the main goal of the concept, the vehicle will serve as transport for different objects and 

materials commonly carried by hand, just like in manufacturing environments. The vehicle will 

support a load weight rating of 30 pounds. Construction of the vehicle will have similar, if not 

identical, physical structures such as chassis, wheels, and bucket construction. The source of 

power will come from on-board batteries that will feed motor controllers and microprocessors. 

Modern methods and designs used with AGVs will be referenced and used for charging, 

controlling discharge, logic behavior during charge, lifetime management, and power 

management (NISSAN MOTOR CO., LTD, US Patent No. 9,325,192), The drive systems will 

also be closely related since the request for movement and direction will be the same format in 

the end, no matter the data processing that comes before to produce the movement instruction. 

Other components such as suspension, braking, steering control, roll over protection, and 

emergency stopping will be incorporated in similar manner to current designs.  

The concept will differ significantly in that it will follow a host using dynamic 

positioning algorithms, as mentioned earlier, instead of following a pre-set path. This will allow 

the vehicle to decide when it needs to start, stop, turn, and at what speed to follow. Another key 

difference is that the vehicle will be capable of operation not only indoors, but outdoors as well. 

Apart from smooth and flat floors, it will navigate through common terrain around the home, 

such as grass, pavement with a certain degree of allowable slope, gravel, semi-flat dirt, and light 
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snow. This allows the AGV to not only perform indoor duties of an indoor manufacturing 

environment robot but assist with outdoor labor done at various times of the year. Furthermore, 

the methods of guidance differ from traditional methods mentioned in [2]. Since there is no set 

path to follow, the vehicle will use radar positioning sensors to follow a target wherever it might 

turn. The AGV will also have to mind its’ surroundings, as well as satisfy many additional safety 

requirements introduced with the freedom to choose a path of travel. These additions require 

more sensors to provide data for the safety monitors, and changes to safety software not used in 

current designs.  

The vehicle will be powered with a battery-operated electric motor. The battery must be 

rechargeable and there will be a need for a charging station for the vehicle’s battery. Efficiency 

in electronic devices is a very important part of any design. An invention to manage and control 

the charging of battery cells for AGVs was patented by NISSAN MOTOR CO., LTD (US Patent 

No. 9,325,192). The patented system monitors the voltage or charge of the battery cells and sets 

a threshold value for when the battery cell requires to be recharged. For any application, the 

knowledge of how long the AGV can operate and when it requires charging is very important.  

Some applications of the light load AGV will require the loading platform of the vehicle 

to be balanced and stabilized. The vehicle will need to be able to compensate for an unbalanced 

load. A patented invention by Paul George Doan (US Patent No. 8,527,153) is being developed 

to keep a loading platform level and balanced. The system utilizes sensors that are coupled to an 

electronic control center to operate an extension member that extends to the ground to level and 

balance the AGV. The capability of the AGV keep its loading platform level is very useful in 

many applications to keep the load safely on the vehicle when no humans are operating the 

machine. Some loads could be fragile and be damage by falling off the AGV.   

Automated Guided Vehicles have provided services which allow people to benefit from 

the advancement of technology. An AGV allows for the transportation of a product or a person 

from a specific source to destination. There are multiple types of AGV’s however, there is a lack 

of AGV’s that are used by the general public. With the creation of a light load cost effective 
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AGV, this machine will transport light loads from an undescriptive source to destination. This 

will allow for more robust transporting options over fitted terrain. 

1.4. Marketing Requirements  

 

1. The system will be able to navigate throughout the 

environment in which it’s placed in order to follow an individual to its destination.  

2. The system will maintain a set distance from the user.   

3. The system will travel at an average walking speed.  

4. The system will have multiple safety features.  

5. The system will be able to carry a light load1.   

6. The system will be rechargeable via rechargeable battery.  

7. The system will provide state information as user feedback.   

8. The system will travel on light terrain2. 

9. The system will have an intuitive HMI3 to operate the device. 

2. Engineering Analysis 

2.1. Circuits  

 

The LLAGV incorporated multiple circuits to meet all design and marketing requirements. In 

this context, the main sub-circuits were: 

• Power Distribution Module Operational State Circuitry (PDMOSC) 

• Power Distribution Module Charging State Circuitry (PDMCSC) 

• Vehicle Interface Harness (VIH) 

• Power Interface Harness (PIH) 

 

The Power Distribution Module (PDM) is the device that governed all power distribution, 

current protection, and charging. The circuitry on this device existed in a printed circuit board 

 

 

1 Light Load: Payload of less than 30lbs. 
2 Light Terrain: grass, gravel, asphalt, cement surfaces all of which have a relatively flat surface. No inclines > 10˚ 

and no severe undulations. 
3 HMI: Human to Machine Interface. In this application will be comprised of various labeled push buttons and 

LEDs. 
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format.  The PDM Operational State Controller (PDMOSC) governed all power distribution and 

safety monitoring while the system was in the normal operation mode under the software states 

of RAS (Risk Addressed State), autonomous, and neutral. It made up for half of the functionality 

of the PDM. The system microcontroller was the controlling entity that communicated with the 

motor controller to receive and send data and commands. The circuits had both inputs and 

outputs interfacing with the main microcontroller to control different functions such as pre-

charge, relay actuation, and switching. These inputs were conditioned and amplified by power 

transistors to allow the switching of high current peripherals using the small signal outputs of the 

microcontroller. DC levels of 14.8, 5V, and 3.3V were available and routed to which ever circuit 

needs them.  

An important job that the PDM had to accommodate signal acquisition circuitry. 

Temperature and voltage measurements were the bulk of this type of signaling. For temperature 

measurements, the TMP6131LPGM linear thermistor was chosen to act as the temperature 

sensor. It is linear type thermistor with a resistance of 10kOhms at 25 degrees Celsius. The 

temperature vs. resistance graph is shown below in Figure 1.  
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Figure 1: Resistance/temperature relations graph for TMP6131LPGM 

With this thermistor, a simple voltage divider network was used to vary voltage 

proportional to the temperature exposed to the thermistor. The voltage can then be an input to the 

ADS1115 ADC chips that were used translate to digital signals and broadcasted to an I2C bus. A 

typical application of this network is shown in Figure 1. 
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Figure 2: Typical application of the TMP6131LPGM 

For the LLAGV, the range of measured temperature would range from 0 to 150 degrees 

Celsius. The ADS1115 ADC accepted an analog input of VDD-VSS. The PDM provided 5V for 

VDD and 0V for VSS, therefore the maximum measured analog value was 5V. To avoid saturation 

and measurement error, a range of 0.5 to 4.5V was applied globally to all temperature measurement 

types using this thermistor. The value of R1 is solved by simulating the highest maximum 

temperature event, which would provide a resistance of 20k ohms at 150 degrees Celsius. To solve 

for an appropriate value of R1, use the equation below. 

5 ∗ 𝑅max 𝑡𝑒𝑚𝑝 𝑜𝑓 𝑇𝑃𝑀6134

𝑅max 𝑡𝑒𝑚𝑝 𝑜𝑓 𝑇𝑃𝑀6134 + 𝑅1
= 4.5  

In this case, an R1 value of 2200 ohms will allow an appropriate measuring range for the ADC 

proportional to the accepted range of temperatures the peripherals will operate at.  

Many voltage measurements were made on different peripherals of the system. The 

measuring voltage is again at a range of 0.5V- 4.5V. The measured voltage was scaled down to 

what the ADC can measure, therefore Figure 2 Can be applied for this type of measurement.  
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Figure 3 Typical application for voltage measurement scaling 

One of the resistors will need to be pre-determined. A value of 10k ohms for R2 is 

appropriate to keep current consumption levels of the whole network to a minimum. The 

maximum voltage measured will need to produce an output of 4.5V at the ADC input, therefore 

the equation below can be used.  

10,000 ∗ 𝑀𝑎𝑥 𝑀𝑒𝑎𝑢𝑠𝑢𝑟𝑒𝑑 𝑉𝑜𝑙𝑡𝑎𝑔𝑒

𝑅1 + 10,000
= 4.5 
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Figure 4 PDMOSC Level 2 Diagram 

The PDM Operational State Controller (PDMOSC) was the main functional part of the PDM 

that brought all the systems of the LLAGV together. This system included all the measurement and 

most of the power distribution peripherals necessary for all subsystems within the AGV. The diagram 

of the system is shown in the figure above. 

The PDM Charging State Controller (PDMCSC) functioned as the other half of the PDM. 

The charging function was provided by a charge controller and balancing was provided by 

onboard resistors, controlled by the main microcontroller. The PDMCSC circuitry is shown in 

the figure below. 
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Figure 5 PDMCSC Level 2 Diagram 

 

The Vehicle Interface Harness (VIH) interconnected the PDM, sensor/switch groups, and 

microcontrollers. It included communication lines between the system microcontrollers and the 

motor controller processor, as well as switch logic and analog sensor values.  
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Figure 6 VIH Level 2 Diagram 

The Power Interface Harness is the harness that was responsible for delivering high 

current between the battery pack, PDM, relay, motor controller, and motors. The main power net 

originated from the 14.8V battery pack and fed into F1, no more than 6” away from the pack. 

The net then split to lower-level fusing, and the contactor. The PIH continued to the motor 

controllers, where the motor controller provided two channels for locomotion, one channel per 

side.  
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Figure 7 Level 2 Power Distribution and Charging 

2.2. Electronics  

 

The LLAGV contained a wide range of electronics, from PCB level components to the 

main microcontroller. All these parts were integrated within their respective subsystems, and 

communication will exist between these systems where needed. 

Some analysis was conducted to compare various embedded processors for this LLAGV 

application. Ultimately, the decision was made based on processing capability, local storage 

(RAM) and various communication peripherals. After comparing several various embedded 

processors with similar capabilities, the embedded processor that meets or exceeds the needed 

specifications was the Raspberry Pi 4 Model B for the locomotion system - see Figure 8. This 

embedded processor provides the needed computational power, but more importantly the most 

RAM for the price with other peripherals. See Error! Reference source not found. comparing 

the embedded processors.  
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Figure 8 Raspberry Pi 4 Model B 

 

Table 1 Embedded Processor Comparisons 

 

 

The Raspberry Pi 4 Model B (Pi) was the Linux based microcontroller chosen to govern 

the operations of the LLAGV. It was responsible for switching, measuring, communicating, and 

commanding different parts of the vehicle. This Pi has a quad-core 64-bit ARM-Cortex A72 

processor that runs at 1.5Ghz with 4GB of LPDDR4 RAM. The features that the LLAGV 

utilized are the USB ports, I2C busses, PWM channels, and GPIO pins. The Pi required a stable 

3A supply of 5V, which was provided by the PDM. The Pi processed multi-thread data in real-

time. It was responsible for obtaining and converting sensor information into positioning data, 

deciding upon the best course of action, and relaying the information to the compensator which 

relayed commands to the motor controller to follow the user. Aside from the main highest 

Microcontroller: Raspberry Pi 4B Beagle Bone Blue (Beagle Bone Black + Robotics Cape) ASUS Tinker Board Arduino Tre

Processor Cortex-A72 (ARM v8) 64-bit Cortex-A8 AM335x Rockchip Quad-Core RK3288 processor TI Sitara AM335X ARM Cortex-A8

# of CPU Cores 4 1 4 1

Processor Speed 1.5GHz 1GHz 1.8Ghz 1GHz

RAM 1GB-8GB 512MB 2GB 512MB

I2C YES YES YES YES

UART YES YES YES YES

Serial/USB USB 2.0/3.0 Serial/USB 2.0 USB 2.0 USB 2.0

CAN NO YES NO CAN

ADC's NO YES NO YES

GPIO YES YES YES YES

Operating Voltage 5V 5V-18V 5V 5V

Onboard Memory SD Micro Card SD Micro Card 4GB 8-bit eMMC Flash SD Micro SD Micro

Bluetooth BT 5.0 BT 4.1 BT 4.0 NO

WiFi 2.4GHz/5.0GHz IEEE 802.11B/g/n/ac 2.4GHz IEEE 802.11B/g/n 2.4GHz IEEE 802.11B/g/n NO

Ethernet YES NO YES YES

OS Linux Linux TinkerOS/Linux/Android Linux

Price $80 $95 $45 $60
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priority thread, the microcontroller monitored more data from the batteries and motors to ensure 

proper temperature and current levels, as well as provided the user with helpful feedback on what 

the LLAGV is doing.  

The second microcontroller was the charging controller. It governed all aspects of 

charging the battery according to the traditional charge profile of a lithium-ion battery pack. The 

charge controller was the part of the main PDMCSC circuit and was given the means to 

communicate SoC, warning messages, faults, charging complete status, and charger cable 

inserted status. The PDMCSC had nets that go to the positive and negative leads of pack, as well 

as balancing leads that connect to each bank to ensure proper balancing during charge and 

discharge cycles. Thermocouple probes were also present to monitor pack temperature and create 

a high priority alert if the pack ever overheats. The charger cable connection incorporated a relay 

inhibit feature where the motor controller can’t receive battery voltage if the charger is connected 

to the LLAGV.  

The PDMOSC contained many active and passive electrical components within the PCB. 

DCDC converters stepped down the main pack voltage to a 5V rail to power devices that need 

this voltage as their maximum limit. MOSFETs allowed the PCB to utilize the small signal GPIO 

outputs from the Pi to drive large current loads, such as the motor controller relay. The PCB will 

include traditional passive components needed for signal conditioning and power smoothing. 

The motor controller of choice was the Sabertooth 2x32A dual motor driver by 

Dimension Engineering. It provided 32A of continuous current per channel, with 64A burst 

current. The motor controller accepted a 6-30V range. The controller had many features to 

streamline the control process of the motor, but only the serial bus was used for sending and 

receiving commands and data, as well as utilize the protection features built in.  
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Figure 9 Sabertooth Motor Controller 

 

The sensors of the LLAGV will provide positioning and guidance data for the system 

microcontroller and will provide the best path for the LLAGV to follow. The information on 

sensors is explained in more detail in the Navigation division of the project. 

2.3. Signal Processing  

 

Team 15B, Navigation Division, will handle Signal Processing.  

2.4. Communications  

 

The primary communications network will include the Pi and the motor controller. The 

communication protocol used will be Universal Asynchronous Receiver/Transmitter (UART) 

serial. This bus was used because other than sending motor commands, it received telemetry data 

from the controller, eliminating the needs for external sensors and meters for measurements that 

the motor controller already made. The communication structure consisted of destination 

addresses that would allow the Pi to command and receive data from different subsystems of the 
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motor controller. The commands sent are proprietary and defined in the datasheet for the 

Sabertooth 2x32 motor controller.  

2.5. Electromechanics  

 

In order to understand how the system will behave, use of the robotics design calculations 

provided was used. These calculations allowed for us to understand how the LLAGV would 

behave under certain characteristics. The following table will show the results of a fully loaded 

LLAGV going at the maximum speed with a minimum time to run. Hand calculations can be 

provided upon request.  

Table 2 LLAGV Calculations 

Constants:    
gravity 32.2000 
static coefficient (max) 0.7000 
Normal force  50.0000 

    
Properties of LLGV:   
Weight of LLAGV  20.0000 
Weight of Load (max) 30.0000 
Weight (total) (lbs, kg) 50.0000 

   
Velocity (max) (mph) 2.0000 
Velocity (max) (ft/s, m/s) 2.9333 
Mass of LLAGV 1.5528 
radius of tire (ft, m) 0.3333 
wheel (rad/sec) 8.8000 
wheel (rev/sec) 1.4006 
Wheel (RPM) 84.03407276 

   
Force (lbs) 35.0000 
Torque (ft lbs) 11.6667 
Torque per motor (ft lbs) 2.9167 
Mechanical Power (ft lbs/s) 102.6669 
Electrical Power (W) 139.2536 
Pushing Power (ft lbs/s) 102.6669 

   
Torque sliding (ft lbs) 23.3333 
wheel rotational velocity, no load (rpm) 17.6000 
Total time ON (hour) 2.0000 
Total time ON (sec) 7200.0000 
Energy (J) 1002626.2787 



 

 

 

26 

   
Voltage (V)  14.4000 
Current (A)  9.6704 
Capacity of battery (C, Ah) 69626.8249 

    
Km (desired induvial motor constant)  0.301607891 
Acceleration from zero speed (ft/s^2) 1.16361E-05 

    

Stall Torque (ft lbs) 23.3333331 

No load (RPM) 168.0681455 

 

The LLAGV receives angle of arrival and received signal strength indication data to give 

it a sense of distance and direction from the user it is trying to find. With the ability to know how 

far away the LLAGV is from the desired user, the LLAGV must adjust its speed and angle of 

rotation to ensure the LLAGV is within a proper following distance specified in the marketing 

requirements, three to ten feet. Of course, the LLAGV will not be designed to constantly vary 

between three to ten to three feet again however, this range of distance will give the LLAGV 

“wiggle room” to operate if needed.  

As the LLAGV is constantly receiving updates on how far away the user becomes, the 

most efficient way of controlling how fast the LLAGV wished to go, with respect to a changing 

distance, would be implementing a compensator. A compensator will be is used to change the 

performance of our LLAGV system to achieve the desired performance, this performance will be 

calculated once motor controls, motors, and other specifications have been determined. The 

compensator will have a few characteristics that will be defined. The first being the Input 

Command. The primary purpose of the Input Command is that the compensator will be designed 

to reach the Input Command as its settling point. The Input Command will be determined based 

upon the distance away from the user. Converting data from distance to speed will be calculated 

later, upon further research and testing, however, the importance lies upon the application. In 

theory, the Input Command will be constantly changing depending upon the refresh rate. This 

means the LLAGV, with proper tuning, will be following the user close, but not too close. In 

example, if the LLAGV detects the user to be at the furthest distance away, the compensator will 

convert the distance to a high Input Command, allowing for the LLAGV to reach a max velocity 

to catch up. As the LLAGV gets closer to the user, the Input Command will decrease in which 
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the voltage across the motor will start to decrease, therefore slowing the LLAGV down. If the 

distance drastically decreases, the voltage seen across the motor compared to the input would be 

negative, therefore causing the motor to “lock up” and in result the LLAGV will break. The next 

characteristic of the compensator will be the Rise Time. The Rise Time is the amount of time it 

takes for the system to get from 10% to 90% of the Input Command. The motor will have a 

natural rise time if voltage is applied to the system however, if one wishes to change the rise 

time, increase, or decrease, a compensator is need. The Rise Time can also be thought of as the 

acceleration. The faster the Rise Time, the faster the acceleration. The next characteristic is the 

Settling Time. The Settling Time is the time required for the output to reach and stay within a 

given error. Overshoot is the difference of the peak output minus the Input Command. The goal 

is to have a minimal Overshoot depending upon the Rise Time. The last thing to mention for now 

is the Transient Response, as it is the system arriving at its destination. Without a compensator, 

the Transient Response will behave solely upon the characteristics of the physical system: motor, 

load, damping coefficient, and such. Therefore, a compensator will be used to alter the Transient 

Response.  

In order to understand how the compensator will change the system, the system by itself 

must be observed. The electromechanical system can be represented within the time and 

frequency domain. A block diagram representing a single motor with an output of a wheel is 

given below.  

 

Figure 10 Electromechanical System 

 

Here there a few characteristics that must be defined. 𝑒𝑖𝑛 represents the applied input 

voltage applied to the motor. 𝑖𝑚 represents the current from through the circuit.  𝑅𝑚 is the 

𝑅𝑚 𝐿𝑚 

𝑒𝑖𝑛 
𝑒𝑚 

𝐽𝑙 

𝑓𝑙 
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amateur resistance of the DC motor. 𝐿𝑚 is the armature inductance of the motor. 𝑒𝑚 is the back 

emf (electromotive force) from the motor.  𝐽𝑙 is the moment of inertia of the wheel. 𝑓𝑙 is the 

rotational damping coefficient. Each of these characteristics play an important role of defining 

the system. There can now be a set of equations that will represent the components of the system 

below.  

𝑒𝑖𝑛(𝑡) =  𝑅𝑚 ∗ 𝑖𝑚(𝑡) +  𝐿𝑚 ∗ 𝑖�̇�(𝑡) +   𝑒𝑚(𝑡)   

𝑒𝑚(𝑡) = 𝐾𝑚 ∗  𝜔(𝑡)    

𝑇𝑝𝑒𝑟 𝑚𝑜𝑡𝑜𝑟 =   𝐾𝑚 ∗  𝑖𝑚(𝑡)   

𝑇𝑝𝑒𝑟 𝑚𝑜𝑡𝑜𝑟 =  𝐽𝑙 ∗ �̇�(𝑡) +  𝑓𝑙 ∗ 𝜔(𝑡)    

 

In these equations above, 𝐾𝑚 represents the stiffness of the motor, 𝜔(𝑡) represents 

angular velocity, and 𝑇𝑝𝑒𝑟 𝑚𝑜𝑡𝑜𝑟 represents the torque of a motor. These equations can now be 

represented within the frequency domain. These equations are restated below.  

𝑒𝑖𝑛(𝑠) = (𝑅𝑚 +  𝑠𝐿𝑚) ∗ 𝑖𝑚(𝑠) +   𝑒𝑚(𝑠) 

𝑒𝑚(𝑠) = 𝐾𝑚 ∗  𝜔(𝑠)    

𝑇𝑝𝑒𝑟 𝑚𝑜𝑡𝑜𝑟 =   𝐾𝑚 ∗  𝑖𝑚(𝑠)    

𝑇𝑝𝑒𝑟 𝑚𝑜𝑡𝑜𝑟 = (𝑠𝐽𝑙 +  𝑓𝑙 ) ∗ 𝜔(𝑠) 

𝜃(𝑡) =
1

𝑠
 𝜔(𝑠) 

Understanding the application of these equations allows for us to construct a block 

diagram for further implementation. The block diagram allows for a visual on the system. The 

following figure below represents this system.  
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Figure 11 Block Diagram, Detailed 

 

Here, 𝐾𝑏 represents the back emf constant. To get a better understand on the value of 

these constants, motors must be chosen and purchased. All characteristics of the DC motors were 

not given by the supplier therefore, test must be run on the motors to build the transfer function. 

It is important to note that external torque is being neglected until real tests can be done on the 

LLAGV.  
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In Senior Design 1, tests were run on a cheaper DC motor to be ready to find the 

characteristics of the actual motor. Doing so provided useful, as a lot of that theory in application 

was used. It is important to note that I have removed the test results ran on the previous motor 

and have replaced them with the actual motor used in Senior Design 2.  

The motors chosen were the Robotzone model #638276 with dual encoder feedback. This 

motor was decently priced at $60 and provided the necessary speed and torque for the system. A 

visual representation of the motor as well as the provided specs are included in the images 

below.  

   

 

The motor purchased was a 12 Volts, 2 Ampere, and 69 Kg*cm (stall torque) motor. It 

was also noted that the reducer was a 1:71 gear ratio. The primary reason this motor was also 

chosen was due to the dual encoder feedback provided. This feedback allows us to convert 

voltage PWM feedback to RPM. With the recording of RPM, analysis was run to find the 

characteristics of that motor for equation purposes, as was talked about previously. Once the 

motor was properly connected and RPM was recorded by the Pi4, more discussion on how the 

RPM and voltage was recorded is talked about in the embedded systems, analyzing voltage input 

to the motor and RPM produced by the motor was done next. To properly analyze the motor, 

MATLAB was used. The data outputted by the motor was set into arrays to be ran. Please note 

that discussion of MATLAB code and outputs will be done throughout the report.  To capture 

RPM, input voltage was varied by adjusting a dial on a DC supply from 0 to 12 volts, 12 Volts is 

the maximum rated voltage for the motor. By varying the input voltage, output RPM was 

Figure 13 DC Motor Figure 12 DC Motor Operating Characteristics 
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recorded at different steps. Once the data from these were saved, MATLAB ran the data. The 

following data is presented below in the figure.  

  

Figure 14 Input Voltage vs RPM 

 

Correlation of RPM to speed was also found. One of our engineering requirements was to 

ensure a 3 
𝑓𝑡

𝑠
 speed could be kept. The graph below shows the data as such. Note, a load to the 

system will not change the RPM (speed) as the motors have been chosen to handle the load. The 

only noticeable difference will be the settling time. Heavier load will result in a slower settling 

time.  
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Figure 15 Speed of LLAGV 

Here, visual confirmation of 12 volts relating to an RPM of 120 was recorded. After 

confirming data looked to be correct, the next step was to use this data to calculate the 

parameters of the DC motor. Once these parameters could be found, constructing the open-loop 

transfer function could be completed.   

To find the parameters of the DC motor, the open loop transfer function relating output 

RPM to input voltage must be constructed. The constructed figure above was used to form the 

output equation. Using the following equations above, representation of the output rotation to 

input voltage is shown. 

𝜔(𝑠)(𝑠𝐽𝑙 + 𝑓𝑙)

𝐾𝑚
= (𝑒𝑖𝑛(𝑠) − 𝑒𝑏𝑤𝑙(𝑠)) (

1

𝑠𝐿𝑚 + 𝑅𝑚
) 

𝜔(𝑠)(𝑠𝐽𝑙 + 𝑓𝑙)(𝑠𝐿𝑚 + 𝑅𝑚)

𝐾𝑚
= (𝑒𝑖𝑛(𝑠) − 𝐾𝑏𝑤𝑙(𝑠)) 

𝜔(𝑠) (
(𝑠𝐽𝑙 + 𝑓𝑙)(𝑠𝐿𝑚 + 𝑅𝑚)

𝐾𝑚
+  

𝐾𝑏

𝐾𝑚
) = 𝑒𝑖𝑛(𝑠) 
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𝜔(𝑠)

𝑒𝑖𝑛(𝑠)  
=

𝐾𝑚

(𝑠𝐽𝑙 + 𝑓𝑙)(𝑠𝐿𝑚 + 𝑅𝑚) + 𝐾𝑚𝐾𝑏
=  

𝐾𝑚

𝑠2𝐽𝑙𝐿𝑚 + 𝑠(𝐽𝑙𝑅𝑚 + 𝐿𝑚𝑓𝑙) + 𝐾𝑚𝐾𝑏
 

 

Therefore, it can be seen by the equation above that the no load motor constants that need 

to be found are as follows: motor stiffness constant (𝐾𝑚), moment of inertia (𝐽𝑙), damping 

constant (𝑓𝑙), resistance (𝑅𝑚), inductance (𝐿𝑚), and back emf constant (𝐾𝑏). There are multiple 

ways to find these values.  

In order to find the resistance of the motor, a multimeter was used to measure it. The 

resistance was measured to be 5.7 ohms. Next, the inductance of an RL circuit was found, also 

seen as the DC motor. To find the inductance, the following was done. First, a sinusoidal 

waveform was generated, the output of the waveform generator was connected to the input of the 

motor. The Analog Discovery Kit 2 was used to measure the voltage across the motor. The 

overall waveform observed with a DC square wave input was then analyzed to determine the 

inductance of the motor. The waveform recorded is shown below.  

 

Figure 16 Single Period of DC square wave input 

Analysis was then made on the waveform. Here the yellow (top) wave represents a 

square wave to the motor, the blue (bottom) represents the output of the motor. The amount of 

time it took for the blue wave to fall from peak to 37% of its peak value was the time constant, τ. 

The following equation was then used to calculate the inductance of the DC motor. The motors 

inductance was then measure at 71 mH.  
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τ =
𝐿

𝑅
 

𝐿 = τ ∗ R 

 

The next steps of measurements were the motor constant (𝐾𝑚), and the back emf (𝐾𝑏). 

The following equations were used to estimate these values.  

𝐾𝑏 =
1

𝐾𝑣
=  

𝑉,  𝑝𝑒𝑎𝑘
9.543

𝜔 ,   𝑛𝑜 𝑙𝑜𝑎𝑑
=  

12.1366
9.543

125.5804
=    0.92289 

𝐾𝑚 =  
𝐾𝑇

√𝑅
=  

8.8129

2𝜋 ∗ 𝐾𝑣 ∗ √𝑅
=

8.8129

2𝜋 ∗ 1.0836 ∗ √5.7
 = 3.6913 

  

After finding these constants, the only things left to find was the damping constant (𝑓𝑙) 

and the moment of inertia constant (𝐽𝑙). It is important to note that these constants were found 

under a no-load condition. When it comes time to implement the system, the weight of the 

system will play into account for the inertia constant. Implementation of no-load allows for the 

insight as to how the motor will behave. The following equations were used to find these values. 

 

𝐽𝑙 =  
𝑇, 𝑟𝑎𝑡𝑒𝑑 𝑡𝑜𝑟𝑞𝑢𝑒

∝, 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛
=  

2 𝐾𝑔 ∗ 𝑐𝑚

14.565 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
= 0.13731𝐾𝑔 ∗ 𝑚2 

𝑓𝑙 =  
𝑇, 𝑟𝑎𝑡𝑒𝑑 𝑡𝑜𝑟𝑞𝑢𝑒

𝜔, 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
=  

2 𝐾𝑔 ∗ 𝑐𝑚

13.151 
𝑟𝑎𝑑

𝑠𝑒𝑐𝑜𝑛𝑑

= 0.15208 𝐾𝑔 ∗ 𝑚 

 

Using these solved constants, a MATLAB script was written to give the open-loop transfer 

function. The following script below shows the constants and open-loop transfer function.  

 
acc = 0.902879953; %time to go from 0 to max RPM 
R = 5.7; % Resistance of DC motor 
L = R*12.4654E-6; % Inductance of DC motor 
torque = 2; % Torque from Data Sheet 
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Kv = (rpm_max/9.549296586)/v_max; % motor velocity constant 
Kb = 1/Kv; % back EMF constant 
Kt = 60/(2*pi*Kv); % torque constant 
Km = Kt / sqrt(R); % motor constant 

  
ang_vel = rpm_max/9.549296586; % angular velocity 
ang_acc = ang_vel/acc; % angular acceleration 
J = torque/ang_acc; % Inertia  
B = torque/ang_vel; % Damping Coefficient  

 
% Creating TF from data observed above, note: converted from 

rad/s to rpm 
H_s = tf([9.5492965964254*12*(Km)/(J*L)],[1 (J*R+L*B)/(J*L) 

(Km*Kb)/(J*L)]) 
stepinfo(H_s) 
figure(2) 
step(H_s) 

 

Here, it can be seen in the above MATLAB script used to generate the step information as 

well as step plot of the DC motor. Here, input voltage to the DC motor is 12 volts. The output 

step plot is recorded below.  

 

 

Figure 17 Step Plot showing no load rise time, settling time, RPM rises to values recorded 
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The following information was recorded and shown below. 

 

Figure 18 Step information shown 

Now, the open loop transfer function can be recorded  

𝜔(𝑠)

𝑒𝑖𝑛(𝑠)  
=

1.874𝐸07

𝑠2 + 8.022𝐸04𝑠 + 1.509𝐸05
 

Now that the open loop characteristic equation was solved, it was needed to introduce 

and simulate load conditions to the motors. The reason this was done is so the compensator can 

be constructed. What if the load introduces a sinusoidal RPM or perhaps it is too slow with 

settling time; for this reason, we must simulate responses. In order to do so, it is needed to 

introduce a load to the system. This load will be called 𝐽𝑡𝑜𝑡. An updated diagram is shown below.  

 

Figure 19 Block Diagram, including load torque 

 To calculate 𝐽𝑡𝑜𝑡, it was needed to use some equations in order to solve for the four wheel 

inertia, 𝐽𝑤 and the velocity, inertia, from strictly the load , 𝐽𝑣. These equations are solved below. 

To follow, 𝑤 is the mass of one wheel. 𝐷, is the diameter of one wheel. 𝑙, is the LLAGV and the 

load in the LLAGV (the total load on all four wheels).  
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𝐽𝑤 =  
𝑤 ∗ 𝐷2

2
 

𝐽𝑣 =  
𝑙 ∗ 𝐷2

4
 

𝐽𝑡𝑜𝑡 =  𝐽𝑤 + 𝐽𝑤 + 𝐽 

 Now, a new transfer function can be introduced. The transfer function is recorded below. 

It is important to note that this transfer function can change all the time. Yes, the LLAGV will 

have a weight of its own but the load can change from 0 to 30 lbs. For this reason, I will only 

represent a transfer function with a total load of 70 lbs. Forty pounds for the LLAGV and thirty 

pounds for the weight. I have also included the MATLAB code below that was used to simulate 

and find these values.  

𝜔(𝑠)

𝑒𝑖𝑛(𝑠)  
=

𝐾𝑚

𝐿𝑚 𝐽𝑡𝑜𝑡

𝑠2 + 𝑠
(𝐽𝑡𝑜𝑡𝑅𝑚 + 𝐿𝑚𝑓𝑙)

𝐿𝑚 𝐽𝑡𝑜𝑡
+

𝐾𝑚𝐾𝑏

𝐿𝑚 𝐽𝑡𝑜𝑡

=  
1.79907

𝑠2 + 8.022𝐸04𝑠 + 1.449𝐸05
 

% Calculating inertia of 4 wheel AGV with a load  

  
D = 0.1524; % diameter of wheel, unit in m, 6 in diameter wheel 
w1 = 0.793786; % mass of 1 wheel in kg  

  
% Load of AGV in kg 
lbs = 70; 
w2 = lbs*0.453592; 

  
% 4 wheel inertia 
Jw = (1/2)*w1*D^2; 

  
% velocity inertia from load of AGV 
Jv = w2*(D/2)^2;  

  
% motor shaft conversion load inertia  
Jl = Jw+Jv; 

  
% total inertia  
Jtot =  Jl + J; 

  
% TF of a load condition, note: converted from rad/s to rpm 
num_load = [12*9.5492965964254*(Km)/(Jtot*L)]; 
den_load = [1 (Jtot*R+L*B)/(Jtot*L) (Km*Kb)/(Jtot*L)] 
H_s_load = tf(num_load,den_load) 
stepinfo(H_s_load) 
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Now that the transfer function was found, simulation was done to find the step response 

and step information. Doing so gave us the following information.  

 

Figure 20 Step Response of a loaded condition 

 

 

Figure 21 Characteristics of the loaded condition 
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 All MATLAB Code for this section is included below.  

clc; close all; clear all; 

  
% Time recorded  
temp_t = [1612479288    1612479289  1612479290  1612479291  

1612479291  1612479292  1612479293  1612479294  1612479295  

1612479296  1612479297  1612479298  1612479299  1612479300  

1612479300  1612479301  1612479302  1612479303  1612479304  

1612479305  1612479306  1612479307  1612479308  1612479309  

1612479309  1612479310  1612479311  1612479312  1612479313  

1612479314  1612479315  1612479316  1612479317]'; 

  
% While loop below scales time from 0 to 29 seconds 
i=1; 
while i <= length(temp_t) 
t(i) = abs(temp_t(i) - temp_t(1)); 
i = i+1; 
end 
t = t'; 

  
% Input Voltage 
v = [0.15   0.142739778 0.15    0.142739778 0.142739778 

0.15    11.08389368 12.11484514 12.10758492 12.07854403 

7.882135966 0.157260222 0.15    0.15    0.15    12.12936558 

12.1366258  12.07854403 12.12210536 10.16910576 0.948624372 

0.15    0.142739778 0.142739778 0.142739778 12.10032469 

12.12936558 12.10032469 12.11484514 3.293675937 0.15    

0.15    0.15]'; 
% Recorded RPM 
rpm = [0    0   0   0   0   0.143229167 114.1102248 

119.2555068 117.0820278 108.6230175 19.294812   0   0   0   

0.658854167 116.8714913 125.5803642 110.7199869 114.0656442 

42.54782097 0.016469173 0   0   0   0.369240052 121.4233971 

121.0830765 121.6334722 82.65857881 1.829819965 0   0   

0]'; 

  
acc = 0.902879953; %time to go from 0 to max RPM 
R = 5.7; % Resistance of DC motor 
L = R*12.4654E-6; % Inductance of DC motor 
torque = 2; % Torque from Data Sheet 

  

  
figure(1) 
plot(t,v,'b') % Plot time vs input voltage 
hold on 
plot(t,rpm,'r') % Plot Time vs RPM output 
hold off 
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title('RPM vs Voltage') 
xlabel('time (s)') 
ylabel('RPM & Voltage') 
legend('Voltage','RPM') 
grid on 
grid minor 

  
% Identify maximum voltage and associated RPM 
[v_max,placement] = max(v); 
rpm_max = rpm(placement); 

  
v_max 
rpm_max 
set_voltage = 12; 

  

Kv = (rpm_max/9.549296586)/v_max; % motor velocity constant 
Kb = 1/Kv; % back EMF constant 
Kt = 60/(2*pi*Kv); % torque constant 
Km = Kt / sqrt(R); % motor constant 

  
ang_vel = rpm_max/9.549296586; % angular velocity 
ang_acc = ang_vel/acc; % angular acceleration 
J = torque/ang_acc; % Inertia  
B = torque/ang_vel; % Damping Coefficient  

  
name = 

{'Resistance','Inductance','Voltage','RPM','Torque','Kv','K

e','Kt','Km','Angular Velocity','Angular 

Acceleration','Inertia (J)', 'Damping Coefficient (B)'}'; 
value = 

[R,L,v_max,rpm_max,torque,Kv,Kb,Kt,Km,ang_vel,ang_acc,J,B]'

; 
table = table(name,value) 

  

  
% Creating TF from data observed above, note: converted 

from rad/s to rpm 
H_s = tf([9.5492965964254*set_voltage*(Km)/(J*L)],[1 

(J*R+L*B)/(J*L) (Km*Kb)/(J*L)]) 
stepinfo(H_s) 
figure(2) 
step(H_s) 
% figure(3) 
% rlocus(H_s) 

  
% Calculating inertia of 4 wheel AGV with a load  

  
D = 0.1524; % diameter of wheel, unit in m, 6 in diameter 

wheel 
w1 = 0.793786; % mass of 1 wheel in kg  

  
% Load of AGV in kg 
lbs = 65; 



 

 

 

41 

w2 = lbs*0.453592; 

  
% 4 wheel inertia 
Jw = (1/2)*w1*D^2; 

  
% velocity inertia from load of AGV 
Jv = w2*(D/2)^2;  

  
% motor shaft conversion load inertia  
Jl = Jw+Jv; 

  
% total inertia  
Jtot =  Jl + J; 

  
% TF of a load condition, note: converted from rad/s to rpm 
num_load = [set_voltage*9.5492965964254*(Km)/(Jtot*L)]; 
den_load = [1 (Jtot*R+L*B)/(Jtot*L) (Km*Kb)/(Jtot*L)] 
H_s_load = tf(num_load,den_load) 
stepinfo(H_s_load) 

     
%P compensator  
Kp = 0.45; 
R = tf([num_load(1)*Kp],[1 den_load(2) den_load(3)*Kp]); 

  
figure(4) 
hold on 
step(H_s_load) 
step(R) 
hold off 
legend('No Compensator','P-Compensator') 

  
velocity_load = (3.28084*125*pi*D)/60 
velocity_load1 = (3.28084*140*pi*D)/60 

  

  
% Converting RPM (from no load condition) to velocity 

(ft/s) 
i=1;  
while i <= length(rpm) 
velocity(i) = (3.28084*rpm(i)*pi*D)/60; 
i = i+1; 
end 

  
figure(6) 
plot(t,velocity) 
title('No Load Motor Speed'); 
xlabel('time (s)') 
ylabel('velocity (ft/s)') 
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Now, let’s summarize and analyze what the last few pages of work were about. It is 

needed to find out how our step response would look when a load is introduced to four motors. 

To do so, the no-load transfer function was figured out. Once this was found, calculations of the 

load-transfer function were done to see what exactly changes. For both the no-load and load 

condition, the overshoot of the motors was 0% so no oscillation was recorded. To further 

analyze, the settling time at its highest load would be roughly 2.2 seconds. Having such high-rise 

time and low overshoot was unplanned. In the real world, an engineer might be happy without 

any compensator as the settling time and overshoot are “good”. This is to say for this application 

I would most likely not use a compensator as it is not needed.  

 However, for the intention of learning and application a compensator would be used. This 

compensator would be designed differently from the initial thought. The motors simply must 

slow down the settling time. Doing so would allow for less power consumption, as the motors 

would not be accelerating so fast. The choice was made to design multiple compensators for a 

simple purpose, to delay the settling time to a max of four seconds.  

During Senior Design 1, a few compensators were evaluated and a PID was eventually 

chosen. The reason the PID was chosen was because a PID could speed up the rise time of the 

system and lower the steady-state error (this could be the overshoot of the system if presented). 

Without knowing how the transfer function of the DC motor would behave, this was a safe 

choice. Like stated above, there really wasn’t a practical need for a PID in this application 

therefore, a different compensator should be chosen to best fit the application.  

After researching what compensators would be best to use, the choice was made to use 

either one of the two chosen: feed forward controller or P-compensator. In order to be ready to 

implement, I designed both. I will now discuss the design process of both controllers.  

To design a feed forward controller, the following mathematics was done. To save time, 

the explanation of how a feed forward controller is not included, just simply the results and 

MATLAB simulations.  
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Figure 22 Multiple captures of mathematical work 

 

Now, representing the controller in MATLAB was done. It was first represented within 

MATLAB such that confirmation of the controller could be made. All the MATLAB code is 

shown below to implement said controller. This code uses the characteristics of the motor and a 

desired settling time of four seconds. 
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clc; clear all; close all;  

  
%% Model Current Motor 
T = 0.25; %Sampling time 

  
ts = 1.73; %Simulated settling time [s] 
re_lamda_c = -4/ts; %Continuous lambda 
lamda_d = exp(re_lamda_c*T); %Discrete lambda 

  
if lamda_d <1  
    if lamda_d > -1  
    A = lamda_d; 
    B = ((1-A)*(5.42))/5; 
    end 
end 

  
%% Simulating Current motor with 4 second delay 
tfinal=20; 
tvec=[0:T:tfinal]; 
N=length(tvec); 
x_des=zeros(3,N); 
f_des=zeros(3,N); 
u_in=12*ones(1,N); 

  
ts = 4; %Desired settling time  
l_d = exp((4/-ts)*T); %Discrete pole location 
k = -(l_d - A)/B; % Initial Gain  
ess = (1-A)/(1-(A-B*k)); %Error stead state 
xss = 1-ess; 
rss = 1.5*2*pi; %desired [rad/s] Input is RPM 
xss = xss*rss; %Settling point 
ffc = 1/(rss/xss); %Feed forward controller  
R = (A-B*k); 
U = (ffc*k*B); 

  
%% Plotting 
% First calculate what RPM and Voltage is needed to 

change u_in. Then run 
% it through this filter.  

  
for k=1:N-1 

       
    f_des(1,k+1) = A*f_des(1,k) + B*u_in(k); % 

Original  
    x_des(1,k+1) = 9.5492965964254*f_des(1,k+1); 

  
    f_des(2,k+1) = R*f_des(2,k) + 1.13*U*u_in(k); % 

Delay 4 s 
    x_des(2,k+1) = 9.5492965964254*f_des(2,k+1); 
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end 

  

  
figure(1) 
plot(tvec, x_des(1,:), 'b') 
hold on 
plot(tvec, x_des(2,:), 'r') 
hold off 
legend('Original','Delay of 4 sec') 
title('Senior Design Motor') 
ylabel('RPM') 
xlabel('time') 

 

The RPM is sampled at 0.25 seconds to represent the discrete time system of the 

Raspberry Pi 4 sampling time. Now, the step response is recorded for a 12-volt input.  

 

Figure 23 Recorded RPM for feed forward compensator 
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 To summarize this controller, it is easy mathematically to represent. A settling time of 4 

seconds is achievable however, the error between the original and delay is small. This 

compensator can be slightly unstable the more the simulated settling time (depending on the 

load) changes. Here, it is designed for the max load condition however, if the load changes, the 

error also changes. The code, however, was ready to be implemented in the microcontroller, and 

just needed to add RPM feedback and it would be ready to go.  

 

The next compensator to discuss is the P-type compensator. To calculate the: 𝐾𝑝, the use 

of control system designer tool to find an appropriate pole location. Doing so, an appropriate 

gain was able to be found. The MATLAB code is shown below, and the step response is also 

recorded comparing the original to the four second delay. 

%P compensator  
Kp = 0.45; 
R = tf([num_load(1)*Kp],[1 den_load(2) den_load(3)*Kp]); 

 

 

 

Figure 24 P-type compensator vs original 
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Here, the compensator is more stable, and the error is very small. This compensator 

would then be implemented in the system. The Raspberry Pi also had a built-in library which 

would help configure this compensator.  

 Once the compensator was chosen and the code was ready to be implemented, the team 

ran into some bigger issues. When finding that the ultrasonics did not properly work with the 

Nano-Jetson, the team had to make a decision. With only a week left to implement the team had 

to decide between object detection and safety versus RPM feedback. Unfortunately, the RPM 

feedback had to be eliminated and instead, the ultrasonic sensors would take its place on the 

Raspberry Pi’s GPIO pins. This allowed for the project to continue. Even without a compensator, 

the motors still ran however, without the ultrasonics sensors, the object detection and safety 

orientation would not work.  

 

2.6. Computer Networks  

 

There is no information at this for the Locomotion division with computer networks.  

 

2.7. Embedded Systems  

 

The LLAGV in general was an embedded system in that effectively combines interfaces 

the many types of hardware present on the machine. The main system microcontroller was an 

embedded single board Linux based computer that communicated and interacted with all the 

different peripherals. Through multiple communication busses, it interfaced with the motor 

controller through a serial bus, sensors and switches through the GPIO pins and I2C expansion 

boards. 

Each section of the LLAGV specialized in one type of action or responsibility within the 

machine. The system microcontroller either controlled or obtained data from each section. This 

means that the embedded system effectively converted any type of data, whether it be voltage, 

current, speed, distance, direction, temperature, status, etc., to use inside the software code and 

logic to make computations, make decisions and act upon them, as well as return similar values, 

or create different types of responses for different systems.   
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2.8 Mechanical System  

 

 The mechanical system of the LLAGV consisted of a cubic shaped main body that 

formed the superstructure upon which all other components integrated into. The vehicle 

consisted of four driving wheels, utilizing a tank style control. The left and right side were 

coupled through identical motor connections, which allowed one channel to control both wheels 

that drove the respective half of the machine. 

 The main chassis of the machine was a 18x22x4” form factor, made of 6061 aluminum 

1/8” thick. This material was light and strong enough to hold the requirements, while allowing 

easy drilling for mounting different components. The chassis was grounded. The top cover 

consisted of metal grating to allow easy access into the chassis area, and also held the load pod. 

The top cover ideally would’ve been secured using hinges on the rear side of the chassis to allow 

the top cover to open like a car hood, though the hinges were never incorporated as the top cover 

needed to be constantly fully removed.  

 The electrical powertrain mounting consisted of a 12V DC motor, coupled to a gearbox. 

The 6mm gearbox output shaft was run through a 6 to 8mm flexible coupler that the main axle 

attached to from the opposite input side. This axle was held up by a pillow block and self-

aligning bearing blocks on the walls of the body. Thrust bearings separated these features to 

prevent horizontal movement of the axle during turns. The 6” wheels bolted onto the axle, about 

an inch away from the outer wall of the LLAGV.  

 The overall operation of the mechanical system was satisfactory aside from the couplers. 

While the couplers were intact, the machine moved efficiently, and the powertrain had minimal 

load from driveline drag or friction. Adding the marketed load on top of the machine made only 

a minor increase in the current consumption to carry the load, indicating the mechanical system 

was not operating beyond any limits.  

 The single component failure experienced was the coupler from the motor gearbox to 

axle. These devices were of the spring type, allowing both some angle between conjoining shafts 

and damping from sharp speed changes. These couplers allowed the driveline to move very 



 

 

 

49 

freely. When executing zero turn maneuvers, the radial load on the couplers was beyond limits. 

This was not because of a heavy load, but of high traction provided by the tires. A zero turn is a 

precise maneuver that does not move any distance, but spins in place for quick directional 

changes. This means that all circular movement purely needed to break traction and slip all four 

wheels to execute, which led to the failure of one coupler. Tesa tape was added to all four tires to 

reduce their friction with the ground to ease some of the stress off of the driveline components 

while executing this maneuver. A coupler with more radial strength would have been the perfect 

alternative for the spring type, allowing more reliable operating during various movements.   
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3. Engineering Requirements Specification 

Marketing 

Requirement 

Engineering Requirements Justification 

6 LLAGV-LS will operate, from a full charge, for a minimum 

of 2 hours before needing recharged. 

Because of frequent stops and often long idle 

position, a 2-hour run-time will be sufficient 

for the use case. 

 1 LLAGV-LS will be able to adjust its angle of rotation based 

on positioning data polled from navigation team. 

The vehicle can adjust its travel angle of 

direction based on positioning data and 

navigation around objects. 

 2,3 LLAGV-LS will have an average speed of 3 feet/second 

while maintaining an overall distance of 3 to 10 feet.  

The vehicle is capable of following the user 

at a comfortable walking speed, while slow 

enough to accurately assess its environment. 

 4,6 LLAGV-LS will incorporate protection circuitry to allow 

safe power distribution, power consumption, and charging. 

Circuitry will be constructed to allow for no 

over-charge of batteries.  

 7,9 LLAGV-LS will display system state, state-of-charge (SoC) 

and faults to the user. 

The vehicle needs a way to communicate its 

metrics and operating conditions to the user. 

 1,4,7 LLAGV-LS will be able to hold its position when unsafe 

conditions are sensed. Command vehicle speed 0. 

In an emergency situation (user initiated or 

sensed from navigation team) the vehicle 

needs to stop ASAP and maintain its position 

until the user can accommodate the vehicle. 

 1,2,3 LLAGV-LS will compensate its motion and steering 

mechanisms by sampling its current speed in real time 

>1kHz or sampled every 0.001s at a minimum. 

In order to accurately control the vehicle 

speed and direction, the vehicle will monitor 

its current speed at a high frequency >1kHz. 

 4,9 LLAGV-LS will respond to manual requests from the user 

hardware interface <500ms. 

For safety and to avoid unnecessary lag the 

system will respond to state change requests 

quickly <500ms. 

 4,7 LLAGV-LS will be < 25lbs, excluding the load, so the user 

can move the LLAGV if needed. 

Should the vehicle enter a situation where it 

cannot navigate (according to nav team data) 

the user may need to pick up the vehicle and 

move it out of the situation. 

 5,8,9 LLAGV-LS will have an easy access holding cell to 

transport the light load (up to 30lbs or ~13.6kg) 

A hopper design will allow for a light load to 

be held on top of the LLAGV. Designed to 

allow for the center of gravity to be as close 

to the ground as possible.  

Marketing Requirements References:  

1. The system will be able to navigate throughout the environment in which its placed in order to follow an individual to its 

destination. 

2. The system will maintain a set distance from the user.   

3. The system will travel at an average walking speed.  

4. The system will have multiple safety features.  

5. The system will be able to carry a light load. 

6. The system will be rechargeable via rechargeable battery. 

7. The system will provide state information as user feedback. 

8. The system will travel on light terrain. 

9. The system will have an intuitive HMI to operate the device. 
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4. Engineering Standards Specification  

4.1. Safety 
Table 3 Safety Standards 

Safety Standards Usage 

ANSI B56.5 Warning Alarm/Lights 

Emergency Stop 

Collision Avoidance 

 

4.2. Communication 
Table 4 Communication Protocols & Usages 

Protocol Usage 

USB 2.0 Communication between embedded processor 

and motor controller 

GPIO Inputs from Switches 

Output to LEDs 

I2C ADC/Weight Sensor 

1-Wire Signal for Individually Addressable LEDs 

 

4.3. Data Formats 
Table 5 Data Formats & Usage 

Format Usage 

Binary 

(En/Decode via Python Struct Pack) 

Format for all locally stored data 

 

4.4. Design Methods 
Table 6 Design Tools 

Language Usage 

AutoCAD  Mechanical Sketch 

MATLAB Motor Control 

Microsoft Visual Studio Code Software Development IDE 

 

4.5. Programming Languages 
Table 7 Programming Languages 

Language Usage 

Python 3.6+ Application Language 

Redis Database Local Data Storage 
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4.6. Connector Standards 
Table 8 Connector Standards 

Connection Usage 

USB 5V Power/Data Transfer 

Molex-MX150 PDM power and I/O connections 

Generic copper ring terminals High current connections 

Generic shrouded header connectors Module/sensor connections 

 

5. Accepted Technical Design  
 

5.1. Hardware Design:  

 

The overall hardware architecture was split into many parts. All control system 

commands, communications, measurements, and switching governed by software or hardware 

was either interfaced or propagated through one of four circuits: the PDMOSC, PDMCSC, VIH, 

or PIH. These circuits provided the skeleton for the full vehicle wiring harness and enabled the 

full embedded system to be interconnected between all destinations. These analysis for these 

circuits have been covered in section 2.1. 

The PDM was the major power distribution and switching module that included the 

PDMOSC and PDMCSC. The PDMOSC was responsible for distributing most of the power to 

the different subsystems in the LLAGV. All the incorporated circuits in the PDMOSC were 

fused. The circuits in the PDMOSC allowed the Pi to send GPIO level outputs that were 

amplified to control high current peripherals. The PDMCSC was responsible for charging and 

maintaining the battery pack. It also provided user feedback, charge controller status to the Pi, as 

well as inhibiting any dangerous activation of the motor controller. The workings of the PDM are 

explained below.  

The circuits to illuminate the neutral and autonomous mode LEDs are shown below in 

Error! Reference source not found.. The LEDs were low side switched with an n-channel 

MOSFET, using dedicated GPIO ports from the Pi. The return nets were the cathode side of the 

LEDs, with a current limiting resistor in series. The FET gates were pulled down to enable the 

channels to work like switches.  
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Figure 25 LED actuation circuits 

The pre-charging circuits in Error! Reference source not found. contained an n-channel 

and p-channel MOSFET. The pre-charge actuation signal from the Pi named PC_SIG activated 

Q3, which drove the gate of Q4 low to activate its channel, allowing a path from the fused 

battery net through F5, a PTC fuse, to a pre-charge resistor that allowed the motor controller 

voltage rail to slowly rise and build a charge on the capacitors. This circuit were deactivated by 

turning off PC_SIG, which pulls the gate of Q3 low to break the channel. 

 

Figure 26 Pre-charge circuit 

The main relay switching circuit is shown in Figure 27. This circuit existed to actuate the 

relay coil (net RLC+) of the high current relay that connected the B+ terminal of the battery to 

the high side of the motor controller. This circuit had the same principle as the pre-charge circuit, 
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where the B+ terminal was connected to the common terminal of RL1. This relay stayed in the 

open state if the charger is not plugged in. This net continued to the normally closed terminal, 

which is connected to the high side of the main relay coil. When the charger is plugged in, the 

supply closed the relay, which disconnected the common terminal from the normally closed 

terminal, therefore opening the main relay. 

 

Figure 27: Main relay switching circuit 

The PDM included an array of diagnostic LEDs that will indicate whether certain circuits 

have powered up, such as voltage rails and motor controller’s actuation. The setup for these 

LEDs is shown below. 

 

Figure 28: Diagnostic LED indicators 

The net current of the system was  an available measurement to the Pi. By using the 

MCP6231 op amp, a differentiator can be built calculate the voltage drop across a current shunt 

and use the shunt parameters to calculate current going through the device. The current shunt 
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was a 100mV/100A shunt, with a Kelvin connection at the input and output of the shunt. The 

input connection was the I_NET FEED net, and output net was I_NET RETURN.  

 

Figure 29: Net current sense circuit 

The latching/unlatching circuit used a momentary push button activated by the user to start 

the LLAGV. The button was connected to B+, and this switched net was S1. By closing RL3, the 

B+ net spread to whichever ports require it. The net also continued through the normally closed-

common connection of RL2 and into the high side coil of RL3, which allowed the relay to 

essentially feed itself. To break this circuit, RL2 became closed when SHUTDOWN 1 or 2 drive 

the gate of Q7 high, which introduced a path to ground for the low side of RL2. This disconnected 

the normally closed contact from the common contact and broke the original B+ net from latching 

itself, therefore turning of the B+ power to the system and microcontrollers. The system was once 

again be latched on only if the user pressed the ON/OFF switch.  
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Figure 30 Latching/unlatching circuit 

The PDM contained power rail conditioning through two parallel capacitors of 1 and 

100uF. This helped smooth out any voltage spikes. The conditioning circuits are shown below. 

 

Figure 31 Conditioning circuitry 

The PDM contained temperature monitoring and incorporated a cooling fan to control the 

internal temperature of the main housing. The cooling fan was actuated similarly to the LEDs of 
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the system, where the low side of the fan was given a path to ground when a channel was made 

in the n-channel MOSFET. The gate of this transistor was controlled by the FAN_EN net 

controlled by the Pi. 

 

Figure 32 Cooling fan actuation circuit 

The charger supply actuation circuit contained a relay that allowed charging to start, as 

well as sending an inhibiting signal for the system to start driving. This was a safety feature 

required to never let the AGV not move while charging 
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Figure 33 Charger supply circuit 

The PDM contained ADS1115 ADCs onboard. U4 contained the resistor networks for the 

4 motor temperatures. The first resistor leg of each network was tied to 5V. The center point of 

each network was routed to its respective analog input on the ADC. The second resistor leg was 

connected to the center point and ground to complete the circuit. These resistors were routed out 

from the PDM to the body of the motors; therefore, they are not drawn here.  

The individual bank voltage of the 4-cell battery were monitored through the BK nets 

on U5 and U7. By setting the ADC input range from 0.5-4.5V, the BK nets were the source voltage 

for their resistor networks. Once again, the midpoint is tied the inputs to the ADCs. 

The bank temperatures were set up similarly to the voltage measuring circuits. There 

max/min values were predetermined to specify the value of resistors required. 
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Figure 34 ADC division 

 The PDMCSC is shown in the figure below. The whole process is governed by the 

BQ24600 lithium-ion battery charger. The circuit was set up to meet the requirements of the 

manufacturer, with some calculations needed for calibrating the chip. The battery voltage 

wasprogrammed through the resistor divider network onto the VFB pin. The current regulation 

was set to the ISET input of the chip. The setup used two power MOSFETs to charge the battery 

pack at an 8A rate. 
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Figure 35 PDMCSC 

In the figure below, the system overview of the two main harnesses are shown. The VIH 

is shown in the top half of the drawing, where it starts at the PDM and splits off for power 

distribution and signal acquisition for the various sensors, switches, and motor controller. The 

PIH is shown in the bottom half of the drawing. It also starts at the PDM, and interconnects the 

motors to the motor controllers, as well as the battery pack and 12-5V DCDC converter. The 

middle harness shows the connection of PCB to panel mounted charger connection.  

 

Figure 36: Vehicle Interface Harness 
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The figure below shows the Vehicle Interface Harness in more detail. At the left, X10 

and X11 represent the mating connectors to the PCB. The coil of the RL5 main power relay are 

supplied by the VIH. B1 shows the battery pack and all the peripherals that will be inside of it. 

All switches, LEDs, and sensors are shown with their connections to the PCB or power. The VIH 

will also connect the Jetson Nano to the Raspberry Pi via an ethernet connection. The single 

large wire is the bus that connected power, ground, and signaling to the 6 ping sensors, shown on 

the right. 

 

Figure 37 VIH in detail 

 The PIH shown in Figure 38 shows all high current connections in detail. The B+ was 

switched by RL5 to the motor controller once it is has been pre-charged. The right-side 

components show the motor controller and the connections that go from controller to motor. The 

DCDC converter connection are shown with the 4-pin device on the lower left.   
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Figure 38 Motor Control to Motors 

 
Figure 39: Compensator Level 2 Design 

  

Here, the Level 2 Diagram shows the input signal referring to the Input Command. The P 

Compensator will allow for the LLAGV speed to be varied upon distance from user. The 

Transfer Function will be calculated and stored within the program. The output signal will drive 

to two motor control channels. Data from Team 15B will allow for the LLAGV to detect Line of 
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Sight, angle of LLAGV to user, and adjust the RPM to allow for necessary changes. Theory of 

the compensator and theory of design implementation is stated above in engineering analysis.  

Table 9 Functional Requirements Hardware Compensator 

Module   Compensator Control Loop Level 2   

Designer Lawrence S.   

Inputs   Distance from User  

Motor Control Feedback 

Transfer Function of Electromechanical 

System 

 

Outputs Voltage(s) to Motor Controls 

Description   Distance of LLAGV to user, from Team B 

sensors, will be used as an Input Command to 

the compensator. Compensator will be 

designed to allow for the Transient Response, 

output voltage to the motors, to react in a way 

that allows for the LLAGV to have proper 

speed and distance from the user.    

 

5.2. Software Design:  

 

To describe the software architecture for the LLAGV, there exists four active states and one 

powered off state. The following describes the states found in the figure below representing the 

system states. 

1. Off 

2. Startup (State LEDs: Blue) 

3. Neutral State (State LEDs: Yellow) 

4. Auto/Follow (State LEDs: Green) 

5. Help (State LEDs: Red) 
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Figure 40 System State Diagram 

In the powered-off state, no software systems are active. In this case the embedded processor 

is turned off, all sensor networks are powered off and the LLAGV can be freely moved as no 

motor control systems are active. To leave the powered off state, the user must press the power 

on button held within the push button switch interface. 

The startup state exists to prompt the user to select an action. In order to avoid the system 

booting into follow (Auto) or manual (Neutral) mode, the startup state was created to initialize 

the database values to safe initial conditions and also prompt the user to select follow or manual 

control by flashing the dedicated push button switched on the user interface of the LLAGV. 

The neutral state was initially created as a state where the user could simply push the 

LLAGV, by hand, out of a situation deemed non navigable by the LLAGV’s sensory system. 

However, due to the end size and girth of the machine this state now allows the user to drive the 

LLAGV with a remote control, namely an Xbox 360 controller. This is a feature added to 

enhance the user experience and will be discussed in more detail later. 

The autonomous state implements the main objective, providing a mechanism to deliver a 

light load for the user. It is here where all systems are active. The sensing network is active to 

determine a clear path of travel to follow the user; these navigation instructions are made 
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available to the compensator processes implemented in software to follow the user. Ideally, the 

vehicle will follow the user as the he/she moves away from the front of the LLAGV while 

maintaining the set distance. While in the autonomous state, the LLAGV will have the capability 

to navigate around obstacles and overall achieve the task of reaching the user. In the worst case 

where the LLAGV gets cornered, or senses objects surrounding the vehicle and cannot determine 

a clear path of travel to the user; the LLAGV will transition from autonomous to the help state 

and wait for user intervention to clear the help request. 

Lastly, in the discussion of states, there is the help state. This state is entered when the 

vehicle deems the path of travel non navigable (decision made available by the navigation team) 

or the machine senses an overweight condition measured via load cell. When the LLAGV 

determines unsafe conditions as mentioned: overweight, loss of sight, unable to traverse; the 

LLAGV brakes all motors, holds its position and displays the help state via the dedicated state 

LEDs on the front of the vehicle (in red). At this point the vehicle is requesting the user’s help to 

proceed. The user can switch to manual control mode to drive it out of the area, remove the 

obstacles or remove weight from the bed of the LLAGV to correct the situation. In any case, 

until the situation is resolved attempts made to re-enter Auto (follow) mode will be denied and 

remain in the help state. 

In an attempt to provide overviews pictorially, the overall architecture of both hardware 

and software will ideally be straightforward. So before jumping into the Python code, several 

high-level views of the system will be explored. 
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Figure 41 Processor High Level Overview 

To help illustrate the hardware connections that will be mentioned repetitively in the 

software discussion, the above depiction shows a high-level overview of some of the basic 

connections. The focus of this overview is on the Raspberry Pi 4 (pictured lower left) as this was 

the processor used on the locomotion system of the project. The Jetson Nano was exclusively 

used for the navigation “brain” of the LLAGV but is necessary to mention here as for this 

integration discussion. Depicted in this illustration, there is a few highlights on connections. The 

entire 40-pin header is taken to the PCB by way of forty position ribbon cable. This connection 

provides the 5V (up to 3A) power supply and establishes the connections to the vehicle’s LED 

lighting system, push button switches and telemetry circuitry (localized temperatures of motors 

and battery cell voltage). Moving to the lower center of the illustration, there are two universal 

serial bus (USB) connections for the Raspberry Pi to communicate with both the Sabertooth 

motor controller and the Microsoft® Xbox 360 receiver. Communication between Team A and B 

(Locomotion and Navigation) is one datalink. As depicted, from the Ethernet jack of both the Pi 

and Nano is a connection made with a standard CAT6 cable. This connection allows the Nano to 

read and write into the in-memory database hosted on the Pi. This is the only communication 

method between locomotion and navigation processors used. 
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The developed application for the LLAGV is implemented by way of a multi-threaded 

design. Utilizing all four cores of the Raspberry Pi this is made possible. Each thread or process 

specifically carrying out its respective task will have access to global internal storage via an 

internal database. The user interface process with the highest priority on the embedded processor 

encapsulates management of state transitions based upon events detected through push buttons or 

events detected from the sensor networks. 

 

Figure 42 Locomotion Software Overview (Process/Thread Architecture) 

This multi-threaded application is outlined above, with focus again on the Raspberry Pi. 

As a clarification, Python threading and actual threading in the traditional sense are two different 

things. To explain, in the above illustration the script launch_ui.py behaves as a thread or process 
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in the traditional sense, occupying one core of the processor. Within that script there are several 

Python threads kicked off, these do not occupy additional cores, but act as multiprocessing 

within that overarching process. Ignoring all other scripts mentioned in the above illustration, say 

just launch_ui.py, if one were to use a program to view active programs/processes it would show 

as one python process, even when in reality there is a Python thread for each individual switch, 

LED lighting system and other attributes of the user interface. Perhaps a better word to 

differentiate is a process defines part of the application occupying a core on the processor, 

whereas a thread (python thread) lives within a process and there can be many of these per 

process. This is highlighted by the two different blue hues in the above figure. The darker blue 

hue signifies a process, whereas the lighter blue hue signifies a major python thread. Noting that 

there is some detail not shown here, this will be expanded upon later when those individual files 

are explored and the associated attribute functions. 

 As one last piece of overview before getting into the specifics of the control processes 

and threads within, the in-memory database should be covered. Hosted on the Raspberry Pi there 

is an application running a server that handles read and write requests to a pool of data located in 

the Pi’s on-board random-access memory (RAM). The reason for implementing this in-memory 

database was to simplify communication among threads and in this case also processors. 

Normally, all of the control threads within the application would need to be synchronized or how 

else would the motor control process know when the user switches from manual to follow mode? 

Implementing this Redis database bypasses the challenge of multiprocessing synchronization. To 

view the data base values, the sever responds to requests made in the command line interface as 

well as what the LLAGV application will be using and that is the Redis Python library imported 

into the Python scripts. The interface is simple, for starters a connection can be made to the 

database by simply calling the following from the Pi’s terminal: 

redis-cli 

This establishes a local connection (127.0.0.1) to the Pi’s network and permits the viewing, 

setting and getting of keys within the database. It really is as simple as the following setting and 

getting of the test key: “SD_test”. 
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Figure 43 Redis Command Line Interface Test 

Now all keys used in the application are available for manipulation and viewing as well: 

 

Figure 44 Redis Database Keys 
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Unfortunately, the database keys are not displayed in any reasonable order. This is likely due to 

how the server handles the storage of the key names and their respective values. Because this is 

Python, they are likely stored in a dictionary data type which does not have any ordering like you 

would expect in say a list data type for example. Anyway, the above captures the thirty keys used 

in the LLAGV software application. This does include a few keys that the Jetson Nano watches 

and sets. Recall, the Nano is remoting into this hosted database to view data and set some keys 

pertaining to navigation system information. This is how the locomotion and navigation systems 

communicate. This command line interface is intuitive and was essential to our integration phase 

as it allowed quick development and experimentation setting specific keys’ values and recording 

the LLAGV’s reaction. As mentioned, the CLI is what was used in software development, but 

the actual implementation in the LLAGV’s application was very similar. For instance, the 

following shows how to get a value from the database, typecast it to something of value and 

ultimately set a value in the database. 

 

Figure 45 set/get DB Example 

Here, a snippet from the plausibility check gets the current state from the key “state”, converts 

from raw binary to a string type. If that decoded string comes back as “auto” (follow mode), then 

the application will also command the LED ring around the Auto/Follow switch to turn on, 

acknowledging the state change request. This is one small example, and of course are many more 

instances of these set/get occurrences. 
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Figure 46 agv.py (overarching start script) 

Now for the discussion of the actual scripts and Python code written for the locomotion 

system. The above captures the entirety of the software triggered to run the locomotion 

application. The script starts by making necessary imports and creating an object that links to a 

database connection. The following lines set specific variables to make sure the system boots in a 

known state. Within the try block is where using Raspbian OS to make system calls and start the 

processes mentioned in the thread explanation figure in the beginning of this section. Each of 

these calls are blocking which is why each line ends with an ampersand character telling the OS 

to run the script in the background. There is a script built to find and kill processes started when 

the LLAGV is shutdown or if the application is desired to be killed. This is enacted by calling 

“stop” in the command line. Similarly, this script above can be enacted by calling “run”. 
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User Interface 

 

Figure 47 User Interface (Button Interface) 

A user interface is needed to gather information from the user. For example, what does 

the user want to do? A series of push buttons were used for the user to select an operation. These 

include ON, NEUTRAL, and FOLLOW (Auto). As discussed before, these buttons will force the 

software to move to different states and if all is well, that is, the respective state. The above 

photo illustrates the interface used in the final design. The center push button is ON with the 

system. When the application begins the left and right (Neutral & Follow) push button’s LED 

rings flash at 1Hz prompting the user to make a selection. Once a selection is made the 

respective LED ring turns solid confirming the user’s choice. From there the user can select the 

other mode and the state will transition. That LED will now turn on solid and the previous states 

will turn off acknowledging the new selection. The two outer push buttons for neutral and follow 

also have software behind them.  
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Figure 48 Switch class implementation 
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To simplify how the Python code creates the threads monitoring the switch states, a class 

was defined and within it were functions generic to each switch. The most significant part being 

the monitor_switch() function which produces the behavior as described. The script will carry 

out the necessary action for the switch based on the action returned from the database. the 

following flow chart helps illustrate this feature of driving the LED ring as well as debouncing 

the switch input and when to update the switch state. 

 

Figure 49 Switch class main flowchart 

There are two other buttons apart of the interface. Those are the emergency stop and kill 

switch buttons (pictured below) on the front and left side of the LLAGV. The emergency stop 

breaks the connection between the battery input and the controller, disabling the vehicle’s 

movement. The placement of this button was chosen because of how low the vehicle sits and its 

preference to drive forward. Should something go wrong it is easy to use one’s foot to press the 

e-stop switch in, immediately disabling the movement. The kill switch is smaller and slightly 

harder to access. This is because the kill switch de-latches the PCB, turning off the entire system: 

both processors, PCB circuitry and completely turns off the vehicle. These two buttons are 

hardware only, meaning they have no relevance to software. The e-stop is indirectly detected 

when pressed due to the serial exceptions raised as communication to the motor controller is lost 
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at that point. When this happens the state transitions to the help state, requesting the user to cycle 

power. 

 

Figure 50 Emergency Stop and Kill Switch 

Additionally, a mechanism is needed to display to the user that their request was 

acknowledged via current state, state-of-charge (SOC) of the device and also headlights and 

directional indicators were added. An LED lighting system will be used to satisfy this need and 

perform within the user interface. Individually addressable LEDs will be a sufficient method of 

displaying this information in the form of light strips. This information will be boldly displayed 

for the user to quickly verify their requests are acknowledged and monitor the overall state of the 

system. The photo below is titled with the LED blocks and their associated purpose. The LED 

strips double as a safety mechanism to alert intelligent bystanders to avoid intentionally 

obstructing the LLAGV, a warning mechanism if you will.  
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Figure 51 LED lighting system 

Per the photo above, from left to right, the left most four LEDs indicate the state of the 

system, the inner eight LEDs act as headlights and the left/right turn signals. The “O” in the title 

is just a reference to the big e-stop. The four rightmost LEDs in the photo indicate the system 

SOC. Note that headlights and directional signals were not part of the initial design but added as 

they provide feedback as to where the vehicle plans to go and helped to confirm software written 

without actually moving the unit to keep risk of the LLAGV from ramming into something or 

someone in the development and integration phases. 

Table 10 SOC Functions 

Pixel Index SOC Color Brightness 

LED[0] 0-24% Red Scaled 0-255 

LED[1] 25-49% Yellow Scaled 0-255 

LED[2] 50-74% Green Scaled 0-255 

LED[3] 75-100% Green Scaled 0-255 
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The breakdown of the LED lighting system starts with one of the most important, the 

state of charge of the vehicle. To help illustrate this, the table above outlines functions of the 

rightmost four individually addressable LEDs that will illuminate to quickly and intuitively 

display the system state of charge to the user. Notice that this is a part of the display user 

feedback subsystem. In the above functions for displaying SoC there is four, each representing 

25% of 100. Initial testing was done on a string of 50 individually addressable RGB LEDs just 

because it was available at the time. Early testing showed that this was indeed a viable option for 

displaying SOC to the user. Below simulated percentages were displayed through the display 

algorithm. For the demonstration below and translated to the final design, a dummy variable to 

scale the input voltage was used to force an accelerated time lapse of the LED indicators. Now 

the four LEDs below are all on at full intensity when the unit is fully charged. As the LLAGV is 

used the SOC depletes. This is shown as the system voltage drops the intensity of the LED scales 

and dims with the depleting voltage. For example, as voltage decreases from 100% to 75% the 

left most green LED slowly dims as the voltage decreases and eventually turns completely off 

once the voltage level drops below the representable SoC sector. Then the next LED begins the 

same process, until reaching the last sector of 25% -> 0%.  

 

Figure 52 Test RGB SOC Display 

This implies that this feedback thread knows what the system voltage is. This information 

was intended to be measured using an ADC to monitor the cell voltage of each bank. As it turns 

out the system voltage can be retrieved from the Sabertooth motor controller by a simple ASCII 

command as follows: 
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Figure 53 Query Sabertooth for Battery Voltage and Post to DB 

 A function was created to collect the voltage reported by the Sabertooth and type cast the 

string data type to a float. Then based on this value the state of charge could be calculated based 

on the max and min voltage expected to see on the battery pack. The maximum charged value for 

the designed battery pack is 16.8V and the minimum voltage one should stop operation and 

recharge at is 13.2V. A formula was used to calculate the percent value as shown above. This 

voltage value is made available in the local data storage, that is, the Redis database. The 

algorithm for displaying the SOC is shown in the snippet below, reiterating what has already 

been described. There are four sectors where the LEDs behave in a specific way and this is 

reflected in the following four if/elif blocks. 
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Figure 54 Display SOC algorithm 

Next, the LED lighting system also displays the system state on the far left, pictured in 

Figure 51. The table below represents the colors of the four LEDs representing system state. 

Note that all four left most LEDs are acted on in the same way at 100% brightness. 

Table 11 State Display 

Pixel Index State Color Brightness 

LED[12:15] Startup Blue 100% (255) 

LED[12:15] Neutral Yellow 100% (255) 

LED[12:15] Follow Green 100% (255) 

LED[12:15] Help Red 100% (255) 
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This is implemented in Python in the following function. Here, the function takes a string 

argument pulled from the in-memory database and changes the color of the indexed LEDs 

accordingly. 

 

Figure 55 Display State Function 

The last feature of the LED lighting system is the additional “bonus” feature of headlights 

and directional signals to inform the user of the vehicles directional intent. This really came 

about when sourcing LED strips for the project, as RGBW small LED “sticks” were found to 

work great in this application. The RGBW has four dedicated diodes within the chipset allowing 

for a bright white option in place of using all three RGB to simulate a white hue. The white diode 

allowed for a very bright white and thus came about the feature of headlights. In Follow mode 

the headlights turn on automatically when the vehicle wants to drive forward to follow the user. 

In manual mode the user can use the DPAD up (^) key to toggle the headlights is desired. In the 

process of development, there was worry of unnecessary stressing of the system doing zero turns 

when testing the angle calculations, as a mechanical motor shaft coupler had already broken. To 

help with this the introduction of turn signal directional indicators were added such that the 

intent was shown when the LLAGV should turn right or left. This helped in development as 

further progress could be made without actually stressing the mechanical system. This feature 

was left as it also helps the user see the intent of the vehicle. The turn signals are implemented in 

a sequential pattern slowly indexing the respective four LEDs in an outward motion. The 

following table explains the pixel index and associated colors. These are the center eight LEDs. 
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Table 12 Directional Functions (LED Lighting System) 

Pixel Index Position Color Brightness 

LED[4:7] Left White/Orange 100% (255) 

LED[8:11] Right White/Orange 100% (255) 

 

To summarize the user interface process, here is a flowchart outlining the features. 

 

Figure 56 Status LEDs main loop Flowchart 

The above flowchart implemented in Python code: 
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Figure 57 Status LEDs Main Loop 

The status_leds.py script is too large to be readable in line so it will be included in the appendix 

section with the software for locomotion as a whole. One of the major components not described 

in detail here is how the LEDs are commanded. These individually addressable LEDs are 

commanded through a protocol named 1-wire. GPIO 18 is one of three GPIO on the Raspberry 

Pi that can communicate 1-wire and is the one used here. This communication is literally over 

one signal wire. Each LED has an IC and if the packet reaches that individual LED and matches 

the index, it carries out that action. If the index does not match, the packet of information is not 

meant for that LED and the information is passed to the next LED and its IC. There are many 

times in the script that reference a specific color i.e., RED, BLUE, GREEN, etc. These colors are 

defined in an led_colors.py file like so: 

 

Figure 58 LED Colors (RGBW codes) 

This just happens to be a cleaner way of defining the RGBW color codes assigned to each LED 

in the lighting system as a whole.  
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Figure 59 launch_ui.py Python Script 

This concludes the user interface section, noting that a combination of push button 

switches and two LED sticks for a total of sixteen individually addressable LEDs comprise the 

UI for the LLAGV. Recall from the beginning of this section, the threading architecture, one of 

the processes spawned is launch_ui.py. This script is responsible for creating necessary class 

instances of all push button switches on the LLAGV, starts a thread for the LED lighting 

feedback mechanism, and lastly which will be discussed later it handles a process that monitors 

the weight placed in the vehicle and starts threads associated with ultrasonics. This will be 

discussed in more detail when the detect.py script is mentioned, in short, due to unforeseen 

issues with the Nano the sampling of ultrasonics had to be moved to the Raspberry Pi. 
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Motor Control 

 

 Next, following the application outline there is a script that spawns the threads associated 

with left and right motor control, posts localized RPM feedback (deactivated), and posts the 

battery voltage reported by the Sabertooth motor controller. For simplicity there was a motor 

class written in Python. Two class instances are created for left and right motor control in the 

run_motors.py script. Starting with the motor class explanation, reference the following Python 

code Figure 60. Here the motor instance has several functions and attributes. Referencing from 

top to bottom, there is first the init() method for the motor class. This accepts the Sabertooth 

library object to permit motor control, the encoder feedback pins, gear ratio and pulses per 

revolution unique to the motor used. Following this is two functions handing the setup and 

teardown of the GPIO used in association. The A and B pins from the encoder feedback need to 

be configured as inputs to the Raspberry Pi. Should this thread exit for any reason a cleanup 

method was created to clean up the GPIO (reset to kernel known states) and make sure the motor 

control is stopped for good measure. 
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Figure 60 Motor class Implementation 
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A few words on the rotations per minute (RPM) feedback. There was a lot of effort and 

design that went into the design theory and control aspect in anticipation of using some sort of 

PID or compensator in the locomotion system. In order to implement a compensator loop or even 

a P type controller for the system, two things at a minimum are required. One being the system 

level voltage to know exactly what voltage is supplied to the motors as it does affect the RPM 

calculations. This was carried from the initial testing into the final design as shown above a part 

of the Motor class get_supply_voltage(). The second being counting and determining position of 

the quadrature encoders attached to two of the four motors on the LLAGV. Again carried from 

initial test scripts to the final design, get_instantaneous_rpm() and helper functions get_velocity() 

and log_rpm(). A new addition to simply post these values to the in-memory database was the 

post_motor_speeds() function. Two motors have quadrature encoders attached as feedback from 

the left and right side of the vehicle. Quadrature encoders provide two pulse signals that reveal 

where the shaft is in four quadrants of the rotational geometry. One source describes quadrature 

encoders as the following: “A quadrature encoder is an incremental encoder with 2 out-of-phase 

output channels used in many general automation applications where sensing the direction of 

movement is required. Each channel provides a specific number of equally spaced pulses per 

revolution (PPR) and the direction of motion is detected by the phase relationship of one channel 

leading or trailing the other channel” [1]. With the voltage feedback as well as the encoder 

feedback for one motor, the process can easily translate to another (different) motor and used in 

combination to satisfy the need for two motors with the encoder feedback. Note that this is the 

goal, do some testing with a motor, verify the calculations, then apply the findings to the motors 

used in the final design. Early testing was completed with a small simple test motor to 

characterize the motor and paired with its datasheet could gauge the formulations and 

calculations made to use that data collected and calculate RPM. Procedure wise this early testing 

had a manually selectable variable power supply to drive the motor (0-24V). this voltage was 

read in through an ADC breakout board into the embedded processor to sense the voltage 

provided to the motor. The breakout board chosen does not accept 24V signals, rather 5V 

maximum; a voltage divider circuit was breadboarded to step the 0-24V to 0-3.3V. Obviously, 

there is some voltage loss here due to discrepancies with the resistors used and interpretation of 
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the signal, but for the sake of testing was deemed sufficient as the scale 0-22.5V was observed. 

See the initial test setup used below. 

 

 

Figure 61 Bench Test Setup Characterize Motor 

In the background there is the variable power supply shown. In the foreground the motor 

to left is socketed into the breadboarded circuit shown. The blue breakout board shown is the 

ADS1115 16-bit ADC. This ADC device communicates over I2C to the embedded processor. 

Only one single-ended channel was used for the demonstration, all others were tied to GND, to 

reduce noise. With some research it was found rotations per minute of a motor shaft can be 

calculated with the following equation: 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑅𝑃𝑀 =  ((𝑃𝑢𝑙𝑠𝑒𝑠 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ∗  60) / 𝑃𝑃𝑅) / 𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜 
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The pulses per revolution and the gear ratio are both constants given in the data sheet for 

the motor. Again, the overall goal here is to enter the necessary information into the equation, 

calculate an RPM for a supplied voltage and ideally match what was given in the datasheet to 

back-up the claims made that this algorithm does indeed calculate instantaneous RPM.  

 

Figure 62 Motor Pinout 

There is an A and a B signal connected to the embedded processor (assume grounds and 

all other supplies where necessary), there needs to be a correlation of the two signals to 

determine where the motor shaft is relative to permanent magnets are, which is what drives the 

pulses observed from an encoder. The following table provides a look-up table of sorts. In the 

algorithm the previous value of A and B are stored. The new (current) A and B signal is sampled 

and then shifted onto the previous yielding a new combination of values. This value is then used 

to determine a position, which is the index in the result matrix. This is shown exactly in the 

algorithm shown below that determines what quadrant the encoder is reading, based on the last 

and current quadrant reading, it can determine whether the motor is turning clock or 

counterclockwise and based on the count of pulses sampled in a set interval of time, the RPM 

can be calculated using the aforementioned equation for output RPM. 
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Table 13 Quadrature Encoder Signal Lookup Table 

Previous A Previous B Current A Current B Result 
0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 -1 

0 0 1 1 0 

0 1 0 0 -1 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 1 

1 0 0 0 1 

1 0 0 1 0 

1 0 1 0 0 

1 0 1 1 -1 

1 1 0 0 0 

1 1 0 1 -1 

1 1 1 0 1 

1 1 1 1 0 

 

 

Figure 63 Python Motor Characterization Script 

As already explained, the above code snippet demonstrates how this RPM calculation 

was done using both the supply voltage to the motor (read back in through the ADC) and using 
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two GPIO pins to read the A and B signals of the encoder connected to the motor. Ultimately, 

after operations performed on the previous and current AB signals, a timestamp and the 

calculated RPM are returned. Using this function in combination with the following functions 

pictured below, these values can be recorded, written to file and imported to be post-processed to 

determine a model for the motor as well as a transfer function to be implemented in conjunction 

with a P controller which is the ultimate goal. 

 

Figure 64 Python Script to Log Motor Characterization Parameters 

Now the entirety of the above script is not all included as a part of the final motor control 

loop, however it is used to characterize the motors specified for the final design, as a 

determination of RPM versus time and voltage will be necessary. With the above software the 

instantaneous RPM can be logged to a file to later be graphed. All of this initial work was 
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translated and applied to the motors used in the final design. Updated bench test setup is pictured 

in Figure 66. 

Now recall the Motor class code snippet. The initial testing, calculations and formulations 

were translated to the final design. The get_supply_voltage() was used heavily in both the initial 

bench test setup (described above) and the updated one with both final test motors (pictured 

below). This voltage function simply reads an ADC channel to gather the voltage value sent to 

the motor, which is then used in the RPM calculation. It turns out, like the battery supply voltage 

value, the Sabertooth provides this information with an ASCII command so the ADC reading is 

not necessary. The next function, get_instantaneous_rpm() polls those A and B signals and 

counts the pulses witnessed from the encoders attached to the two rear motors. The RPM 

feedback process is illustrated in the following flowchart. 

 

Figure 65 RPM feedback loop 
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Figure 66 Bench Test Setup with Final Design Motors 

This RPM feedback function is fully developed and working however, this monitoring 

for the RPM feedback was cut. This was due to unforeseen issues with signal processing on the 

Jetson Nano and the ultrasonic processing had to be moved to the Raspberry Pi. Because the 

cores and processing on the Pi was already dedicated and maxed out with other features, it was 

decided to cut the RPM feedback. Discussion on what this was replaced by will come later. The 

following three functions all have to do with logging and posting the recorded RPM feedback 

and interpreting that as a velocity for the overall vehicle, which was discussed above on how to 

use those functions to characterize the test and final motors used. 

The last function outlined in the Motor class of the final design captured below has to do 

with driving the respective side of the vehicle. This is really where the use of the in-memory 

database shines. These motor class instances are constantly running and the loop within the 

drive() function is always watching a percent field in the database. These threads do not care 

whether this command is from manual or follow mode control. This database permits complete 

independence of other threads. The fields can even be updated manually by connecting to the 

command line interface as shown earlier in the software discussion.  
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Figure 67 Motor class main drive() loop 

As shown is an emphasis on the drive() function taken from the Motor class pictured 

below. This design makes the control of the respective sides simple and streamlined. Within the 

thread the percent command is captured from the database, type casted to percent (float data 

type) and passed to the saber object to carry out the commanded percent. This thread is updated 

every 100ms. This can also be shown in the form of a flow chart to help illustrate the loop’s 

behavior below. 

 

Figure 68 Motor drive() Flowchart Representation 

As mentioned, there are two Motor class (pictured above) instances. The overarching 

process that creates these instances is the run_motors() script. This script is outlined below. 
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Figure 69 run_motors() script 



 

 

 

95 

The above Python script shows creating the two motor class instances on lines 13 and 14. 

These both are passed the attributes described above. Focusing on the main() function in this 

run_motors() script is shown that the threads to drive left and right motors are commenced, while 

rpm feedback is commented out and not running. Lastly, as mentioned because the battery 

supply voltage is obtained from the Sabertooth motor controller every 30 seconds the voltage is 

queried and updated in the database. The separate user interface thread, namely status_leds.py 

will poll this value and its update is carried out through the system. 

Thus far for motor control the final design Motor class has been covered as well as some 

important notes on efforts for RPM feedback in both initial testing and translated to the final 

design. Again, although much effort was put toward RPM feedback it was ultimately cut for 

another system taking precedence.  

Now, a look at the manual control aspect of this LLAGV-Locomotion System. To better 

understand movement capabilities, top speeds and in general to prove out the locomotion 

hardware, a software system control loop was designed to manually control the LLAGV via an 

Xbox controller.  

 

Figure 70 Functional Block Diagram Manual Control 

Table 14 Functional Requirements Table for Manual Control 

Module Manual Motor Control Loop 

Designer Marcus R. 

Inputs Xbox Controller Buttons 

L/R Trigger 

L/R Bumper 
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DPAD UP 

Outputs L/R Traction Commanded % 

Description The program will take inputs from the Xbox 360 controller and apply them to 

scale output of commanded motor in terms of percent. 

 

This was achieved by connecting a Microsoft® Xbox receiver to one of the Raspberry 

Pi’s USB ports. A python library was pulled, and another interface was written on top of that to 

control the LLAGV. The Python library handles the dynamics of connecting and interpreting the 

signals from the controller. The manual control loop is its own process that acts should the 

system state change to Neutral (manual). This control method also took over as the neutral mode 

due to the size and girth of the end machine. This added feature makes it much easier for the user 

to navigate the machine if needed.  
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Figure 71 Manual Control Flowchart 

Outlined in the above flowchart, when the state is “neutral” it sits in a small loop that 

checks the DPADUP button on the Xbox controller, and calls a helper function, drive_agv(). If 

the UP button is pressed the program with toggle the headlights from whatever the prior state 

was. In the drive_agv() function is where the commanded percent is pulled from the database. 

Noting that in this function it is checked to see if one of the L/R bumpers are pressed on the 

controller. If so, then the commanded percent is inverted, and the motor(s) are commanded 

reverse.  See the following illustration of the controller and table outlining the functions of used 

buttons on the controller with designated reference numbers. 
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Figure 72 Xbox 360 Control Button Mapping 

Table 15 Manual Control Buttons and Functions 

Button Function Type Value Range Controller Ref# 

Left Trigger Drive Left 

Motors 
Float 0 to 1 6 

Right Trigger Drive Right 

Motors 
Float 0 to 1 9 

Left Bumper Invert Left 

% 
Boolean 0 or 1 5 

Right Bumper Invert 

Right % 
Boolean 0 or 1 10 

DPAD UP Toggle 

Headlights 

Boolean 0 or 1 2^ 

 

 This concludes the discussion of the manual control loop for the locomotion system. 

Again, this was an added “bonus” feature to compensate for the weight and size of the machine 

so the user does not have to pick it up should there be unnavigable terrain according to the 

navigation sensors and data or just a desire to move the LLAGV oneself. 
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  For auto motor control, the systems and design are more complex as expected with 

having to automate something the user would normally be doing. Revisiting some of the theory 

related to motor control, below shows a basic outline via functional block diagram.  

 

Figure 73 Level 1 Functional Block Diagram for Motor Control 

Here, this area of the program will sample navigation and obstacle sensing data from an 

internal database of the embedded processor. The motor control loop will use this data to 

dynamically change the setpoint of the compensator. The compensator will attempt to reach its 

new goal. Meanwhile, as the LLAGV moves the program will continue to sample the navigation 

and obstacle sensing data. The end result of the compensator box (loop) will be specific 

commands for the 2-channel motor controller which ultimately decides where the LLAGV goes 

in direction and speed. Of course, also shown in Figure 73 is the power supply given to all three 

blocks. Table 16 describes the inputs, outputs and overall thinking behind the functional block 

diagram for this compensator subsystem. 

Table 16 Functional Requirements for Level 1 Compensator 

Module SW Motor Control Loop 

Designer Marcus R. Lawrence S. 

Inputs Distance from User 

Obstacle Detected 

Recommended Path Direction 

Outputs L/R Traction Signal 
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Description Control loop considers distance and direction data from external sensors (team 

B) to determine setpoints for compensator. Based on gain values and 

characteristics of chosen motors, the compensator will drive the 2-CH Motor 

Controller. 

 

To expand, another iteration on the block diagram above to achieve a deeper 

understanding of how the motor control loop will operate. Functionally, what is shown in Figure 

74 is the same as the prior iteration. That is, the main compensator loop with inputs to the left 

and outputs to the right. However, in Figure 74, there is a more detailed view of how the control 

collects its data. Starting from the left, navigation and obstacle sensor data is inserted into a local 

database where the motor control loop will poll said data. This user distance data, along with 

obstacle detection data, recommended direction and motor controller feedback will all be taken 

into consideration for the ultimate setpoint of the compensator as shown in Figure 74. Here, it is 

shown that the compensator will iterate on itself until the ultimate objective is carried out or 

complete. As the compensator iterates it communicates over serial (USB) to command the 

individual motors respectively. The motion of the LLAGV will operate as a tank tread design but 

with four wheels. If the recommended direction is left, for example, the left wheel would be 

driven at a slower or stopped position as the right side of the traction will move faster to 

compensate and overall achieve the “to the left” motion. This of course translates to the right 

side and will repeat as necessary. Two independent serial commands for channels 1 and 2 drive 

the respective sides of the LLAGV. The embedded processor can then request the current motor 

speed and adjust the compensator setpoint as needed for each iteration. 
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Figure 74 Level 2 Functional Block Diagram for Motor Control 

Overall, this process is described in the Table 17 below. The compensator loop accounts 

for the inputs shown to meet the overall objective of following the user and delivering the load 

the user placed inside the LLAGV. This is accomplished by polling the listed inputs and 

adjusting vehicle speed and angle as needed to maneuver itself to the user. 

Table 17 Functional Requirements Table for Level 2 Motor Control Block Diagram 

Module SW Motor Control Loop Level 2 

Designer Marcus R. 

Inputs Distance from User 

Obstacle Detected 

Recommended Path Direction 

Current System State 

Motor Control Feedback 

Outputs L/R Traction Signal 

Description Control loop considers distance and direction data from external 

sensors (team B), current vehicle speed, and current system state to 

determine setpoints for compensator. Based on gain values and 
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characteristics of chosen motors, the compensator will drive the 2-CH 

Motor Controller. 

  

For the actual design a look into the python script driving the automated motor control, 

representing Follow mode, associated flow charts and detailed explanations will follow. Like the 

manual control loop, this is a process that is always running but does not produce any motor 

commands unless the switch state changes to Auto. Mentioned on several occasions in other 

areas of the technical design the RPM feedback had to be turned off. This directly affected the 

compensator design as it was dependent on that field to create the closed-loop system. To adjust, 

information from the navigation team was used to fill this missing data. Namely using the 

distance data from the antenna array. This value was used to linearly scale the drive forward 

percent commanded to the motors of the LLAGV. As the vehicle approaches the user the vehicle 

slows and as the user walks away the vehicle speeds up eventually to its max speed to keep up. 

See the below flow chart for this auto control loop commanding the motors in follow mode. 
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Figure 75 Auto Control Flowchart 



 

 

 

104 

The flowchart above illustrates how the overall motor control loop will operate. As 

mentioned, the motor control loop will be a self-contained thread within the overall application. 

Here, the motor control loop has access to the data to make decisions by polling navigation and 

sensor data from a locally stored database. If the system state is in autonomous then the control 

loop samples the internal database to obtain a distance between the user and the LLAGV. If that 

reported distance is greater than the set threshold (4 ft.), then the control loop samples the 

internal database again to obtain obstacle data and acquire a path of travel. If no object is 

reported, the set distance is simply passed to the compensator to carry out its duty of driving the 

two motors. Here, the term “compensator” means the linear scale formulation derived from 

the lack of RPM feedback. Note that until the compensator receives an updated setpoint it is 

continually iterating on itself to get to the user and the embedded processor is consistently 

sampling the motor controller for feedback. Also, simultaneously while the compensator is 

working, the control loop is querying the internal database to check if an object is detected, and 

if yes also poll the new recommended path of travel. This information is continually updates and 

is passed to the compensator, ultimately adjusting the path of the LLAGV until the vehicle has 

reached the user. Ideally, the control loop returns to poll the user distance again once the vehicle 

has successfully arrived at the user and the user is stationary. At this point the vehicle is still in 

the autonomous state and is simply waiting to follow (user needs to break the threshold again). In 

a worst-case scenario, while the vehicle is following the user, should there be a loss of sight 

between the vehicle and user, or the vehicle is in a surrounded situation and there is no 

recommended path of travel; the application enters the help state. The vehicle in this situation 

requires the user to maneuver it out of the situation and reset the vehicle in a combination of 

button pushes to re-enter the autonomous state. 

To elaborate on the discussion of autonomous locomotion, it is important to note once 

again that functions would have been used if the feedback from the motors was not cut. The idea 

is simple, use the data received from the navigation systems (NS) team to decide whether to 

change the angle of the LLAGV or drive forward.  

 To break it down even further, the hierarchy would go as follows. The LLAGV would be 

constantly received angle variation and distance from the user (NS). In doing so, code was 

written that handled angle variation as the main priority. It is important to think that the LLAGV 
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must be within an allowable angle from the user to drive if not, the LLAGV could go anywhere. 

For this reason, an “if” loop was always checking a threshold before driving forward. The code is 

represented below.  

 

Figure 76: Angle Detection 

 Both he “ANGLE_DEFAULT” and “ANGLE_THRESHOLD” could be changed inside 

the code at any moment. Due to accuracy from the navigation team, it was found that ±90° 

degrees would give the most accurate data. If the current angle detected was outside of that 

threshold, the LLAGV would initiate a turn command, shown below.  

 

Figure 77: Turn commands 

 This above snippet simply does a zero turn in the direction of the desired angle. The 

important thing to note is the “sleep(duration)” command. This is important as it tells the 

LLAGV how long to turn for. To find the sleep command, the LLAGV’s measurements were 

written down and a little bit of trigonometry was used. As you can see from the image below, it 
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was easiest to think of the LLAGV as a large circle where the four corners of the LLAGV would 

be the radius of the circle.  

 

 

Figure 78: Representation of LLAGV 

 Given that graphical representation, the radius of that circle was found. Through some 

calculations it was determined that applying ~2V to the motors (inverted of each other for a zero 

turn) would yield the following: 

 

Figure 79: Calculating speed based on voltage 

 To finish this off, an equation to relate this information to the amount of time needed to 

turn an exact angle was necessary. Velocity, distance, and time was used to determine said 

equation. Using the radius of the circle and the angle would also prove useful.  
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Figure 80: Time related to angle 

 It can now be seen that time and angle are related. In the example shown, a 90° rotation at 

2V to the motor would require roughly 2.6 seconds. The sleep length for the “sleep(duration)” 

command for exact angle variation needed was found this way. 

To summarize this formulation created to replace the PID, it was determined that in 

practice, giving the LLAGV an exact angle to turn was difficult. The reason being so was the 

data received from Team B (NS). As found in implementation, due to hardware, Team B’s data 

could sometimes be inconsistent. For example, say this array of data was received from Team B 

[0 , 0, 0, 50 , 0]. Here, the value “50” would be an error. If the LLAGV’s program were to see 

the “50” and do a 50° turn, the LLAGV would turn the incorrect way and then notice it was 

wrong and try to turn back. The theory of turning to the exact angle is great if and only if there is 

no error or lag between data and user. For this reason, it was better to scale the angle. To scale 

the angle, simply decreased the voltage to the motor by a scale of 0.25. This meant that it would 

run at ¼ the speed for the required time. Doing so allowed for the LLAGV to “keep up” with 

(NS) data and work more appropriately. 

 

Figure 81: Implementation of theory 
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 Now that angle variation is concluded, discussion on moving forward can be discussed. 

The goal was to allow for the LLAGV to be within 3 to 10 feet of the user, when the LLAGV is 

running. Obviously, if the LLAGV is turned on and the user is further, the LLAGV will catch up. 

To do so, that distance values from the navigation system (NS) team was used. With the lack of 

RPM feedback (previously discussed), the distance data from the (NS) was relied on. The 

distance, known as delta in the code, was greater than 7 feet, 100% speed command to try to 

catch up. If the distance was then between 4 to 7 feet, the voltage is scaled to the motor to 

maintain a 4 to 7-foot distance at all times. If the user slows down and stops and the distance 

from the LLAGV to the user is less than 4 feet away, stop the LLAGV and pause for 5 seconds. 

Sleeping will allow the LLAGV to ensure it does not hit the user and that the data from the user 

can be refreshed properly. The code that did this process is included below.  

 

Figure 82: Drive forward command 

The next thing to point out in this auto_control.py script is the “if” statement after the 

“elif delta > 7” command. This is the object detection. The idea of the object detection was as so. 

If the user was more than 7 feet away from the LLAGV and the Pi read an ultrasonic sensor had 

detected something in front, then the LLAGV would stop. The LLAGV would then turn right to 

90° (previously mentioned scaling angles due to sharp turns) and would drive forward for three 

seconds. This would give the LLAGV enough time to clear the object in front of itself. The 
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LLAGV would then rotate 90° back and go forward for 2 seconds. This gave the LLAGV 

enough time to slowly creep up and make sure the object is cleared on its side. The program 

would then resume and the LLAGV would be on its way. If for some reason the LLAGV did not 

clear the object in front, the program would run again until the object is cleared. This concludes 

the explanations surrounding the implementation of the autonomous control of the LLAGV. 

Recall the process outline in the beginning of the software discussion. So far, 

1. launch_ui.py 

2. run_motors.py 

3. manual_control.py 

4. auto_control.py 

have been covered. The final major process in need of discussion in the detect.py script. This is a 

special area which is mostly why it has been saved for the end. Ideally, the navigation system 

(NS) team would have handled the ultrasonic sensor processing on the Jetson Nano end and the 

necessary directional information would be made available to the locomotion system (LS) via 

setting keys in the database. As mentioned in prior sections there was an unforeseen issue with 

processing ultrasonic Ping® sensors on the Jetson Nano. After browsing development forums, it 

was determined that the implementation of the Linux OS variant for the Nano (from NVIDIA) 

did not provision for accurate timing associated with the GPIO pins. The decision was then made 

to move the sampling of the ultrasonic Ping® sensors to the Raspberry Pi. Unfortunately, this 

does complicate the discussion and separation between the NS and LS, but it was a compromise 

that had to be made. This is where the detect.py script comes into play. Below is the detect.py 

Python script. 
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Figure 83 detect.py script 

Here it is shown that there are five class instances of the Ping class. Then each of those sensors 

act as a python thread within the detect process continually updating the distance read every 1Hz. 

This is made clear within the actual Ping sensor class written to grab information from the 

sensors and post that distance data into the database. Again, confusing but yes, the Raspberry Pi 

(the LS embedded processor) is posting the data of the five sensors. That’s it. Because there is 

the shared database the NS can pick up and actually process the data and set other variables for 

the motor control threads to act on. The idea has always been for the LS to not act on raw data 

read from the Ping® sensors, but processed data from the NS. This is still the case, the Raspberry 

Pi is just taking the place of sampling the sensors, as the Nano was deemed incapable. Once 

again, because of this shift RPM feedback was removed to allow for this unplanned change. 
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Next, the Ping Python class was created to handle actions in association with triggering and 

receiving the pulse from the sensor. 

 

Figure 84 Ping class 

As shown the Ping sensor class has trigger and echo functions. This functionality was provided 

from the NS research and development. The ping_distance() function was developed and is what 

runs as a python thread for each sensor. Here the determined distance is simply pushed to the 

database every one second. This data is made available to the Nano for logical processing. This 
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concludes the detect.py script discussion. The process/thread overview in the early software 

discussion has now been covered in its entirety. Thus, concluding the software application for the 

locomotion system. 

In summary, the locomotion system (LS) software application really deals with two 

major features. That is, the user interface (UI) and the movement of the LLAGV. Specifically, 

related to the UI a handful of Python scripts were discussed from the individual classes, the 

scripts that created the instances of those classes and ultimately how the multi-processing 

structure was handled on the Raspberry Pi (LS’s embedded processor). Motor control, naturally 

more complex had two other main control loops, manual and auto. The drivability of the 

LLAGV was first explored with an Xbox controller interface, which later ended up keeping as a 

“bonus” added feature for the user to more easily move. A major challenge was discussed with 

dropping the RPM feedback for the motors, eliminating the PID work. This again was due to the 

need for ultrasonic Ping® sensor sampling to be done on the Raspberry Pi because the Nano was 

deemed incapable. This RPM feedback information was replaced with less accurate distance data 

from the NS. The move from a more precise and accurate compensator was switched to a much 

simpler linear scaling of vehicle speed based on this user distance data. Lastly, there has been 

many mentions of multi-threading and one may wonder how it is monitored. Unfortunately, a 

capture was not collected while running on the unit, but a program named dstat was utilized to 

monitor the four cores of the CPU on the Raspberry Pi. 

 

Figure 85 dstat CPU monitoring 
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Paying specific attention to the idl field in the photo. Ideally this field is close to 100%. When 

this program was running with the entire LS application running three of the cores were running 

between 0 and 15%. This is not great, but the fourth CPU core was left to be lighter with idl 

times in the 70% range. This was necessary because there still needs to be idle time for the OS to 

carry out its tasks like networking, memory management and handling access to hardware like 

the GPIO requests in those processes. 

6. Mechanical Sketch  
 

 

 

Figure 86:Main housing with drivetrain and wheels 
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Figure 87: Drivetrain assembly 

 

 

7. Team Information  
 

Team A – Hardware Lead - Nazar Paramashchuk, EE  
Team A – Archivist - Marcus Radtka, CpE  

Team A - Project Lead - Lawrence Shevock, EE  

Team B – Hardware Lead - John Downey, EE  
Team B – Software Lead - Charles Werling, CpE  

Team B – Hardware -Robert J Williams II, EE 

8. Parts Lists  
Table 18 Parts List 

5 CBL1-5 415-0031-036 SMA Co-axial cable M-F, 3ft 

1 CBL6 415-0029-036 SMA Co-axial cable M-M, 3ft 

1 AD1 CAB.S02 SMA to IPEX MHF4 Adapter 

1 BT1 8265.NGWMG 

Intel Dual Band Wireless-Ac 

8265w/Bluetooth 

2 M1, M3 RB-Sct-1012 MOTOR WITH ENCODER 

2 M2, M4 638324 

120 RPM motor without encoder 

encoder 

2 N/A   2 6' wheels with hubs included  

1 N/A   Sabertooth dual 32A motor driver 

1 N/A   DC converter  

4 N/A OPLC10K Shaft collar 

4 N/A OPLC10K Shaft collar 

4 N/A 4002-0006-0008 6/8mm shaft coupler  

2 N/A YJ0274MA-AN-M 8mm shaft hub  (LINK HAS 4) 
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4 N/A 555176 Clamping motor mount 

4 N/A 1602-0032-0008 8mm pillow block 

1 N/A a19110100ux0846 8mm thrust bearing (LINK HAS 10) 

3 

F7, F8, 

F9 0ZCF0500FF2A PTC RESET FUSE 16V 5A 2920 

5 R1-R4 EC2-12NU 

RELAY GEN PURPOSE DPDT 2A 

12VDC 

10 D1-D10 SDURD1040TR DIODE GEN PURP 400V DPAK 

10   Nexperia USA Inc. MOSFET N-CH 30V 37A LFPAK 

10   ON Semiconductor MOSFET P-CH 30V 25A ATPAK 

2   Texas Instruments 

IC SYNC SW-MODE BAT CHRGR 

16VQFN 

2   442060001 CONN HEADER VERT 24POS 4.2MM 

1 N/A   Micro SD Card (32GB) 

2   39012245 CONN RECEPT 24POS DUAL 

100   457503112 CONN SOCKET 16AWG CRIMP TIN 

10   TMP6131LPGM SENSOR PTC 10K OHM 1% TO92S 

1   A00000226 100A 100mV SHUNT 

20   INR-21700-M50A 21700 5ah 15a 

1   B08HR916WK 2 per link 

1 S1 EK42442-01 PE42442 4-channel RF switch 

1 N/A 6061ASHT125 Aluminum Base 

16 N/A 1276-6733-1-ND CAP CER 0.1UF 100V X7R 0805 

10 N/A 1276-2569-1-ND CAP CER 100PF 100V C0G/NP0 0805 

4 N/A 478-8502-1-ND CAP TANT 2.2UF 20% 25V 0805 

6 N/A 478-8927-1-ND CAP TANT 1UF 10% 20V 0805 

3 N/A 478-3286-1-ND CAP TANT 0.1UF 10% 20V 0805 

10 N/A 511-1794-1-ND CAP TANT 10UF 20% 20V 0805 

10 N/A 

399-

C0805C220K5HAC7800CT-

ND 

CAP CER 0805 22PF 50V ULTRA 

STAB 

20 N/A 497-10392-1-ND DIODE SCHOTTKY 100V 3A SMB 

20 N/A 732-4990-1-ND LED GREEN CLEAR 1206 SMD 

10 N/A 160-1170-1-ND LED YELLOW CLEAR SMD 

4 N/A SSC54-E3/57TGICT-ND 

DIODE SCHOTTKY 40V 5A 

DO214AB 

4 N/A BAT54SCT-ND 

DIODE ARRAY SCHOTTKY 30V 

SOT23-3 

5 N/A 18-1812L300/24SLERCT-ND PTC RESET FUSE 3.0A 24V 1812 

3 N/A 507-1768-1-ND PTC RESET FUSE 24V 1.1A 1812 

3 N/A 541-1008-1-ND 

FIXED IND 2.2UH 8A 20 MOHM 

SMD 

25 N/A 1727-5910-1-ND MOSFET N-CH 30V 44A LFPAK56 

5 N/A SIR426DP-T1-GE3CT-ND MOSFET N-CH 40V 30A PPAK SO-8 
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5 N/A 1727-BUK6Y33-60PXCT-ND MOSFET P-CH 60V 30A LFPAK56 

2 N/A A143679CT-ND RES 3550 100R 1% 

40 N/A 10-ERA-6VRW1002VCT-ND RES 10K OHM 0.05% 1/4W 0805 

4 N/A A102096CT-ND 

RES SMD 2.49KOHM 0.1% 1/10W 

0805 

10 N/A RMCF0805FT383RCT-ND RES 383 OHM 1% 1/8W 0805 

10 N/A YAG5980CT-ND RES SMD 330K OHM 1% 1/8W 0805 

5 N/A 13-RT0805BRE079KLCT-ND RES SMD 9K OHM 0.1% 1/8W 0805 

3 N/A 311-2813-1-ND RES SMD 1K OHM 0.5% 1/8W 0805 

10 N/A RMCF0805JT2K00CT-ND RES 2K OHM 5% 1/8W 0805 

3 N/A 541-4132-1-ND RES SMD 10 OHM 1% 1/8W 0805 

3 N/A 541-4166-1-ND RES SMD 100 OHM 5% 1/8W 0805 

10 N/A 541-3978-1-ND RES SMD 100K OHM 1% 1/8W 0805 

3 N/A 311-2822-1-ND RES SMD 21K OHM 0.5% 1/8W 0805 

3 N/A YAG2002CT-ND 

RES SMD 9.31K OHM 0.1% 1/8W 

0805 

3 N/A P430KDACT-ND RES 430K OHM 0.1% 1/8W 0805 

3 N/A YAG1992CT-ND RES SMD 909K OHM 0.1% 1/8W 0805 

20 N/A RNCF0805BTE10K4CT-ND RES 10.4K OHM 0.1% 1/8W 0805 

10 N/A 

13-RT0805FRE072K74LCT-

ND RES SMD 2.74K OHM 1% 1/8W 0805 

10 N/A A143808CT-ND RES 3550 4R7 5% 

2 N/A 696-1268-1-ND RES 0.01 OHM 5% 35W TO263 DPAK 

8 N/A Z2352-ND 

RELAY GEN PURPOSE SPST 10A 

12V 

2 N/A 

296-TLV271QDRG4Q1CT-

ND IC OPAMP GP 1 CIRCUIT 8SOIC 

4 N/A 296-45221-1-ND 

IC ADC 16BIT SIGMA-DELTA 

10VSSOP 

2 N/A 296-47740-1-ND 

IC BATT CHG LI-ION 1-6CEL 

16VQFN 

5 N/A 732-5401-ND 

CONN HEADER VERT 40POS 

2.54MM 

4 N/A H3CCS-4036G-ND 

IDC CBL - 

HHKC40S/AE40G/HHKC40S 

 

The following table includes the final materials budget list corresponding to the budget expense. 

The total budget was $900.00. This comes from $150.00 per person allowance. All total 

expenses are below. The total expense was $1,300 as the project also required mechanical 

expenses. For the size of this project, the overall expense was low.  

5 415-0031-036 SMA Co-axial cable M-F, 3ft $17.79 $88.95 

1 415-0029-036 SMA Co-axial cable M-M, 3ft 15.64 15.64 

1 CAB.S02 SMA to IPEX MHF4 Adapter 9.00 9.00 
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1 8265.NGWMG 

Intel Dual Band Wireless-Ac 

8265w/Bluetooth 23.99 23.99 

2 RB-Sct-1012 MOTOR WITH ENCODER 59.99 119.98 

2 638324 120 RPM motor without encoder 39.99 79.98 

2   2 6' wheels with hubs included  38.92 77.84 

1   Sabertooth dual 32A motor driver 124.99 124.99 

1   DC converter  16.99 16.99 

4 OPLC10K Shaft collar 1.10 4.40 

4 OPLC10K Shaft collar 1.10 4.40 

4 4002-0006-0008 6/8mm shaft coupler  5.00 20.00 

2 YJ0274MA-AN-M 8mm shaft hub  (LINK HAS 4) 14.00 28.00 

4 555176 Clamping motor mount 7.00 28.00 

4 1602-0032-0008 8mm pillow block 7.00 28.00 

1 a19110100ux0846 8mm thrust bearing (LINK HAS 10) 10.39 10.39 

3 0ZCF0500FF2A PTC RESET FUSE 16V 5A 2920 1.20 3.60 

5 EC2-12NU RELAY GEN PURPOSE DPDT 2A 12VDC 1.97 9.85 

10 SDURD1040TR DIODE GEN PURP 400V DPAK 0.56 5.60 

10 Nexperia USA Inc. MOSFET N-CH 30V 37A LFPAK 0.51 5.10 

10 ON Semiconductor MOSFET P-CH 30V 25A ATPAK 0.61 6.10 

2 Texas Instruments 

IC SYNC SW-MODE BAT CHRGR 

16VQFN 4.77 9.54 

2 442060001 CONN HEADER VERT 24POS 4.2MM 2.01 4.02 

1   Micro SD Card (32GB) 8.49 8.49 

2 39012245 CONN RECEPT 24POS DUAL 1.56 3.12 

100 457503112 CONN SOCKET 16AWG CRIMP TIN 0.26 26.00 

10 TMP6131LPGM SENSOR PTC 10K OHM 1% TO92S 0.61 6.10 

1 A00000226 100A 100mV SHUNT 13.99 13.99 

20 INR-21700-M50A 21700 5ah 15a 7.50 150.00 

1 B08HR916WK 2 per link 13.95 13.95 

1 EK42442-01 PE42442 4-channel RF switch 95.00 95.00 

1 6061ASHT125 Aluminum Base 53.78 53.78 

16 1276-6733-1-ND CAP CER 0.1UF 100V X7R 0805 0.12 1.87 

10 1276-2569-1-ND CAP CER 100PF 100V C0G/NP0 0805 0.07 0.70 

4 478-8502-1-ND CAP TANT 2.2UF 20% 25V 0805 0.85 3.40 

6 478-8927-1-ND CAP TANT 1UF 10% 20V 0805 0.40 2.40 

3 478-3286-1-ND CAP TANT 0.1UF 10% 20V 0805 0.62 1.86 

10 511-1794-1-ND CAP TANT 10UF 20% 20V 0805 0.72 7.15 

10 

399-

C0805C220K5HAC7800CT-

ND CAP CER 0805 22PF 50V ULTRA STAB 0.07 0.71 

20 497-10392-1-ND DIODE SCHOTTKY 100V 3A SMB 0.53 10.56 

20 732-4990-1-ND LED GREEN CLEAR 1206 SMD 0.21 4.20 

10 160-1170-1-ND LED YELLOW CLEAR SMD 0.20 1.98 

4 SSC54-E3/57TGICT-ND DIODE SCHOTTKY 40V 5A DO214AB 0.61 2.44 
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4 BAT54SCT-ND DIODE ARRAY SCHOTTKY 30V SOT23-3 0.31 1.24 

5 

18-1812L300/24SLERCT-

ND PTC RESET FUSE 3.0A 24V 1812 1.95 9.75 

3 507-1768-1-ND PTC RESET FUSE 24V 1.1A 1812 0.22 0.66 

3 541-1008-1-ND FIXED IND 2.2UH 8A 20 MOHM SMD 1.36 4.08 

25 1727-5910-1-ND MOSFET N-CH 30V 44A LFPAK56 0.37 9.34 

5 SIR426DP-T1-GE3CT-ND MOSFET N-CH 40V 30A PPAK SO-8 1.05 5.25 

5 

1727-BUK6Y33-60PXCT-

ND MOSFET P-CH 60V 30A LFPAK56 0.83 4.15 

2 A143679CT-ND RES 3550 100R 1% 1.61 3.22 

40 

10-ERA-6VRW1002VCT-

ND RES 10K OHM 0.05% 1/4W 0805 0.59 23.40 

4 A102096CT-ND RES SMD 2.49KOHM 0.1% 1/10W 0805 0.94 3.76 

10 RMCF0805FT383RCT-ND RES 383 OHM 1% 1/8W 0805 0.03 0.26 

10 YAG5980CT-ND RES SMD 330K OHM 1% 1/8W 0805 0.08 0.80 

5 

13-RT0805BRE079KLCT-

ND RES SMD 9K OHM 0.1% 1/8W 0805 0.40 2.00 

3 311-2813-1-ND RES SMD 1K OHM 0.5% 1/8W 0805 0.12 0.36 

10 RMCF0805JT2K00CT-ND RES 2K OHM 5% 1/8W 0805 0.02 0.17 

3 541-4132-1-ND RES SMD 10 OHM 1% 1/8W 0805 0.10 0.30 

3 541-4166-1-ND RES SMD 100 OHM 5% 1/8W 0805 0.10 0.30 

10 541-3978-1-ND RES SMD 100K OHM 1% 1/8W 0805 0.06 0.60 

3 311-2822-1-ND RES SMD 21K OHM 0.5% 1/8W 0805 0.12 0.36 

3 YAG2002CT-ND RES SMD 9.31K OHM 0.1% 1/8W 0805 0.36 1.08 

3 P430KDACT-ND RES 430K OHM 0.1% 1/8W 0805 0.31 0.93 

3 YAG1992CT-ND RES SMD 909K OHM 0.1% 1/8W 0805 0.36 1.08 

20 RNCF0805BTE10K4CT-ND RES 10.4K OHM 0.1% 1/8W 0805 0.28 5.52 

10 

13-

RT0805FRE072K74LCT-

ND RES SMD 2.74K OHM 1% 1/8W 0805 0.08 0.80 

10 A143808CT-ND RES 3550 4R7 5% 1.45 14.48 

2 696-1268-1-ND RES 0.01 OHM 5% 35W TO263 DPAK 3.63 7.26 

8 Z2352-ND RELAY GEN PURPOSE SPST 10A 12V 1.34 10.72 

2 

296-TLV271QDRG4Q1CT-

ND IC OPAMP GP 1 CIRCUIT 8SOIC 0.92 1.84 

4 296-45221-1-ND IC ADC 16BIT SIGMA-DELTA 10VSSOP 6.74 26.96 

2 296-47740-1-ND IC BATT CHG LI-ION 1-6CEL 16VQFN 5.06 10.12 

5 732-5401-ND CONN HEADER VERT 40POS 2.54MM 1.13 5.65 

4 H3CCS-4036G-ND IDC CBL - HHKC40S/AE40G/HHKC40S 4.03 16.12 

          

          

   Total $1,304.62 
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9. Project Schedules  
A. Final Proposed Gantt Chart 

 

 One can see below that the original versus actual Gantt charts were different. The biggest 

difference is how in the original, most of the “due dates” for testing, implementation, and 

revision were evenly spread out throughout the semester. However, the team found that testing 

took most of the time as product delivery and individual testing was behind. Therefore, 

implementation and revision were the primary focus the last few weeks, prior to design day. This 

proved to be a challenge however, the team worked efficiently, and we were happy with the time 

allocated for deliveries.  
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Task Mode Task Name 
Duratio

n 
Start Finish 

Predecessor

s 
Resource Names 

Manually 
Schedule
d 

SDP2 
Implementation 
2020 

89 days 
Mon 
1/11/2
1 

Fri 
4/9/21 

  

Manually 
Scheduled 

   Revise Gantt Chart 14 days 
Mon 
1/11/2
1 

Sun 
1/24/21 

  

Auto 
Schedule
d 

   Implement 
Project Design 

89 days 
Mon 
1/11/2
1 

Fri 
4/9/21 

  

Auto 
Schedule
d 

      Hardware 
Implementation 

86 days 
Mon 
1/11/2
1 

Tue 
4/6/21 

  

Manually 
Schedule
d 

         Layout and 
Generate PCB(s) 

21 days 
Mon 
1/11/2
1 

Sun 
1/31/2
1 

  

Manually 
Scheduled 

            Library 
Consolidation  

21 days 
Mon 
1/11/21 

Sun 
1/31/21 

 LS,NP 

Auto 
Scheduled 

            Power 
Supplies and 
Distribution 

21 days 
Mon 
1/11/21 

Sun 
1/31/21 

 LS,NP 

Manually 
Scheduled 

            
Microprocessor 
Integration  

21 days 
Mon 
1/11/21 

Sun 
1/31/21 

 LS,NP 

Manually 
Scheduled 

            Charger 
Integration  

21 days 
Mon 
1/11/21 

Sun 
1/31/21 

 LS,NP 
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Manually 
Scheduled 

            
Measurement 
Peripheral 
Integration  

21 days 
Mon 
1/11/21 

Sun 
1/31/21 

 LS,NP 

Manually 
Schedule
d 

         Assemble 
Hardware 

38 days 
Mon 
1/11/2
1 

Wed 
2/17/2
1 

  

Auto 
Scheduled 

            Mechanical 
LLAGV Housing and 
Harnessing  

38 days 
Mon 
1/11/21 

Wed 
2/17/21 

 LS,NP,RW 

Auto 
Scheduled 

            Mechanical 
Mount(s) and 
Motor(s) 

38 days 
Mon 
1/11/21 

Wed 
2/17/21 

 LS,NP,RW 

Auto 
Scheduled 

            Sensor(s) 
Mounting 

38 days 
Mon 
1/11/21 

Wed 
2/17/21 

 JD,RW,NP 

Manually 
Scheduled 

            Antenna 
Mounting 

38 days 
Mon 
1/11/21 

Wed 
2/17/21 

 JD,NP 

Manually 
Scheduled 

            
Microprocessor/PC
B Mounting 

38 days 
Mon 
1/11/21 

Wed 
2/17/21 

 CW,MR,NP,JD 
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Manually 
Scheduled 

            
Switches/LEDs UI 

38 days 
Mon 
1/11/21 

Wed 
2/17/21 

 MR,NP 

Manually 
Schedule
d 

         Test Hardware 49 days 
Wed 
2/17/2
1 

Tue 
4/6/21 

  

Auto 
Scheduled 

            Verify 
PCB/PDM 
Connections 

12 days 
Wed 
2/17/21 

Sun 
2/28/21 

 MR,NP 

Auto 
Scheduled 

            Motor 
Characteristics  

12 days 
Wed 
2/17/21 

Sun 
2/28/21 

 LS,MR 

Auto 
Scheduled 

            Sensor 
Testing 

12 days 
Wed 
2/17/21 

Sun 
2/28/21 

 CW,MR,RW 

Manually 
Scheduled 

            Antenna 
Broadcast/BT 
Receiver 

41 days 
Wed 
2/17/21 

Mon 
3/29/21 

 JD 

Manually 
Schedule
d 

         Revise 
Hardware 

12 days 
Wed 
2/17/2
1 

Sun 
2/28/2
1 

  

Auto 
Scheduled 

            Verify 
PCB/PDM 
Connections 

15 days 
Sun 
2/14/21 

Sun 
2/28/2
1 

 MR,NP 

Auto 
Scheduled 

            Motor 
Characteristics  

15 days 
Sun 
2/14/21 

Sun 
2/28/2
1 

 LS,MR 
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Auto 
Scheduled 

            Sensor 
Testing 

15 days 
Sun 
2/14/21 

Sun 
2/28/2
1 

 CW,MR,RW 

Manually 
Scheduled 

            Antenna 
Broadcast/BT 
Receiver 

15 days 
Sun 
2/14/21 

Sun 
2/28/2
1 

 JD 

Auto 
Scheduled 

         MIDTERM: 
Demonstrate 
Hardware 
Subsystems 

5 days 
Mon 
2/22/21 

Fri 
2/26/21 

 CW,JD,LS,MR,NP,R
W 

Manually 
Scheduled 

         SDC & FA 
Hardware Approval 

0 days 
Sat 
2/27/21 

Sat 
2/27/21 

28  

Manually 
Schedule
d 

      Software 
Implementation 

89 days 
Mon 
1/11/2
1 

Fri 
4/9/21 

  

Manually 
Schedule
d 

         Develop 
Software 

49 days 
Mon 
1/11/2
1 

Sun 
2/28/2
1 

  

Auto 
Scheduled 

            Overall 
Architecture (Redis, 
Multi-threaded 
Design) 

49 days 
Mon 
1/11/21 

Sun 
2/28/21 

 CW,MR 
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Auto 
Scheduled 

            Motor 
Control, 
Compensator 
Design, & Angle 
Variation Controller 
Interface (Serial)  

16 days 
Mon 
1/11/21 

Sun 
2/28/21 

 LS,MR,RW 

Auto 
Scheduled 

            UI (Sensory 
inputs/Display 
Status) 

49 days 
Mon 
1/11/21 

Sun 
2/28/21 

 MR 

Manually 
Scheduled 

            Camera 
Object 
Tracking/Detection 

49 days 
Mon 
1/11/21 

Sun 
2/28/21 

 CW 

Manually 
Scheduled 

            BT RSSI 
Reading - place in 
Redis 

49 days 
Mon 
1/11/21 

Sun 
2/28/21 

 CW,JD 

Manually 
Scheduled 

            Obstacle 
Avoidance 
(Ultrasonic - last 
resort safety sys) 

49 days 
Mon 
1/11/21 

Sun 
2/28/21 

 CW,MR,RW 

Manually 
Schedule
d 

         Test Software 29 days 
Sun 
2/21/2
1 

Sun 
3/21/2
1 
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Auto 
Scheduled 

            Motor 
Control, 
Compensator 
Design, & Angle 
Variation  

28 days 
Mon 
2/22/21 

Sun 
3/21/2
1 

 LS,MR 

Manually 
Scheduled 

            Camera 
Object 
Tracking/Detection 

12 days 
Wed 
3/10/21 

Sun 
3/21/2
1 

 CW 

Auto 
Scheduled 

            UI (Sensory 
inputs/Display 
Status) 

5 days 
Wed 
3/17/21 

Sun 
3/21/2
1 

 MR 

Manually 
Scheduled 

            BT RSSI 
Reading - place in 
Redis 

12 days 
Wed 
3/10/21 

Sun 
3/21/2
1 

 CW,JD 

Manually 
Scheduled 

            Obstacle 
Avoidance 
(Ultrasonic - last 
resort safety sys) 

12 days 
Wed 
3/10/21 

Sun 
3/21/2
1 

 CW,MR,RW 

Auto 
Schedule
d 

         Revise 
Software 

28 days 
Mon 
3/8/21 

Sun 
4/4/21 

31  
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Auto 
Scheduled 

            Motor 
Control, 
Compensator 
Design, & Angle 
Variation  

28 days 
Mon 
3/8/21 

Sun 
4/4/21 

 LS,MR 

Manually 
Scheduled 

            Camera 
Object 
Tracking/Detection 

19 days 
Wed 
3/17/21 

Sun 
4/4/21 

 CW 

Auto 
Scheduled 

            UI (Sensory 
inputs/Display 
Status) 

5 days 
Wed 
3/31/21 

Sun 
4/4/21 

 MR 

Manually 
Scheduled 

            BT RSSI 
Reading - place in 
Redis 

19 days 
Wed 
3/17/21 

Sun 
4/4/21 

 CW,JD 

Auto 
Scheduled 

         MIDTERM: 
Demonstrate 
Software 
Subsystems 

5 days 
Mon 
2/22/21 

Fri 
2/26/21 

  

Manually 
Scheduled 

         SDC & FA 
Software Approval 

0 days 
Sat 
2/27/21 

Sat 
2/27/21 

49  

Manually 
Schedule
d 

      System 
Integration 

45 days 
Mon 
1/11/2
1 

Wed 
2/24/2
1 
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Manually 
Schedule
d 

         Assemble 
Complete System 
Integration 

45 days 
Mon 
1/11/2
1 

Wed 
2/24/2
1 

  

Manually 
Scheduled 

            Power and 
PCB Layout 

45 days 
Mon 
1/11/2
1 

Wed 
2/24/2
1 

 LS,NP 

Manually 
Scheduled 

            Motor 
Control  

45 days 
Mon 
1/11/2
1 

Wed 
2/24/2
1 

49 LS,MR 

Manually 
Scheduled 

            Sensor(s) 
Integration 

45 days 
Mon 
1/11/21 

Wed 
2/24/2
1 

49 MR,RW 

Manually 
Scheduled 

            Object 
Detection  

45 days 
Mon 
1/11/21 

Wed 
2/24/2
1 

 CW,MR 

Manually 
Scheduled 

            Angle of 
Arrival & Distance  

45 days 
Mon 
1/11/21 

Wed 
2/24/2
1 

 JD 

Manually 
Schedule
d 

         Test Complete 
System Integration 

35 days 
Mon 
2/1/21 

Sun 
3/7/21 

52  

Manually 
Scheduled 

            Motor 
Control, 
Compensator 
Design, & Angle 
Variation  

35 days 
Mon 
2/1/21 

Sun 
3/7/21 

52 LS,MR,RW 
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Manually 
Scheduled 

            Object 
Detection & Course 
Variation  

49 days 
Mon 
2/1/21 

Sun 
3/21/2
1 

52 CW,MR 

Manually 
Scheduled 

            PCB 
Communication 

35 days 
Mon 
2/1/21 

Sun 
3/7/21 

52 LS,NP 

Manually 
Scheduled 

            Angle of 
Arrival & Distance  

49 days 
Mon 
2/1/21 

Sun 
3/21/2
1 

 JD 

Manually 
Scheduled 

            Sensor(s) 
Communication  

35 days 
Mon 
2/1/21 

Sun 
3/7/21 

 MR,RW 

Manually 
Scheduled 

         Revise 
Complete System 
Integration 

63 days 
Mon 
2/1/21 

Sun 
4/4/21 

58  

Manually 
Scheduled 

            Motor 
Control  

63 days 
Mon 
2/1/21 

Sun 
4/4/21 

58 LS,MR,RW 

Manually 
Scheduled 

            Object 
Detection & Course 
Variation  

63 days 
Mon 
2/1/21 

Sun 
4/4/21 

58 CW,MR 

Manually 
Scheduled 

            PCB & Power  63 days 
Mon 
2/1/21 

Sun 
4/4/21 

58 LS,NP 

Manually 
Scheduled 

            Sensor(s) 63 days 
Mon 
2/1/21 

Sun 
4/4/21 

 MR,RW 
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B. Final Revised Gantt Chart 

Task Mode Task Name 
Duratio

n 
Start Finish 

Predecessor

s 
Resource Names 

Manually 
Schedule
d 

SDP2 
Implementation 
2020 

89 days 
Mon 
1/11/2
1 

Fri 
4/9/21 

  

Manually 
Scheduled 

   Revise Gantt Chart 14 days 
Mon 
1/11/2
1 

Sun 
1/24/21 

  

Manually 
Scheduled 

            Angle of 
Arrival & Distance  

63 days 
Mon 
2/1/21 

Sun 
4/4/21 

 JD 

Auto 
Scheduled 

         Demonstration 
of Complete System 

5 days 
Mon 
4/5/21 

Fri 
4/9/21 

64 
CW,JD,LS,MR,NP,R
W 

Manually 
Schedule
d 

   Develop Final 
Report 

15 days 
Fri 
4/9/21 

Fri 
4/23/2
1 

 CW,JD,LS,MR,NP,R
W 

Manually 
Schedule
d 

      Write Final 
Report 

15 days 
Fri 
4/9/21 

Fri 
4/23/2
1 

 CW,JD,LS,MR,NP,R
W 

Manually 
Schedule
d 

      Submit Final 
Report 

10 days 
Fri 
4/9/21 

Sun 
4/18/2
1 

72 
CW,JD,LS,MR,NP,R
W 

Manually 
Scheduled 

Project 
Demonstration and 
Presentation 

5 days 
Mon 
4/5/21 

Fri 
4/9/21 

 CW,JD,LS,MR,NP,R
W 
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Auto 
Schedule
d 

   Implement 
Project Design 

89 days 
Mon 
1/11/2
1 

Fri 
4/9/21 

  

Auto 
Schedule
d 

      Hardware 
Implementation 

86 days 
Mon 
1/11/2
1 

Tue 
4/6/21 

  

Manually 
Schedule
d 

         Layout and 
Generate PCB(s) 

21 days 
Mon 
1/11/2
1 

Sun 
1/31/2
1 

  

Manually 
Scheduled 

            Library 
Consolidation  

21 days 
Mon 
1/11/21 

Sun 
1/31/21 

 LS,NP 

Auto 
Scheduled 

            Power 
Supplies and 
Distribution 

21 days 
Mon 
1/11/21 

Sun 
1/31/21 

 LS,NP 

Manually 
Scheduled 

            
Microprocessor 
Integration  

21 days 
Mon 
1/11/21 

Sun 
1/31/21 

 LS,NP 

Manually 
Scheduled 

            Charger 
Integration  

21 days 
Mon 
1/11/21 

Sun 
1/31/21 

 LS,NP 

Manually 
Scheduled 

            
Measurement 
Peripheral 
Integration  

21 days 
Mon 
1/11/21 

Sun 
1/31/21 

 LS,NP 
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Manually 
Schedule
d 

         Assemble 
Hardware 

38 days 
Mon 
1/11/2
1 

Wed 
2/17/2
1 

  

Auto 
Scheduled 

            Mechanical 
LLAGV Housing and 
Harnessing  

38 days 
Mon 
1/11/21 

Wed 
2/17/21 

 LS,NP,RW 

Auto 
Scheduled 

            Mechanical 
Mount(s) and 
Motor(s) 

38 days 
Mon 
1/11/21 

Wed 
2/17/21 

 LS,NP,RW 

Auto 
Scheduled 

            Sensor(s) 
Mounting 

38 days 
Mon 
1/11/21 

Wed 
2/17/21 

 JD,RW,NP 

Manually 
Scheduled 

            Antenna 
Mounting 

38 days 
Mon 
1/11/21 

Wed 
2/17/21 

 JD,NP 

Manually 
Scheduled 

            
Microprocessor/PC
B Mounting 

38 days 
Mon 
1/11/21 

Wed 
2/17/21 

 CW,MR,NP,JD 

Manually 
Scheduled 

            
Switches/LEDs UI 

38 days 
Mon 
1/11/21 

Wed 
2/17/21 

 MR,NP 

Manually 
Schedule
d 

         Test Hardware 49 days 
Wed 
2/17/2
1 

Tue 
4/6/21 
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Auto 
Scheduled 

            Verify 
PCB/PDM 
Connections 

12 days 
Wed 
2/17/21 

Sun 
2/28/21 

 MR,NP 

Auto 
Scheduled 

            Motor 
Characteristics  

12 days 
Wed 
2/17/21 

Sun 
2/28/21 

 LS,MR 

Auto 
Scheduled 

            Sensor 
Testing 

12 days 
Wed 
2/17/21 

Sun 
2/28/21 

 CW,MR,RW 

Manually 
Scheduled 

            Antenna 
Broadcast/BT 
Receiver 

41 days 
Wed 
2/17/21 

Mon 
3/29/21 

 JD 

Manually 
Schedule
d 

         Revise 
Hardware 

12 days 
Wed 
2/17/2
1 

Sun 
2/28/2
1 

  

Auto 
Scheduled 

            Verify 
PCB/PDM 
Connections 

15 days 
Sun 
2/14/21 

Sun 
2/28/2
1 

 MR,NP 

Auto 
Scheduled 

            Motor 
Characteristics  

15 days 
Sun 
2/14/21 

Sun 
2/28/2
1 

 LS,MR 

Auto 
Scheduled 

            Sensor 
Testing 

15 days 
Sun 
2/14/21 

Sun 
2/28/2
1 

 CW,MR,RW 

Manually 
Scheduled 

            Antenna 
Broadcast/BT 
Receiver 

15 days 
Sun 
2/14/21 

Sun 
2/28/2
1 

 JD 
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Auto 
Scheduled 

         MIDTERM: 
Demonstrate 
Hardware 
Subsystems 

5 days 
Mon 
2/22/21 

Fri 
2/26/21 

 CW,JD,LS,MR,NP,R
W 

Manually 
Scheduled 

         SDC & FA 
Hardware Approval 

0 days 
Sat 
2/27/21 

Sat 
2/27/21 

28  

Manually 
Schedule
d 

      Software 
Implementation 

89 days 
Mon 
1/11/2
1 

Fri 
4/9/21 

  

Manually 
Schedule
d 

         Develop 
Software 

49 days 
Mon 
1/11/2
1 

Sun 
2/28/2
1 

  

Auto 
Scheduled 

            Overall 
Architecture (Redis, 
Multi-threaded 
Design) 

49 days 
Mon 
1/11/21 

Sun 
2/28/21 

 CW,MR 
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Auto 
Scheduled 

            Motor 
Control, 
Compensator 
Design, & Angle 
Variation Controller 
Interface (Serial)  

16 days 
Mon 
1/11/21 

Sun 
2/28/21 

 LS,MR,RW 

Auto 
Scheduled 

            UI (Sensory 
inputs/Display 
Status) 

49 days 
Mon 
1/11/21 

Sun 
2/28/21 

 MR 

Manually 
Scheduled 

            Camera 
Object 
Tracking/Detection 

49 days 
Mon 
1/11/21 

Sun 
2/28/21 

 CW 

Manually 
Scheduled 

            BT RSSI 
Reading - place in 
Redis 

49 days 
Mon 
1/11/21 

Sun 
2/28/21 

 CW,JD 

Manually 
Scheduled 

            Obstacle 
Avoidance 
(Ultrasonic - last 
resort safety sys) 

49 days 
Mon 
1/11/21 

Sun 
2/28/21 

 CW,MR,RW 

Manually 
Schedule
d 

         Test Software 29 days 
Sun 
2/21/2
1 

Sun 
3/21/2
1 
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Auto 
Scheduled 

            Motor 
Control, 
Compensator 
Design, & Angle 
Variation  

28 days 
Mon 
2/22/21 

Sun 
3/21/2
1 

 LS,MR 

Manually 
Scheduled 

            Camera 
Object 
Tracking/Detection 

12 days 
Wed 
3/10/21 

Sun 
3/21/2
1 

 CW 

Auto 
Scheduled 

            UI (Sensory 
inputs/Display 
Status) 

5 days 
Wed 
3/17/21 

Sun 
3/21/2
1 

 MR 

Manually 
Scheduled 

            BT RSSI 
Reading - place in 
Redis 

12 days 
Wed 
3/10/21 

Sun 
3/21/2
1 

 CW,JD 

Manually 
Scheduled 

            Obstacle 
Avoidance 
(Ultrasonic - last 
resort safety sys) 

12 days 
Wed 
3/10/21 

Sun 
3/21/2
1 

 CW,MR,RW 

Auto 
Schedule
d 

         Revise 
Software 

28 days 
Mon 
3/8/21 

Sun 
4/4/21 

31  
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Auto 
Scheduled 

            Motor 
Control, 
Compensator 
Design, & Angle 
Variation  

28 days 
Mon 
3/8/21 

Sun 
4/4/21 

 LS,MR 

Manually 
Scheduled 

            Camera 
Object 
Tracking/Detection 

19 days 
Wed 
3/17/21 

Sun 
4/4/21 

 CW 

Auto 
Scheduled 

            UI (Sensory 
inputs/Display 
Status) 

5 days 
Wed 
3/31/21 

Sun 
4/4/21 

 MR 

Manually 
Scheduled 

            BT RSSI 
Reading - place in 
Redis 

19 days 
Wed 
3/17/21 

Sun 
4/4/21 

 CW,JD 

Auto 
Scheduled 

         MIDTERM: 
Demonstrate 
Software 
Subsystems 

5 days 
Mon 
2/22/21 

Fri 
2/26/21 

  

Manually 
Scheduled 

         SDC & FA 
Software Approval 

0 days 
Sat 
2/27/21 

Sat 
2/27/21 

49  

Manually 
Schedule
d 

      System 
Integration 

45 days 
Mon 
1/11/2
1 

Wed 
2/24/2
1 
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Manually 
Schedule
d 

         Assemble 
Complete System 
Integration 

45 days 
Mon 
1/11/2
1 

Wed 
2/24/2
1 

  

Manually 
Scheduled 

            Power and 
PCB Layout 

45 days 
Mon 
1/11/2
1 

Wed 
2/24/2
1 

 LS,NP 

Manually 
Scheduled 

            Motor 
Control  

45 days 
Mon 
1/11/2
1 

Wed 
2/24/2
1 

49 LS,MR 

Manually 
Scheduled 

            Sensor(s) 
Integration 

45 days 
Mon 
1/11/21 

Wed 
2/24/2
1 

49 MR,RW 

Manually 
Scheduled 

            Object 
Detection  

45 days 
Mon 
1/11/21 

Wed 
2/24/2
1 

 CW,MR 

Manually 
Scheduled 

            Angle of 
Arrival & Distance  

45 days 
Mon 
1/11/21 

Wed 
2/24/2
1 

 JD 

Manually 
Schedule
d 

         Test Complete 
System Integration 

35 days 
Mon 
2/1/21 

Sun 
3/7/21 

52  

Manually 
Scheduled 

            Motor 
Control, 
Compensator 
Design, & Angle 
Variation  

35 days 
Mon 
2/1/21 

Sun 
3/7/21 

52 LS,MR,RW 
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Manually 
Scheduled 

            Object 
Detection & Course 
Variation  

49 days 
Mon 
2/1/21 

Sun 
3/21/2
1 

52 CW,MR 

Manually 
Scheduled 

            PCB 
Communication 

35 days 
Mon 
2/1/21 

Sun 
3/7/21 

52 LS,NP 

Manually 
Scheduled 

            Angle of 
Arrival & Distance  

49 days 
Mon 
2/1/21 

Sun 
3/21/2
1 

 JD 

Manually 
Scheduled 

            Sensor(s) 
Communication  

35 days 
Mon 
2/1/21 

Sun 
3/7/21 

 MR,RW 

Manually 
Scheduled 

         Revise 
Complete System 
Integration 

63 days 
Mon 
2/1/21 

Sun 
4/4/21 

58  

Manually 
Scheduled 

            Motor 
Control  

63 days 
Mon 
2/1/21 

Sun 
4/4/21 

58 LS,MR,RW 

Manually 
Scheduled 

            Object 
Detection & Course 
Variation  

63 days 
Mon 
2/1/21 

Sun 
4/4/21 

58 CW,MR 

Manually 
Scheduled 

            PCB & Power  63 days 
Mon 
2/1/21 

Sun 
4/4/21 

58 LS,NP 

Manually 
Scheduled 

            Sensor(s) 63 days 
Mon 
2/1/21 

Sun 
4/4/21 

 MR,RW 
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Manually 
Scheduled 

            Angle of 
Arrival & Distance  

63 days 
Mon 
2/1/21 

Sun 
4/4/21 

 JD 

Auto 
Scheduled 

         Demonstration 
of Complete System 

5 days 
Mon 
4/5/21 

Fri 
4/9/21 

64 
CW,JD,LS,MR,NP,R
W 

Manually 
Schedule
d 

   Develop Final 
Report 

15 days 
Fri 
4/9/21 

Fri 
4/23/2
1 

 CW,JD,LS,MR,NP,R
W 

Manually 
Schedule
d 

      Write Final 
Report 

15 days 
Fri 
4/9/21 

Fri 
4/23/2
1 

 CW,JD,LS,MR,NP,R
W 

Manually 
Schedule
d 

      Submit Final 
Report 

10 days 
Fri 
4/9/21 

Sun 
4/18/2
1 

72 
CW,JD,LS,MR,NP,R
W 

Manually 
Scheduled 

Project 
Demonstration and 
Presentation 

5 days 
Mon 
4/5/21 

Fri 
4/9/21 

 CW,JD,LS,MR,NP,R
W 

 
 

10. Conclusions and Recommendations  

 
In conclusion for compensation, the primary objective was to have an input command 

related to distance of LLAGV to user and an output, transient response, of a voltage across the 

DC motor(s) controls the speed in correlation to distance. Characteristics of the DC motor were 

used to model a transfer function. A P-type compensator was designed to slow the settling time 

of the transient response to achieve the acceleration and velocity needed. Each channel, on the 

motor control, controlled its own side of the LLAGV. MATLAB was used to find the step plot 
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and step info. Unfortunately, the compensator could not be used as the ultrasonic sensors did not 

work on the Jetson (Team B microcontroller). This meant that the team had to decide between 

using a compensator or having ultrasonic data, which provided safety and object detection. The 

raspberry pi 4 did not have the computing power to do both encoder feedback and ultrasonics. 

For this reason, the compensator had to be cut out. This information was replaced less accurate 

distance data from the antenna array from the NS team. The LLAGV boasted an intuitive user 

interface to accept inputs via multiple push button switches. An extension of this UI, the LLAGV 

displays acknowledgments as feedback to ensure the overall user experience executes well. The 

application for the LLAGV successfully executed a responsive user interface and drive 

commands both manually and autonomously. One of the most successful parts of the project 

taking both the NS and LS into account was the implementation of the Redis database. The 

introduction of the database worked very efficiently to not only to access data across multiple 

threads but also between two processors. Leveraging the built-in networking capabilities of the 

Pi and Nano they were connected via an Ethernet CAT6 cable. This allowed a direct connection 

between the two and a shared in-memory database with no need for an encoding/decoding 

protocol between the two processors, say a serial UART connection for example. The VIH and 

PIH allowed the LLAGV to have all necessary circuitry and power distribution to execute 

locomotion and navigation. The PDM contained the necessary signal measurement and 

conditioning required for the microcontrollers onboard to calculate positioning and movement 

commands. It also contained all the circuit protection required for safe operation. The VIH also 

interfaced with all the switches on the machine and allowed the microcontroller to know the 

desired user state, as well as incorporated a kill switch for stopping the machine abruptly. 

 
 With further recommendations, the team would push for more integration earlier in the 

semester. Each member found that they needed more time until proper integration could be done. 

This idea put strain on the integration of the final project. Moving forward, even if team 

members would not be done themselves, a push towards early integration would be highly 

recommended. The team also found that although a processor, released by a respected company, 

seems to work fine to verify each sensor operation before integration. With the complications of 

the Jetson, sensor issues forced the Raspberry Pi to use its GPIO pins therefore forcing other 

aspects of the project to be forfeited. This project was a great experience for each team member 
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as it not only sharpened engineering theory and application but also improved soft skills. As 

mentioned as a team all would have made changes if to do the project over again which is a sign 

of growth and learning in general. 
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12. Appendices  

Charger 

  

  

https://www.ti.com/lit/ds/slus891b/slus891b.pdf?ts=1606324145897&ref_url=https%253A%252F%252Fwww.google.com%252F
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Raspberry Pi 4B 

 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwim4bmgk5_tAhVBSTABHQAxBdIQFjAAegQIAxAC&url=https%3A%2F%2Fwww.raspberrypi.org%2Fdocumentation%2Fhardware%2Fraspberrypi%2Fbcm2711%2Frpi_DATA_2711_1p0_preliminary.pdf&usg=AOvVaw0F4Q4gBKzX03mmae8F40P-
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ADS1115 - ADC 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiOtP_8k5_tAhV7SzABHesBCLcQFjACegQIARAC&url=https%3A%2F%2Fcdn-shop.adafruit.com%2Fdatasheets%2Fads1115.pdf&usg=AOvVaw0ePNwvLRxsn749lXjC1EhS
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Software Application Code 

battery.py 

import RPi.GPIO as GPIO 

import board, redis 

from time import time, sleep 

 

class Battery(): 

     

    def __init__(self): 

        self.PRECHARGE_PIN = 15 

        self.CONTACTOR_PIN = 16 

        self.BANK_FDBCK = None 

 

        self.db = redis.Redis(host='localhost', port=6379, db=0) 

        self.setup() 

        self.disable_precharge() 

        self.disable_contactor() 

 

    def setup(self): 

        GPIO.setmode(GPIO.BCM) 

        GPIO.setup(self.CONTACTOR_PIN, GPIO.OUT) 

        GPIO.setup(self.PRECHARGE_PIN, GPIO.OUT) 

 

    def cleanup(self): 

        GPIO.cleanup() 

 

    def enable_contactor(self): 

        GPIO.output(self.CONTACTOR_PIN, 0) 

 

    def disable_contactor(self): 

        GPIO.output(self.CONTACTOR_PIN, 1) 

 

    def enable_precharge(self): 

        GPIO.output(self.PRECHARGE_PIN, 1) 

 

    def disable_precharge(self): 

        GPIO.output(self.PRECHARGE_PIN, 0) 

 

    def get_battery_voltage(self): 

        pass 

 

if __name__ == '__main__': 

    battery = Battery() 

    battery.enable_contactor() 
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auto_control.py 

# Motor Control Script 

import math, redis 

from time import time, sleep 

from pysabertooth import Sabertooth 

 

# TODO make into class 

# TODO make sure to avoid __pycache__ 

ANGLE_DEFAULT = 0 

ANGLE_THRESHOLD = 10 

wheel_diameter = 0.1524 

velocity_ms = 0 

velocity_fts = 0.0262 # constant to convert RPM to ft/s 

max_rpm = 124 

MAX_FORWARD_SPEED = velocity_fts * max_rpm # ft/s 

update_rate = 1 # receive a sample every second 

PREVIOUS_ANGLE = 0.0 

MAX_PERCENT_FORWARD = 25 / 100 

 

saber = Sabertooth('/dev/ttyACM0', baudrate=9600, address=128, timeout=0.1) 

db = redis.Redis(host='localhost', port=6379, db=0) 

 

def target_rpm(ft_per_s): 

    exptected_rpm = 38.197 * ft_per_s 

    return exptected_rpm if exptected_rpm < max_rpm else max_rpm 

 

def convert_rpm_to_out_volts(rpm: float) -> float: 

    return rpm / 10.337544 # input voltage should be to reach this RPM 

 

def sample_angle(samples=5) -> float: 

    avg = 0.0 

    for x in range(0, samples): 

        angle = float(str(db.get('angle').decode('UTF=8'))) 

        avg += angle 

        sleep(0.1) 

    return avg / samples 

 

def stop(): 

    db.set('stop_ack', 1) 

    update_left_command(0) 

    update_right_command(0) 

    sleep(1) 

 

def drive_forward(percent): 

    update_left_command(percent=(percent*MAX_PERCENT_FORWARD)) 
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    update_right_command(percent=(percent*MAX_PERCENT_FORWARD)) 

 

def turn_left(duration=0): 

    stop() 

    db.set("tsig", "left") 

    update_left_command(-20) 

    update_right_command(20) 

    sleep(duration) 

    stop() 

    db.set("tsig", "off") 

 

def turn_right(duration=0): 

    stop() 

    db.set("tsig", "right") 

    update_left_command(20) 

    update_right_command(-20) 

    sleep(duration) 

    stop() 

    db.set("tsig", "off") 

 

def drive_agv(): 

    current_distance = 0.0 

 

    # get values from db 

    # angle = sample_angle() 

    angle = float(str(db.get('angle').decode('UTF=8'))) 

    # angle = 0.0 # HACK 

    target_distance = float(str(db.get('distance').decode('UTF=8'))) 

    # target_distance = 10 # HACK 

 

    # if db.get('turn').decode('UTF=8') == 'Left': 

    #     turn_left(duration=1) 

    #     angle_override = True 

 

    # if db.get('turn').decode('UTF=8') == 'Right': 

    #     turn_right(duration=1) 

    #     angle_override = True 

 

    # turn if needed 

    if angle < (ANGLE_DEFAULT - ANGLE_THRESHOLD): 

        db.set('headlight', 0) 

        turn_right(duration=determine_duration(angle=angle)) 

    if angle > (ANGLE_DEFAULT + ANGLE_THRESHOLD): 

        db.set('headlight', 0) 

        turn_left(duration=determine_duration(angle=angle)) 
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    PREVIOUS_ANGLE = angle 

 

    delta = abs(target_distance - current_distance) 

    # print(delta) 

    velocity_of_user = delta / update_rate 

    left_fts = float(db.get('left_fts')) 

    right_fts = float(db.get('right_fts')) 

    plausible = bool(abs(left_fts - right_fts) < 0.5) # check wheel speeds are close to each other, if not maybe stuck 

    if not plausible: 

        stop() 

        db.set("state", "help") 

    elif plausible: 

        db.set('user_assist_req', 0) 

    velocity_of_agv = max(left_fts, right_fts) # take the max of the 2 wheel speeds (if plausible) 

 

    # drive forward 

    if (ANGLE_DEFAULT - ANGLE_THRESHOLD) <= angle <= (ANGLE_DEFAULT + ANGLE_THRESHOLD): 

        db.set('headlight', 1) 

        # if user is less than 3 ft away 

        if delta < 4: 

            stop() 

            sleep(5) 

        elif 4 <= delta <= 7: 

            drive_forward(percent=determine_percent(delta - 4)) # operate btw 2-5ft scaled 0-3.2ft/s 

        elif delta > 7: 

            if str(db.get('turn').decode('UTF=8')) == "turn": 

                stop() 

                turn_right(duration=determine_duration(angle=160)) 

                stop() 

                drive_forward(100) 

                sleep(3) 

                stop() 

                turn_left(duration=determine_duration(angle=160)) 

                stop() 

                drive_forward(20) 

                sleep(2) 

                stop() 

            drive_forward(100) 

     

    # current_distance = target_distance 

 

def determine_duration(angle=0) -> float: 

    try: 

        duration = float((abs(angle) * 3.14 * 6.23 / 180) / 7.5396) # NOTE Tell Larry to fix 

    except ZeroDivisionError: 

        duration = 0.0 
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    return duration 

 

def determine_percent(command=0): 

    rpm = target_rpm(command) 

    volts = convert_rpm_to_out_volts(rpm) 

    percent = round(volts / 12 * 100) 

    if percent >= 100: 

        percent = 100 

    if percent <=0: 

        percent = 0 

    return percent 

 

def update_left_command(percent=0): 

    db.set('left_percent', percent) 

 

def update_right_command(percent=0): 

    db.set('right_percent', percent) 

 

if __name__ == '__main__': 

    stop() 

    while True: 

        auto = bool(int(db.get('auto'))) 

        stop_bit = bool(int(db.get('stop').decode('UTF=8'))) 

        # print(stop, type(stop)) 

        if auto and not stop_bit: 

            drive_agv() 

        elif auto and stop_bit: 

            stop() 

        sleep(0.1) 

    stop() 
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manual_control.py 

import RPi.GPIO as GPIO 

import xbox, redis 

from time import sleep, time 

 

db = redis.Redis(host='localhost', port=6379, db=0) 

MAX_PERCENT = 100 

MIN_PERCENT = -100 

 

def determine_left_percent(value=0): 

    return round(value * MAX_PERCENT) 

 

def determine_right_percent(value=0): 

    return round(value * MAX_PERCENT) 

 

def update_left_command(percent=0): 

    db.set('left_percent', percent) 

 

def update_right_command(percent=0): 

    db.set('right_percent', percent) 

 

def drive_agv(): 

    lpercent = determine_left_percent(control.leftTrigger()) if not control.leftBumper() else 

determine_left_percent(control.leftTrigger()) * -1 

    rpercent = determine_right_percent(control.rightTrigger()) if not control.rightBumper() else 

determine_right_percent(control.rightTrigger()) * -1 

 

    update_left_command(percent=lpercent) 

    update_right_command(percent=rpercent) 

 

def connect(): 

    control = None 

    wait = True 

 

    while wait: 

        try: 

            control = xbox.Joystick() 

            wait = False 

        except IOError: 

            wait = True 

            # db.set('state', 'connecting') 

            sleep(2) 

    return control 

    db.set('state', 'neutral') 
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if __name__ == '__main__': 

    control = connect() 

 

    while True: 

        state = str(db.get('state').decode('UTF=8')) 

        if state == 'neutral': 

            if control.dpadUp(): 

                update = 0 if bool((int(db.get('headlight')))) else 1 

                db.set('headlight', update) 

            drive_agv() 

        sleep(0.1) 

     

    control.close() 
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motor.py 

# imports 

import RPi.GPIO as GPIO 

import board, busio, csv, redis 

from time import sleep, time 

import Adafruit_ADS1x15 

# from pysabertooth import Sabertooth 

# from adafruit_ads1x15.analog_in import AnalogIn 

 

i2c = busio.I2C(board.SCL, board.SDA) 

ads = Adafruit_ADS1x15.ADS1115(busnum=1, address=0x48) 

outcome = [0,1,-1,0,-1,0,0,1,1,0,0,-1,0,-1,1,0] 

 

WHEEL_DIAMETER = 0.1524 

MAX_RPM = 124 

VELOCITY_CONVERT = 0.0262 

MAX_FORWARD_SPEED = MAX_RPM * VELOCITY_CONVERT 

 

class Motor(): 

 

    def __init__(self, name, controller_instance, A_pin, B_pin, volts_feedback_pin=0, gear_ratio=71, ppr=48): 

        self.name = name 

        self.saber = controller_instance 

        self.A = A_pin 

        self.B = B_pin 

        self.volt_feedback = volts_feedback_pin 

        self.gear_ratio = gear_ratio 

        self.ppr = ppr 

        self.counts_per_min = ppr * gear_ratio 

        self.setup_io() 

         

        self.db = redis.Redis(host='localhost', port=6379, db=0) 

 

    def setup_io(self): 

        GPIO.setmode(GPIO.BCM) 

        GPIO.setup(self.A, GPIO.IN) 

        GPIO.setup(self.B, GPIO.IN) 

 

    def cleanup(self): 

        GPIO.cleanup() 

        self.saber.stop() 

 

    def get_supply_voltage(self): 

        raw = ads.read_adc(0, gain=1) 

        return round(((raw * 4.096) / 32767) * 3.636363, 4) 
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    def get_instantaneous_rpm(self): 

        counter = 0 

        last_AB = 0b00 

        start = time() 

 

        while (time() - start) <= 1: 

            A = GPIO.input(self.A) 

            B = GPIO.input(self.B) 

            current_AB = (A << 1) | B 

            position = (last_AB << 2) | current_AB 

            counter += outcome[position] 

            last_AB = current_AB 

        # print(counter) 

        try: 

            rpm = round(abs(((counter * 60) / self.counts_per_min)), 4) 

        except ZeroDivisionError: 

            rpm = 0.0 

        return rpm 

 

    def get_velocity(self, rpm: float) -> float: 

        return round(VELOCITY_CONVERT * rpm, 2) # converts rpm to velocity of motor 

 

    def log_rpm(self): 

        list_of_tuples = [] 

        while True: 

            try: 

                volts = self.get_supply_voltage() 

                time, rpm = self.get_instantaneous_rpm(supply_voltage=volts) 

                csv_entry = (time, volts, rpm) 

                list_of_tuples.append(csv_entry) 

                # self.write_to_csv([time, volts, rpm]) 

                print(csv_entry) 

 

            except KeyboardInterrupt: 

                for item in list_of_tuples: 

                    self.write_to_csv(item) 

                del list_of_tuples 

                GPIO.cleanup() 

                exit() 

 

    def post_motor_speeds(self): 

        while True: 

            rpm = self.get_instantaneous_rpm() 

            self.db.set(self.name + '_rpm', rpm) 

            self.db.set(self.name + '_fts', self.get_velocity(rpm=rpm)) 
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            sleep(0.001) 

 

    def drive(self, channel=1, percent=0): 

        channel = 1 if self.name == 'left' else 2 

        while True: 

            try: 

                percent = float(self.db.get(self.name + '_percent')) 

            except TypeError: 

                percent = 0 

             

            try: 

                self.saber.drive(channel, percent) 

            except serial.serialutil.SerialException: 

                pass 

            sleep(0.1) 
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run_motors.py 

import os, redis 

from motor import Motor 

from time import time, sleep 

from pysabertooth import Sabertooth 

from threading import Thread, Lock 

from multiprocessing import Process 

 

FULLY_CHARGED = 16.8 # full charge nominal voltage 

DEPLETED = 13.6 # CHARGE ME 

 

saber = Sabertooth('/dev/ttyACM0', baudrate=9600, address=128, timeout=0.1) 

db = redis.Redis(host='localhost', port=6379, db=0) 

left = Motor(name='left', controller_instance=saber, A_pin=23, B_pin=24, volts_feedback_pin=0) 

right = Motor(name='right', controller_instance=saber, A_pin=16, B_pin=20, volts_feedback_pin=1) 

 

def drive_left_motor(): 

    if left is not None: 

        l = Thread(target=left.drive, daemon=True) 

        l.start() 

 

def drive_right_motor(): 

    if right is not None: 

        r = Thread(target=right.drive, daemon=True) 

        r.start() 

 

def left_rpm_feedback(): 

    lrpm = Process(target=left.post_motor_speeds) 

    lrpm.start() 

 

def right_rpm_feedback(): 

    rrpm = Process(target=right.post_motor_speeds) 

    rrpm.start() 

 

def post_battery_voltage(): 

    volts = 0 

    try: 

        volts = float(int(str(saber.textGet(b'm1:getb'))[:-2].split('B')[1][:3]) / 10) 

    except ValueError: 

        volts = 10 

    if volts < DEPLETED: 

        percent = 0 

     

    percent = round(((volts - 13.2) / 2.0) * 100) 

    db.set('system_voltage', volts) 

    db.set('soc', percent) 
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def main(): 

    drive_left_motor() 

    drive_right_motor() 

    # left_rpm_feedback() 

    # right_rpm_feedback() 

    while True: 

        post_battery_voltage() 

        sleep(30) 

        # pass 

 

if __name__ == "__main__": 

    pid = os.getpid() 

    print(pid) 

    main() 
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sim_angle.py 

import redis 

from time import time, sleep 

 

db = redis.Redis(host='localhost', port=6379, db=0) 

 

angles = [0, 0, 0, 0, 0] 

distances = [10, 10, 10, 10, 4, 3, 1, 0] 

 

def populate_distances(): 

    for distance in distances: 

        db.set('distance', distance) 

        print('Distance', db.get('distance')) 

        sleep(1) 

 

def populate_angles(): 

    for angle in angles: 

        db.set('angle', angle) 

        print('Angle', db.get('angle')) 

 

if __name__ == '__main__': 

    populate_distances() 
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detect.py 

import logging, os 

from ping import Ping 

from threading import Thread, Lock 

from time import sleep 

 

ping1 = Ping(num=1, pin=5, location='right') 

ping2 = Ping(num=2, pin=9, location='frontR') 

ping3 = Ping(num=3, pin=25, location='frontL') 

ping4 = Ping(num=4, pin=11, location='left') 

ping5 = Ping(num=5, pin=8, location='rear') 

 

pings = [ping1, ping2, ping3, ping4, ping5] 

 

def begin_us_detection(): 

    for ping in pings: 

        p = Thread(target=ping.ping_distance, daemon=True) 

        p.start() 

 

def main(): 

    begin_us_detection() 

    while True: 

        pass 

 

if __name__ == '__main__': 

    pid = os.getpid() 

    print(pid) 

    main() 
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ping.py 

import RPi.GPIO as GPIO 

import board, redis 

from time import time, sleep 

 

class Ping(): 

 

    def __init__(self, num, pin, location): 

        self.name = "us_" + str(num) 

        self.pin = int(pin) 

        self.location = str(location) 

        self.db = redis.Redis(host='localhost', port=6379, db=0) 

 

    def trigger(self): 

        GPIO.setup(self.pin, GPIO.OUT) 

        GPIO.output(self.pin, 0) 

        sleep(0.000002) 

        GPIO.output(self.pin, 1)    

        sleep(0.000005) 

        GPIO.output(self.pin, 0) 

 

    def echo(self) -> float: 

        starttime = 0 

        endtime = 0 

        GPIO.setup(self.pin, GPIO.IN) 

 

        while GPIO.input(self.pin) == 0: 

            starttime = time() 

 

        while GPIO.input(self.pin) == 1: 

            endtime = time() 

 

        duration = endtime - starttime 

        return round(duration * 343 / 2, 4) #meters 

 

    def ping_distance(self): 

        while True: 

            self.trigger() 

            distance = self.echo() 

            # print(distance, "meters") 

            self.db.set(self.name, distance) 

            sleep(1) 

 

if __name__ == "__main__": 

    ping1 = Ping(num=1, pin=5) 
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    ping1.ping_distance() 
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launch_ui.py 

import RPi.GPIO as GPIO  # import GPIO 

import logging, os, redis 

from switch import Switch 

from status_leds import StatusLEDs 

from hx711 import HX711 

from threading import Thread, Lock 

from multiprocessing import Process 

from time import sleep 

GPIO.setmode(GPIO.BCM)  # set GPIO pin mode to Board Based numbering 

 

logging.basicConfig(filename='/home/pi/Documents/agv.txt', level=logging.DEBUG) 

db = redis.Redis(host='localhost', port=6379, db=0) 

hx = HX711(dout_pin=10, pd_sck_pin=7) 

 

neutral = Switch(name='neutral', pin=22, led_pin=14) 

auto = Switch(name='auto', pin=27, led_pin=4) 

switches = [neutral, auto] 

leds = StatusLEDs() 

 

def post_weight(): 

    while True: 

        hx.set_scale_ratio(55615.92)  # set ratio for current channel 

        weight = round(abs(hx.get_weight_mean(20)), 2) 

        db.set('weight', weight) 

        if weight >= 27: 

            db.set('too_heavy', 1) 

        else: 

            db.set('too_heavy', 0) 

        sleep(2) 

 

def watch_weight(): 

    # start a thread to monitor the weight in bed 

    w = Thread(target=post_weight, daemon=True) 

    w.start() 

 

def watch_switches(): 

    # start a thread for all push button switches 

    for switch in switches: 

        sw = Thread(target=switch.monitor_switch, daemon=True) 

        sw.start() 

 

def begin_feedback(): 

    # start a thread to monitor state, soc and headlights/directionals 

    led = Thread(target=leds.run, daemon=True) 

    led.start() 
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def plausibility(): 

    # to make sure the UI updates properly 

    state = str(db.get('state').decode('UTF=8')) 

    if state == 'auto': 

        db.set('auto_led', "on") 

        db.set('auto', 1) 

        db.set('neutral_led', "off") 

        db.set('neutral', 0) 

    elif state == 'neutral': 

        db.set('auto_led', "off") 

        db.set('auto', 0) 

        db.set('neutral_led', "on") 

    elif state == 'startup': 

        db.set('auto_led', "strobe") 

        db.set('neutral_led', "strobe") 

    if bool(int(db.get('too_heavy'))): 

        db.set('state', 'help') 

 

def main(): 

    watch_weight() 

    watch_switches() 

    begin_feedback() 

    while True: 

        plausibility() 

        sleep(0.1) 

 

if __name__ == '__main__': 

    pid = os.getpid() 

    print(pid) 

    main() 
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led_colors.py 

RED = (255, 0, 0, 0) 

GREEN = (0, 255, 0, 0) 

BLUE = (0, 0, 255, 0) 

WHITE = (0, 0, 0, 255) 

YELLOW = (255, 150, 0, 0) 

ORANGE = (255, 128, 0, 0) 

OFF = (0,0,0,0) 
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status_leds.py 

import board, neopixel, redis 

from led_colors import * 

from time import sleep, time 

 

n = 16 

leds = neopixel.NeoPixel(pin=board.D18, n=n, brightness=1, pixel_order=(1,0,2,3), auto_write=False) 

hdlt_left = list(range(4, 7)) 

hdlt_right = list(range(8, 12)) 

 

class StatusLEDs(): 

 

    def __init__(self): 

        self.db = redis.Redis(host='localhost', port=6379, db=0) 

 

    def display_soc(self, soc): 

        if 0 < soc <= 25: 

            leds[1] = OFF 

            leds[2] = OFF 

            leds[3] = OFF 

            intensity = soc * 10 

            leds[0] = (intensity, 0, 0, 0) 

        elif 26 <= soc <= 50: 

            leds[0] = RED 

            leds[2] = OFF 

            leds[3] = OFF 

            intensity = (soc - 25) * 10 

            leds[1] = (intensity, intensity, 0, 0) if intensity >= 11 else (0,0,0,0) 

        elif 51 <= soc <= 75: 

            leds[0] = RED 

            leds[1] = YELLOW 

            leds[3] = OFF 

            intensity = (soc - 50) * 10 

            leds[2] = (0, intensity, 0, 0) if intensity >= 11 else (0,0,0,0) 

        elif 76 <= soc <= 100: 

            leds[0] = RED 

            leds[1] = YELLOW 

            leds[2] = GREEN 

            intensity = (soc - 75) * 10 

            leds[3] = (0, intensity, 0, 0) if intensity >= 11 else (0,0,0,0) 

        else: 

            raise AttributeError(f"Impossible SOC: {soc}") 

        leds.show() 

 

    def chase(self, start_led, end_led, color=GREEN, forward=True, delay=0.1): 

        if forward: 
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            for led in range(start_led, end_led): 

                leds[led] = OFF 

                leds.show() 

                sleep(delay) 

                leds[led] = color 

                leds.show() 

                sleep(delay) 

 

        elif not forward: 

            for led in range(end_led, start_led, -1): 

                leds[led] = OFF 

                leds.show() 

                sleep(delay) 

                leds[led] = color 

                leds.show() 

                sleep(delay) 

 

    def strobe(self, start_led, end_led, delay=0.25, color=RED): 

        for led in range(start_led, end_led): 

            leds[led] = OFF 

        leds.show() 

        sleep(delay) 

 

    def turn_on_headlights(self): 

        for led in range(4, n-4): 

            leds[led] = WHITE 

 

    def turn_off_headlights(self): 

        for led in range(4, n-4): 

            leds[led] = OFF 

 

    def signal_left(self): 

        self.chase(start_led=3, end_led=7, color=ORANGE, forward=False) 

 

    def signal_right(self): 

        self.chase(start_led=8, end_led=12, color=ORANGE) 

 

    def display_state(self, state): 

        color = OFF 

        if state == 'neutral': 

            color = YELLOW 

        elif state == 'auto': 

            color = GREEN 

        elif state == 'startup': 

            color = BLUE 

        elif state == 'help': 
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            color = RED 

        for led in range(n-4, n): 

            leds[led] = color 

 

    def display_tsignal(self, directional='off'): 

        if directional == 'left': 

            self.signal_left() 

        elif directional == 'right': 

            self.signal_right() 

 

    def cleanup(self): 

        leds.fill(OFF) 

 

    def run(self): 

        while True: 

            #get current state from redis 

            self.display_state(state=str(self.db.get('state').decode('UTF=8'))) 

            #get soc from redis 

            self.display_soc(soc=float(self.db.get('soc'))) 

             

            #headlights? 

            if bool(int(self.db.get('headlight'))): 

                self.turn_on_headlights() 

            else: 

                self.turn_off_headlights() 

            #signals? 

            tsig = str(self.db.get('tsig').decode('UTF=8')) 

            if tsig != "off": 

                self.display_tsignal(directional=tsig) 

            sleep(0.5) 

 

 

if __name__ == "__main__": 

    feedback = StatusLEDs() 

     

    for soc in range(100, 0, -1): 

        feedback.display_soc(soc) 

        sleep(5) 

    feedback.cleanup() 
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switch.py 

import RPi.GPIO as GPIO 

import board, redis 

from time import time, sleep 

 

debounce_ms = 350 

debounce = debounce_ms / 1000 

 

class Switch(): 

 

    def __init__(self, name, pin, led_pin=None, default_state=None): 

        self.switch_name = name 

        self.pin = pin 

        self.led = led_pin 

        self.latched = False 

        self.db = redis.Redis(host='localhost', port=6379, db=0) 

        self.setup() 

 

    def setup(self): 

        GPIO.setmode(GPIO.BCM) 

        GPIO.setup(self.pin, GPIO.IN, pull_up_down=GPIO.PUD_UP) 

        if self.led is not None: 

            GPIO.setup(self.led, GPIO.OUT) 

 

    def cleanup(self): 

        GPIO.cleanup() 

 

    def latch(self): 

        # invert the latched state 

        self.latched = not self.latched 

        self.db.set(self.switch_name, int(self.latched)) 

         

        if self.latched is True: 

            self.db.set(self.switch_name + "_led", "on") 

            self.db.set('state', self.switch_name) 

        else: 

            self.db.set(self.switch_name + "_led", "off") 

        return 

 

    def drive_feedback_led(self, state=False): 

        GPIO.output(self.led, state) 

 

    def strobe_led(self, interval=0.5): 

        self.drive_feedback_led(state=False) 

        sleep(interval) 
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        self.drive_feedback_led(state=True) 

        sleep(interval) 

 

    def monitor_switch(self): 

        while True: 

            action = str(self.db.get(self.switch_name + '_led').decode('UTF=8')) 

            if action == 'strobe': 

                self.strobe_led() 

            elif action == 'off': 

                self.drive_feedback_led(False) 

            else: 

                self.drive_feedback_led(True) 

            try: 

                if GPIO.input(self.pin) == 0: 

                    sleep(debounce) 

                    if GPIO.input(self.pin) == 0: 

                        print("Button Pressed!") 

                        self.latch() 

                sleep(0.1) 

            except KeyboardInterrupt: 

                self.cleanup() 

                exit() 

 

if __name__ == '__main__': 

    power = Switch(name='power', pin=5, led_pin=6) 

    power.monitor_switch() 
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agv.py 

import os, redis 

 

db = redis.Redis(host='localhost', port=6379, db=0) 

 

# init db 

db.set('state', 'startup') 

db.set('auto', 0) 

db.set('neutral', 0) 

db.set('left_percent', 0) 

db.set('right_percent', 0) 

db.set('distance', 0.0) 

db.set('angle', 0.0) 

db.set('state', 'startup') 

db.set('stop', 0) 

 

try: 

    os.system('sudo python3 -B /home/pi/letsdothis/ui/launch_ui.py &') 

    os.system('sudo python3 -B /home/pi/letsdothis/motor/manual_control.py &') 

    os.system('sudo python3 -B /home/pi/letsdothis/motor/auto_control.py &') 

    os.system('sudo python3 -B /home/pi/letsdothis/motor/run_motors.py &') 

    os.system('sudo python3 -B /home/pi/letsdothis/object_detection/detect.py &') 

except KeyboardInterrupt: 

    exit() 
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Test Scripts 

characterize_motor.py 

import RPi.GPIO as GPIO 

import board, busio, csv 

import adafruit_ads1x15.ads1115 as ADS 

from adafruit_ads1x15.analog_in import AnalogIn 

from pysabertooth import Sabertooth 

from time import sleep, time 

# import time 

i2c = busio.I2C(board.SCL, board.SDA) 

 

A_pin = 5 

B_pin = 6 

ads = ADS.ADS1115(i2c) 

gear_reduction_ratio = 1/71 

ppr = 48 

countable = ppr / gear_reduction_ratio 

 

GPIO.setmode(GPIO.BCM) 

GPIO.setup(A_pin, GPIO.IN) 

GPIO.setup(B_pin, GPIO.IN) 

 

outcome = [0,1,-1,0,-1,0,0,1,1,0,0,-1,0,-1,1,0] 

 

def get_instantaneous_rpm(supply_voltage): 

    counter = 0 

    last_AB = 0b00 

    start = time() 

 

    while (time() - start) <= 1: 

        A = GPIO.input(A_pin) 

        B = GPIO.input(B_pin) 

        current_AB = (A << 1) | B 

        position = (last_AB << 2) | current_AB 

        counter += outcome[position] 

        last_AB = current_AB 

    print(counter) 

 

    try: 

        rpm = round(abs(((counter * 60) / countable)), 4) 

    except ZeroDivisionError: 

        rpm = 0.0 

    return time(), rpm  

 

def get_supply_voltage(): 
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    chan = AnalogIn(ads, ADS.P1) 

    return round(chan.voltage * 3.63636363, 4) 

 

def log_rpm(): 

    list_of_tuples = [] 

    while True: 

        try: 

            volts = get_supply_voltage() 

            time, rpm = get_instantaneous_rpm(supply_voltage=volts) 

            csv_entry = (time, volts, rpm) 

            list_of_tuples.append(csv_entry) 

            write_to_csv([time, volts, rpm]) 

            print(csv_entry) 

 

        except KeyboardInterrupt: 

            for item in list_of_tuples: 

                write_to_csv(item) 

            del list_of_tuples 

            GPIO.cleanup() 

            exit() 

 

def write_to_csv(data_list=[], append=True): 

    operation = 'w' if append is False else 'a' 

    with open('test.csv', operation, newline='') as file: 

        rpm_record = csv.writer(file, delimiter=',', quoting=csv.QUOTE_MINIMAL) 

        rpm_record.writerow(data_list) 

 

if __name__ == "__main__": 

    saber = Sabertooth('/dev/ttyACM0', baudrate=9600, address=128, timeout=0.1) 

    header = ['Time', 'PS Voltage', 'Calc RPM'] 

    write_to_csv(data_list=header, append=False) 

    input("Ready? Press [ENTER] when ready!") 

    for percent in range(0, 110, 10): 

        saber.drive(2, percent) 

        sleep(1) 

        volts = get_supply_voltage() 

        timestamp, rpm = get_instantaneous_rpm(supply_voltage=volts) 

        print(f"%: {percent} Time: {timestamp} Volts: {volts} RPM: {rpm}", flush=True) 

    # log_rpm() 
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encoder_feedback.py 

import RPi.GPIO as GPIO 

import board, busio 

import adafruit_ads1x15.ads1115 as ADS 

from adafruit_ads1x15.analog_in import AnalogIn 

from time import sleep, time 

i2c = busio.I2C(board.SCL, board.SDA) 

 

A_pin = 5 

B_pin = 6 

ads = ADS.ADS1115(i2c) 

 

GPIO.setmode(GPIO.BCM) 

GPIO.setup(A_pin, GPIO.IN) 

GPIO.setup(B_pin, GPIO.IN) 

 

def run(): 

 

    outcome = [0,1,-1,0,-1,0,0,1,1,0,0,-1,0,-1,1,0] 

    last_AB = 0b00 

    counter = 0 

 

    while True: 

        counter = 0 

        start = time() 

        while time() - start < 1.0: 

            A = GPIO.input(A_pin) 

            B = GPIO.input(B_pin) 

            current_AB = (A << 1) | B 

            #print(f"A: {A} B: {B} AB: {current_AB}", end='\r', flush=True) 

            position = (last_AB << 2) | current_AB 

            counter += outcome[position] 

            last_AB = current_AB 

            chan = AnalogIn(ads, ADS.P0) 

            sleep(0.000001) 

     

    print(f"A0: {chan.voltage} A: {A} B: {B} Pos: {position} Count: {counter} RPM: {abs(counter*60/900*0.083)}", end="\r", 

flush=True) 

 

if __name__ == "__main__": 

    run() 
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read_db.py 

import redis, time 

 

db = redis.Redis(host='localhost', port=6379, db=0) 

 

while True: 

    print('Angle', db.get('angle')) 

    print('Dist', db.get('distance')) 

    print('SOC', db.get('soc')) 

    print('RIGHT', db.get('us_1')) 

    print('FRONTL', db.get('us_2')) 

    print('FRONTR', db.get('us_3')) 

    print('LEFT', db.get('us_4')) 

    print('REAR', db.get('us_5')) 

    print('STOP', db.get('stop')) 

    print('TURN', db.get('turn')) 

    print('TSIG', db.get('tsig')) 

    time.sleep(0.5) 
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