
The University of Akron The University of Akron

IdeaExchange@UAkron IdeaExchange@UAkron

Williams Honors College, Honors Research
Projects

The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2021

Soil Sensor Network Soil Sensor Network

Andrea Wyder
The University of Akron, alw179@uakron.edu

Ross Klonowski
The University of Akron, rak112@uakron.edu

Alexis Alves
The University of Akron, ara87@uakron.edu

Luke Farnsworth
The University of Akron, lmf78@uakron.edu

Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

 Part of the Digital Communications and Networking Commons, Systems and Communications

Commons, and the VLSI and Circuits, Embedded and Hardware Systems Commons

Please take a moment to share how this work helps you through this survey. Your feedback will

be important as we plan further development of our repository.

Recommended Citation Recommended Citation
Wyder, Andrea; Klonowski, Ross; Alves, Alexis; and Farnsworth, Luke, "Soil Sensor Network" (2021).
Williams Honors College, Honors Research Projects. 1300.
https://ideaexchange.uakron.edu/honors_research_projects/1300

This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela
S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University
of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College,
Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more
information, please contact mjon@uakron.edu, uapress@uakron.edu.

https://ideaexchange.uakron.edu/
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/1300
https://ideaexchange.uakron.edu/honors_research_projects/1300?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1300&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Soil Sensor Network

Senior Project Final Report

Design Team 7

Alexis Alves

Luke Farnsworth

Ross Klonowski

Andrea Wyder

Faculty Advisor: Dr. Bahrami

23 April 2021

TABLE OF CONTENTS
List of Figures ..7

List of Tables ... 11

Abstract AW ... 13

1 Problem Statement .. 14

1.1 Need AA, LF, RK, AW ... 14

1.2 Objective AA, RK, AW... 14

1.3 Soil Sensor Network Background AA, RK, AW ... 15

1.4 Marketing Requirements .. 20

2 Engineering Analysis .. 21

2.1 Electronics Analysis .. 21

2.1.1 Soil Sensor Analysis AW... 22

2.1.2 Soil Nutrient Analysis AW ... 24

2.1.3 Antenna Analysis AW .. 25

2.2 Circuit Analysis .. 29

2.2.1 Battery Analysis .. 29

 Battery Research AA, LF, AW ... 29

 Battery Testing LF .. 31

2.2.2 Voltage Regulation Analysis LF, AW .. 32

 Voltage Regulator Research... 32

 Voltage Regulator Testing .. 33

2.2.3 555 Timers AW... 34

2.3 Communications Analysis .. 35

2.3.1 LoRa Modulation AA ... 36

2.3.2 LoRaWAN MAC Protocol AA, RK, AW .. 37

2.3.3 Communication Range AA, AW ... 38

2.4 Computer Networks Analysis RK .. 42

2.5 Embedded Systems Analysis AA, RK .. 45

3 Engineering Requirements AA, LF, RK, AW .. 47

4 Engineering Standards .. 49

4.1 Data Format AA .. 50

4.2 Programming Language AA, RK... 51

4.3 Communications RK... 51

4.4 Connector Standards RK, AW .. 51

5 Accepted Technical Design .. 52

5.1 Hardware Design .. 52

5.1.1 Block Diagrams .. 52

 Level 0 Block Diagram AA, RK, AW ... 53

 Level 1 Block Diagram AA, RK, AW... 55

 Level 2 Block Diagram AA, LF, RK, AW ... 59

 Level 3 Block Diagram AA, AW.. 62

5.1.2 Schematics ... 64

 Circuit Overview AW .. 64

 Battery Monitor AW .. 65

 Voltage Regulator .. 67

 Microcontroller AA, RK, AW... 72

 LoRa Module AA, RK, AW ... 74

 Soil Moisture Sensor AW .. 75

 Temperature Sensor AW .. 80

 Connectors AW ... 81

 Debugging Circuitry AA, AW .. 83

5.1.3 Simulations AW ... 85

 Soil Moisture Sensor AW .. 85

 Temperature Sensor LF .. 87

5.1.4 PCB Designs AA, AW... 89

 Main Board PCB ... 89

 Power Management System .. 92

 External Sensors .. 95

 Connectors .. 96

5.2 Software design ... 97

5.2.1 Embedded Firmware AA, RK .. 98

 Trigger Sensor Reading AA, RK ... 99

 Gateway/Hub Data Communication AA, RK .. 100

5.2.2 Software Block Diagrams AA... 100

 Level 1 Block Diagram AA, RK, AW .. 100

 Level 2 Software Block Diagram .. 103

5.2.3 LoRa Communication Setup RK .. 106

5.2.4 Data Flow AA ... 107

5.2.5 Gateway / Senet Server RK ... 109

5.2.6 API & Lambda Function AA ... 111

5.2.7 Database AA .. 113

 Farm Table AA .. 113

 Sensor Data Table AA ... 114

 Sensor Pod Table AA ... 115

 Interfacing AA 115

5.2.8 Web Application AA ... 116

 Frontend Web Application AA .. 117

 Backend Web Application AA ... 120

5.3 Prototypes: Design Verification ... 121

5.3.1 Voltage Regulator AA, LF, AW .. 121

5.3.2 Soil Moisture Sensor AW ... 124

 Setup and Procedure .. 124

 Results .. 126

5.3.3 Temperature Sensor LF ... 131

5.3.4 Microcontroller Data Collection AA ... 132

5.3.5 Lora Module Communication RK .. 135

5.3.6 LoRaWAN Propagation Models AW ... 137

 Pathloss Over Distance .. 137

 Rain Attenuation... 139

5.3.7 Database AA ... 141

5.4 Prototypes: Implementation ... 145

5.4.1 Power Management RK ... 145

 Voltage Regulator ... 145

 Battery Testing .. 146

5.4.2 Soil Moisture Sensor AA, RK, AW .. 154

5.4.3 Temperature Sensor RK, AW ... 157

5.4.4 Embedded Firmware RK .. 160

 Microcontroller Data Collection AA, RK .. 161

 Support Functions RK ... 162

5.4.5 Communication .. 164

 LoRa Module Communication RK .. 164

 Distance Testing AA, RK, AW .. 169

 UA Propagation Model AW .. 175

5.4.6 Web Application AA, RK ... 177

 Website Interface ... 178

 Frontend ... 184

 Backend ... 188

6 Mechanical Sketch AW ... 190

6.1 First Design Iteration... 190

6.2 Second Design Iteration ... 191

6.3 Third Design Iteration... 195

6.4 Pod Shell and Force of Impact .. 200

6.5 Sensor Pod Prototypes ... 202

7 Future Implementation .. 206

7.1 Automated Installation AW .. 206

7.2 Retrieval Process LF, AW .. 207

8 Design Team Information RK, AW .. 209

9 Parts List AW .. 210

9.1 Schematics Parts List ... 210

9.2 Materials Budget List AW .. 213

9.3 Cost Comparison Analysis AW ... 219

10 Project Schedules AA, RK, AW .. 221

10.1 Azure DevOps Sprint Board ... 221

10.2 Design Gantt Chart .. 222

10.3 Implementation Gantt Chart .. 224

10.4 Actual Gant Chart ... 225

11 Conclusions and Recommendations ... 227

12 Acknowledgements ... 230

13 Works Cited ... 231

14 Appendix ... 235

14.1 Frontend Models .. 235

14.1.1 Farm Overview ... 235

 Type Script Component: .. 235

 HTML Component ... 239

14.1.2 Pod List ... 240

 Type Script Component ... 240

 HTML Component: ... 244

14.1.3 Home .. 245

 Type Script Component ... 245

 HTML Component ... 246

14.1.4 About ... 247

 Type Script Component ... 247

 HTML Component ... 247

14.2 Backend Models ... 248

14.2.1 Domain Models ... 248

 Farm Table Data .. 248

14.2.2 Sensor Pod Data ... 248

14.2.3 Controller .. 249

 API Router ... 249

 API Controller Class ... 251

 API Controller Data Type .. 252

 API Controller Interface ... 252

14.2.4 Startup Configuration ... 253

LIST OF FIGURES
Figure 1: SparkFun Soil Moisture Sensor. Image Retrieved from
https://www.sparkfun.com/products/13322. .. 22
Figure 2: Analog Capacitive Soil Moisture Sensor. Image retrieved from
https://www.reichelt.com/de/en/development-boards-soil-moisture-sensor-capacitive-analogue-
debo-cap-sens-p223620.html?r=1. ... 23
Figure 3: Power Radiation Polar Plot for Directional Antennas. Image Retrieved from
https://www.sciencedirect.com/science/article/pii/S2215098616304256 .. 26
Figure 4: Power Radiation Polar Plot for Dipole Antennas. ... 27
Figure 5: Power Radiation Polar Plot for Monopole Antennas. .. 28
Figure 6: LoRaWAN Communication Stack. .. 35
Figure 7: LoRa Communication CHIRP (Modulated Data). Image retrieved from .. 36
Figure 8: MAC Layer Format. .. 37
Figure 9: LoRaWAN Class Types. Image retrieved from https://witekio.com/blog/lorawan-a-
dedicated-iot-network/ ... 38
Figure 10: Database Structure. .. 50
Figure 11: Level 0 Block Diagram of Soil Sensor Network. ... 53
Figure 12: Level 1 Block Diagram of Soil Sensor Network. ... 55
Figure 13: Level 2 Block Diagram for Soil Sensor Network.. 59
Figure 14: Level 3 Block Diagram for Soil Sensor Network.. 63
Figure 15: EagleCAD Soil Sensor Network Circuit Overview. .. 64
Figure 16: EagleCAD STC3100IST Battery Monitor.. 66
Figure 17: EagleCAD XC9140A331MR-G Boost Voltage Regulator. ... 67
Figure 18: Internal Circuitry for Voltage Regulator XC9140A331MR-G. Image retrieved from
https://www.digikey.com/htmldatasheets/production/1228326/0/0/1/xc9140-series.html. 68
Figure 19: EagleCAD STBB1-APUR Voltage Regulator. ... 70
Figure 20: Buck-Boost Voltage Regulator STBB1-APUR Pinout. Image retrieved from
https://www.st.com/content/ccc/resource/technical/document/datasheet/20/a6/10/e0/63/85/
43/c1/DM00037824.pdf/files/DM00037824.pdf/jcr:content/translations/en.DM00037824.pdf. . 71
Figure 21: EagleCAD PIC24FJ128GB410 Microcontroller. .. 73
Figure 22: EagleCAD RN2903 LoRa Transceiver. .. 74
Figure 23: EagleCAD Capacitive Soil Moisture Sensor: Iteration I. ... 75
Figure 24: TLC555 Timer Datasheet: Astable Circuit. Image retrieved from
https://www.ti.com/lit/ds/symlink/tlc555.pdf?HQS=TI-null-null-digikeymode-df-pf-null-
wwe&ts=1603553851426. .. 76
Figure 25: EagleCAD Soil Moisture Sensor: Iteration II. ... 78
Figure 26: Soil Moisture Sensor Internal Circuit: Iteration III. ... 80
Figure 27: EagleCAD MAX6607IUK+T Temperature Sensor. .. 81
Figure 28: EagleCAD Moisture Sensor to Main Connector Board. .. 82
Figure 29: EagleCAD Temperature Sensor to Main Connector Boad. ... 82
Figure 30: EagleCAD Debugging Test Vias and LEDs. .. 83
Figure 31: EagleCAD Manual Reset Pushbutton. .. 84
Figure 32: PIC24FJ256GB410 Microcontroller and RN2903 LoRa Module Breakout Pins. 85
Figure 33: LTSpice Capacitive Soil Sensor Circuit. .. 86
Figure 34: LTSpice: Soil Moisture Sensor Simulation C1=10pF. .. 87

Figure 35: LTSpice: Soil Moisture Sensor Simulation C1=20pF. .. 87
Figure 36:LTSpice: Temperature Sensor Simulation Circuit. .. 88
Figure 37: Temperature Sensor Simulation Diagram. ... 89
Figure 38: Main PCB Design. ... 90
Figure 39: Main PCB. ... 91
Figure 40: Buck-Boost Voltage Regulator PCB Design. ... 92
Figure 41: STBB1-APUR Voltage Regulator PCB. ... 92
Figure 42: Battery Monitoring PCB Design. .. 93
Figure 43: Battery Monitoring PCB. .. 93
Figure 44: Battery Pack PCB Design. .. 94
Figure 45: Battery Pack PCB. .. 94
Figure 46: Soil Moisture Sensor PCB. ... 95
Figure 47: Temperature Sensor PCB. ... 96
Figure 48: External Sensor to Main Board PCB Design. .. 97
Figure 49: External Sensor to Main Board PCBs. ... 97
Figure 50: Level 1 Embedded Flowchart.. 98
Figure 51: Level 2 Embedded Flowchart: Trigger Sensor Readings. ... 99
Figure 52: Level 2 Embedded Flowchart: Send Data to Gateway/Hub. .. 100
Figure 53: Level 1 Software Block Diagram. .. 101
Figure 54: Level 2 Software Block Diagram. .. 104
Figure 55: Data Flow Flowchart. .. 107
Figure 56: RG191 Senet Laird Gateway. .. 109
Figure 57: API & Lambda Function Flowchart. .. 112
Figure 58: Lambda Function Pseudo Code. .. 112
Figure 59: Farm Table Baseline.. 113
Figure 60: Sensor Data Table Baseline. .. 114
Figure 61: Sensor Pod Table. ... 115
Figure 62: Level 3 Web Application View and Controller Flowchart. .. 118
Figure 63: Frontend Navigation Calls. .. 119
Figure 64: Frontend Routing Table. ... 120
Figure 65: Backend API Controller Pseudo Code. ... 120
Figure 66: Backend Modeling Pseudo Code. .. 121
Figure 67: XC9140A331MR-G Voltage Regulator Prototype Circuit... 122
Figure 68: STBB1-APUR Buck-Boost Voltage Regulator Prototype Circuit. ... 123
Figure 69: Data Collection from STBB1-APUR Buck-Boost Voltage Regulator. .. 123
Figure 70: Capacitive Soil Moisture Sensor Prototype Setup. .. 125
Figure 71: Moisture Sensor in Soil. ... 125
Figure 72: Soil Moisture Sensor Control Lower Limit: Air. .. 126
Figure 73: Capacitive Soil Moisture Sensor Control Upper Limit: Water. .. 126
Figure 74: Container 1: Super Soil Dry. .. 127
Figure 75: Container 1: Super Soil with 1 Tbsp Water Added. .. 127
Figure 76: Container 1: Super Soil with 5 Tbsp Water Added (Saturation).. 128
Figure 77: Container 2: Sandy Soil Dry. ... 129
Figure 78: Container 2: Sandy Soil with 1 Tbsp Water Added. .. 129
Figure 79: Sandy Soil with 4 Tbsp Water Added (Saturation). .. 130
Figure 80: Soil Moisture Measurements Frequency vs. Additional Water Graph. 131

Figure 81: TC1047A Temperature Sensor. ... 131
Figure 82: TC1047A Temperature Sensor Pinout. ... 132
Figure 83: Explorer 16/32 Development Board Demo. .. 133
Figure 84: Main Program. .. 134
Figure 85: Analog Sampling. .. 135
Figure 86: RN2903 LoRa Module with 6" Monopole Antenna. .. 135
Figure 87: Screenshot of YAT Terminal for Serial Communication. ... 136
Figure 88: Senet Screenshot of Successfully Delivered LoRa Message. ... 137
Figure 89: LoRaWAN Signal Path Loss. .. 139
Figure 90: LoRaWAN Rain Attenuation. .. 140
Figure 91: Sensor_Data_Test_Baseline.. 141
Figure 92: DynamoDB Table. ... 141
Figure 93: AWS API Gateway. .. 142
Figure 94: Lambda Function Design Flow. ... 142
Figure 95: Lambda Function Pseudo Code. .. 143
Figure 96: Postman API Call. .. 144
Figure 97: DynamoDB Table. ... 144
Figure 98: Battery Testing Setup (Sponsored by Keithley). .. 146
Figure 99: PIC24FJ256GB410 Active Mode. .. 147
Figure 100: PIC24FJ256GB410 Active Transmit Mode. .. 148
Figure 101: PIC24FJ256GB410 Sleep Mode. ... 148
Figure 102: Current Draw of Sensor Pod in Different PIC Modes. ... 149
Figure 103: Soil Moisture Sensor Readings. .. 155
Figure 104: Trended Soil Moisture Sensor Data. .. 155
Figure 105: PCB vs. Adafruit Soil Moisture Sensor. ... 156
Figure 106: Temperature Sensor Readings. .. 159
Figure 107: Senet Portal Device EUI. ... 164
Figure 108: 3.3km Distance Testing Communication Setup. .. 169
Figure 109: Distance Testing Sensor Pod Setup. ... 170
Figure 110: Senet Data from Distance Testing: Initial Position... 171
Figure 111: Senet Data from Distance Testing: 3.3 km. ... 172
Figure 112: Distance Test: 6 km. ... 172
Figure 113: Satellite View of Gateway and Sensor Pod Locations. .. 173
Figure 114: Senet Data from Distance Testing: 6 km. ... 173
Figure 115: Senet Data from Distance Testing: RSSI and SNR. .. 174
Figure 116: Propagation Model on the University of Akron Campus: 500m Distance. 176
Figure 117: Senet Data from Distance Testing: RSSI and SNR. .. 177
Figure 118: Soil Sensor Network Web Application: Site Map. ... 178
Figure 119: Soil Sensor Network Web Application: Main Interface. ... 178
Figure 120: Soil Sensor Network Web Application: Home Page. .. 179
Figure 121: Soil Sensor Network Web Application: Farm ID Sign In. .. 179
Figure 122: Soil Sensor Network Web Application: Farm Overview.. 180
Figure 123: Soil Sensor Network Application: Farm Information and Farm Status. 180
Figure 124: Soil Sensor Network Web Application: Trended Data ... 181
Figure 125: Soil Sensor Network Web Application: Pod List.. 181
Figure 126: Soil Sensor Network Web Application: Pod Status List and Pod Data. 182

Figure 127: Soil Sensor Network Web Application: Pod Status List. .. 182
Figure 128: Soil Sensor Network Web Application: Pod Data.. 183
Figure 129: Soil Sensor Network Web Application: About Page. ... 183
Figure 130: Phase 1 Mechanical Sketch of Sensor Pod. ... 190
Figure 131: Phase 2 Mechanical Sketch of Sensor Pod. ... 192
Figure 132: Top Housing Area and Height Requirements. .. 193
Figure 133: Phase 3 Mechanical Sketch: Top Housing. .. 195
Figure 134: Phase 3 Mechanical Sketch: Base. ... 196
Figure 135: Phase 3 Mechanical Sketch: Base Attachment. ... 197
Figure 136: Phase 3 Mechanical Sketch: Battery Pack. .. 198
Figure 137: Phase 3 Mechanical Sketch: Battery Pack Lid. .. 199
Figure 138: Pod Shell Geometry. ... 202
Figure 139: 3D Prototype: Pod Base. ... 202
Figure 140: 3D Prototype: Battery Pack. ... 203
Figure 141: 3D Prototype: Top Housing w/ Base. .. 203
Figure 142: Fully Assembled Sensor Pod. ... 204
Figure 143: Assembled Battery Pack... 205
Figure 144: Sensor Pod Prototypes. ... 205
Figure 145: Automated Installation Contraption.. 206
Figure 146: MN5D10HS Nano Hornet GPS Tracker. Image retrieved from
https://trackimo.com/micro-gps-tracking-chips/. ... 209
Figure 147: Azure DevOps Board Sprint 3. .. 221
Figure 148: Design Gantt Chart. ... 223
Figure 149: Implementation Gantt Chart (1). ... 224
Figure 150: Implementation Gantt Chart (2). ... 225
Figure 151: Actual Gantt Chart (1). .. 226
Figure 152: Actual Gantt Chart (2). .. 227

LIST OF TABLES
Table 1: Soil Moisture Sensor Analysis.. 23
Table 2: Chemical Composition of Soil Sensor Analysis. .. 24
Table 3: Antenna Analysis. ... 28
Table 4: Battery Power Analysis. .. 30
Table 5: Voltage Regulator Comparisons. .. 33
Table 6: Top Wireless Standards for IoT Devices. Retrieved from IoT EE Times. .. 44
Table 7: Engineering and Marketing Requirements... 47
Table 8: Engineering Standard Specifications. .. 49
Table 9: Level 0 FR Table: Sensors. ... 53
Table 10: Level 0 FR Table: Gateway/Hub. ... 54
Table 11: Level 0 FR Table: Server. ... 54
Table 12: Level 1 FR Table: Battery. ... 56
Table 13: Level 1 FR Table: Sensor Pod Microprocessor. .. 56
Table 14: Level 1 FR Table: Sensor Pod Lora Module. .. 56
Table 15: Level 1 FR Table: Sensor 1. ... 57
Table 16: Level 1 FR Table: Sensor 2. ... 57
Table 17: Level 1 FR Table: Gateway Lora Module. .. 57
Table 18: Level 1 FR Table: Gateway Microcontroller. ... 58
Table 19: Level 1 FR Table: Data Storage. .. 58
Table 20: Level 1 FR Table: Software Application. .. 58
Table 21: Level 2 FR Table: Antenna. ... 60
Table 22: Level 2 FR Table: Transceiver Module. .. 60
Table 23: Level 2 FR Table: Voltage Regulator.. 61
Table 24: Level 2 FR Table: Linear Integrator. .. 61
Table 25: Level 2 FR Table: Capacitive Discharge Circuitry. .. 61
Table 26: Level 2 FR Table: NE555 Timer. .. 62
Table 27: Level 2 FR Table: Temperature Sensor. ... 62
Table 28: Level 1 Software Block Diagram: FR Table: Gateway. ... 101
Table 29: Level 1 Software Block Diagram: FR Table: Senet Server. .. 102
Table 30: Level 1 Software Block Diagram: FR Table: AWS API/Lambda. .. 102
Table 31: Level 1 Software Block Diagram: FR Table: Database. ... 102
Table 32: Level 1 Block Diagram: FR Table: Backend of the Application. .. 103
Table 33: Level 1 Block Diagram: FR Table: Frontend of the Application: .. 103
Table 34: Level 1 Software Block Diagram: FR Table: Logic. .. 104
Table 35: Level 1 Software Block Diagram: FR Table: Model. .. 105
Table 36: Level 2 Software Block Diagram: FR Table: Controller. ... 105
Table 37: Level 2 Software Block Diagram: FR Table: View.. 105
Table 38: Data Flow: FR Table: Gateway. .. 108
Table 39: Data Flow: FR Table: Senet Server. ... 108
Table 40: Data Flow: FR Table: Amazon Web Server (AWS). ... 108
Table 41: Data Flow: FR Table: Web Application. ... 109
Table 42: Senet Uplink Data. .. 110
Table 43: Soil Moisture Measurements with Incremental Increase of Water.. 130
Table 44: Electronic Component Dimensions... 192

Table 45: Design Schematics Parts List. ... 210
Table 46: Implementation Schematics Parts List.. 211
Table 47: Material Budget List Fall Semester. .. 213
Table 48: Material Budget List Spring Semester. .. 215
Table 49: Sensor Pod Network Cost... 219
Table 50: Market Costs for Sensor Networks.. 220

ABSTRACT AW
Water management during crop irrigation is a problem for the agricultural industry. To

help farmers better maintain water usage, a wireless soil sensor network comprised of a sensor

pod and wireless communication has been designed and implemented. It was proven that the

sensor pod can be installed 6-8 inches below the ground and communicate up to at least a 6km

distance back to the gateway. The senor pod shells have a 2 mm thick shell to prevent the pod

from shattering when coming into contact with the ground after being released from the planter,

as calculated through the force of impact equations. The sensor pod contains a capacitive soil

moisture sensor with an accuracy of 90% and a temperature sensor with an accuracy of ±0.2ºC.

Lithium-ion batteries with a 2800 mA-H rating were chosen to ensure the sensor pods would be

power-efficient in order to last an entire growing season. The sensor data is transmitted

wirelessly through LoRaWAN communication using a RN2903 transceiver and a quarter

wavelength, 3” monopole antenna. A Sentrius Laird gateway was used to collect and forward

sensor pod data to the Senet dashboard. The Senet dashboard then forwarded the data to a web-

based application that farmers can reference to check the status of their fields.

Keywords:

• Capacitive soil moisture sensor

• LoRaWAN communication

• RN2903 transceiver

• Senet gateway

• PIC24 microcontroller

• Mobile-friendly application

1 PROBLEM STATEMENT
Owners of large farms need a way to efficiently monitor water consumption and the health

of their field. Traditional Wireless Sensor Networks that are aimed at collecting data from the

soil use costly equipment. The new Wireless Sensor Network proposed will take advantage of

advanced protocols and embedded systems available to aid in the process of growing and

maintaining crops with technology that is more accessible to farmers.

1.1 NEED AA, LF, RK, AW

The agriculture industry experiences water shortages in different areas and at different

times due to the mobility of water as a resource; the amount of water in a given area one day may

not be the same amount of water there the next day. In addition to water scarcity, water cost is

also a serious concern for farm owners. Because of this, there is a need for an easier and more

reliable method for monitoring water consumption and soil composition of crops for the farming

industry. Current methods of manually monitoring water distribution can lead to irrigation

systems over watering, which wastes money, or under watering, which creates bad harvests.

Many soil sensing systems that help eliminate water inefficiencies are networked together

through physical wires, leading to difficult installations. There is a need for an off the shelf,

easy-to-install sensor system that can be accomplished by using wireless soil sensors.

1.2 OBJECTIVE AA, RK, AW

The goal of this project is to create a low-cost, power-efficient software-sensor network that

acquires soil data from sensors, contained in a single Sensor Pod, to aid in irrigation and crop

management. The Sensor Pods can be “planted” with the crops throughout the field for easy

installation. Data will be transferred using wireless communication and will then be stored in the

Cloud to be accessed through an app. This will allow farmers to check the history of their crops

and forecast when the most water will need to be supplied to their field. The sensor system

created will automatically update at predetermined intervals throughout the day to give updates

on the status of the crop. These interval times of reading can be altered to conform to a farmer’s

needs and schedule preferences. These updates will be used to inform the farmer when crops are

in need of water.

1.3 SOIL SENSOR NETWORK BACKGROUND AA, RK, AW

According to the United States Department of Agriculture, 80 to 90 percent of water in the

United States is consumed by the agriculture industry [1]. To compensate for water management

inefficiencies, an automated, sensor-based irrigation system is needed. Improvements in

irrigation efficiency can go a long way in reducing water consumption globally for the

agriculture industry. A scalable solution that includes soil sensors and automated irrigation is

needed to achieve these desired changes. This system can be developed with a feedback loop

relaying information from data acquisition sensors in a field back to a remote interface that

would control the irrigation system, only activating the sprinklers located in water-depleted

areas. The system can be tailored for the type of crop in the field in order to ensure accurate

water management. The data collection will be stored and trended in the Cloud, which can then

be accessed through a software application so farmers can better maintain their crops. The

creation of a software-sensor network system is important in reducing agricultural water

consumption.

The theory behind the Soil Sensor Network system is to “plant” a Sensor Pod into the

ground to collect data useful for crop and water management. The sensors will be stored in a

container that can be mounted on farm planting equipment to allow for automated planting. Once

the Sensor Pods are planted, they are in position to communicate with a base station through

LoRaWAN technology. To save energy, the Sensor Pod will take measurements only when

triggered. Once triggered, the sensors will collect data and transmit it to the base station, which

will then relay it to the Cloud. The web server in the Cloud will analyze the data over time and

create trends that farmers can access from their device to be used to monitor the moisture levels

and other valuable properties of their fields.

In order to acquire data from the system, a few sensors will be integrated, one of which

will be a capacitive soil moisture sensor. To measure moisture levels in the soil, capacitive soil

sensors use the discharge rate of the soil to calculate soil moisture content. Other sensors that

will be researched and analyzed for potential use are electrochemical sensors, salinity sensors,

and pH level sensors. These three types of sensors have the ability to measure nutrient and pH

levels of the soil to tell farmers when and what kind of fertilizer needs to be added to the field.

The sensors chosen to be used will be combined into the Sensor Pod. Each Sensor Pod’s location

can be recorded through a unique identification.

Although current automated irrigation designs have proven to be very effective in the

field, they also have limited communication abilities. In general, implementations involve a

microprocessor for computation and decision making, sensors for capturing data, and a network

to connect the sensors to a base station. The entire network of Wireless Sensor Units (WSU)

forms a Wireless Sensor Network (WSN). A variety of communication protocols have been used

for the relay of data between sensors and the base station. One of the implementations of an

automated irrigation system has relied upon Global System for Mobile Communication (GSM),

an older form of telecommunications that is available in remote areas. General Packet Radio

Service (GPRS) is another form of communication that uses 2G and 3G cellular networks, which

are also outdated [3].

In recent times, technologies such as LoRa have been suggested to be the backbone of the

WSN. LoRaWAN, a low-power wide-area network (LPWAN), has become more popular in

agriculture technology communication due to its low cost and long-range capabilities. LoRa

technologies operate off of the unlicensed spectrum, allowing the costs of data communication to

be relatively cheap compared to the currently used licensed spectrum (i.e.: 4G technologies) [4].

LoRa operates on the 915 MHz frequency in the U.S. with a physical range capability of 10 km

in rural areas, making it a preferred method of communication for agricultural sensor networks

[3]. Most sensors do not use wireless communication but rather rely on physical wires for power

and communication back to a base station. This method restricts the measurement to local areas

due to the sensors being physically connected. The WSN has recently been used for

communication in agricultural sensory systems; an example of this is the patent by RainBird

Corporation, which uses WSN to monitor and control irrigation [6]. This technology allows for a

wider range of monitoring that can more accurately be attained by using LoRa as a means of

communication to standalone sensors.

 Automated soil sensing has previously been implemented in dry, remote locations, such

as India, and has shown promising results. Ozawa et. al. patented an underground sensor design

in February of 2020 to be used for fertigation. The sensor was attached to a discharge valve that

would distribute minerals into the soil through salinization to prevent pollution and

oversaturation of salt. The soil electrical conductivity (EC) sensor measured soil content and

communicated back to a main controller through a wireless fertigation system [5]. In a paper

published at Karpagam Academy of Higher Education, the results from their smart irrigation

system yielded a significant water usage reduction. The traditional method they observed had

used 174 liters of water per drip hole, whereas their system used just 14 liters per drip hole [3].

With almost 90% water savings, the proposed design by Ozawa et. al. was very effective and

showed that under good conditions, the system can save water and help farmers efficiently

manage crops.

In addition to a capacitive soil sensor, many other types of sensors can be used to collect

data that is useful for crop growth management. Popular sensors include air humidity sensors,

water level sensors, and soil moisture sensors. Similarly, the focus of the project will be on

capturing soil moisture readings, as well as potential readings on pH levels. The two methods for

measuring moisture in soil are soil water content and soil water tension [8]. Soil water content

sensors measure the mass ratio of the soil of when it is wet to when it is dry. Soil water tension

sensors measure the force it takes the roots to grow through the soil.

The three most commonly used sensors that measure soil water content are neutron

probes, time domain transmission (TDT) sensors, and frequency domain reflectors (FDR) [8] [9].

Neutron probes can sample large areas at a time accurately, but are expensive and have strict

government regulations [8]. TDT sensors use wave propagation to measure water content, do not

require government paperwork, and are relatively cheap and accurate. However, TDT sensors

encounter much signal interference and are typically planted permanently in the ground. FDRs,

also known as capacitive sensors, use the soil as a capacitor and are cheaper and more accurate

than TDT sensors. Disadvantages to this sensor are that it must be calibrated, and it cannot

measure as large of areas as neutron probes [8] [9].

The two most commonly used sensors that measure soil water tension are tensiometers

and granular matrix sensors. Tensiometers work much like a thermometer, consisting of a glass,

water-filled tube and gauge. They are extremely accurate and a cheaper solution than water

content sensors. However, tensiometers require large amounts of maintenance, must be reset

often, and don’t work well below freezing temperatures because of the water-filled tube.

Granular matrix sensors are extremely inexpensive and are capable of logging data. However,

these sensors are also more inaccurate because they rely heavily on the salt content of the soil [8]

[9].

For the project at hand, the sensors are solely used to collect data at specific points in

time, which will then be processed through a server. This eliminates the need to log data in the

sensor itself as granular matrix sensors do. The desired sensor is a volumetric-based soil

moisture content sensor that covers an optimal amount of distance for its cost; a capacitive

(FDR) sensor has been chosen to be used rather than a resistive (EC) sensor in order to prevent

corrosion. The less distance the sensor can cover, the more sensors will need to be planted. In

addition to soil moisture readings, it is also important to measure soil compaction to determine

the available capacity for additional volumes of water per square inch of soil [2]. Local farmers

have also requested that a pH level reading solution be implemented. Unlike current irrigation

sensor technology, Sensor Pods containing all necessary sensors will be buried in the ground and

communicate wirelessly to a base station within the WSN. The sensor readings will be cycled so

that only one sensor is turned on at a time to maximize power efficiency.

The presentation of acquired sensor data to the user about their land and irrigation system

is a critical part of the proposed automated irrigation system. The data must be able to be

accessed remotely - in the field and on the farm. It also must be accessible through common

technology mediums, such as a smartphone or web application. The most commonly used mobile

operating system internationally is Android, dominating the market by supplying services to

82.8% of all smartphone users [7]. A web application will be created for ease of use, as well as

its accessibility to many smartphone users. To be accessible anytime, on the farm or not, a

database of sensor readings must be stored in the Cloud. Web servers, such as what Amazon

hosts, are relatively cheap and can be easily integrated with the proposed web application. Using

technology that is already available to many people will help promote the adoption of this new

type of WSN for automated soil sensing and irrigation.

 The goal of the automated irrigation system, from a farmer’s perspective, is to save water

and monitor the health of their crops. Whether the system is deployed in the middle of the United

States or on the other side of the world in rural China, this versatile soil monitoring system will

help farmers save water and money. When the soil sensors have an established connection via

LoRa, data transmission will be reliable and precise. The data that the soil sensors acquire will be

transmitted via the WSN back to a gateway that can be accessed through any internet connected

device so that farmers can know the status of their crops and know when watering is needed.

1.4 MARKETING REQUIREMENTS

Marketing and engineering requirements play a valuable role in designing and constructing

new products. The following sections describe how each set of requirements is used. The

marketing requirements are used to validate the engineering design specifications laid out which

ensure the development of a product that the intended user finds desirable. A list of these

requirements is listed below.

1. The Sensor Pods will be compatible with most planters to allow for automated

installation of sensors to field.

2. The sensors will accurately measure moisture in the soil.

3. The sensors will be power efficient in order to last an entire growing season.

4. A detailed interface will display sensor data collection history and trended data.

5. Wireless communications with the system will enable convenient access anywhere and

anytime.

When creating marketing requirements, it is important to keep the end user in mind. The Soil

Sensor Network is a project designed to aid farmers (or farmhands) in irrigation by allowing

them to monitor the status of their fields. The requirements listed were chosen to create the

foundation for a design that will be easy implement and easy to use, and therefore will save

farmers time by automating a process that is currently done by hand on family farms.

2 ENGINEERING ANALYSIS

In the design stage of the Wireless Sensor System, it is important to look closely at all

technologies and processes that are available to meet the requirements of marketing and

engineering. This may include analyzing cost, materials, electrical components, and

technological advantages and disadvantages. A complete engineering analysis will provide a

thorough investigation of preexisting technologies and guide future development.

2.1 ELECTRONICS ANALYSIS

With the constraints of energy availability and environmental factors, multiple types of

sensors and antennas were analyzed in order to accurately measure and transmit soil data.

2.1.1 Soil Sensor Analysis AW

The two most commonly used types of soil moisture sensors on the market are of the

resistive and capacitive types. A resistive soil moisture sensor is designed with two conductive

plates, as seen in Figure 1.

Figure 1: SparkFun Soil Moisture Sensor. Image Retrieved from https://www.sparkfun.com/products/13322.

A voltage is applied to one of the nodes on conducting Plate 1, and a current is sent from Plate 1,

through the soil, to Plate 2. The moisture in the soil acts as a conductor. If the soil is extremely

wet, most of the current sent from Plate 1 will arrive at Plate 2. However, if the soil is extremely

dry, Plate 2 will receive almost no current from Plate 1. Resistive soil moisture sensors are easy

to design, which can be as simple as connecting two conducting surfaces to an NPN transistor

coupled with a potentiometer.

 There are two main problems with this type of design. First, the sensor introduces a DC

current into the soil. Second, it has exposed circuitry that is susceptible to corrosion. Introducing

a DC current can be harmful to plants because it decreases the capacity for light reflectivity [10].

Light reflectivity plays an important role in photosynthesis by preventing the plant from

absorbing too much light. When plants absorb too much light, the light waves break down the

plant’s chemicals used for photosynthesizing, which causes the plant to die over time. The

second problem, exposed circuitry, is a cost expense to the farmer. When components are

exposed to the elements, they corrode more quickly, thereby decreasing the lifetime of the

sensor. A decreased lifetime means the farmer has to buy replacement sensors more frequently.

 To prevent these issues, a capacitive soil moisture design was chosen to be used to detect

moisture levels in the soil. The comparison of the resistive and capacitive soil moisture sensors is

presented in Table 1.

Table 1: Soil Moisture Sensor Analysis.

Description MFG Part Number Advantages Disadvantages

Resistive soil
moisture sensor

SEN0114

101020008

Circuit Simplicity Introduce DC current

Corrode easily

Capacitive soil
moisture sensor

101020614

1528-2753-ND

Corrosion resistant

Better accuracy

Circuit complexity

Calibration complexity

Capacitive soil moisture sensors have fully enclosed circuitry that consists of a timer, discharge

capacitor circuit, and linear integrator. An example of such a sensor is shown in Figure 2.

Figure 2: Analog Capacitive Soil Moisture Sensor. Image retrieved from https://www.reichelt.com/de/en/development-

boards-soil-moisture-sensor-capacitive-analogue-debo-cap-sens-p223620.html?r=1.

Corrosion is not an issue for capacitive soil moisture sensors, and studies show that the

capacitive sensor is more accurate than the resistive sensor, sometimes having a higher accuracy

than the data sheet guarantees [11]. Both sensors are relatively cheap to build, however, the

capacitive sensor has more complex circuitry compared to that of the resistive sensor. The

discharge rate of the capacitor is heavily dependent on volumetric water content and soil

properties.

 Soil itself is a conductive material, and therefore has its own discharge rate. Every type of

soil has a different discharge rate, which affects the discharge rate of the capacitor. Because of

this, the capacitor contained in the discharge circuitry must be calibrated to the conductivity of

the material in which it will be placed.

2.1.2 Soil Nutrient Analysis AW

 Another type of sensor that local farmers requested to have on the Sensor Pod was one to

analyze pH or soil nutrient levels. Table 2 lists multiple options that were researched.

Table 2: Chemical Composition of Soil Sensor Analysis.

Description MFG Part Number Advantages Disadvantages

Electrochemical
sensors

EC4-1000-H2

EC4-1000-H2S

Measures multiple
chemical readings
in the soil

Fits in Sensor Pod

Circuit simplicity

Expensive

pH level sensor ZPS CIO-000-00064 pH level readings

Easy to implement

Too big for Sensor Pod

Expensive

Optic sensor reading
litmus paper

PIR-02 pH level readings

Circuit simplicity

Mechanical design
complexity

Single use paper

Salinity sensor N/A Salinity readings

Easy to implement

Too big for Sensor Pod

Expensive

The three types of sensors that could track the desired data are electrochemical, pH level, and

salinity sensors. It was determined that none of the three types of sensors would be feasible due

to their size or cost.

A fourth option considered was to use an optic sensor that could read the color of an LED

flashing through a litmus paper. Optic sensor circuitry can be designed using power-efficient

components that are low cost and small relative to the size of the Sensor Pod. Although a litmus

paper test is not reusable, farmers only test the nutrient levels of their soil once before the

growing season (before the crops are planted) and once during the growing season. However, an

obstacle that would need to be overcome in order to implement such a sensor is the complexity

of the mechanical design.

Litmus paper tests can only read the pH levels of content absorbed. This means that

opening a door and placing the litmus paper into the dirt will not work because the litmus paper

will not be able to absorb the dirt unless it is saturated. Litmus paper testing would require the

pod to have a compartment containing distilled water that could be released and filtered through

the dirt to be absorbed by the paper. The mechanical design and power consumption required by

such a design render this option unfeasible. After multiple options were researched extensively,

it was determined that adding a soil nutrient sensor was outside the scope of the project.

2.1.3 Antenna Analysis AW

To maintain power-efficient transmission, directional, dipole, and monopole antennas

were researched. Since the Sensor Pods will be planted beneath the surface of the soil, the

antenna chosen must have a strong enough power radiation to be transmitted through both the

soil and air to arrive at the gateway. A directional antenna was a reasonable option because its

small beamwidth allows it to easily penetrate through the soil without high amounts of signal

loss. The polar plot for the power radiation of such an antenna is presented in Figure 3.

Figure 3: Power Radiation Polar Plot for Directional Antennas. Image Retrieved from
https://www.sciencedirect.com/science/article/pii/S2215098616304256

The directional antenna is the most efficient of the three antennas when it comes to power

radiation because the beam is capable of being directed towards the gateway. However, directing

the antenna would require a motor, which consumes an unacceptable amount of power in

comparison to the battery capacity. Since power is a constraint, using a directional antenna is not

a viable option.

 If it is not possible to direct the antenna, a small beamwidth is not desired because it does

not allow room for orientation error. For instance, the pod orientation of how it lands when

initially planted is unknown. If a directive antenna is used and the pod falls such that the antenna

is sideways, the transmitted data will never reach the gateway because the antenna is not aimed

in that direction.

Base
Station

 For this reason, an antenna with a larger beamwidth, such as a dipole antenna, is

necessary to allow for orientation error. The power radiation polar plot is shown in Figure 4.

Figure 4: Power Radiation Polar Plot for Dipole Antennas.

Although the dipole antenna is a better option than the directional antenna considering power

consumption, it is still not optimal. As can be seen in the power radiation plot, half of the power

is radiated toward the base station, and the other half is radiated down below the Sensor Pod

toward the dirt, never reaching the base station. This means that at least 50% of the power

consumed is wasted.

 To prevent wasted power consumption, a monopole antenna will be used. The power

radiation diagram of a monopole antenna is shown in Figure 5.

Base
Station

Figure 5: Power Radiation Polar Plot for Monopole Antennas.

A monopole antenna operates much like a dipole antenna, but only consumes half the power. By

using a monopole antenna, it is possible to concentrate all the radiated power upwards to the

surface of the soil.

 Both monopole and dipole antennas have a larger beamwidth which means there is a

greater chance of signal scattering. Although signal scattering is a factor that must be taken into

consideration, scattering does not weaken the signal to the extent that it cannot reach the

gateway. A comparison of the three different types of antennas researched is shown in Table 3.

Table 3: Antenna Analysis.

Description Advantages Disadvantages

Monopole LoRa processors optimized for
monopole antenna use

Circuit Simplicity

Power efficiency

Larger beamwidth could lead to
signal scattering

Dipole Circuit Simplicity

Covers large range of frequencies

Larger beamwidth could lead to
signal scattering

Directional Antenna Small beam width allows for
better soil penetration

Complex circuitry

Base
Station

Stronger, more concentrated
signal allows for better
transmission over longer distance

Not power efficient

By analyzing the beamwidth, power consumption, and power radiation of each antenna, it was

determined that the monopole antenna is the most viable option. A quarter wavelength was

chosen in order to further reduce power consumption.

2.2 CIRCUIT ANALYSIS

The Wireless Sensor Pod is powered by a Lithium-Ion battery that is intended to power

3.3V components and last an entire growing season. To accomplish this, a circuit analysis was

conducted to verify the battery life and input power on all circuit components.

2.2.1 Battery Analysis

In order for the sensor pod to last the intended duration of time, a battery was chosen that

would be able to output a voltage high enough to allow all components to operate despite the

charge of the battery.

 Battery Research AA, LF, AW

One of the major constraints for circuit design is power consumption. Given that the

Sensor Pod has a dimension requirement of 90 x 90 x 100 mm, all batteries used must fit into this

size requirement. To determine how much voltage and current are needed to power the

components, a list of devices with their power consumptions was created.

Table 4: Battery Power Analysis.

Description MFG Part
Number

Operating
Voltage (V) Current Draw

Soil Moisture Sensor Built In-House 3.3 100 µA

Microcontroller PIC24F265 3.3-3.7 Active: dependent on peripherals

Deep Sleep: 500 nA

Lora Module

(Antenna)

RN2903 3.3-3.7 Transmit: 121 mA

Sleep: 1.3 µA

Temperature Sensor MAX6607IXK+T 1.8-3.6 15 µA max

Every device chosen can operate safely at 3.3 V. Because of this, the base voltage the

battery will supply is 3.3 V. A standard battery operates at 3.7 V, so a voltage regulator will be

implemented between the battery and microcontroller to ensure safe operation of components

and increase the life of the Sensor Pod. The microcontroller and LoRa devices are able to

conserve power by entering into different power modes, such as active, idle, or sleep. Active

mode means the device is on and actively waiting for commands to transmit and receive data.

Idle mode means the device is on but has limited functionality. Sleep mode is when the device

turns off the majority of its functionalities and waits for a “wake up” signal.

 Equation 1 was used to determine how long the battery will be in use throughout the

growing season.

5 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚

∗ 3 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑𝑑𝑑

∗ 153 𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑔𝑔 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑔𝑔𝑚𝑚

∗ ℎ𝑔𝑔𝑚𝑚𝑔𝑔
60 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

= 38.25 [𝐻𝐻𝐻𝐻𝐻𝐻] (1)

It is not required for the sensors to take readings at every instant of every day. Traditionally

farmers take soil readings two to three times per day. In the calculation above, worst-case

scenario was assumed. For the project at hand, sensor readings will be taken three times a day,

and it will take up to five minutes to transmit the data back to the gateway. The sensors will be

on this cycle for an entire growing season, which lasts approximately 153 days, or five months.

To conserve power, the ideal mode of operation for the microcontroller and LoRa module when

the sensors are not collecting data is sleep mode.

 When deciding on the size of the battery, the following assumption were made. The

current draw for the sensor pod c is assumed as 73.5 mA*H; this will cover the average current

draw during the hours of operations. As calculated in Equation 1, the total hours of operation h is

38.25 Hrs. The mA-H of the battery b required for proper operation of the Sensor Pod is

calculated as follows:

𝑐𝑐 ∗ ℎ = 𝑏𝑏[𝑚𝑚𝑚𝑚𝐻𝐻] = (73.2) ∗ (38.25) ≈ 2800[mAH] (2)

As seen through Equation 2, the minimum size for the battery is 2800 mA*Hr. For this reason, a

battery with a size of at least 2800 mA*H was chosen. An estimated current draw for the system

of approximately 73.5 mA and an estimated time of 38.25 hours based off of the length of an

average growing season (5 months) and a run time of 5 minutes 3 times a day, as seen in

Equations 1 and 2, the estimated size of battery would be approximately 2800 mA*Hr. The

microprocessor requires 3.3 V to run optimally, with a minimum of 2 V and a maximum of 5 V.

A buck-boost voltage regulator has been implemented to maintain a battery voltage of at least 3.3

V, and will send a signal to the farmer if the voltage drops below 3.3 V so the Sensor Pod can be

retrieved before the battery dies if this situation occurs.

 Battery Testing LF

In order to provide increased battery life, the battery is interfaced with a switching

regulator, allowing limited voltage and current pull from the battery. The battery depleted after

approximately 40 hours when a 100 Ω resistor load was applied with a current draw of

approximately 70 mA. This was calculated using Equation 2. Based off the time of depletion, it

will take approximately 38 hours before the battery enters its end-of-discharge voltage, 2V,

given a maximum allowable battery voltage of 4.2V. The end-of-charge voltage was determined

based on the discharge profile graph from the Adafruit website and the maximum voltage is

based off of the base battery voltage [22].

2.2.2 Voltage Regulation Analysis LF, AW

In order to preserve battery life through increased efficiency, voltage regulators that

could be integrated into the circuit were researched.

 Voltage Regulator Research

Several voltage regulators were analyzed when designing the power stage. These were

the linear, the switching, and the Single-Ended Primary-Inductor Converter (SEPIC) regulators.

The linear regulator was first chosen due to its simplicity and virtually noiseless supply.

However, this type of regulator dissipates excess voltage as heat, making it power inefficient.

Because power efficiency is an integral aspect of the application, this regulator will not be used.

The SEPIC regulator was analyzed next. The design consists of a boost converter

followed by an inverting buck-boost regulator. This was quickly disregarded, as it creates

circuitry that is too complex and too large to fit within the size constraints.

A switching regulator was found to be one of the best choices for design implementation.

The switching regulator is similar to a buck regulator in that it has a high power efficiency, 80-

90%, but does not have the downsides of a buck regulator, such as complex circuitry and an

inverted output [21]. The reason the switching regulator is able to step up or step down voltage

without having the same issues as the buck regulator is due to the fact that the switching

regulator does not have a large voltage conversion range. The comparison of the four types of

regulators can be seen in Table 5.

Table 5: Voltage Regulator Comparisons.

 Linear Regulator Switching
Regulator

Buck Regulator SEPIC

Power Efficient No Yes Yes Yes

Inverted Output No No Yes No

Complex Circuitry No No Yes Yes

Noise Created None Low High High

The switching regulator allows the system to convert high or low voltage to the desired voltage

without causing too much noise to be produced. It also requires no complex circuitry for filtering

and gives a noninverted voltage output. This will allow use of minimal PCB space because of

simpler circuit configuration.

 Although the switching regulator was efficient, after more research it was not found to be

the most efficient. The switching regulator, as stated previously, has an 80-90% efficiency. This

means the circuit could lose up to 20% of its supplied power. More research was conducted and a

buck-boost regulator was found to have the highest efficiency, 97%, while not being as complex

as the SEPIC regulator.

 Voltage Regulator Testing

During the design phase, the switching boost regulator was tested. The voltage regulator

was connected to a power supply so that when the voltage was increased and decreased the input

voltage to the circuit after the regulator could be measured at a constant value to prove the

regulator was working properly. A few problems were encountered during testing. The first was

that the regulator has a minimum current draw in order to activate. The default setting on the

power supply is 0 A. Once the current was set to the minimum current of the regulator, the

regulator worked for the first twenty minutes and then stopped. After much troubleshooting it

was found that the regulator needed a couple resistors in front of one of the pins to act as a

voltage divider and prevent the component from being burned out. The circuit was reconfigured

and a new regulator was put in place. The reconfigured circuit design worked properly, but it was

soon realized that a switching boost regulator only boosts the voltage up to 3.3V and has no

effect on the upper-end voltage above 3.3V.

The final design tested was the buck-boost regulator. After constructing the correct

circuit design, the regulator entered its boost stage between 2.9-3.2V, then entered its buck stage

between 3.4-3.7V. The third stage, pass-through, was entered when the voltage dropped below

2.9V. A PCB of the circuit was created to be used in the implementation phase.

2.2.3 555 Timers AW

There are various types of 555 timers that can be used when designing a circuit. The

TLC555 timer was chosen because it has an operating voltage of 3.3V and is located in the

university stock room. Having the parts in stock eliminates shipping time and minimizes cost.

A timing circuit can be either monostable or astable. A monostable circuit consists of two

states; the circuit is stable in the first state and unstable in the second state. The circuit only

enters the second state if the trigger input of the timer is externally excited. Once the circuit

enters the second state, it produces a single output pulse and then returns to the first state. An

astable timing circuit consists of two states of which neither are stable. The circuit therefore

oscillates between the two states automatically without receiving an external trigger signal.

The Sensor Pod circuitry is located inside the pod, which is buried in the ground during

operation. Because of this, a monostable circuit would be extremely difficult to use since an

external signal is required to transfer from state one to state two. An astable circuit can be

implemented more easily because it oscillates between the two states and does not require an

external excitation. This type of timer produces a square wave at its output that can be used to

measure how long the capacitive sensor circuit takes to discharge.

2.3 COMMUNICATIONS ANALYSIS

When designing the Wireless Sensor Network (WSN), reliable and power efficient data

transmission is extremely important. As will be discussed in the Computer Network section, the

Sensor Pods will be communicating via the Long-Range Wide Area Network (LoRaWAN). This

will allow sensor readings from the farm to be transmitted long distances to a gateway while

maintaining power efficiency. As shown in the communication stack in Figure 6, there are two

main sections to LoRaWAN: the MAC layer and physical layer.

Figure 6: LoRaWAN Communication Stack.

The MAC layer is broken down into the LoRaWAN MAC Protocol and Mac Option

class. The physical layer is composed of LoRa Modulation and Regional ISM Band.

2.3.1 LoRa Modulation AA

Long Range (LoRa) modulation, as will be further explained in the Computer Network

section, is a Low-Power Wide-Area Network (LPWAN) protocol developed by Semtech. At the

physical layer, LoRa modulation is based on Compressed High-Intensity Radiated Pulse

(CHIRP) spread spectrum, and although the modulation is proprietary to Semtech, a base

understanding of how the physical layer operates can still be explained. The standard

composition of the LoRa’s physical layer, as shown in Figure 7, is composed of the preamble

(up-chirp), sync (down-chirp), and data modulated.

Figure 7: LoRa Communication CHIRP (Modulated Data). Image retrieved from

The preamble is used for detection of LoRa chirps, which is followed by sync for time

synchronization. Time synchronization is important so that the receiver is synchronized with the

incoming signal so that the data packets can be interpreted properly. Data modulation is

implemented to allow for signals to be transmitted over higher frequencies in order to decrease

the size of the receiving antenna. The Regional ISM band of the physical layer is used for

regional standards. For the current application, US 915 frequency is used. The North American

band has 64 up-links at 125 Hz along with 8 up-links at 500 Hz and 8 down-links at 500 Hz.

2.3.2 LoRaWAN MAC Protocol AA, RK, AW

LoRaWAN is the MAC layer that operates on top of the LoRa physical layer.

LoRAWAN MAC protocol operates similar to ALOHA protocol, although the packet lengths

can change for LoRaWAN. The LoRaWAN frame format is composed of the MAC header,

MAC Payload, and Message Integrated Code (MIC), as shown in Figure 8.

Figure 8: MAC Layer Format.

The MAC Header contains information with regards to the protocol version and message type,

and MIC is used for message authentication calculate based on a portion of the MAC Payload

and Network Key. The MAC Payload, while holding the actual Data (encrypted by the App

Session Key), also contains information with regards to the application layer such as device key,

app session key, port, etc. The Network Key is used to validate the MIC and aids in

authentication and routing to the correct network.

The LoRaWAN module consumes the most power when transmitting and receiving data.

LoRaWAN devices can be classified into three types based on receiving patterns: Class A, Class

B, and Class C. The class chosen will dictate how much power is consumed/conserved. The

device is able to conserve power by entering into one of the three different modes described in

the Circuit Analysis. It is important to choose the correct class because the device is unable to

conserve power, by entering sleep mode, while transmitting or receiving data. Figure 9 displays

the power consumption of the three device types.

Figure 9: LoRaWAN Class Types. Image retrieved from https://witekio.com/blog/lorawan-a-dedicated-iot-network/

Class A devices first transmit data Rx1, which is followed by one or two periods in which

it can receive messages Rx2. Class B and C expand the amount of time, or the number of periods,

for receiving a message. Class B allows for additional time-synchronized receive period, and

Class C keeps the receive period continuous while the device is not transmitting.

The use of additional periods for receiving messages in the Class B and C devices are not

required for the Soil Pod WSN application. Not only would this increase the power consumption

of the devices without adding any benefits, but also would restrict the device from a power-

saving sleep mode. Therefore, Class A is the optimal choice to ensure low power consumption

while not hindering operations of the device.

2.3.3 Communication Range AA, AW

To ensure effective communication of the LoRa device to the gateway, the range of

operations must be taken into consideration. As stated in the Engineering Requirements, the

range necessary for a large family farm was 3.39 km. To verify the module could communicate

over this range, the average distance for a large family farm was calculated and compared to the

maximum possible range of the LoRa device.

The distance required for proper communication on an average-sized farm was first

calculated.

√5.75 𝑘𝑘𝑚𝑚2 = [2.4 𝑘𝑘𝑚𝑚] (3)

The assumption for the above calculation is that the farm is square in shape and the average size

of a large family farm as stated by the USDA is 1421 acres, or 5.75 km2, with a perimeter of 2.4

km [18].

The longest distance would be the hypotenuse of the farm:

2.4 𝑘𝑘𝑚𝑚
cos45

= [3.39 𝑘𝑘𝑚𝑚] (4)

The range needed for communication on such a farm is 3.39 km, assuming a square field. To

account for changes in shape and position of the gateway, a twenty percent deviation can be

applied.

3.39 𝑘𝑘𝑚𝑚 + (3.39 𝑘𝑘𝑚𝑚 ∗ 0.2) ≈ 4 [𝑘𝑘𝑚𝑚] (5)

The LoRa communication needs to reach a range of 4 km to insure proper operation of the WSN.

When calculating the maximum possible range for the LoRa module some factors needed

to be taken into consideration. These factors are the power transmitted, sensitivity of the

receiver, and signal attenuation due to the soil. All equations listed below were sourced from

Engineering Electromagnetics Third Edition [14]. To the calculate the range, the terms in the

average power in Equation 6 were rearranged to solve for range R as seen in Equation 7.

𝑃𝑃𝑑𝑑𝑎𝑎 = 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
2𝜋𝜋𝑅𝑅2

 (6)

𝑅𝑅 = � 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
2𝜋𝜋𝑃𝑃𝑟𝑟𝑎𝑎

 (7)

This R will be the maximum possible range given that 𝑃𝑃𝑔𝑔𝑑𝑑𝑑𝑑 is power radiated in terms of mW

and 𝑃𝑃𝑑𝑑𝑎𝑎 is average power. Given that the LoRa transmitter is rated at a maximum of 18 dBm

(𝑃𝑃𝑚𝑚,𝑚𝑚𝑑𝑑𝑚𝑚), the power of 𝑃𝑃𝑔𝑔𝑑𝑑𝑑𝑑 can be derived from Equation 8 and solved for in Equation 9 [19].

𝑃𝑃𝑚𝑚,𝑚𝑚𝑑𝑑𝑚𝑚 = 10 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑃𝑃𝑔𝑔𝑑𝑑𝑑𝑑) (8)

𝑃𝑃𝑔𝑔𝑑𝑑𝑑𝑑 = 10
1
10𝑃𝑃𝑡𝑡,𝑚𝑚𝑟𝑟𝑚𝑚 = 101.8 = 63 [𝑚𝑚𝑚𝑚] (9)

Next the power received by receiver 𝑃𝑃𝑔𝑔𝑚𝑚𝑟𝑟 is determined as shown in Equation 10.

𝑃𝑃𝑔𝑔𝑚𝑚𝑟𝑟 = 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
2𝜋𝜋𝑅𝑅2

∗ 𝑚𝑚𝑚𝑚 = 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
2𝜋𝜋𝑅𝑅2

∗ �0.328
4𝜋𝜋

𝐷𝐷� (10)

Here 𝑚𝑚𝑚𝑚 is the effective area, and assuming worst-case scenario of a uniform radiation, the value

D is set to 1. Since 𝑃𝑃𝑔𝑔𝑚𝑚𝑟𝑟 is in mW and the 𝐻𝐻𝑠𝑠𝑠𝑠𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 of the LoRa gateway is in dBm, a

conversion must be made to create a common unit.

𝐻𝐻𝑠𝑠𝑠𝑠𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 10 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑃𝑃𝑔𝑔𝑚𝑚𝑟𝑟) = 10𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
2𝜋𝜋𝑅𝑅2

�0.328
4𝜋𝜋

�� (11)

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
2𝜋𝜋𝑅𝑅2

�0.328
4𝜋𝜋

� = 10
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡𝑠𝑠

10 (12)

Equation 12 is then rearranged to solve for the distance R as shown in Equation 13.

𝑅𝑅 = �
0.3282𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟

8𝜋𝜋2�10
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡𝑠𝑠

10 �
 (13)

Since the Sensor Pod will be under ground, the signal loss due to soil attenuation needs to

be considered. For the calculation performed in Equation 14, the conductivity of the soil σ is

dependent on the soil properties and frequency. For simplicity, the conductivity of the soil will

be approximated to 0.1 [S/m]. The relative permittivity εr is approximately five times that of

permittivity in free space ε0. The angular frequency ω is dependent on the frequency at which the

signal is being transmitted.

𝑆𝑆𝑙𝑙𝑠𝑠𝑙𝑙 𝑙𝑙𝑙𝑙𝐻𝐻𝐻𝐻 = 𝑠𝑠𝑡𝑡𝑠𝑠𝜃𝜃𝑙𝑙𝑔𝑔𝑚𝑚𝑚𝑚 = 𝜎𝜎
𝜔𝜔𝜔𝜔

= 𝜎𝜎
2𝜋𝜋𝜔𝜔𝑟𝑟

= 0.1
2𝜋𝜋(915𝑚𝑚106)[5(8.854∗10−12)]

= 0.39 (14)

Furthermore, the signal loss can also be accounted for by calculating the attenuation constant α,

as seen in Equation 15. The relative permeability is considered to be equal to the permeability in

free space µ0.

𝛼𝛼 = �𝜋𝜋𝜋𝜋µ0𝜎𝜎 = �𝜋𝜋(915 ∗ 106)(4𝜋𝜋 ∗ 10−7)(0.1) = 19 �𝑁𝑁𝑁𝑁
𝑚𝑚
� (15)

The attenuation constant can then be used to find the signal power that will reach the surface if

buried at a distance d of 6 inches, or 0.15 m. The surface power Psurface is calculated in Equation

16. Note that the radiated power Prad is considered to be 0 dBm, or 1 mW, at the transmitter’s

output.

𝑃𝑃𝑚𝑚𝑚𝑚𝑔𝑔𝑠𝑠𝑑𝑑𝑟𝑟𝑚𝑚 = 𝑃𝑃𝑔𝑔𝑑𝑑𝑑𝑑𝑠𝑠−2𝛼𝛼𝑑𝑑 = 1𝑠𝑠−2(19)(0.15) = 0.0034 [𝑚𝑚𝑚𝑚] (16)

The radiated power at the surface, accounting for the loss caused by the soil during propagation,

was found to be 0.0034 mW. Now that the power that reaches the surface is known, it can be

inserted into Equation 17 to find the distance the signal can travel. The sensitivity as shown on

the datasheet is -146 dBm [19].

𝑅𝑅 = �
0.3282𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟

8𝜋𝜋2�10
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡𝑠𝑠

10 �
= �0.3282∗0.0034

8𝜋𝜋2(10−14.6)
= 108 [𝑘𝑘𝑚𝑚] (17)

Since it is not possible with the known information to account for every loss (i.e.: soil properties,

antenna position, exact depth, etc.) the distance will be derated by 50% to account for these

losses.

𝑅𝑅𝑙𝑙𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 108
2

= 54 [𝑘𝑘𝑚𝑚] (18)

Comparing the maximum range with the necessary range stated in the Engineering

Requirements, it is evident that the required range falls well within the possible range of LoRa

communication.

2.4 COMPUTER NETWORKS ANALYSIS RK

 When developing a Wireless Sensor Network (WSN), there are many different

communication protocols that can be chosen. The choice should be application specific, taking

into account the outdoor environmental conditions, as well as requirements for data transmission.

The Sensor Pods will be planted underground and will be placed at a target distance of roughly

3.3 kilometers from its destination (receiver/Gateway). The pods will not be easily serviceable

once installed because they are underground. For this reason, interaction with the pods will only

take place at the beginning and end of growing seasons. With the requirements of range coverage

and environmental factors, a few different communication standards will be considered.

 One common method of data transmission in home networks and embedded systems is

the use of Wi-Fi. In general, Wi-Fi excels at short-to-medium range communication between

tablets, smartphones, and many other embedded devices. Current Wi-Fi Standards support 5

GHz and 2.4 GHz bands in which devices can connect. Although the faster 5 GHz frequency can

handle greater bandwidth, it can be easily obstructed, proving reliable only for short distances.

The slower 2.4 GHz band will stretch longer distances, up to 300 feet, but is also easily

obstructed by structures such as walls or floors in a home. In both cases, this is not even close to

the target distance for the SPU to transmit data.

A much longer communication protocol that has been popular since 2015, is the LoRa

protocol. LoRa is a highly specialized, long distance routing protocol for embedded devices.

Compared to other Low Power Wide Area Networks (LPWAN), the battery life of LoRa-

powered devices is three to five times longer [13], proving the power efficiency of the distance

routing protocol. The data transmitted is limited to small payloads, which is adequate for the

Sensor Pod because only lightweight data, such as sensor readings and time stamps, are going to

be transmitted. According to LoRa Alliance, baud rates range from 0.3 kbps to 50 kbps. When

choosing LoRa communication, the frequency band at which it operates must be considered. In

the U.S, the 902-928 MHz band has been allocated for LoRa usage, which requires U.S. specific

modules for operation [14].

 The Narrow Band Internet of Things (NB-IoT) is another long-range communication

protocol that is supported by the Third Generation Partnership Project (3GPP) and GSMA [15].

There are a few key similarities between it and LoRa technology. They are both low power

networks that target long range distances. One key difference is that it uses the licensed

spectrum, which is what the cell networks operate on, as opposed to the unlicensed portion of the

spectrum. Using the 3G and 4G networks requires access to cell towers, which costs money to

use, and the farms where the WSN is located may not have a strong connection to them.

 The final communication protocol that will be analyzed is Zigbee. This is another

communication protocol in addition to LoRa, that operates in the “amateur” 902-928 MHz band

of frequencies. The advantage of using Zigbee is that it can be integrated into existing Zigbee-

powered networks. In contrast, the compatibility of LoRa will depend on the OEM who made the

embedded device. For the application of the Wireless Sensor Network, only official Sensor Pods

that are of the same type will be integrated into the system, therefore there is no extra care that

needs to be taken to ensure compatibility.

 When considering the range of communication that Zigbee can support, it is often

regarded as the premier smart home network communication. Zigbee usually transmits from 10

meters to a maximum of roughly 100 meters, given a perfect line of sight. This is where Zigbee

falls short of the transmission requirements of the Wireless Sensor Network.

 Wi-Fi, LoRa, NB-IoT, and Zigbee are some of the most powerful protocols in the

industry. Comparisons of these technologies are shown in Table 6.

Table 6: Top Wireless Standards for IoT Devices. Retrieved from IoT EE Times.

For its long-distance capabilities, ease of use, and low cost of operation, LoRa will form the

WSN communication backbone.

2.5 EMBEDDED SYSTEMS ANALYSIS AA, RK

At the core of the Wireless Sensor Pod will be an embedded processor. For the application of a

Wireless Sensor Network, a series of low power embedded device is crucial to delivering

extended battery life while buried in soil. A few different microprocessors ranging in power,

communications, and Input/Output specifications will be analyzed.

 First, a common choice for developers is the PIC family of processors. In particular, the

8-bit PIC18F2525 has a few key features that make it suitable for the Wireless Sensor Pod.

According to Microchip’s datasheet, this microcontroller can accept a wide range of input

voltages, from 4.0V down to 2.0V to support low voltage inputs in power-sensitive applications

[16]. The downfall of this processor is that it does not have any Universal Asynchronous

Receiver Transmitter (UART) ports. The Lora Module and at least one of the soil sensors will

require one UART port each.

 In the PIC24F “GB” family of Microchip processors exists the PIC24FJ256GB410. This

processor is desirable because there are 6 total UART ports, which will make it possible to

connect the LoRa Transceiver to the chip. The LoRa transceiver uses 2 UART Ports (1 optional)

to communicate with the microprocessor. Another core feature of this microcontroller is that it

implements Extreme Low-Power (XLP) operation. The availability of multiple sleep modes is

vital to the survival of the Sensor Pod during the growing season. Maximizing the life of the

battery means that it will not need to be serviced. When the Sensor Pod is not acquiring or

transmitting measurements, it will be placed into a deep sleep mode, optimally consuming

around 650 nA when running the Real Time Clock Calendar (RTCC). The RTCC can be run in

deep sleep mode to generate an interrupt, which will feed back into the microcontroller to wake

it up. For all the reasons listed, the PIC24FJ256GB410 Microcontroller will be the brains of

every Sensor Pod.

 The main Microcontroller that is responsible for taking measurements, will also be joined

alongside a LoRa transceiver module. This module will take care of the physical layer of data

communication from the Sensor Pod to the Gateway. A RN2903 transceiver is connected to the

microchip through UART and will be used to support antenna communications. Since LoRa is

band-limited in different countries, this transceiver has been chosen since it operates within the

valid 902 to 928 MHz frequencies.

 As was previously described with the main microcontroller, this embedded chip also

allows for an ultra-low-power consumption mode called “Deep Sleep”. In its idle state when

powered with 3.3 V, it is expected that the transceiver will draw about 2.8 mA. In sleep mode,

current consumption decreases by more than a factor of 2000, only consuming 1.3µA. This

information is only an approximation, and assumes an ambient temperature of about 25 °C. The

transceiver can also assume to be powered from a 3.3V battery, although it can support input

voltages as low as 2.1V. The RN2903 Module can be powered from the main microcontroller of

the Sensor Pod to reduce wiring complexity, making manufacturing and design easier and

cheaper [17].

On-board UART support will be used for communication between the microcontroller

and the transceiver. The RN2903 transmits data with a default baud rate of 57 kbps, which

should be adequate for the low amount of data that will be transmitted. Another connection that

must be made on the transceiver is to the antenna, attached at the RF port.

When choosing embedded components, such as the microcontroller and transceiver

module, the necessary ports, power consumptions, and frequencies has to be analyzed. A

PIC24FJ256GB410 microcontroller will be used for its multiple UART ports and a RN2903 will

be used as a transceiver for the external LoRa antenna because of the deep sleep mode and

compatibility with the necessary frequency range.

3 ENGINEERING REQUIREMENTS AA, LF, RK, AW
The Wireless Sensor System developed should meet strict engineering requirements.

These requirements will set certain specifications, for components regarding power management

and communications to design a marketable product; it will take advantage of current

technologies used in the industry. The following table will guide the design and engineering

process of the Wireless Sensor System.

Table 7: Engineering and Marketing Requirements.

Marketing
Requirements

Engineering
Requirements Justification

3
The Sensor Pod system will
be low power, requiring a
maximum of 5600mA-H.

The Sensor Pod is battery-powered and must last
an entire growing season (3-5 months) since the
pod is in the ground and cannot be recharged mid-
season. The Sensor Pod is also small, and therefore
the battery must be small to be able to fit inside the
pod.

3

The Sensor Pod will be
designed with energy efficient
circuitry; when no sensors are
in use, the pod’s energy
management system will
allow the electronics to enter
sleep mode, automatically
“waking up” to take a reading
3 times per day.

1

The Sensor Pod dimensions
will be no larger than 90 x 90
x 100 mm (excluding antenna)
to allow for easy installation.

Having a Sensor Pod of this size will allow it to be
inserted into a mechanism attached to the planter
so that the pod can be “planted” with the seed,
minimizing installation time.

3, 5

Wireless communications of
the sensor pod must transmit
data a minimum distance of
3.39 km.

Rough Calculation:

Avg. distance between sensors: 1 per 25 acres

Avg. size of large family farm (USDA): 1421 acres

 Convert to 1421 acres to km2: 5.75 km2

Distance (perimeter/side):

 sqrt(5.75): 2.4 km

Hypotenuse (longest distance):

 2.4/cos(45): 3.39 km

Communications will have the ability to be
transmitted long distances to connect with
individual Sensor Pods.

2, 4

The sensor pod will
automatically measure and
transmit the soil moisture
level and temperature three
times a day.

Farmers do not need to know what the moisture of
the soil is at every instant of the day. Typically,
measurements are only taken 2-3 times a day
according to local farmers.

5

The sensor data will be stored
and trended to give a visual
representation of field
analytics.

Displaying and trending field data is a request from
local farmers.

2

The soil sensor will be able to
measure the moisture level of
the soil with a minimum 80%
accuracy.

The average accuracy of a commercial soil
moisture sensor is 94-97%. Since the sensors are
being designed and built, the sensors may be less
than 94% accurate, but must be accurate enough
for the farmers to know when and to what extent to
irrigate their field.

5

Sensor Pods will accurately
communicate wirelessly
through at least 3 inches of
soil.

Communication beneath soil is crucial because the
Sensor Pods are located underground.

4, 5

An application will contain
fault detection to determine if
communication has been lost
with the Sensor Pod and will
alert the farmer.

If the Sensor Pods are not communicating with the
server, farmers will not know when the field needs
to be watered. Therefore, farmers need to know if
communication has been lost.

2, 4, 5

An application will alert the
farmer if excessive soil
conditions occur (i.e.: if the
soil is exceptionally dry) so
immediate action can be
taken.

According to local farmers, irrigation systems are
set to turn on at a certain time and run for a certain
duration. If a field is exceptionally dry, the
irrigation system may need to run for longer to
supply enough water to the field.

Marketing Requirements

1. The Sensor Pods will be compatible with most planters to allow for automated installation of
sensors to field.

2. The sensors will accurately measure moisture in the soil.
3. The sensors will be power efficient to last an entire growing season.
4. A detailed interface will display sensor data collection history and trended data.
5. Wireless communications with the system will enable convenient access anywhere and

anytime.

4 ENGINEERING STANDARDS
The Wireless Sensor System will be built upon common industry standards and

specifications. Certain standards may be used for increased security, physical durability, and a

robust software infrastructure. The six main engineering standard specifications are listed in

Table 8.
Table 8: Engineering Standard Specifications.

 Standard Use

Data Formats SQL Web Server

Programming Languages

C/ C++ Main Microcontroller

TypeScript Web Server Frontend

C# Web Server Backend

Connector Standards UART LoRa Module and
Microcontroller

Communications LoRa Sensor Pods

The above table mentions specific programming languages, such as C and C++ for the main

microcontroller, and LoRa communication for the Sensor Pods. These standards will be followed

for each of the components listed.

4.1 DATA FORMAT AA

A few key data types and data storage conventions will be used to maintain farm data for

the Wireless Sensor System. The Database will be structured in the format depicted in Figure 10,

broken down into three tables: Farms, Sensor Pods, and Sensor Data.

Figure 10: Database Structure.

The Farm tables will contain an entry for each Farm with their Name and a Farm ID. The Farm

ID will be the main connection point to organize the collection of Sensor Pods and Sensor Data

that belong to a specific farm. The Sensor Pods table will contain a Farm ID for farm

assignment, Sensor ID, and a Sensor Name. The Sensor Data table will then hold all data

collected and will contain the Farm ID, Sensor ID, Sensor Type, Sensor Value, and Reading

Date. These values will ensure that each entry can be traceable to a specific Sensor Pod and

Farm.

4.2 PROGRAMMING LANGUAGE AA, RK

Best practices and techniques will be used in the development for the software of the Soil

Sensor Network. Programming languages like C/C++ will be used for the embedded

microcontroller programming. Higher level languages like TypeScript and C# will be used to

develop the user interface.

4.3 COMMUNICATIONS RK

The Wireless Sensor Pod communications will comply with FCC Radio regulatory

Approvals, including under § 15.247, titled “Operation within the bands 902-928 MHz, 2400-

2483.5 MHz, and 5725-5850 MHz”.

4.4 CONNECTOR STANDARDS RK, AW

The RJ45 connector is used to connect the microchip to a PC for programming via a RJ11

cable. In the NEC § 725.144 it states that a cable must not exceed the current rating of its

connector. An RJ11 cable has a lower current rating than an RJ45 connector, and therefore meets

the new 2017 NEC standard.

Both types of connectors were considered for programming the PIC, however due to the

small space requirements of the board and Pod, header pins were placed on the edge of the board

instead. The header pins connected to a PICKit 3 programming device that is specially designed

for Microchip processors.

When using cables for an outdoor environment application, IP ratings must be taken into

consideration. IP67 rating states that the component is water resistant up to 1 meter. Since the

Sensor Pod is only buried 6 inches below the soil, IP67 rating will suffice for this application. P2

https://www.law.cornell.edu/cfr/text/47/15.247
https://www.law.cornell.edu/cfr/text/47/15.247

and P3 connectors will be used for the connections from the main PCB to the supplementary

PCBs and exterior sensors.

5 ACCEPTED TECHNICAL DESIGN
The Wireless Sensor System can be broken down into multiple subsystems comprised of

hardware and software.

5.1 HARDWARE DESIGN

There are four main components to hardware design: block diagrams, schematics,

simulations, and printed circuit boards (PCB). Block diagrams give a basic top-down overview

of the major subsystems. Once the subsystems are broken down into basic components,

schematics were created. Schematics show the circuit design that can be implemented during the

prototype stage. Before prototyping, simulations were created to verify the ideal circuit design

and give a general understanding of how the circuit will operate. PCBs were then designed based

off the schematics and simulations to create a microcircuit that would meet the dimensions stated

in the Engineering Requirements.

5.1.1 Block Diagrams

The following section consists of block diagrams ranging from Level 0 to Level 2 to show

the design process used to create the Soil WSN systems and subsystems.

 Level 0 Block Diagram AA, RK, AW

The wireless sensor network components can be categorized into three different

functional blocks, as seen in Figure 11.

Figure 11: Level 0 Block Diagram of Soil Sensor Network.

The functions of the Sensor Pod, Gateway, and Server are shown in Tables 9-11.

Table 9: Level 0 FR Table: Sensors.

Module Sensor Pod

Designer Andrea Wyder, Luke Farnsworth

Inputs Power
Wake-Up Signal (Microchip)

Soil Properties

Output Acquired Soil Data
Location of Pods

Description Wireless sensors units acquire measurements from soil to transmit to
a gateway.

Table 10: Level 0 FR Table: Gateway/Hub.

Module Gateway/Hub

Designer Aléxis Alves, Andrea Wyder

Inputs Battery Powered
Soil Data
Location of Sensor Pods

Output Soil Data communicated via HTTP

Description The gateway will communicate with Soil Sensors and relay that
information to the database.

Table 11: Level 0 FR Table: Server.

Module Server

Designer Aléxis Alves, Ross Klonowski

Inputs Soil data communicated via HTTP from gateway

Output Soil data communicated via HTTP to software application

Description The server enables remote use of the automated irrigation system, as
well as serves as a database.

 Level 1 Block Diagram AA, RK, AW

The three tiers of Level 0 were broken down further as seen in Figure 12.

Figure 12: Level 1 Block Diagram of Soil Sensor Network.

The first tier, the Sensor Pod, consists of a Lora module, microcontroller, battery, and two soil

property sensors. The functional requirements for the first tier are listed in Tables 12-16.

Table 12: Level 1 FR Table: Battery.

Module Battery

Designer Luke Farnsworth, Andrea Wyder

Inputs None

Output Power

Description The battery will power the microprocessor.

Table 13: Level 1 FR Table: Sensor Pod Microprocessor.

Module Sensor Microcontroller

Designer Aléxis Alves, Ross Klonowski

Inputs Battery Power, Sensor Data, LoRa communication

Output LoRa communication, Sensor Interrupt

Description Collects sensor readings for data transmission.

Table 14: Level 1 FR Table: Sensor Pod Lora Module.

Module Sensor Pod Lora Module

Designer Aléxis Alves, Ross Klonowski

Inputs Battery Power, Data from Microprocessor

Output RF Communication

Description The LoRa module communicates to the gateway.

Table 15: Level 1 FR Table: Sensor 1.

Module Sensor 1

Designer Luke Farnsworth, Andrea Wyder

Inputs Power
Wake-Up Signal (Microchip)
Soil Properties

Output Acquired Soil Data
Location of Pods

Description Sensor 1 will collect data from the soil and then transmit the soil
properties to the microprocessor.

Table 16: Level 1 FR Table: Sensor 2.

Module Sensor 2

Designer Luke Farnsworth, Andrea Wyder

Inputs Power
Wake-Up Signal (Microchip)
Soil Properties

Output Acquired Soil Data
Location of Pods

Description Sensor 2 will collect data from the soil and then transmit the soil
properties to the microprocessor.

The second tier, the gateway/hub, consists of a Lora module and microcontroller, and power

source. These functional requirements for the second tier are listed in Tables 17 and 18.

Table 17: Level 1 FR Table: Gateway Lora Module.

Module Gateway Lora Module

Designer Aléxis Alves, Ross Klonowski

Inputs Power Source

Output New sensor readings from Sensor Pod™

Description Transmits sensor readings to gateway

Table 18: Level 1 FR Table: Gateway Microcontroller.

Module Gateway Microcontroller

Designer Aléxis Alves, Ross Klonowski

Inputs Power, Ethernet, Lora Data communication

Output Data

Description The microcontroller further processes data for upload to server

The third tier, the server, consists of data storage and a software application, which are listed in

Tables 19-20.

Table 19: Level 1 FR Table: Data Storage.

Module Data Storage

Designer Aléxis Alves, Ross Klonowski

Inputs New Sensor Data

Output Requested Sensor Data

Description Persistent storage of Sensor Pod readings.

Table 20: Level 1 FR Table: Software Application.

Module Software Application

Designer Aléxis Alves, Ross Klonowski

Inputs Farm data from Web Server

Output An Interface for the Automated Irrigation System

Description A software application will communicate with a web server for use
on the farm or offsite.

 Level 2 Block Diagram AA, LF, RK, AW

The Sensor Pod was further broken into a second level to analyze designed sensor

components. This can be seen in Figure 13.

Figure 13: Level 2 Block Diagram for Soil Sensor Network.

The LoRa Module can be further broken down into the antenna and transceiver module, as

explained in Tables 21-22.

Table 21: Level 2 FR Table: Antenna.

Module Antenna

Designer Andrea Wyder

Inputs Data Signal

Output Data Signal

Description The Antenna will act as a means for the Sensor Pod and Gateway to
wirelessly send and receive data.

Table 22: Level 2 FR Table: Transceiver Module.

Module Transceiver Module

Designer Aléxis Alves, Ross Klonowski

Inputs Power
UART Data Communication from Main Processor
Received Signal from LoRa Antenna

Output Data Signal

Description The transceiver module will implement the LoRaWAN
Communication protocol at the physical layer to enable long
distance communication between Sensor Pod and Gateway.

Within the battery exists a voltage regulator and Lithium-Ion battery. The voltage regulator

maintains how much voltage is distributed to the components. The functionality of the regulator

is described in Table 23.

Table 23: Level 2 FR Table: Voltage Regulator.

Module Voltage Regulator

Designer Luke Farnsworth, Andrea Wyder

Input Voltage

Output Voltage

Description The regulator will regulate the voltage that is introduced to the
system.

The soil moisture sensor is comprised of a linear integrator, capacitive discharge circuit, and a

555 timer. The voltage discharge is fed through the timer to create a discharge rate, which is then

connected to a linear integrator that converts the discharge rate to a ramp function so it can be

used as an analog input signal to the microcontroller. Further details for these components are

found in Tables 24-26.

Table 24: Level 2 FR Table: Linear Integrator.

Module Linear Integrator

Designer Luke Farnsworth, Andrea Wyder

Input Voltage Discharge Rate

Output Analog Voltage Signal as Ramp Function

Description Since the amplitude of the voltage increases linearly over time, the
linear integrator will convert the discharge rate to a ramp function
and will send the function back as an analog signal.

Table 25: Level 2 FR Table: Capacitive Discharge Circuitry.

Module Capacitive Discharge Circuitry

Designer Luke Farnsworth, Andrea Wyder

Input Voltage

Output Voltage

Description Discharge rate will determine the moisture of the soil.

Table 26: Level 2 FR Table: NE555 Timer.

Module NE555 Timer

Designer Luke Farnsworth, Andrea Wyder

Input Voltage

Output Voltage Discharge Rate

Description An NE555 timer will be used to measure the time it takes for the
capacitor to discharge.

Another tool on the sensor pod is the temperature sensor as seen in Table 27. This will be an off-

the-shelf sensor that meets all necessary power requirements.

Table 27: Level 2 FR Table: Temperature Sensor.

Module Temperature Sensor

Designer Luke Farnsworth

Inputs Voltage
Temperature

Output Analog Voltage Signal

Description The temperature sensor will read the temperature of the soil.

 Level 3 Block Diagram AA, AW

Examining the Level 2 Block Diagram more closely through circuits and simulation, it

was determined that the linear integrator circuit in the Sensor Pod was unnecessary. A third

iteration of the Hardware Block diagram can be seen in Figure 14.

Figure 14: Level 3 Block Diagram for Soil Sensor Network.

No new functional requirement tables are shown for this diagram because they are the same as

the tables for the Level 2 Block Diagram. The only change is that the discharge rate exiting the

555 Timer will go straight into the analog input of the microcontroller rather into a linear circuit.

5.1.2 Schematics

Once the hardware block diagrams were completed, schematics were created for each

subdivision of the level 3 block diagram to gain a better understanding of how to connect all of

the components together.

 Circuit Overview AW

The hardware of the Soil Sensor Network is broken down into eleven different

components, as seen in Figure 15.

Figure 15: EagleCAD Soil Sensor Network Circuit Overview.

The circuit is powered by two 3.7V, 2800 mA-H batteries designed to last the duration of a

growing season. The batteries are connected to a battery PCB that is separate from the main

board, and the connector for the battery can be seen in the JUMPER CONNECTORS block.

Since all components operate at 3.3V rather than 3.7 V, a voltage regulator was implemented to

ensure the voltage supplied to the circuit remained at a constant 3.3V. The voltage regulator was

placed on a separate breakout board as well and can be seen in the VOLTAGE REGULATOR

CIRCUIT block.

From the voltage regulator, the power is supplied to microcontroller, as seen in the

PIC24FJ256GB410 MICROPROCESSOR CIRCUIT block. The microcontroller collects data

from the sensors and transfers the information to the LoRa module, which is seen in the RN2903

LORA TRANCEIVER MODULE CIRCUIT. The two sensors connected to the microcontroller

are a soil moisture sensor and a temperature sensor. The soil moisture sensor has both internal

and external circuitry. The internal circuitry can be seen in the SOIL MOISTURE SENSOR

CIRCUIT block. The external circuitry attaches to the connector at the right side of the block.

The temperature sensor is on an external board, but the connector can be seen in the

TEMPERATURE SENSOR CONNECTOR block. The sensor data, once transferred to the LoRa

transceiver, is transmitted to the gateway through an antenna, also located in the LORA

TRANCEIVER MODULE CIRCUIT block, which in turn is transmitted and stored in the

database by a network server. The blocks pertaining to the RESET SWITCH, DEBUGGING

TEST VIAS, DEBUGGING LED CIRCUIT, and PIC24FJ256GB410 BREAKOUT PINS are

additional circuits integrated for testing and debugging.

 Battery Monitor AW

The battery monitor is beneficial to the Sensor Pod circuit design in order to monitor

voltage, current, and temperature of the battery to give an accurate estimation of when the

battery will fully deplete so that the farmer will know if the pod will need to be retrieved in order

to recharge the battery.

Figure 16: EagleCAD STC3100IST Battery Monitor.

Following the recommended component values on the STC3100IST datasheet, a 200kΩ resistor R2

was connected to the oscillator input pin ROSC to shift the voltage rails from GND and VDD to V+ and

V- with a bias resistance so that the monitoring unit could properly read and interpret the voltage

coming from the battery. A 10mΩ resistor R1 was connected to the gas gauge current sense pin CG

to monitor the current draw of the circuit. A 1uF capacitor C5 was connected to the VCC pin to aid in

noise reduction. A 1kΩ resistor R8 was coupled with a 220uF capacitor C13 and connected to VCC,

VIN, and GND in order to filter the voltage being inputted to the main power pin. The SDL an SDA

pins are read/write pins that are used to control the shift registers of the I2C interface.

 The STC3100IST has 32 RAM registers in order to store information concerning battery life,

discharge rates, charging cycles, etc. so that the farmer knows if the battery needs charged or

replaced. The battery monitor maintains its power-on stage down to 2V. Upon each new battery

connected, the monitor assigns it a new ID in order to keep track of which battery is connected and

what that specific battery’s life cycle has been.

 Voltage Regulator

As stated previously, the voltage regulator chosen was required to have a supply voltage

of around 3.7V and output a voltage of 3.3V. The two main design iterations are discussed in

detail in the following section.

5.1.2.3.1 Voltage Regulator Phase 1 LF, AW

To meet these specifications, the XC9140A331MR-G boost switching regulator was

chosen to be used in the first design iteration.

Figure 17: EagleCAD XC9140A331MR-G Boost Voltage Regulator.

The voltage regulator pin 2 CE is powered by the battery. An LC circuit comprised of L1 and C1

is attached to pin 3 Lx to aid in switching, and a capacitor C2 filters out any unwanted noise

between the output pin Vout and the ground pin GND before returning to ground.

Figure 18: Internal Circuitry for Voltage Regulator XC9140A331MR-G. Image retrieved from
https://www.digikey.com/htmldatasheets/production/1228326/0/0/1/xc9140-series.html.

The importance of using a 4.7 μH inductor for the Lx pin is for inrush current protection.

Lx is the input switch, and when inrush current is introduced to the input switch melting/blow-up

can be caused. The output of the circuit is connected to the microcontroller to provide a 3.3V

input.

5.1.2.3.2 Voltage Regulator Phase 2 AW

Although the boost regulator proved to be successful, after testing and reevaluating the

purpose of the regulator for the project, it was determined that the boost was not the most

optimal solution. The batteries chosen could fully charge up to 4.2V. Since the voltage threshold

on a few of the components was 3.7V, if only a boost regulator were to be used those

components had the potential of being burned out. As the name implies, a boost regulator boosts

the voltage when it falls below a certain threshold (i.e.: 3.3V); it has no effect on the circuit when

the voltage is above that threshold.

The other two types of regulators researched were linear and buck-boost. A linear

regulator is an easy solution – it does not require complex circuitry, extensive reading into a

datasheet, or additional programming. However, one of the main engineering requirements is

low power such that the pods will last an entire growing season. A linear regulator requires the

same amount of current to operate at both higher and lower voltages; the additional power

supplied to the circuit is dissipated as heat. The purpose of a regulator in this project is to keep

the power consumption at a minimum, and although a linear regulator will maintain the correct

voltage being supplied to the circuit, the operation of a linear regulator is extremely inefficient,

consuming more power than what would be consumed if the regulator didn’t exist in the circuit.

Therefore, this is not a viable solution for the project.

The third type of regulator is a buck-boost regulator. A buck-boost regulator sets a target

voltage given the pin configuration. If the supplied voltage is larger than the target voltage, the

regulator steps the voltage down to the target voltage. Similarly, if the supplied voltage is smaller

than the target voltage, the regulator steps the voltage up to the target voltage. This design is

power efficient and optimizes battery life. The design chosen was a STBB1-APUR buck-boost

regulator, as seen in Figure 19.

Figure 19: EagleCAD STBB1-APUR Voltage Regulator.

 The orientation as specified from the datasheet is shown in Figure 20.

Figure 20: Buck-Boost Voltage Regulator STBB1-APUR Pinout. Image retrieved from

https://www.st.com/content/ccc/resource/technical/document/datasheet/20/a6/10/e0/63/85/43/c1/DM00037824.pdf/fi
les/DM00037824.pdf/jcr:content/translations/en.DM00037824.pdf.

The two configuration pins that dictate how the regulator operates are pins 6 and 7. Pin 6 is the

enable pin which communicates to the regulator when to turn off and on. The enable pin was

pulled high (VDD) so that the boost mode would be activated once the regulator reached at least a

1.2V input. Pin 7 is the mode select (sync) which communicates to the regulator how often to

oscillate between frequencies. The mode select pin was originally pulled low so that the

regulator would operate based off the load, however in reality, the regulator got stuck between

the skipping and fixed frequency pulses and did not operate as intended. The circuit was

modified on the PCB and the regulator then performed as expected.

 Microcontroller AA, RK, AW

From the voltage regulator, power is supplied to the microcontroller through the Master

Clear (MCLR) pin. The voltage divider R3 and R4 coupled with capacitor C11 are used for

resetting and programming the microprocessor. The capacitors C6-C10 and C12-C14 are

decoupling capacitors that are used to suppress high frequency noise. The microcontroller is

programmed with a MPLAB In-Circuit Debugger/Programmer via the RJ45 connector coming in

to pins 24 and 25.

Figure 21: EagleCAD PIC24FJ128GB410 Microcontroller.

The microcontroller supplies power to all other components of the circuit. The analog

input pins 41 and 44 read in data from the temperature sensor and soil moisture sensor.

The collected data is then sent to the LoRa module via pins 78 and 83.

 LoRa Module AA, RK, AW

The LoRa module has three main connections, which are for data, power, and signal

transmission, as seen in Figure 22.

Figure 22: EagleCAD RN2903 LoRa Transceiver.

Like the other components, this module is supplied with 3.3V. For data communication

with the microprocess, one UART port is used to transmit serial data. The third connection that is

made is at the RF port of the LoRa transceiver, which connects to a 3”, quarter-wavelength

monopole antenna.

 Soil Moisture Sensor AW

As stated previously, a capacitive soil moisture sensor was designed and constructed. Many

capacitive soil moisture sensor circuits were analyzed to aid in design.

5.1.2.6.1 Moisture Sensor Phase 1 AW

Capacitive soil moisture sensors can be broken down into three basic components: a timer, a

capacitive discharge circuit, and a linear integrator. The schematic for a simple timer-capacitive

discharge circuit can be seen in Figure 23.

Figure 23: EagleCAD Capacitive Soil Moisture Sensor: Iteration I.

The timer is coupled with the discharge circuit to measure discharge rate over time. The

capacitors C2 and C4 are placed in parallel to aid in noise reduction. Two resistors acting as a

voltage divider are placed after the input voltage to ensure the correct power is being inputted to

the timer. The diode D1 is put in place as a current buffer so that no current will come back

through the output of the timer.

The discharge circuit in its simplest form is a capacitor C1 on the order of nano Farads. The

timer clocks how long the capacitor takes to discharge. The discharge rate is then fed into a

linear integrator. There are a few different methods that exists for creating linear integrator

circuits; the most common method is using an op-amp connected to resistors and capacitors.

Since the amplitude of the voltage increases linearly with time, the integrator converts the linear

function to a ramp function which can then be read by the microcontroller as an analog input.

5.1.2.6.2 Moisture Sensor Phase 2 AW

To further the soil moisture sensor design, calculations were completed to determine the

values for each component. The NE555 timer used previously was replaced with a TLC555 timer

in order to keep consistent with the voltage values of the other components of the sensor pod. All

other components (microcontroller, LoRa module, etc.) operate at a minimum of 3.3V. When

examining the datasheet for the NE555 timer, it was found that the timer had a minimum

operating voltage of 5V. Because of this, the NE555 timer was replaced with a TLC555 timer.

The two timers are essentially the same, but the TLC555 timer has the ability to operate at 3.3V.

To determine the resistor values acting as a voltage divider for the timer, the TLC555

datasheet was referenced [20]. The timer is used as a DC oscillator in the application of a

capacitive soil moisture sensor, and as explained in the Electronic Analysis section, is created

using an astable circuit. The astable circuit located in the datasheet can be seen in Figure 24.

Figure 24: TLC555 Timer Datasheet: Astable Circuit. Image retrieved from
https://www.ti.com/lit/ds/symlink/tlc555.pdf?HQS=TI-null-null-digikeymode-df-pf-null-wwe&ts=1603553851426.

 Reading further into the datasheet as to what signal each input requires, the voltage being

supplied to the discharge pin is typically around one-third of the voltage supplied to the input

VCC. The threshold input monitors the voltage across the timing capacitor and determines when

the circuit should oscillate from state one to state two [20]. Since RA and RB act as a voltage

divider, and the input does not have a maximum voltage threshold, Equation 19 was used to find

a ratio of the values of RA and RB.

𝐼𝐼 �1
3
𝑅𝑅𝐴𝐴 + 2

3
𝑅𝑅𝐵𝐵� = 𝑉𝑉𝑐𝑐𝑐𝑐 = 𝐼𝐼𝑅𝑅 → 1

3
𝑅𝑅𝐴𝐴 + 2

3
𝑅𝑅𝐵𝐵 = 𝑅𝑅 (19)

By using Equation 19, it was noted that the ratio of the resistors was more important than the size

of the resistors. For 555 timers, RA and RB are on the order of kilohms. The standard resistors that

satisfy the 1:2 ratio are 150kΩ and 330kΩ resistors. After simulating the circuit, it was found that

this ratio was not accurate for the circuit at hand, and the 330kΩ resistor had to be exchanged for

a 3300kΩ (or 3.3MΩ).

The capacitor C is used to eliminate noise in most cases, but for the soil sensor

application, C is a representation of the capacitive discharge circuit. For the sensor pod

prototype, the timer will measure the discharge rate of a parallel plate capacitor. The capacitance

needed for C is calculated using Equation 20.

𝐶𝐶 = 𝜔𝜔𝜀𝜀
𝑑𝑑

= (5𝜔𝜔0)𝜀𝜀
𝑑𝑑

= �5∗8.854∗10−12�(0.05∗0.02)
0.005

= 8.854 [𝑝𝑝𝑝𝑝] ≈ 10 [𝑝𝑝𝑝𝑝] (20)

It is recommended by the TLC555 timer datasheet that the control voltage input be connected to

at least a 10nF capacitor if it is not being used. For this application, a 100nF capacitor was used

to connect the control input to ground. The second iteration of the soil sensor schematic is

located in Figure 25.

Figure 25: EagleCAD Soil Moisture Sensor: Iteration II.

The linear integrator circuit was omitted on the second iteration of schematics. Although

voltage is one method that can be used to measure discharge rate and be sent through a linear

integrator circuit to be inputted back to the microprocessor, it may not be the most

straightforward method of measuring the capacitor. After taking a closer look at the linear

integration circuit, it was determined that more than an integrating op-amp is needed to convert

the information to a signal that can be read by the microcontroller. This method contains

complex circuitry and is very difficult to implement, so measuring voltage to determine the

discharge rate of the capacitor is not a good method for the Sensor Pod application.

A second method to measure discharge rate is to measure capacitance and relate the

capacitance value to frequency. Since the 555 timer acts as an oscillator, where part of the time

the circuit is in state one and the other part of the time it is in stage two, the output of the signal

is a square wave. Although many of the capacitive soil moisture sensors on the market use the

linear integration method, the frequency method is desirable because the timer sends a square

wave signal that can easily be read by the microcontroller and converted to frequency because as

seen in Equation 21, frequency directly corresponds with time.

𝜋𝜋 = 1/𝑠𝑠 (21)

As stated previously, the discharge capacitance increases linearly with time. Using this logic, the

oscillations of the signal should increase and decrease depending on how quickly the soil sensor

capacitor discharges.

5.1.2.6.3 Moisture Sensor Phase 3 AW

The third design iteration of the soil moisture sensor timing circuit was due to a design

change of the timer itself. For testing purposes in iteration two, a pin through TLC555 timer was

used. Once the design was transferred to a PCB, it was necessary to transfer the pin through

component to a surface mount component to optimize board space; the surface mount component

was a third the size of a pin through component. However, when the component was transferred,

it was found in the datasheet that the circuit design had a slight change, as seen in Figure 26.

Figure 26: Soil Moisture Sensor Internal Circuit: Iteration III.

Once the design was changed to match the configuration on the datasheet, the circuit performed

as expected.

 Temperature Sensor AW

 The MAX6607IUK+T temperature sensor was implemented into the design in addition

to the moisture sensor. The typical application circuit for the sensor package consists of 2 noise

reducing capacitors. The analog output from the temperature sensor will be fed into pin 41 of the

microcontroller in order to be read by the microprocessor. This temperature sensor produces an

output voltage that is proportional to absolute temperature and relates the two via Equation 22.

𝑇𝑇(℃) = 𝑉𝑉𝑜𝑜𝑜𝑜𝑡𝑡−500𝑚𝑚𝑉𝑉
10𝑚𝑚𝑉𝑉/℃

 (22)

This gives an analog output that is able to be read by the microcontroller. The schematic for this

type of circuit design can be seen in Figure 27.

Figure 27: EagleCAD MAX6607IUK+T Temperature Sensor.

 Connectors AW

Connector boards were created as an intermediate step to connect the external sensors to

the main board. The external sensors, temperature and moisture, contained one side of a

magnetic connector. The other side of the magnetic connector was mounted to the connector

board, which would eventually be attached to the inside face of the pod.

Figure 28: EagleCAD Moisture Sensor to Main Connector Board.

Figure 29: EagleCAD Temperature Sensor to Main Connector Boad.

On the back side of the connector board there is a WM4200-ND 2-pin connector for the

soil moisture sensor and a WM4201-ND 3-pin connector for the temperature sensor. These male

connectors are attached to a male connector on the main board through a wire containing a

WM2011-ND (2-pin) or WM2012-ND (3-pin) female connector on either end. Connector boards

were chosen to be used rather than hard-wired connections from the external pod to the main

board because if the wired connection were to break, it would be difficult and time consuming to

unsolder and resolder the connections. In the case of quick disconnects, if a wire or connection

point is faulty, it can easily be exchanged for another connector.

 Debugging Circuitry AA, AW

The debugging circuitry for the main board consists of LEDs, a reset switch, and additional

pinouts for the PIC microcontroller and LoRa module.

Figure 30: EagleCAD Debugging Test Vias and LEDs.

The three LEDs in the circuit are connected to the PIC in order to determine whether or not the

PIC and LoRa module are properly entering and exiting sleep mode. Another debugging method

used on the main PCB were test vias. Test vias are a larger size via located in the board such that

a probe can fit through the hole in the case of testing for circuit continuity or voltage. The first

test via was located after the analog pin on the soil moisture timing circuit and before the trace

arrived at the PIC pin. The second test via was located between the supplied voltage to the timer

circuit and where the voltage was inputted to the timer circuit at VDD. These two test vias were

chosen to give access to test if the subsystem was working properly in the case the signal was not

being transferred to display a correct reading on the Senet server. It is important to monitor this

subsystem as opposed to other subsystems because the majority of hardware subsystems were

placed on a breakout board that connected to the main PCB whereas in this case, the subsystem

was on the PCB and therefore harder to troubleshoot if no test vias existed. This subsystem was

proven to work during the design phase on a PCB, which is the reason the circuit was placed

directly on the main PCB.

Figure 31: EagleCAD Manual Reset Pushbutton.

The Master Clear (MCLR) pin on the PIC24 serves two specific purposes: resetting the

device and for device programming and debugging. Having the capability to reset the device

with a single switch or button allows for faster debugging by reducing the need to manually

remove the power source for reset. The MCLR also must be properly configured for the device

to be programmed and debugged properly. Although this is not needed for production due to the

prototype nature of this project, the MCLR pin had to be configured for testing and development.

Figure 32: PIC24FJ256GB410 Microcontroller and RN2903 LoRa Module Breakout Pins.

 To create a more modular PCB, breakout pins were connected to GPIO pins on both the

PIC24FJ256GB410 microcontroller and RN2903 LoRa module. Pins RB0 to RB8 were used for

testing and debugging the program. The remaining pins were reserved for testing and developing

additional features.

5.1.3 Simulations AW

Before building a prototype, it is important to verify the designed circuit design will

function as theorized before physically implementing it. The most efficient way to do this is

through simulation. Both the soil moisture sensor and temperature sensor were designed in

LTSpice and simulated. It was not possible for the voltage regulator to be simulated due to the

limited amount of information the manufacturer released on the device.

 Soil Moisture Sensor AW

The same circuit as in Figure 20 was constructed in LTSpice and a simulation was run to

verify the calculations were correct and that the circuit would work properly once built. The

circuit can be seen in Figure 24.

Figure 33: LTSpice Capacitive Soil Sensor Circuit.

Although a TLC555 timer is used in both the Eagle CAD schematic and implemented into the

actual circuit, an NE555 timer was used for simulation because it was the only timer in the

LTSpice directory. There are very few differences between the TLC555 an NE555 timer; the

main difference is that the NE555 timer controls the ‘on’ state by altering frequency whereas the

TLC555 timer controls the ‘on’ state by altering duty cycle. The timer for a soil sensor is used as

an oscillator, as mentioned previously, and is only concerned with the change in time (ratios of

time) given a capacitive discharge. For this reason, the way the timer measures time is irrelevant

for the simulation.

 To simulate the capacitive discharge rate of the soil moisture sensor, C1 was set to 10 pF

for the first simulation, and then set to 20 pF for the second simulation. As seen in Equation 20,

the capacitance value directly corresponds to the permittivity of the soil. Soil with a greater

amount of moisture has a higher permittivity. The permittivity causes the capacitance to be

higher or lower. Since it is difficult to simulate the effect of the permittivity of moisture on the

soil, the capacitor value was varied, which essentially ‘varied’ the permittivity. The results from

the first simulation with C1 equal to 10 pF is seen in Figure 25.

Figure 34: LTSpice: Soil Moisture Sensor Simulation C1=10pF.

The capacitor C1 discharged in approximately 40 µs, resulting in a 25 kHz frequency.

 The soil moisture sensor was then set to 20 pF and the simulation was re-run. The results

from the second simulation can be seen in Figure 26.

Figure 35: LTSpice: Soil Moisture Sensor Simulation C1=20pF.

As expected, the discharge rate doubled to 80 pF, resulting in a 12.5 kHz frequency. It is

important to maintain a frequency in the kHz range to stay within the limit of operation for the

TLC555 timer (2 MHz) while also optimizing the sampling rate.

 Temperature Sensor LF

The circuit shown in Figure 27 was used to simulate a similar temperature sensor to the

MAX6607. The temperature sensor being simulated is the LM35, which has a similar port set up

and similar outputs. While the LM35 has 3 ports and the MAX6607 has 4 ports, the MAX6607

has a pseudo-3 port network because two of the ports are grounded together.

The LM35 also has a minor change with its transfer function. The MAX6607 has a

500mV offset at the 0°C mark in order to allow measurement of negative temperatures, whereas

the LM35 does not have the offset at the expense of accuracy at higher temperatures. With this in

mind, both give similar linear responses, making the LM35 a viable substitute for the MAX6607

in the simulation.

Figure 36:LTSpice: Temperature Sensor Simulation Circuit.

As seen in Figure 28, as temperature increases, the output voltage increases at a linear

rate.

Figure 37: Temperature Sensor Simulation Diagram.

Referring back to Equation 22, the simulation graph verifies that the temperature sensor is

responding as intended. Since the simulation runs properly for the LM35, it can be assumed it

will also run properly for the MAX6607 temperature sensor.

5.1.4 PCB Designs AA, AW

Each of the schematics were taken and configured into a PCB. The voltage regulator and

battery monitoring boards were placed onto breakout boards to aid in troubleshooting. The soil

moisture sensor and temperature sensor were placed on separate boards as well since they are

external to the device. All individual boards are connected to the main board.

 Main Board PCB

The three main components on the main board are the PIC microprocessor, LoRa

transceiver module, monopole antenna, and internal soil moisture sensor components. As seen in

Figure 38, the microprocessor is located at the top center, the LoRa module at the bottom right,

the antenna in the center of the board, and the internal soil moisture sensor components at the

bottom center.

Figure 38: Main PCB Design.

The antenna was placed at the center of the board so that if it was necessary that it extruded

through the top of the pod, it would be aligned with the tip of the pyramid and maintain

symmetry. All other components were fitted around it. The designs of the voltage regulator and

battery monitor, at the point of ordering the PCBs, had not been tested and proven to work; they

were placed on separate breakout boards so that they could be switched in and out for testing

until a working prototype was created. The soil moisture sensor circuit was proven to work the

previous semester, so the circuit was directly placed onto the board.

Figure 39: Main PCB.

Many design enhancements were included to help with testing and troubleshooting the

circuit. At the top left of the board, a reset button with three LEDs next to it can be seen. The

reset button enables the Master Clear (MCLR) pin on the PIC to be manually reset without

resetting the code. The three LEDs are attached to PIC in order to verify the microcontroller is

entering and exiting sleep mode properly. In addition to this, spare PIC pins are connected to

breakouts across the top and left side of the board in case additional components need tested that

were not part of the original design. The breakout pins will be removed once the prototype is

complete. Test point vias are next to each individual circuit (microprocessor, transceiver,

moisture sensor) that allow the power, ground, and signal traces going to each component to be

probed for troubleshooting purposes.

 Power Management System

The power management system is broken down into three main sections. The first system

is the buck-boost voltage regulator. As stated previously, a buck-boost regulator was used in

order to maintain 3.3V despite whether the battery is charged above or below the desired voltage.

The PCB layout is shown in Figures 40 and 41 .

Figure 40: Buck-Boost Voltage Regulator PCB Design.

Figure 41: STBB1-APUR Voltage Regulator PCB.

The headers on either side are not only utilized for power and signal connections, but also for

stabilizing the board onto the main board.

 The second section of the system is the battery monitoring PCB.

Figure 42: Battery Monitoring PCB Design.

Figure 43: Battery Monitoring PCB.

The battery monitor is connected to the battery before the voltage regulator and collects

data such as voltage, current, and battery depletion. The microcontroller is capable of monitoring

system voltage, but this is after the voltage has gone through the regulator. Since a buck-boost

regulator is used, this means the regulator will stabilize the supplied voltage to 3.3V until the

battery is almost fully depleted. A monitoring circuit is useful because it will monitor the actual

battery voltage, not the regulated voltage. The monitor can then send a signal to the

microcontroller which can then transmit a signal to alert the farmer if the battery is low and the

Sensor Pod is in need of retrieval.

The third system involved in power management is the battery pack PCB.

Figure 44: Battery Pack PCB Design.

Figure 45: Battery Pack PCB.

As will be discussed in later sections, all designs created must keep the end user in mind. When a

farmer needs to recharge the Sensor Pod batteries, it is most convenient if they can both be

recharged at once. The battery pack PCB connects two batteries in parallel on the under-side of

the board to a circuit that has a third connector on the top-side of the board. The top connector is

connected to a wire going to the main PCB; when the batteries need recharged, the top connector

can be disconnected from the main PCB and connected to the battery charger. Charging the pack

from the top connector will allow both batteries to charge at the same time.

 External Sensors

The external sensors on the pod are a soil moisture and temperature sensor. The soil

moisture sensor, as depicted in Figure 46, is a multi-level parallel plate capacitor with power

going to one lead and ground going to the other. The middle pogo pin on the magnetic connector

is unused. The other half of the circuitry containing the timer is on the Main PCB, internal to the

Sensor Pod.

Figure 46: Soil Moisture Sensor PCB.

The temperature sensor circuit is completely external. One capacitor is connected to VCC and the

other is connected to the output. Both capacitors are used for noise reduction.

Figure 47: Temperature Sensor PCB.

For future design implementation, it should be noted that each eternal sensor should have a clip

quick disconnect clip on the top of it so that the sensor is more firmly secured to the pod.

 Connectors

Both external sensors have an intermediary connector PCB that is mounted to the inside

of the Sensor Pod walls. An example of the intermediary connector for the temperature sensor is

shown in Figures 48 and 49. The only difference between the temperature sensor intermediary

connector and moisture sensor intermediary connector is that the temperature sensor PCB has a

3-pin male connector whereas the moisture sensor PCB has only a 2-pin male connector.

Figure 48: External Sensor to Main Board PCB Design.

Figure 49: External Sensor to Main Board PCBs.

The black magnetic connector is secured to the inside wall of the pod and connects to the

magnetic connector of the external sensor. The white connector attaches to a wire that is routed

to the main PCB.

5.2 SOFTWARE DESIGN

The two main software components of the Wireless Soil Sensor Network are the web

application and the embedded software. The web application will act as an interface for the user

to visualize and maintain their farm data. The embedded software will be the main control

program for Sensor Pod operation. The design of each component has a different focus, such as a

power-efficient embedded software and a user- and mobile-friendly web application. These

ideas must be kept in mind to meet Engineering Requirements.

5.2.1 Embedded Firmware AA, RK

The flowchart in Figure 50 depicts the general series of events that the embedded

components of the Sensor Pod will adhere to. Note that the creation of the flowchart begins at

Level 1 because Level 0 is a hardware representation of the embedded system, which is

encompassed into the Level 0 Block Diagram.

Figure 50: Level 1 Embedded Flowchart.

The flow of control for the embedded system follows a strict set of events. First, the system

initializes, which will configure the system for data acquisition and transmission. To save power,

it will enter a sleep mode and continuously check for a timer expiration. If the timer has expired,

the system will reset the timer, “wake up”, and trigger the sensors to take readings. The sensor

readings can then be transmitted to the gateway for data storage. The system will then “go to

sleep” and wait until the timer expires and the process will begin again.

 Trigger Sensor Reading AA, RK

Triggering a sensor reading will follow four steps to acquire soil data. When a timer has

expired, the sensors equipped on the Sensor Pod can be activated and take a measurement. The

microcontroller will then process the acquired data, and package it to be sent over LoRaWAN

protocol to the Gateway.

Figure 51: Level 2 Embedded Flowchart: Trigger Sensor Readings.

 Gateway/Hub Data Communication AA, RK

To efficiently manage power and transmit data to the gateway, a strict set of steps should

be followed. When a reading is triggered, the reading will be processed and put in a form that the

main microcontroller can send to the LoRa transceiver. Once the transceiver is “woken-up”, it

will receive the payload, and transmit data to the Gateway. When data transmission is complete,

the LoRa module can go back into its sleep mode and wait for the process to be completed next

cycle.

Figure 52: Level 2 Embedded Flowchart: Send Data to Gateway/Hub.

5.2.2 Software Block Diagrams AA

The following software block diagrams depict the overall architecture at each design level.

 Level 1 Block Diagram AA, RK, AW

Further expanding the Level 3 Block Diagram seen in Figure 52, the data storage, server,

and gateway were broken down into additional components.

Figure 53: Level 1 Software Block Diagram.

Sensor Pod data is sent first to the Gateway, and then encoded to be sent to the Senet server.

Table 28: Level 1 Software Block Diagram: FR Table: Gateway.

Module Gateway

Designer Ross Klonowski

Inputs LoRa radio messages

Output Encoded data

Description Gateway collects data over LoRa frequencies and forwards data to
the Senet server

Table 29: Level 1 Software Block Diagram: FR Table: Senet Server.

Module Senet Server

Designer Ross Klonowski

Inputs Encoded data from the Gateway

Output Decoded data sent to AWS API/Lambda via HTTP

Description A hub for sensor data to be stored and forwarded for use in the
application

Data Store is broken down into the database and AWS/API/Lambda blocks.

Table 30: Level 1 Software Block Diagram: FR Table: AWS API/Lambda.

Module AWS API/Lambda

Designer Aléxis Alves

Inputs Raw Senet data

Output Formatted data sent to database via HTTP

Description Interface between database and Senet server; models data to match
format of database

Table 31: Level 1 Software Block Diagram: FR Table: Database.

Module Database

Designer Aléxis Alves

Inputs Formatted data from AWS API

Output Formatted data sent to application backend via HTTP

Description

The Server is comprised of a Frontend and Backend of the application, as seen in Tables 32-33.

Table 32: Level 1 Block Diagram: FR Table: Backend of the Application.

Module Backend of the Application

Designer Aléxis Alves

Inputs Formatted data sent from database via HTTP

Output API call sent to the frontend of the application

Description Handles all operations regarding database interface modeling and
logic calls.

Table 33: Level 1 Block Diagram: FR Table: Frontend of the Application:

Module Frontend of the Application

Designer Aléxis Alves

Inputs API call sent from the backend of the application

Output Data displayed to user

Description User interface for Wireless Sensor System interaction; handles
displaying data

 Level 2 Software Block Diagram

The software application frontend and backend of the software block diagram was further

broken, as seen in Figure 54.

Figure 54: Level 2 Software Block Diagram.

The backend of the application was further broken down into Logic and Model blocks, as seen in

Tables 34-35.

Table 34: Level 1 Software Block Diagram: FR Table: Logic.

Module Logic

Designer Aléxis Alves

Inputs API Calls

Output Results

Description This handles all logic operation in the backend such as acquiring
data, calculation, and validation.

Table 35: Level 1 Software Block Diagram: FR Table: Model.

Module Model

Designer Aléxis Alves

Inputs Results

Output Modeled Results

Description The modeling operation is used to format any results from requested
from the logic operation.

The frontend of the application was further broken down into Controller and View, as seen in

Tables 36-37.

Table 36: Level 2 Software Block Diagram: FR Table: Controller.

Module Controller

Designer Aléxis Alves

Inputs User interaction

Output API call

Description The controller operation reacts to user interaction and makes the
respective API to the backend.

Table 37: Level 2 Software Block Diagram: FR Table: View.

Module View

Designer Aléxis Alves

Inputs Modeled Result

Output Application display

Description This View operation is used to render the display page with modeled
results from the backend.

5.2.3 LoRa Communication Setup RK

There is a slew of commands that must be sent to the transceiver to enable the transceiver

for communication to the Gateway. Commands follow a general format consisting of about four

fields. The first field can be “mac” for commands regarding the mac protocol or “radio” for

commands regarding the physical layer of communication. The next field is either a “set” or

“get” for if a setting should be read from or written to. The last two commands will be the field

desired, and then the parameter, if the command is to change a setting. For example, to set the

device’s address, the following command can be sent: “mac set devaddr 123456789” In this

case, the mac layer’s device address will be set to the included parameter. This general format

should be used for the other commands that are needed. To configure the RN2903 to work with

the application in Senet, the Network Access Key, Application EUI, and Application Key must

also be set.

Another important command that must be sent is to turn on Cyclic Redundancy Check

(CRC) which is used for error correction when the packet is sent to the destination. To further

improve communication reliably, the Adaptive Data Rate (ADR) will be turned on which adds

information to the messages about the device, which then allows the destination to optimize the

data rate of transmission. The last and most important step is to join the network. Using the

preconfigured keys and parameters, the “mac join abp” will make the mote attempt to join the

network. Activation By Personalization (ABP) is one of two methods that allow a device to be

added to a network. This means that information is exchanged between the node and network

server before addition to the network.

5.2.4 Data Flow AA

The flowchart in Figure 55 shows the flow of data from the Gateway to the web

application.

Figure 55: Data Flow Flowchart.

Tables 38-41 give a brief overview that explains how the data is moved from each component

from the gateway to the web application.

Table 38: Data Flow: FR Table: Gateway.

Module Gateway

Designer Ross Klonowski

Input LoRaWAN Communication

Output HTTP Call

Description The gateway receives information form the sensor pods via
LoRaWAN communication. It then forwards the information via
HTTP calls to the Senet server.

Table 39: Data Flow: FR Table: Senet Server.

Module Senet Server

Designer Ross Klonowski

Input HTTP Call

Output REST API Call

Description The Senet Server receives information from the gateway by mean of
HTTP calls. Once the information is received the server decodes the
information and stores it locally. The server than utilizes a link
forwarded to offload information to the database by REST API calls
to an API endpoint.

Table 40: Data Flow: FR Table: Amazon Web Server (AWS).

Module Amazon Web Services (AWS) API / Lambda

Designer Aléxis Alves

Input REST API Call

Output Database Interface

Description The AWS API is used as an endpoint for REST API calls. Once the
REST call is received it is then routed by a Lambda function. The
lambda function which is written in node.js parses the call for
information and converts the payload from HEX to String before and
sends it to the database using the database interface.

Table 41: Data Flow: FR Table: Web Application.

Module Web Application

Designer Aléxis Alves

Input Database Interface

Output Database Interface

Description Once the data is in the database the web application can interface
with it using the database interface. The web application backend
can then use the database interface to change, get, delete, and create
data.

5.2.5 Gateway / Senet Server RK

The Gateway is a key component that collects and forwards all the data that is transmitted

from the Sensor Pods. For the star topology network that has been created for this Wireless

Sensor System, the Gateway chosen should reliably capture data from all Sensor Pods, even if

they are communicating at the same time. For this application, a Gateway from Laird has been

chosen which is shown in Figure 56.

Figure 56: RG191 Senet Laird Gateway.

The Gateway can listen to the United States LoRa frequencies, which are designated as the 902 –

928 MHz band. The Gateway also conveniently features wired LAN and Wireless connectivity

for data to be forwarded to the internet/ IoT Hub.

When transmitted data is received by the Gateway, it is then forwarded to a network

server. For this application, the Senet network server was chosen to be used. Senet is an IoT Hub

where the devices, such as Sensor Pods and Gateway, can be registered. The Gateway is

registered with an external omnidirectional antenna, proper location, and network connection,

which is wired-ethernet. Next, the Sensor Pods that will communicate with the Gateway should

be registered. In the registration process, a device ID should be inputted into Senet that can be

obtained from the device. Senet also generates a couple different fields including application

EUI, Network Access Key, and Application Session Key which should be inputted on the Sensor

Pod. Once all devices are registered properly, Senet can begin receiving messages from the

Gateway and the Pods in which it is connected.

Senet stores the data and provides access to the metadata associated with it, such as the

timestamp, any acknowledgements, packet length, sequence number, and much more. This

information can be seen in Table 42.

Table 42: Senet Uplink Data.

With the added metadata, the Senet provides information to troubleshoot issues with the devices,

such as if communication strength was unusually low. There are many graphs that display useful

information about past received data, such as if signal strength is decreasing or if packets have

stopped going through which could indicate a node failure. The graphs also show Ethernet errors

and Gateway Utilization. One of the most important features of the Senet server is its ability to

store and forward the data. Details regarding this will be discussed in § 5.2.6. All in all, the Senet

Hub is a tool to view and debug the status of the system’s communications.

5.2.6 API & Lambda Function AA

The Sensor Pod data that is received and decoded by the Senet server is stored on the

Senet platform. This platform/database has a limited storage size and provides a limited

application interface for detailed retrieval of data. This is not an ideal method since the data

stored must be cleansed so that applications can interpret it and make trends. The solution to this

issue is to forward the data from the Senet server to an external database that allows for more

control and long-term storage of data. To accomplish this solution, a link forwarder on the Senet

server is used to forward data. The link forwarder uses a RESTful API to generate a POST call to

forward the data to an API endpoint.

The API endpoint interface will be used to route RESTful calls to a Lambda function.

The Lambda function is a serverless program written in node.js. It is used here to modify the data

to match the database models before sending it to the database.

The API endpoint will be implemented with AWS API. As shown in Figure 36, once the

API call reaches the AWS API endpoint, it is validated for authorization and request structure

issues. If the call does not contain a valid authorization key, the API will terminate and return a

403 code. If there is an issue with the call structure, a 4xx/5xx code is returned. If both criteria

are met the call is finally routed to the Lambda Function.

Figure 57: API & Lambda Function Flowchart.

Once the Lambda Function receives the API call it will process the call through a function as

described in the pseudo code in Figure 58.

Figure 58: Lambda Function Pseudo Code.

The function first parses the API call body, converting it to match the database item format

model. The actual data portion is then converted from data type HEX to a String. Once the

information is converted, a DynamoDB API call is made to place the item into the database

table. If no issue occurs with this process, the data is successfully placed in the database and the

Lambda Function will notify the API Endpoint to return a success code of 200 back to Senet.

Otherwise, the error message along with an error code of 400 is returned.

5.2.7 Database AA

The database that is being used is AWS DynamoDB, a type of database based upon

NoSQL. This type of structure is more flexible and scalable to work with since its structure can

be modified. DynamoDB uses database tables to store data, which are ultimately held in database

Items. These Items are composed of a Partition key and an optional Sort key which will be

discussed when further explaining the tables in the database. For the Soil Sensor database, three

tables will be used for managing data: Farm Table, Sensor Data Table, and Sensor Pod Table.

 Farm Table AA

The Farm Table is used to sperate information for different farms. The information

contained in the Farm Table will be a Sensor Pod list as well as the sensor data from the pods.

The Farm Table baseline, as shown in Figure 38, will require items to be composed of a Partition

Key (Farm ID) and a Sort Key (Farm Name).

Figure 59: Farm Table Baseline.

The Farm ID will be used to maintain a unique ID for each farm, while the Farm Name will be

used for sorting against a user set Name for their Farm. The Farm ID will also be used as a

parent ID for other tables, which will allow for querying of data from other tables that are

connected to specific Farm.

 Sensor Data Table AA

The Sensor Data Table holds data from all pods regardless of the farm in which it

belongs. The baseline for this table, as shown in Figure 60, used Partition Key DevEUI to denote

which Sensor Pod the data originated from along with a Sort Key Read Time to allow sorting to

be used for data querying.

Figure 60: Sensor Data Table Baseline.

The table has additional fields that hold the data and the data type. The DevEUI will be used as

child link information in the Sensor Pods Table, which will specify which farm the pod and the

data belong to for data modeling and populating the web application display.

 Sensor Pod Table AA

The Sensor Pod Table is used as a list of all Sensor Pods, holding information regarding

Sensor Pod information as well as which Farm the pod is a part of. The baseline for the Sensor

Pod Table is shown in Figure 61.

Figure 61: Sensor Pod Table.

Similar to the Sensor Data Table, the Partition Key is Dev Eui while the Sort Key is Farm ID.

Additionally, there is an optional Sensor Pod Name for user-specified naming. The Dev EUI is

used for identification of the Pod but also acts as a Parent link for Sensor Data. The Farm ID is

used as Child link to the Farm Table for designating which farm the Pod belongs. The Sensor

Pod list acts as a way to couple the Farm Table and Sensor Data Table as well as keeps a track of

all Pods that are active.

 Interfacing AA

The DynamoDB Database uses a handful of interfaces to access the information stored in

it. For a DynamoDB application, two main methods can be utilized for interfacing with the

database: AWS.DynamoDB.DocumentClient and Amazon.DynamoDBv2. These two methods

use the same underlying DynamoDB API with variations dependent on programming language.

As explained in the Data Flow section, the database interface is accessed from both AWS API /

Lambda and the Web Application. When accessing from the AWS API / Lambda,

AWS.DynamoDB.documentClient() is used for interfacing. Since AWS API / Lambda and

DynamoDB are both integrated into AWS services, no authentication is needed to access the

database. The AWS.DynamoDB.DocumentedClient() is a Class in node.js that uses the

DocumentedClient DynamoDB API to make calls to the database for reading and writing data.

When Accessing the database from the web application backend using

Amazon.DynamoDBv2, authentication is needed. The web application backend settings hold a

set of AWS Security Keys that are needed for authentication when accessing the database. The

Amazon.DynamoDBv2 is a DynamoDB software development kit that allows for .NET Core to

make DynamoDB API calls to the database for reading and writing data. Both these methods are

used to access the database information in a secure and efficient way.

5.2.8 Web Application AA

The web application is designed based on a Model, View, Controller (MVC) design. The

MVC design, as the name suggests, breaks all web application operation into three groups:

model, view, and controller. The model operation is all logic involving modeling data, view is all

operations involving displaying information to the user, and controller is all operations involving

user interaction with the web application. The standard flow of this design separates the web

application into a frontend and backend. The user interacts with the frontend controller, which

then makes a request to the backend logic. The backend receives the request and handles all logic

with modeling and fulfilling the request before returning it to the frontend view. The frontend

view will then display the requested information.

The backend application runs on a dedicated server and handles all model and other

operation logic. In the case of the Soil Moisture Sensor Application, this will be all logic

involved with connecting to the database and modeling the information from the database. The

purpose of offloading this kind of logic to the backend is to reduce the amount of computation

that the browser end (frontend) needs to perform. This is favorable due to the limited number of

computational resources on the browser; the server end (backend) is more suitable for these

computations due to the greater number of resources available.

The application frontend runs on the user’s browser and handles all webpage display

rendering (view) and all user requests (controller) to the backend logic. By separating

responsibilities, the user experience will be more fluid and responsive. It also allows for a layer

of security to be implemented by placing restrictions on request from the frontend by means of

security tokens.

The application frontend and backend need a method to communicate between each other

for transfer of request and replies. This is accomplished by implementing an API on the backend

that will route, process, and model all requests from the frontend. This is an asynchronous

method, where the request makes a promise API call to the backend. The frontend will then wait

until the request is fulfilled before utilizing the data from the request; while waiting for this

promise, the frontend will process and compute other information that is not dependent upon the

requested data.

 Frontend Web Application AA

To give users the ability to use and access the Wireless Sensor System, an easy-to-use

interface will be created. The general flow of user interaction is shown in Figure 62. When the

user starts the application, they will be taken to homepage. The homepage will greet the user and

request the desired Farm ID. Once a specific ID is given, the user will be taken to the desired

Farm Overview page. There will also be a side menu to allow the user to navigate to other

sections of the application at any time once a farm has been selected. The application will be

spilt into three main pages consisting of a Homepage, Farm Overview, and Sensor Pod List. The

pages are further explained in § 5.2.8.1.1 Web Pages.

Figure 62: Level 3 Web Application View and Controller Flowchart.

5.2.8.1.1 Web Pages (View)

The three main pages of the web application – Homepage, Farm Overview, and Sensor

Pod List – each serve a specific purpose. Each page makes an API call to the backend for

required data needed to display prior to rendering the page.

The Homepage is used as an entry point for the application; it greets the user and

determines the farm in which the user wishes to view and interact. The page makes a call to the

backend to validate Farm ID before calling for the page to route to the Farm Overview page of

the desired valid Farm ID. The Farm Overview page is used a means to display all important

information from the Soil Sensor System belonging to a desired Farm. The page also displays all

data trending for the farm as well a small list of all Sensor Nodes associated with the Farm. The

Sensor Pod List page is used as detailed list of all Sensor Pods associated with the current farm.

This list will provide all information available related to Sensor Pod. All data displayed on these

pages is requested from the backend prior to the page rendering.

5.2.8.1.2 Interaction (Controller)

As stated earlier the frontend application only handles view and controller operations. In

the figure all transition are handles by API calls to the backend based on the user’s interaction.

There are two main types of API calls to the backend: data call and logic call. The data call

requests data from the database and will expect a data returned in a model that fits the current

page. Logic call requests logic operation such as validation, calculation, and other logic

operation too heavy for the frontend to handle, the request return results of the logic operation. A

good example of a logic call to the backend is a request to navigate to another page as shown in

Figure 63 and 64.

Figure 63: Frontend Navigation Calls.

Figure 64: Frontend Routing Table.

 Backend Web Application AA

The backend application, as explained earlier, is designed to handle all logic including

gathering and modeling data from the database, then returning the data to the frontend to be

displayed. The following example will demonstrate how these calls are handled for data call and

modeling. Most logic and data calls are written in the same formats; a sample of the code will be

shown below, and the full code can be referenced in the Appendix.

When the backend receives a data API call, it is routed to the proper API Controller. An

example of the API Controller for DynamoDB is shown in Figure 65. The API call contains the

information for the operation to which the call refers. In the example, the API call is as such:

(api/DynamoDB/getitems(parameter)).

Figure 65: Backend API Controller Pseudo Code.

As shown, the API will make a call to the DynamoDB database to collect all data related to the

request. This data is then modeled based on the type of information that is being requested. An

example for this case is shown in Figure 66. The data returned is mapped to a model that is

appropriate for the frontend application.

Figure 66: Backend Modeling Pseudo Code.

The information that is returned to the front is the data that was requested which is also modeled

to meet the frontend view format. Logic call are similar to this without the need for modeling of

the information; instead, the request result is returned.

5.3 PROTOTYPES: DESIGN VERIFICATION

To show the final design has the ability to be implemented next semester, prototypes were

designed and implement to test proof of concept.

5.3.1 Voltage Regulator AA, LF, AW

The circuit from Figure 17 was used to construct a test circuit for the XC9140A331MR-G

voltage regulator. The circuit consisted of two capacitors and one inductor from UA stock with

ratings of 10 µC, 4.7 µC, and 4.7 µH, as seen in Figure 67. The circuit was first powered using a

voltage source in order to show that the system would regulate any voltage to approximately

3.3V. It was quickly found that this would not work due to the fact that voltage sources do not

supply a high enough current to trigger the switching function of the regulator.

The circuit was then powered using a battery. The battery voltage was measured to be

3.9V as the input for the circuit. The output voltage was approximately 3.2V, showing the

voltage regulator working as intended. This was not quite the 3.3V expected, but it is an

acceptable result. There are a few possible reasons why the result was not what was expected.

The first is the breadboard itself. There is a possibility that some of the wires shorted to other

rails, causing voltages to change and be inaccurate. The second is the result of a no-load circuit.

The output voltage was measured without respect to a load of any kind. This could change the

results of the voltage that is being outputted. The final is a connection issue with the

XC9140A331MR-G and the adapter. A faulty connection to the board or an inconsistent

connection could cause the output to not be what was desired.

Figure 67: XC9140A331MR-G Voltage Regulator Prototype Circuit.

After additional research it was found that the XC9140A331MR-G was not the most

optimal regulator to be used, as it only had an 80-90% efficiency, being the most likely reason

the voltage stabilized at 3.2V rather than 3.3V. A STBB1-APUR buck-boost regulator was

breadboarded, which boosted the lower-end voltage up to 3.3V and bucked the upper-end

voltage down to 3.3V. This type of regulator has a 97% efficiency.

Figure 68: STBB1-APUR Buck-Boost Voltage Regulator Prototype Circuit.

The STBB1-APUR regulator was never fully tested before the implementation stage due

to time constraints, but when implemented onto a PCB, the circuit performed as expected.

Figure 69: Data Collection from STBB1-APUR Buck-Boost Voltage Regulator.

Data from the PCB regulator was trended and plotted. The regulator operated in passthrough

mode until reaching 2.7V. It then transferred to boost mode, increasing the voltage to 3.3V. Once

exceeding 3.3V, the regulator entered buck mode in which it decreased the voltage to 3.3V.

Another way to verify the regulator was operating as expected is to look at the value when the

supply voltage was at 3.3V. For the previous regulator, the regulated value when 3.3V was

supplied fluctuated quite a bit due to only being 80-90% accurate. In the case of the buck-boost

regulator, the voltage remained constant at a 3.3V supplied voltage.

5.3.2 Soil Moisture Sensor AW

A parallel plate capacitive soil moisture sensor was constructed using two copper pennies

with a plastic dielectric. The capacitor was placed in two types of soil and measured time

constants when water was added incrementally. The data points were plotted to determine if a

direct relationship between frequency and capacitance existed. This capacitor was designed to

test proof-of-concept for the PCB capacitor that will be implemented next semester.

 Setup and Procedure

The circuit from Figure 25 was constructed using a breadboard, Diligent Analog 2

Discovery, and UA stock components. Two types of soil were collected and tested. The first was

the Earth & Wood Super Soil, which has a similar dielectric constant to fertilized soil in a field.

The second was a more porous (sandy) soil, chosen to be compared to the fertilized soil to

observe the difference in rate of saturation. Both soil types were baked at 150ºC for two hours to

extract the moisture from the soil. Once cooled, 3 oz of soil from each type was placed into 5oz

containers to be tested. The capacitive soil moisture sensor setup can be seen in Figure 70.

Figure 70: Capacitive Soil Moisture Sensor Prototype Setup.

Capacitive soil moisture sensors must be calibrated to the environment. To verify the range of

the sensor, values were taken for when the sensor was in air (minimal moisture) and when the

sensor was in water (maximum moisture). The sensor was then placed in each container, as seen

in Figure 71, and collected readings of the soil when water was added incrementally by 1 Tbsp

from 0 Tbsp to 5 Tbsp.

Figure 71: Moisture Sensor in Soil.

 Results

The upper and lower calibration limits were first found to be used as control values by

measuring the time it took to discharge in air, Figure 30, and the time it took to discharge in

water, Figure 72. The time it takes a capacitor to discharge is known as the time constant.

Figure 72: Soil Moisture Sensor Control Lower Limit: Air.

The smallest time constant possible was found to be 64.82 µs, equivalent to a 15.43 kHz

frequency.

Figure 73: Capacitive Soil Moisture Sensor Control Upper Limit: Water.

The largest time constant possible was found to be 124.7 µs, equivalent to a 7.94 kHz frequency.

Once the upper and lower limits of the discharge rate were defined, the time constant for dry

Super Soil was measured. The results can be seen in Figure 74.

Figure 74: Container 1: Super Soil Dry.

The time constant for dry, fertilized soil was measured to be 70.37 µs, equivalent to 14.21 kHz.

One Tbsp of water was then added to the container, and the waveform was captured as seen in

Figure 75.

Figure 75: Container 1: Super Soil with 1 Tbsp Water Added.

The time constant changed to 83.95 µs, equivalent to 11.91 kHz.

The slow increase in time constant was to be expected. When the capacitor is inserted

into the soil, the soil essentially becomes part of the dielectric between the parallel plates of the

capacitor. When the dielectric decreases, the capacitance increases, as proven in Equation 20. A

larger capacitance directly corresponds to a longer time to discharge, meaning a larger time

constant. The amount of water in the soil was then increased incrementally to 2 Tbsp, 3 Tbsp, 4

Tbsp, and 5 Tbsp, and data was recorded for each increment.

Figure 76: Container 1: Super Soil with 5 Tbsp Water Added (Saturation).

When a fifth tablespoon of water was added, the soil reached saturation and could not absorb any

more water. The soil saturated at a time constant of 124.7 µs, or at 7.94 kHz. The results can be

seen in Table 43.

 Once saturation was reached for the Super Soil, the capacitive sensor was placed in the

porous (sandy) soil and process began again.

Figure 77: Container 2: Sandy Soil Dry.

The time constant of sandy soil was measured to be 74.07 µs, equivalent to 13.5 kHz.

Figure 78: Container 2: Sandy Soil with 1 Tbsp Water Added.

The time constant of sandy soil with 1 Tbsp of water added was found to be 85.19 µs, or 11.73

kHz. The same procedure followed for the Super Soil was also followed for the sandy soil,

increasing water content incrementally by 1 Tbsp and recording data for each increment.

Figure 79: Sandy Soil with 4 Tbsp Water Added (Saturation).

Once 4 Tbsp of water were added to the sandy soil, the soil reached saturation. The results can be

seen and compared to the Super Soil in Table 43.

Table 43: Soil Moisture Measurements with Incremental Increase of Water.

Water Added (Tbsp) Super Soil Sandy Soil

 Time Constant (µsec) Frequency (kHz) Time Constant (µsec) Frequency (kHz)
0 70.37 14.2 74.07 13.5
1 83.95 11.9 85.19 11.7
2 97.53 10.3 97.53 10.3
3 101.2 9.8 115.4 8.66
4 122.2 8.2 125.9 7.9
5 124.7 7.9 125.9 7.9

As can be seen from the results, the sandy soil started with a higher time constant and

saturated more quickly than the Super Soil. This is to be expected because the sandy soil is more

porous than the Super Soil; more porous soil contains more aggregate and therefore cannot

absorb water as easily as an organic soil. The frequency data was plotted for both types of soil

and can be seen in Figure 80.

Figure 80: Soil Moisture Measurements Frequency vs. Additional Water Graph.

The frequency of the soil has a relatively linear decrease until saturation is reached in both the

case of the Super Soil and sandy soil. The graph verifies that there is a direct correlation between

frequency and amount of water added. The given data also verifies that the microcontroller will

be able to easily read and interpret soil moisture data accurately by converting the time constant

to frequency.

5.3.3 Temperature Sensor LF

Due to extenuating circumstances, the MAX6607IUK-T was not available for use in the

first prototype demonstration. Instead, the TC1047A onboard temperature sensor was used,

shown in Figure 81.

Figure 81: TC1047A Temperature Sensor.

It has a similar pin layout and operation voltage to the MAX6607. Both sensors also give the

same output, as seen in Equation 22. This allows for either part to be interchangeable for testing

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6

D
IS

CH
AR

GE
 F

RE
Q

U
EN

CY
 (K

H
Z)

WATER AMOUNT ADDED (TBSP)

Capacitive Soil Moisture Readings

purposes. As seen in Figure 82, the MAX is a 4-pin integrated circuit while the TC, shown in

Figure 81, is only a 3 pin.

Figure 82: TC1047A Temperature Sensor Pinout.

The reason these can both be seen as 3 pin layouts is because the A and GND are both grounded,

giving a pseudo-3 pin layout. Both integrated circuits will also give an analog voltage output that

will be converted using the onboard ADC.

5.3.4 Microcontroller Data Collection AA

To demonstrate data collection with the Microcontroller, the Explorer 16/32 development

board with a PIC24FJ128GA010 PIM was used along with a capacitive moisture sensor. This is

a similar PIM that will be used in the final design of the Wireless Sensor Pod. The demonstration

portrays how to read the analog signal from the sensors. Two sensors were used in the program,

including the built-in temperature sensor on the development board and a capacitive soil

moisture sensor that was connected externally via Input/Output pins. Both sensors output an

analog voltage signal that can be captured by the microcontroller and displayed on the Explorer

16/32 LCD display. Applying heat to the temperature sensor on the board will indicate a change

in the reading displayed on the screen, which can be seen in Figure 83.

Figure 83: Explorer 16/32 Development Board Demo.

The main component of the demonstration is creating an effective program to read the

sensors. The pseudocode in Figure 61 represents the setup and control of the microprocessor.

There is a simple while loop which runs periodically and can be controlled with a delay. For each

pass in the loop, both the analog ports will be accessed and then the value which they return will

be processed and cleansed so that the LCD screen can properly display the temperature and

moisture levels. The code in Figure 84 shows the process of data acquisition.

Figure 84: Main Program.

In the final design of the project, the LCD will be replaced with the LoRa communication

subroutine, which will transmit the cleansed data to Gateway, allowing the application to be

viewed on the Web Application.

To enable analog to digital conversion of the sensors, a separate file called “ADC.c” was

included. This file provides logic for reading the analog channel. A code snippet for the A/D

conversion is shown in Figure 85. The ReadADC function is a routine for using the A/D

converter and returning the conversion result, which is the acquired temperature or moisture

level to be stored in the “temp” variable. Then, each reading is added to the sum in the loop to

eventually generate the average value over the course of 32 readings.

Figure 85: Analog Sampling.

5.3.5 Lora Module Communication RK

To demonstrate Microchip processor to LoRa module communications, a couple

development motes were configured for testing. Development motes are small-sized,

prefabricated units that use similar hardware to what will be used in the final design. As seen in

Figure 86, the motes feature an LED screen for debugging and information about the current

state of the mote. There is also a micro-USB port on the mote to send serial commands to the

Lora Modules directly, as the microchip processor simply forwards all UART communication to

the RN2903 LoRa transceiver.

Figure 86: RN2903 LoRa Module with 6" Monopole Antenna.

As mentioned in detail in § 5.2.2, there are a set of parameters on the LoRa transceiver

that must be configured before sending data to the Gateway and the Senet Portal. The Mote can

be accessed via serial communication with any PC. An application called Yet Another Terminal

(YAT) can be used to access the USB Serial Bus. The terminal can communicate with the LoRa

chip with a baud rate of 57600 Bps, and Serial Settings of 8/N/1 which means 8 data bits, no

parity, and 1 stop bit. Once updating all of the necessary parameters, a “mac join abp” command

can be sent which will respond back with “ok” meaning the command was in proper format and

was sent, and “accepted” if the join procedure to the network was successful. The command

format and response can be seen in Figure 87.

Figure 87: Screenshot of YAT Terminal for Serial Communication.

After joining the network successfully, messages can be sent to the Gateway and

Forwarder. Figure 88 depicts a transmit command being sent. This command contains a keyword

“mac” which means the mac OS layer will be accessed to send a message. It is followed by “tx

uncnf”, which means a message will be transmitted of unconfirmed type. An unconfirmed

message means it does not require an acknowledgement from the Server.

Figure 88: Senet Screenshot of Successfully Delivered LoRa Message.

Finally, the last two parameters are the port number and the test payload. Once the command is

sent, an “ok” message is received indicating the syntax was correct, and “mac_tx_ok” meaning

uplink transmission is successful. In Figure 65, a few pieces of the metadata of that message can

be seen as well as the payload which is a hex value. From this demonstration we can see that the

Gateway and Forwarder side of the system has been proven and is ready for integration with real

Wireless Sensor Pods.

5.3.6 LoRaWAN Propagation Models AW

To verify LoRaWAN communication would work to send signals over a distance of 3.3

km, propagation models were created to theorize how the signal would respond over different

distances and weather conditions.

 Pathloss Over Distance

LoRaWAN transmits signals over an unlicensed frequency band, ranging from 433 MHz

to 923 MHz, depending on the country in which the signal is transmitted. To best determine how

the signals are affected, three frequencies of LoraWAN (433 MHz, 750 MHz, and 923 MHz)

were plotted against a distance ranging from 0 to 10 km. Path losses that were considered were

those of free space and soil attenuation. The loss due to the soil was calculated previously in §

2.1.3. The path loss components were then subtracted from the total radiated power, defined as

18 mW in § 2.1.3, to determine the signal power that will arrive at the receiver. The received

power was then converted to dBm and plotted against distance using MATLAB.

%%

%free space path loss
c = physconst('lightspeed');
freq = [433 750 923].*1e6; %standard frequencies for LoRaWAN comms
R0 = (0:10000);
apathloss = fspl(R0,c./freq);

% path loss over distance given optimal LoRaWAN transmission
Pt_max = 18; %in dBm
Prad = 10^(Pt_max/10); %in mW
PathLoss = 10.^(apathloss./10); %in mW
soilloss = 3.4; %in mW

Prec = (Prad - apathloss.*10^-3 - soilloss); %convert apathloss to mW

Prec_dBm = 10*log10(Prec); %convert mW to dBm

loglog(R0, Prec_dBm);

%plot pathloss over distance for given frequencies
grid on;
legend('Range: 433 MHz', 'Range: 750 MHz', 'Range:923 MHz', ...
'location', 'northeast')
xlabel('Distance (m)');
ylabel('Received Power (dBm)')
title('LoRaWAN Signal Path Loss')

%%

Figure 89: LoRaWAN Signal Path Loss.

Taking all path losses into consideration, it was theorized that only a 0.05 dBm drop would occur

between 0 and 10 km for all frequencies of LoRaWAN communication.

 Rain Attenuation

Another important characteristic that should be considered is if LoRa communication is

affected by inclement weather. The frequency was swept from 433 MHz to 915 MHz, and rain

attenuation was plotted against it in MATLAB.

%%

%propagation loss due to rain
R0 = 1e3; % 1 km range
rainrate = [1, 4, 16, 50]; % rain rate in mm/h
el = 0; % 0 degree elevation
tau = 0; % horizontal polarization
freq = (433:915).'*1e9;

for m = 1:numel(rainrate)

 rainloss(:,m) = rainpl(R0,freq,rainrate(m),el,tau)';
end

loglog(freq/1e6,rainloss);
grid on;

% subplot(3,1,2)
ylim([0 20]);
legend('Light rain','Moderate rain','Heavy rain','Extreme rain', ...
 'Location','SouthEast');
xlabel('Frequency (GHz)');
ylabel('Rain Attenuation (dB/km)')
title('LoRaWAN Rain Attenuation for Horizontal Polarization');

%%

Figure 90: LoRaWAN Rain Attenuation.

 Four different rain rates were plotted to determine if rain had an effect on signal

propagation. Rain droplets are known to cause interference in signals with low frequencies

because the geometry of the droplet can reflect and scatter the signal [12]. As seen from the

MATLAB simulation, LoRa operates on a high enough frequency band that rain has minimal

effect on signal transmission.

5.3.7 Database AA

To demonstrate a proof of concept for the DynamoDB database, a test database table,

AWS API, and Lambda function were created. The concept was tested populating a test table

using API call to AWS API, similar to the way Senet interfaces with AWS API and Lambda

Function. The test database table, AWS API, and Lambda function was created and setup as

follows.

The test table Sensor_Data_Test table, as shown in Figures 91 and 92, was created

following the baseline standard for Sensor Data table explained in The Database section.

Figure 91: Sensor_Data_Test_Baseline.

Figure 92: DynamoDB Table.

The test AWS API AWS_API_Test was created as shown in Figure 93. This API was set

to no require any antiunification or authorization to allow for test of just the database interface.

The following setting were defined.

Auth: NONE
ARN: arn:aws:execute-api:us-east-2:634076630397:id74erdi4d/*/*/AWS_API_Test
Query Strings: TableName
Type: LAMBDA
Region: us-east-2
HTTP Status: 200
Output passthrough: Yes

The information received from AWS API is then sent to a Lambda function.

Figure 93: AWS API Gateway.

The Test Lambda Function AWS_API_Test was also created and set as the target

location of the AWS API AWS_API_Test. The test lambda function is shown in Figure 94. The

code for this test function is also depicted in Figure 95.

Figure 94: Lambda Function Design Flow.

Figure 95: Lambda Function Pseudo Code.

Once the database table, AWS API, and Lambda function is created the concept can be

tested by making Postman API calls to the AWS API to create an item entry. An example of this

API call is shown in Figure 96.

Figure 96: Postman API Call.

A handful of POST calls were tested to the AWS API similar to the one above. The results of

these call are shown in the populated database table in Figure 97.

Figure 97: DynamoDB Table.

5.4 PROTOTYPES: IMPLEMENTATION

Once the Design Verification Phase was complete, PCBs were ordered, and the software

was integrated with the finished hardware prototypes for complete system implementation.

5.4.1 Power Management RK

Since the Sensor Pod is designed to stay buried beneath the ground for an entire growing

season, reducing the energy required of the Pod is one of the most important concerns of the

project. The original calculations for power requirements suggested that two batteries would be

needed for a total of 5600mA-H, but it is important to know the actual power draw in real-world

use. Reducing the energy pulled from the battery required looking at all components of design,

including the power draw of the program, the voltage regulator chosen (if used), as well as what

type of current each component will draw in active and sleep modes. In this section, the Sensor

Pod’s energy requirements and results from a real-world application of a battery test will be

shared.

 Voltage Regulator

After further review, it was found that all components in the Sensor Pod circuit had a 3V-

3.7V threshold. The battery chosen is 100% full at 3.7V but can be charged up to 4.2V. Initially

when designing the circuit, a voltage regulator was considered so that it could regulate the upper-

end voltage down to 3.3V and the lower-end voltage up to 3.3V. The lithium-ion battery chosen

may charge to 4.2V, but because of the chemical reactions that occur internally, the battery will

never supply more than 3.7V to the circuit. When the lithium-ion battery is depleted, it’s voltage

will be around 3.2V. This means the battery should never deplete past the 3.2V threshold.

Because of these datasheet findings, it was determined that a voltage regulator was unnecessary

for Sensor Pod application. All power monitoring for the system can be accomplished through

the PIC24FJ256GB410 microcontroller along with the RN2903 LoRa module.

 Battery Testing

Once the final PCB design and program were completed, a proper analysis of battery

consumption and current draw could be performed. The Fluke Handheld multimeters provided in

the Lab did not have low enough current ranges to analyze the Sensor Pods. Instead, a Keithley

Digital Multimeter with a 6-and-a-half-digit resolution of accuracy was used. This device can

acquire current measurements down to 10pA, which is necessary since the PIC uses around

650nA in sleep mode. The test setup can be seen picture below.

Figure 98: Battery Testing Setup (Sponsored by Keithley).

The Sensor Pod is connected in series to the Digital Multimeter, setup as an Ammeter,

along with a single 2800mA-H battery. The test involved letting the test program run, which had

sensors connected, as well as the antenna for transmission to simulate real conditions. The

special test program was designed to connect to the LoRa network, acquire sensor

measurements, transmit them, and go to sleep. The RN2903 LoRa transceiver sleep mode was

activated, along with the PIC’s deep sleep mode. The program executed this process every 10

seconds so that many sleep mode cycles could be observed on the Multimeter. Figures 99-101

show output from the Pod captured with a UART to USB adapter, contrasted with the Virtual

Front Panel of the Multimeter.

Figure 99: PIC24FJ256GB410 Active Mode.

In the above figure, the Ammeter is reading ~12mA of current draw while taking current

measurements in the active mode of the program which is taking sensor measurements and

initializing the LoRa subsystem.

Figure 100: PIC24FJ256GB410 Active Transmit Mode.

In Figure 100, the screenshot was acquired in the very short duration of the transmit process in

which the LoRa transceiver uses the antenna to transmit to the Gateway. This point in the

program is the most power-intensive and is the part that should be kept to a minimum to preserve

battery life.

Figure 101: PIC24FJ256GB410 Sleep Mode.

After taking measurements and transmitting, the circuit pulls an instantaneous current draw of

about 88uA which is the lowest sleep state that the Sensor Pod will be in.

Figure 102: Current Draw of Sensor Pod in Different PIC Modes.

Since sleep mode in the test program was designed to only last 10 seconds, the multimeter could

capture multiple cycles in a relatively short amount of time. In Figure 102, two cycles were

captured in which the Sensor Pod, including the PIC and LoRa transceiver, were awakened from

the sleep state to take measurements, transmit, and go back to sleep.

 After capturing a few cycles, the buffer data could be extracted for further analysis. A

program was created to analyze one period of sleep and one period in the active state. To

determine the amount of charge depleted from the battery in the mentioned periods, the amount

of time between each reading can be multiplied by the current reading. The equation is as

follows.

𝐶𝐶ℎ𝑡𝑡𝐻𝐻𝑙𝑙𝑠𝑠 𝐷𝐷𝑠𝑠𝑝𝑝𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝐷𝐷 𝑠𝑠𝑠𝑠 𝑂𝑂𝑠𝑠𝑠𝑠 𝑚𝑚𝑡𝑡𝑘𝑘𝑠𝑠𝑊𝑊𝑝𝑝 𝐶𝐶𝑠𝑠𝑐𝑐𝑙𝑙𝑠𝑠 (𝑚𝑚𝑚𝑚ℎ) = 1000 ∗ ∑ �𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑚𝑚)
60∗60

�𝐶𝐶𝑊𝑊𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠 𝑀𝑀𝑠𝑠𝑡𝑡𝐻𝐻𝑊𝑊𝐻𝐻𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝐻𝐻 (𝑚𝑚)𝑚𝑚𝑙𝑙𝑚𝑚𝑚𝑚𝑁𝑁
𝑚𝑚=𝑔𝑔𝑑𝑑𝑘𝑘𝑚𝑚𝑚𝑚𝑁𝑁 (33)

After integrating through each period, the charge depleted from the battery could be calculated

and extrapolated to determine what the battery consumption would be like during a full growing

season. For a 153-day growing season, and transmitting 3 times a day, the Sensor Pod would

draw 26.19mA-H in its active state, and 323.14mA-H in its lowest power state. All-in-all, that

would be about 347.33mA-H, or depleted charge from the 2800mA-H battery used. This

calculation satisfied the engineering requirement that the Pod would be a low power device

requiring less than 5600mA-H.

 To meet the engineering and marketing requirements for that the Sensor Pod be low

power, code was added to the main program to trigger certain sleep modes and processes that

would reduce power consumption.

 while(1) {
 reset_analysis();
 ms_delay(100);
 reset_analysis();
 ms_delay(100);
 reset_analysis();
 DSCONbits.RELEASE = 0;

 // LED Check
 LED_0_SetHigh();
 ms_delay(300);
 LED_1_SetHigh();
 ms_delay(300);
 LED_2_SetHigh();

 char buf[255];
 sprintf(buf, "Iteration: %d ", iteration++);
 iteration++;
 Console_Write(buf);

 sprintf(buf,"ALARRBITS: %d", RTCCON1Hbits.ALMRPT);
 Console_Write(buf);
 sprintf(buf,"ALARRBITS: %d", ALMTIMEH);
 Console_Write(buf);

 // Get VDD
 char vddBuffer[4] = "";
 RN2903_Query_Command("sys get vdd", vddBuffer, 0);

 Console_Write("After query of Vdd...");
 Console_Write(vddBuffer);

 char newBuf[10];
 int vdd = atoi(vddBuffer);
 sprintf(newBuf, "Dynamic VDD(mV) is %d", vdd);
 Console_Write(newBuf);
 float vddVolts = vdd / 1000.00;
 sprintf(newBuf, "Dynamic VDD(V) is %f", vddVolts);
 Console_Write(newBuf);

 t = Read_ADC(vddVolts);
 m = Read_Moisture_Sensor();

 sprintf(message, "The Temperature is: %f", t);
 Console_Write(message);
 sprintf(message, "The Moisture is: %f", m);
 Console_Write(message);

 encodeMessage(message, vddVolts, t, m);
 Console_Write(message);

 int portNumber = 1;
 transmit("uncnf", portNumber, message);
 GetTime();

 Console_Write("Entering SleepMode...");
 Console_Write("************");
 LED_0_SetLow();
 LED_1_SetLow();
 LED_2_SetLow();

 RN2903_Write("sys sleep 9000");
 GetTime();
 ms_delay(50);
 EnterDeepSleep();
 }

The code above is the main part of the program that executes just after connecting to the

LoRa network. Variables for data are allocated, and the function calls which operate on them are

called near the end. At the very end, the sys sleep 9000 command is sent to the LoRa transceiver,

and the EnterDeepSleep() function is called which puts the PIC in deep sleep until scheduled to

wake up.

 The following is a sample of code which enables power savings for the sensor Pod. After

executing assembly instructions that directly interact with the sleep mode registers, the Sleep()

system function can be called to finally put the PIC in deep sleep mode.

void EnterDeepSleep() {
 ms_delay(100);
 asm volatile("MOV #0x8000, W2"); // sequence to set the DSEN bit, must do it twice
 asm volatile("MOV W2, DSCON");
 asm volatile("MOV W2, DSCON");
 Sleep();
}

Additionally, every time the Sensor Pod wakes up, an analysis is run to determin why it

woke up. This is important to know to make sure that the Pod is entering its deep sleep state of

operation and reducing energy consumption. Below is code that determines the reason for

wakeup.

void reset_analysis() {

 // ------------------------ Reset Analysis -------------------------------
 //Status from reset (1:POR, 2:Sleep, 3:DeepSleep, 4:Watchdog, 5:Ext, 6:SwReset)
 //Device leading to reset (1:INT0, 2:Watchdog, 3:RTCC, 4:MCLR, 5:POR)
 int reset_status;
 int reset_device;

 if(RCONbits.DPSLP == 1){

 char buf[255] = "";
 RN2903_Read(buf);

 reset_status=3;
 RCONbits.DPSLP = 0;
 DSCONbits.RELEASE = 0;
 if(DSWAKEbits.DSWDT) reset_device=2;
 else if(DSWAKEbits.DSINT0) reset_device=1;
 else if(DSWAKEbits.DSMCLR) reset_device=4;
 else if(DSWAKEbits.DSRTCC) reset_device=7;
 else reset_device=0;
 }
 else if(RCONbits.SLEEP){
 reset_status=2;
 RCONbits.SLEEP = 0;
 DSCONbits.RELEASE = 0;
 }
 else if(RCONbits.WDTO){

 reset_status=4;
 RCONbits.WDTO = 0;
 DSCONbits.RELEASE = 0;
 }
 else if(RCONbits.EXTR){
 reset_status=5;
 RCONbits.EXTR = 0;
 DSCONbits.RELEASE = 0;
 }
 else if(RCONbits.SWR){
 reset_status=6;
 RCONbits.SWR = 0;
 DSCONbits.RELEASE = 0;
 }
 else if(RCONbits.POR){
 reset_status=1;
 RCONbits.POR = 0;
 DSGPR0 = 0;
 DSGPR1 = 0;
 }
 else{ //Unknown state
 reset_status=0;
 DSGPR0 = 0;
 DSGPR1 = 0;
 }

 ms_delay(500);

 //Status from reset (1:POR, 2:Sleep, 3:DeepSleep, 4:Watchdog, 5:Ext, 6:SwReset, 7:RTCC)
 switch (reset_status){
 case 7:
 Console_Write("RTCC Alarm");
 case 6:
 Console_Write("SwReset");
 break;
 case 5:
 Console_Write("HwReset");
 break;
 case 4:
 Console_Write("Watchdog");
 break;
 case 3:
 Console_Write("DeepSleep");
 break;
 case 2:
 Console_Write("Sleep");
 break;
 case 1:
 Console_Write("POR");
 break;
 default:
 Console_Write("a ghost");
 }
}

5.4.2 Soil Moisture Sensor AA, RK, AW

Reading soil moisture required the use of a separate PCB and connector. A capacitive

sensor is used, which is fed into a dedicated circuit on the PCB. At the PIC, the input capture

port is used to read frequency from the dedicated circuit which can be used to infer what type of

moisture the sensor is being subjected to. To get this method of input capture working, a high

and low moisture reading had to be taken to set thresholds so that a spectrum of soil moistures

that the program will detect could be created. Below is the code that is responsible for capturing

frequency, which is essentially reading rising and falling edges on an input square wave.

double Read_Moisture_Sensor() {
 float TimerFreq = 250000.0;
 bool bufferStatus;
 uint16_t data1,data2;
 char buf[255] = "";
 float avg = 0;
 int i = 0;
 int nb_samples = 15;
 for (i = 0; i < nb_samples; i++) {
 IC5_Start();
 bufferStatus = IC5_IsCaptureBufferEmpty();
 if(!bufferStatus) {
 data1 = IC5_CaptureDataRead();
 data2 = IC5_CaptureDataRead();
 }

 uint16_t period;
 double freq;
 period = data2 - data1; // determine signal period
 freq = TimerFreq / period; // calculate frequency
 ms_delay(200);
 avg = avg + freq;
 }
 IC5_Stop();
 avg = avg / nb_samples;
 return (avg);
}

Essentially, the function above samples the period between two rising edges. The frequency can

be determined from the inverse of the period, and the calculation is then averaged over 15

readings to provide and accurate estimate of the frequency. The value returned to the main

program is the frequency, but this value is converted into a normalized value, from 0 100, when

sent to the database/Web Server.

Two tests were performed on the soil moisture sensor to verify the circuit was working

properly. The first test was purely monitoring the sensor as moisture levels of the soil increased.

A soil moisture sensor was placed in a container with 10 oz. dry dirt. Like the prototype test,

water was added in 2.5 oz increments from 0 oz. (dry) to 10 oz. (saturated). The data obtained

from the experiment is displayed on the webpage in Figure 103.

Figure 103: Soil Moisture Sensor Readings.

The sensor data was exported into an excel spreadsheet and trended, as seen in Figure 104.

Figure 104: Trended Soil Moisture Sensor Data.

As the moisture levels in the soil increased, the percentage populated from the senor increased

proportionally, proving that the sensor was functional.

 To further verify the moisture sensor was accurate, the PCB sensor was placed in soil

with a 97% accurate off-the-shelf sensor from AdaFruit. The PCB sensor was connected to the

Sensor Pod, transmitting data to the gateway to be displayed on the Soil Sensor Network

Application, and the AdaFruit sensor was connected to a development board with an LCD.

Figure 105: PCB vs. Adafruit Soil Moisture Sensor.

A picture of the results was taken once the moisture sensor stabilized. Sensor Pod 4 stabilized at

a 94% moisture reading. The Adafruit moisture sensor stabilized at a 88.7% soil moisture

reading. According to the datasheet, the Adafruit sensor is 97% accurate. Assuming worst-case

scenario, the Adafruit sensor reading at 97%, the accuracy of the PCB soil moisture sensor can

be calculated using the following equation.

𝑃𝑃𝐶𝐶𝑃𝑃 𝑡𝑡𝑐𝑐𝑐𝑐𝑊𝑊𝐻𝐻𝑡𝑡𝑐𝑐𝑠𝑠 = 0.97 − 94−88.7
94

= 0.91 = 91% (34)

The soil moisture PCB was at least 91% accurate, taking into consideration worst-case scenario.

This fulfilled the Engineering Requirement that the soil moisture sensor must read with at least

an 80% accuracy.

5.4.3 Temperature Sensor RK, AW

The temperature sensor in its final design was attached to the side of the Sensor Pod

housing, and successfully responded to ambient temperatures in air and soil. To reach a complete

design, a dedicated PCB had to first be created that would integrate with the MAX6607

temperature sensor. The magnetic quick disconnect component was then implemented to allow it

to connect to the pod. From the connector to the pod was a 3-wire connection for VDD, ground,

and the analog voltage line. This connection led to the main PCB that would be fed into an

analog voltage input port of the PIC where the program could convert the given voltage to

Fahrenheit degrees. Below is the part of code that handles the analog-to-digital conversion.

double Read_ADC(float vdd) {
 float quant_res = vdd / 1023.0;
 double ADJ = 0.0; // adjustment due to voltage drop

 int digital_value = 0;
 double running_sum = 0.0;
 double average_adc_val = 0.0;
 ADC1_CHANNEL channel = channel_AN15;

 int nb_samples = 32;
 int i = 0;
 for (i = 0; i < nb_samples; i++) {
 ADC1_Enable();

 ADC1_ChannelSelect(channel);
 ADC1_SoftwareTriggerEnable();
 ms_delay(5);
 ADC1_SoftwareTriggerDisable();
 while (!ADC1_IsConversionComplete(channel));
 digital_value = ADC1_ConversionResultGet(channel);
 running_sum = running_sum + digital_value;
 ADC1_Disable();
 }

 average_adc_val = running_sum / nb_samples; // divide to get the average
 double volt = average_adc_val * quant_res;
 double temp_c = (volt - .5 + ADJ) * 100;
 double temp_f = (temp_c * 1.8) + 32;

 return(temp_f);
} // ReadADC

The temperature is obtained by sampling the analog voltage input port 32 times and taking an

average. This sampling also considers the supply voltage of the temperature sensor by querying

the voltage of the RN2903 since the quantization depends on the supply voltage. This is what the

VDD parameter is for in the Read_ADC function. Before the final temperature is returned to the

main program, it is converted from the quantized value to a Fahrenheit value, which is placed in

the message sent to the LoRa server. This information is then displayed on the website for the

farmer to monitor.

 The Sensor Pod was powered on and set aside until the temperature stabilized. Heat was

applied to the temperature sensor and the data was collected. The final temperature

measurements were transmitted and stored in the database to be displayed in the Web

Application, which displayed a trend of temperature readings over time.

Figure 106: Temperature Sensor Readings.

As heat was applied, the temperature slowly increased, and a temperature warning appeared on

the website to inform the farmer that excessive heat conditions (greater than 100ºF) have

occurred. The other excessive conditions monitored were soil moisture and battery life. These

warnings satisfied the Engineering Requirement that an application will alert the farmer if

excessive soil conditions occur (i.e.: if the soil is exceptionally dry) so immediate action can be

taken. Once heat was no longer applied, the values of the temperature sensor began to decrease

to the initial point of stability.

To verify the temperature sensor was working properly, an off-the-shelf temperature

sensor was connected to the explorer board and heat was applied to both the PCB and store-

bought sensor. The results can be seen in Figure 105 of the Soil Moisture Sensor Setup

previously explained. When the temperature sensor was at the stabilized value, the PCB

temperature sensor read 71ºF and the off-the-shelf read 71.6ºF.

5.4.4 Embedded Firmware RK

After prototyping each subsystem such as reading temperature, enabling sleep mode, and

communicating with the LoRa transceiver, it was time to integrate it all for a final revision that

could be flashed to all of the Sensor Pods. Microchip’s dedicated PIC programming IDE,

MPLAB X, helped provide the tools that enable features on the PIC. For example, the Real

Time Clock Calendar that is used to wake up the Pod in deep sleep can be configured within the

editor and will program the registers with proper values. Each Pod ran very similar programs,

which helped make development easier because the only parts that were unique were the LoRa

transceivers on each Pod.

As an overview, the Sensor Pod upon being first power on would initialize all of the

communication and interfacing components, and then connect to the pre-configured LoRa

network. Below is the code that is the beginning of the program which calls functions like

SYSTEM_Initialize() to setup the peripherals.

 SYSTEM_Initialize();
 int val = DSGPR0;
 Console_Write("System Initialization");
 DSCONbits.RELEASE = 0;

 ms_delay(100);
 reset_analysis();

 char buf[255];
 sprintf(buf,"DSGPR0: %d", DSGPR0);
 Console_Write(buf);
 DSGPR0 = val + 1;

 GetTime();
 ms_delay(50);

 // LED Check
 ms_delay(300);
 LED_1_SetHigh();
 ms_delay(300);
 LED_2_SetHigh();
 Console_Write("Starting program...");

 ms_delay(100);

 ms_delay(100);
 GetParams();

Once connected, the Pod is ready to take measurements, encode the data, and prepare it to

send to the Gateway so that the farmer could see it on the Web Application. Once these events

were completed, the Pod goes into deep sleep for many hours, as determined by the RTCC, and

waits until it needs to wake up and take soil measurements in the day.

 Microcontroller Data Collection AA, RK

The microcontroller and sensors combine to form the Sensor Pod that serves to collect

moisture and temperature readings of the soil. As mentioned in § 5.4.2 and § 5.4.3, each sensor is

associated with its own specialized code to read frequency and analog voltages. In the main

program, the two functions ReadADC() and Read_Moisture_Sensor() were called. Both return a

value which the program can use later to encode and send the message to the gateway via the

transceiver. Below is a snippet of code which collects the readings from both sensors, and

outputs to the debugging UART connection on the PCB.

 t = Read_ADC(vddVolts);
 m = Read_Moisture_Sensor();

 sprintf(message, "The Temperature is: %f", t);
 Console_Write(message);
 sprintf(message, "The Moisture is: %f", m);
 Console_Write(message);

Creating the data collecting function streamlines the main program and made maintaining and

debugging the project much easier.

 Support Functions RK

There were many parts of the Sensor Pod firmware which helped enable acquiring sensor

data, performing sleep mode analysis, debugging the LoRa transceiver, and completing other

various functions. One of the most useful functions of the programming was the implementation

of the UART ports. One UART port was used for debug purposes, and one was used to send

commands to the LoRa transceiver.

The Console_Write() function is used to generate a UART signal which can be read by a

UART to USB device, which was used heavily in development and testing of the program. The

code can be seen as follows.

void Console_Write(char *text) {
 int i;
 for (i = 0; text[i] != '\0'; i++) {
 UART2_Write(text[i]);
 }
 UART2_Write(0x0D); // Carriage Return
 UART2_Write(0x0A); // Line feed
}

Messaages are written character by character until the null terminator is reached. At the end of

the message, whether it be transmission from the PIC or RN2903 module, the message is always

ended with a carriage return and new line character to signify the end of the sequence.

The UART communication that is used to interface with the LoRa module was very

similar to the UART debugger, but a read sequence was implemented to see statuses and

responses from the LoRa module.

void RN2903_Write(char *text) {

 int i;
 for (i = 0; text[i] != '\0'; i++) {
 UART1_Write(text[i]);
 }
 UART1_Write(0x0D); // Carrage Return
 UART1_Write(0x0A); // Line feed

}

void RN2903_Read(char *output) {

 memset(output, 0, 255);
 int BUF_LEN = 255;
 unsigned int i = 0;

 while (1) {
 char ch;
 ch = UART1_Read();
 if (ch != '\n') { // ignore lf's
 if (ch != '\r') {
 if (i < BUF_LEN - 2) {
 output[i++] = ch;
 output[i] = '\0';
 }
 }
 } else {
 break;
 }
 }
}

The RN2903_Read() function reads what the module responds with after sending a command.

This allows the program to verify that commands are being sent to the LoRa module wih correct

syntax. For example, after a command is sent, the transceiver responds with an “ok” message

when syntax is correct, and perhaps a value when GET command is issued.

 Often used with the UART read and write commands, is a delay function. UART

communications takes time to encode and put the bit sequence on the communication bus, which

is why delays are needed. If a message is written, but right after the Sensor Pod goes to sleep and

no delay is used, then the message will not be written. Below is the ms_delay() function that is

specifically designed to work with our chosen PIC and it’s timing.

void ms_delay(int ms) {
 T2CON = 0x8030; // Timer 2 on, TCKPS<1,0> = 11 this 1:256
 TMR2 = 0;
 while (TMR2 < ms * 62.5);
}

5.4.5 Communication

Enabling robust and reliable communication links between the Sensor Pods was

paramount when trying to satisfy range requirements. To enable the communication between the

Gateway and Sensor Pod, the transceiver had to execute the correct sequence of commands, and

the Senet Hub had to be configured to receive those messages. This section will provide detail as

to how the Pods were connected to the network, and how Soil data was transmitted.

 LoRa Module Communication RK

Each sensor pod was designed to support two-way communication to the Gateway, and

Web Application. For each pod to be recognized, the unique pods were registered in the Senet

Portal. Figure 107 shows each unique Sensor Pod, and Gateway all registered in the Senet Portal.

Figure 107: Senet Portal Device EUI.

The Device EUI for each pod was also recorded in the Web Application to separate the data

streams and visualize them correctly to the farmer.

 Once the setup was complete, the main program had to execute the Initialization and join

command, to join the LoRa network and begin transmitting data. The transmission power was

kept at its default setting on the RN2903 transceiver of 20dBm to maximize the range and soil

penetration of the signal. Below is the code that can be modified to program each of the 5

prototypes, with different Lora parameters.

 int targetBoard = 2;

 struct SensorPod {
 int debug;
 char deviceAddress[50];
 char deviceEUI[50];
 char appEUI[100];
 char appSKey[100];
 char nwkSKey[100];
 };

 switch(targetBoard) {

 case 1 :
 status = LORA_Initialize(1, "12026C69", "0004A30B00F45599", "00250C0000010001", "C76C781
A49558017E8D785702160CA1D", "9EA3BCBB73DFF869F320498F36C44320");
 break;

 case 2 :
 status = LORA_Initialize(1, "1202723C", "0004A30B00F8EB08", "00250C0000010001", "EBCDFF8
A57C65088BB466555AE23B12A", "53940E52788C64BC497D2D589A4DCAF2");
 break;

 case 3 :
 status = LORA_Initialize(1, "1202723E", "0004A30B00F8C3D9", "00250C0000010001", "204FE12
CA6E8664FAA63E3670EA872D9", "DC8D2C19DE2867AE9816780926E9E78F");
 break;

 case 4 :
 status = LORA_Initialize(1, "1202723F", "0004A30B00F966DE", "00250C0000010001", "E8667F8
5946627D0609206FED76ED793", "231DE0A84D17C2A24792E23C4A2872CC");
 break;

 default:
 Console_Write("No Pod Selected");
 }

 if (status == 0) {
 Console_Write("Lora Init failed");
 }

 ms_delay(1000);
 int connectStatus = ConnectABP();

The LORA_Initialize() function was designed to send commands with special parameters, to the

RN2903 module.

int LORA_Initialize(int debug, char* device_address, char *device_eui, char *application_eui,
char *application_s_key, char *application_nwk_s_key) {

 char return_buf[255];
 char command[255];

 sprintf(command, "mac set devaddr %s", device_address);
 Console_Write("# mac set devaddr");
 RN2903_Query_Command(command, return_buf, 1);
 if (strcmp(return_buf, "ok") != 0) {
 Console_Write(return_buf);
 return 0;
 }

 command[0] = '\0';
 sprintf(command, "mac set deveui %s", device_eui);
 Console_Write("# mac set deveui");
 RN2903_Query_Command(command, return_buf, 1);
 if (strcmp(return_buf, "ok") != 0) {
 Console_Write(return_buf);
 return 0;
 }

 command[0] = '\0';
 sprintf(command, "mac set appeui %s", application_eui);
 Console_Write("# mac set appeui");
 RN2903_Query_Command(command, return_buf, 1);
 if (strcmp(return_buf, "ok") != 0) {
 Console_Write(return_buf);
 return 0;
 }

 command[0] = '\0';
 sprintf(command, "mac set appskey %s", application_s_key);
 Console_Write("# mac set appskey");
 RN2903_Query_Command(command, return_buf, 1);
 if (strcmp(return_buf, "ok") != 0) {
 Console_Write(return_buf);
 return 0;
 }

 command[0] = '\0';
 sprintf(command, "mac set nwkskey %s", application_nwk_s_key);
 Console_Write("# mac set nwkskey");
 RN2903_Query_Command(command, return_buf, 1);
 if (strcmp(return_buf, "ok") != 0) {
 Console_Write(return_buf);
 return 0;
 }

 Console_Write("# mac set adr");
 RN2903_Query_Command("mac set adr on", return_buf, 1);
 if (strcmp(return_buf, "ok") != 0) {
 Console_Write(return_buf);
 return 0;
 }
 Console_Write("# mac save");
 RN2903_Query_Command("mac set adr on", return_buf, 1);
 if (strcmp(return_buf, "ok") != 0) {
 Console_Write(return_buf);
 return 0;
 }

 return 1;
}

Each time the Pod wakes up from its sleep cycle, the above code was executed and, upon

successful completion, would join the network and send data to the Gateway.

 Transmitting data to the Gateway is made simple with a transmit command. The most

complicated part was encoding the data to be short enough since LoRa has such a low data rate.

During testing, the data rate is reduced even lower because the rate of transmission is so high.

Soil Temperature, Soil Moisture Level, and Battery Status all had to be communicated in one

transmission. Since the message had to be sent in hex, the first two parameters mentioned were

directly converted to a string, space separated. The string value was then directly converted to

hex, and was appended with a decimal 1, 2, or 3 to reduce the payload length.

void encodeMessage(char *fullMessage, float battery, double tempReading, double moistureReadin
g) {

 char payload[100];

 fullMessage[0] = '\0';
 payload[0] = '\0';

 int battery_status = -1;

 if (battery > 3400) {
 battery_status = 3;
 } else if (battery_status > 3200) {
 battery_status = 2;
 } else {
 battery_status = 1;
 }

 if (tempReading > 200) {
 tempReading = 120;
 }

 moistureReading = 99;

 sprintf(payload, "%2.0f %2.0f", tempReading, moistureReading);
 string2hexString(payload, fullMessage);
 // add battery status
 char snum[1];
 sprintf(snum, "%d", battery_status);
 strncat(fullMessage, snum, 1); // append 1 character to full message
}

In normal use, the payload should be large enough to accommodate a string that is twice as large

as mentioned, but for testing it was necessary to make the modifications to allow for a much

faster transmission rate. In normal use, the Pod would communicate 3 times a day, but during

testing it would transmit 6 times a minute for quick feedback. The code below was implemented

to encode the data into hex, which is the desired data format for transmission to the Gateway.

void string2hexString(char* input, char* output){
 int loop;
 int i;

 i=0;
 loop=0;

 while(input[loop] != '\0')
 {
 sprintf((char*)(output+i),"%02X", input[loop]);
 loop+=1;
 i+=2;
 }
 //insert NULL at the end of the output string
 output[i++] = '\0';
}

Once the data is properly encoded, the transmit function was used, which takes in the port

number and encoded data as parameters to send to the Gateway.

void transmit(char* type, int port_num, char *data) {

 char returnBuffer1[255] = "";
 char returnBuffer2[255] = "";
 char command[255];

 if (strcmp(type, "uncnf") == 0){
 sprintf(command, "mac tx uncnf %d %s", port_num, data);
 }
 Console_Write(command);
 RN2903_Write(command);
 processResponse(returnBuffer1, returnBuffer2);
}

 Distance Testing AA, RK, AW

One of the engineering requirements in need of verification was that the Sensor Pod had

to successfully transmit signals up to 3.3 km. The Gateway and Sensor Pods were transported to

Richville Drive in Massillon where there is an abundance of farmland. A 3.3km distance was

mapped out where communication would be close to direct Line of Sight (LOS), testing as if the

pod was buried in an actual field. The Senet Gateway was setup on the side of the road, as seen

in Figure 108.

Figure 108: 3.3km Distance Testing Communication Setup.

The Sensor Pod was “planted” six inches into a bucket of dirt to verify that it could communicate

through at least 3 inches of soil. Communication through 3 inches of soil was the Engineering

requirement that needed to be fulfilled, but realistically for a root or tube application, the roots

would be approximately 6 inches beneath the soil so it was planted 6 inches deep rather than 3

inches deep to verify the Soil Sensor Network would work for these applications.

Figure 109: Distance Testing Sensor Pod Setup.

Before the Sensor Pod was buried, it was powered on and connected to the Senet Gateway. Once

in the soil, the Senet server was observed to verify the Pod was still communicating to the

Gateway at short distances. The data collected is shown in Figure 110. Received Signal Strength

Indicator (RSSI) and the Signal to Noise Ratio (SNR) were monitored. The first few signals seen

in the figure were fair signal strength because the Sensor Pod was too close to the Gateway.

Antennas have a blind cone in which the distance is too short for the transmitter to send the

signal to the receiver due to the geometry of the antenna’s radiation pattern [12]. The blind cone

will not be a concern to farmers because it is highly unlikely that a pod will be planted directly

next to the gateway in a practical application. In the case of a dropped packet, the Sensor Pod

will attempt to retransmit the packet. When the antenna was moved away from the Gateway,

both the RSSI and SNR were of very good signal strength.

Figure 110: Senet Data from Distance Testing: Initial Position.

The Sensor Pod was driven down the road and measurements were recorded at 3.3km. The RSSI

and SNR both went from very good to fair. When the Sensor Pod was removed from the vehicle

and placed outside, it can be seen that the SNR value went from fair to good and very good.

Figure 111: Senet Data from Distance Testing: 3.3 km.

Because the Gateway was receiving a decent signal strength at the 3.3km distance, the

Sensor Pod was driven further down the road and measurements were taken again at 6km. A

visual representation of 6km is seen in Figure 112, and geographical representation of where the

gateway and Sensor Pod were located is seen in Figure 113.

Figure 112: Distance Test: 6 km.

Figure 113: Satellite View of Gateway and Sensor Pod Locations.

As shown in Figure 114, the Senet server was receiving packets frequently without dropping

many signals at a 6km LOS distance. Packet numbers are defined in the Seq No column. A

number missing in the sequence corresponds to a dropped packet.

Figure 114: Senet Data from Distance Testing: 6 km.

There were only three dropped packets from a distance of 6km. The SNR was very good for the

majority of the packets sent. At a 6km distance with the Sensor Pod buried 6 inches beneath the

soil, the packet was transmitted at an average rate of once per minute. Dropped packets and

slower transmission times are to be expected due to the propagation path loss and attenuation of

the soil. The RSSI rate can be calculated by adding the SNR to external noise interference, which

is generated by other signals transmitted on the same frequency. In the case of the test

performed, both the gateway and Sensor Pod were across the street from power stations when

these readings were taken, producing additional unwanted noise that most likely caused the RSSI

to decreasing more quickly than the SNR.

 To better understand the communication path taken while the Sensor Pod was driven

down the road, the RSSI and SNR were plotted in the Senet Server.

Figure 115: Senet Data from Distance Testing: RSSI and SNR.

There are three strong signal strengths plotted on the graph, two of which are indicated with red

circles. The first set of signals on the far left of the graph represents the signals transmitted by

the Gateway during initial setup. The second set of signals, indicated by the red circle in the

middle of the graph, are the packets transmitted at the 3.3km distance. The last set of signals,

indicated by the circle on the right, are the packets transmitted at the 6km distance. There are

quite a few dropped packets between these three main locations because the terrain had many

hills; the Sensor Pod lost signal when in major valleys where there was not only no LOS, but

also no way for a signal to escape the valley and arrive at the gateway. In addition to this, the

Sensor Pod was in a bucket of dirt inside a moving vehicle. A moving antenna is more likely to

induce a greater amount of unwanted electromagnetic interference into the air, which causes

signal scattering and interrupts the communication path to the receiver.

 UA Propagation Model AW

For the Senior Design Day demonstration, it was desired to setup a distance test on the

university property to show proof of concept. In a field, there is a direct Line of Sight (LOS) that

exists between the Sensor Pod and the Gateway, disregarding the soil and electrical box. Because

additional interferences exist on a college campus that do not exist in an open field (i.e.:

buildings, signal interference, ground reflections du to concrete, etc.), it would not be possible

for the signal to propagate 6 km without being received with large amounts of interference.

To determine how far the signal was capable of travelling, a MATLAB simulation was

completed using Site Viewer. A map of the university campus was exported as a .osm file from

Google Earth and referenced in the MATLAB code. The longitude and latitude coordinates, as

well as antenna height, were then defined for the transmitter (Sensor Pod) and receiver

(Gateway). In addition to this, the transmitter was set to a 915 MHz frequency. The model used a

ray tracing method to plot the propagated signal from the Sensor Pod to the Gateway, given the

geographical coordinates. The model also took into consideration building and ground reflections

to determine the strength of the signal. Buildings and ground were assumed to be perfect

reflectors.

%%

viewer = siteviewer("Buildings","map.osm");

% Create receiver sites around UA campus.
tx = txsite('Latitude',41.075253, ...
 'Longitude', -81.50733, ...

 'AntennaHeight',0.5, ...
 'TransmitterFrequency',915e6);

% Create transmitter site on 5th floor of ASEC.
rx = rxsite('Latitude',41.076520, ...
 'Longitude',-81.513290, ...
 'AntennaHeight', 22);

% Compute signal strength using ray tracing propagation model and
default single-reflection analysis.
pm = propagationModel("raytracing-image-method");
ssOneReflection = sigstrength(rx,tx,pm)

% Compute signal strength with analysis up to two reflections, where
total received power is the cumulative power of all propagation paths
pm.MaxNumReflections = 2;
ssTwoReflections = sigstrength(rx,tx,pm)

% Observe effect of material by replacing default concrete material
with perfect reflector.
pm.BuildingsMaterial = 'perfect-reflector';
ssPerfect = sigstrength(rx,tx,pm)

% Plot propagation paths.
raytrace(tx, rx, pm)

%%

Figure 116: Propagation Model on the University of Akron Campus: 500m Distance.

The Gateway (red) was stationed on the 5th floor of ASEC. The sensor pod was buried three

inches beneath the soil in the container used for the previous distance testing and placed in the

grassy area beside the Natatorium across campus. The propagation model showed, in theory, the

Gateway should receive a strong signal. On demonstration day, the pod was taken to the

determined location and signals were transmitted back to the Gateway.

Figure 117: Senet Data from Distance Testing: RSSI and SNR.

As displayed in Figure 117, signals can be received clearly from a distance of 500m on campus

beneath three inches of soil, verifying the Engineering Requirement that the Sensor Pod will

transmit data through 3 inches of soil.

5.4.6 Web Application AA, RK

The implementation of the web application followed the design stated in § 5.2.8. The

primary purpose of the web application was to allow farmers an easy and functional way to view

Sensor Pod data and receive alerts. The website was broken into three main pages as shown in

Figure 118, each serving their own primary functions.

Figure 118: Soil Sensor Network Web Application: Site Map.

 Website Interface

Since the website is implemented as a single page application, the layout is broken down

into view window and a side menu as shown in Figure 120. All pages are displayed in the view

window, and only the information inside the view windows is updated when switching pages

allowing for faster page loading. The side menu is used for navigation between pages.

Figure 119: Soil Sensor Network Web Application: Main Interface.

The Home page used as means to welcome the farmer to the application and ask for a

valid Farm Id to ensure the farmer access only their farms’ information. The page is shown

below in Figure 121, the side menu is limited to only the Home and About page until a valid

Farm ID. During the demonstration, this page was substituted with the interface seen in Figure

122 to introduce the design team, and all pages were available in the menu.

Figure 120: Soil Sensor Network Web Application: Home Page.

Figure 121: Soil Sensor Network Web Application: Farm ID Sign In.

Once a valid Farm Id is given, the menu bar is updated, and the user is redirected to the

Farm Overview page. The Farm Overview page allows the farmer to view a quick overview of

farm information as seen in Figure 122.

Figure 122: Soil Sensor Network Web Application: Farm Overview.

The main functionality of this page are the moisture graph, pod list, and farm information

including any alerts about sensor pods. At the top of the page the farmer can see Farm

Information and Farm Status with information about their farm.

Figure 123: Soil Sensor Network Application: Farm Information and Farm Status.

The moisture graph allows the farmer look at the weekly trend of the moisture percentage

for the farm. And while hovering over a day they can see what the value for the highest

percentage pods.

Figure 124: Soil Sensor Network Web Application: Trended Data

The Pod List, as seen in Figure 125, provides a list of pods currently assigned to the farm;

this list only shows names as more detailed information is shown in the Sensor Pod List page.

Figure 125: Soil Sensor Network Web Application: Pod List.

The Pod List Page lets farmers get a more detailed information from their Sensor Pods as shown

in Figure 126. The page has two main components: Pod Status List and Pod Data.

Figure 126: Soil Sensor Network Web Application: Pod Status List and Pod Data.

 The Pod Status List allows for the farmer to see the status of all pods that are currently

assigned to their farm. This list, unlike the one on the Farm Overview page, gives information

about the Sensor Pods device EUI, battery status, and its connection status as shown in Figure

127.

Figure 127: Soil Sensor Network Web Application: Pod Status List.

The Pod Data components gives the farmer more detailed information about their Sensor

Pods by listing all data collected. Each entry on the list shows the status and the data collected

form a Sensor Pod along with the time it was taken as seen in Figure 128. Each entry also shows

if any warning was triggered by the information such as temperature and moisture warning.

Figure 128: Soil Sensor Network Web Application: Pod Data.

The About page shows a list of frameworks, database, and language used for the

development of the web application.

Figure 129: Soil Sensor Network Web Application: About Page.

 Frontend

The Web Application as explained in § 5.2.8 is based on a MVC scheme. The frontend of

the application handles displaying and receiving information to the farmer for the backend to

process. Each page of the application is broken into three main components: typescript, html, and

sass. The typescript component handles all typescript logic, while the html and sass components

determine the how the page is displayed. These components are linked together in the typescript

@Componets section.

@Component({
 selector: 'app-sensorPodList',
 templateUrl: './sensorPodList.component.html',
 styleUrls: ['./sensorPodList.component.scss']
})

Since the web application has many components that are modular in nature, some of the code is

reused. For this reason, only some of the code is shown in this section, the full source code can

be found in the Appendix.

The following are the four main code schemes for displaying information to the farmer.

To keep information as a standard theme, <nb-card> were used on all schemes to encapsulate the

information in a consistent way. The main way of displaying information is using basic html <p>

tags. This displays information of the web application in standard paragraph form. The

information is pulled from the page typescript components by using Angular expressions

{{information }}.

 <nb-card size="tiny">
 <nb-card-header>Farm Information</nb-card-header>

 <nb-card-body>

 <p>Farm Name: {{this.farmInformations.Name}}</p>

 <p>Owner: {{this.farmInformations.Owner}}</p>

 <p>Location: {{this.farmInformations.Location}}</p>

 <p>Size: {{this.farmInformations.Size}}</p>

 </nb-card-body>

 </nb-card>

 </div>

 The list scheme uses the same method to pull information from the typescript

components, though it incorporates a loop components “ngFor” to iteratively add information

from a list to be displayed.

<nb-card size="large">

 <nb-card-header>Podlist</nb-card-header>

 <nb-list>

 <nb-list-item *ngFor="let device of this.device">

 {{ device }}

 </nb-list-item>

 </nb-list>

 The last two schemes leverage external and internal classes. The graph uses ngx-echart

class; this class is an external chart tool that formats information into custom graphs. The ngx-

echart class was used to aid in the visual representation of the moisture trends. This allows

farmer to better understand information about their farms. The function calls and structure of this

scheme are seen below.

 <nb-card size="large">

 <nb-card-header>Moisture</nb-card-header>

 <div echarts [options]="options" theme="macarons" class="chart"></div>

 </nb-card>

 The Grid data scheme uses the internal ngTreeGrid class to model the data into a grid list

format. This class was used to keep the aesthetic and flow of the website similar throughout. The

grid was an effective way to display large amounts of data in one location. The use of the grid

also allows for information to be refreshed local only to the grid card to improve performance.

Other functionality, such as the ability to sort by different tabs, allows the farmer to search

through their pod data effectively.

<nb-card size="giant">

 <nb-card-header>

 Pod Data

 <button (click)="onReload()" nbButton>Refresh</button>

 </nb-card-header>

 <div overflow-y=scroll>

 <nb-card>

 <nb-card-body>

 <table [nbTreeGrid]="data"

 nbSort (sort)="changeSort($event)"

 equalColumnsWidth>

 <tr nbTreeGridHeaderRow *nbTreeGridHeaderRowDef="allColumns"></tr>

 <tr nbTreeGridRow *nbTreeGridRowDef="let row; columns: allColumns"></tr>

 <ng-container [nbTreeGridColumnDef]="customColumn">

 <th nbTreeGridHeaderCell [nbSortHeader]="getDirection(customColumn)"

 *nbTreeGridHeaderCellDef>

 {{customColumn}}

 </th>

 <td nbTreeGridCell *nbTreeGridCellDef="let row">

 <nb-tree-grid-row-toggle [expanded]="row.expanded"

 *ngIf="row.data.kind === 'dir'">

 </nb-tree-grid-row-toggle>

 {{row.data.ReadTime}}

 </td>

 </ng-container>

 <ng-container *ngFor="let column of defaultColumns"

 [nbTreeGridColumnDef]="column">

 <th nbTreeGridHeaderCell [nbSortHeader]="getDirection(column)"

 *nbTreeGridHeaderCellDef>

 {{column}}

 </th>

 <td nbTreeGridCell *nbTreeGridCellDef="let row">

 {{row.data[column]}}

 </td>

 </ng-container>

 </table>

 </nb-card-body>

 </nb-card>

 </div>

The frontend handles all interaction from the farmer in the typescript components of each

page. Since most pages are structured in a similar format the Pod List page will be used as an

example. Functions are defined in the typescript component of a page such as onReload() as

seen below can be linked to interaction in the html tags as such <button (click)="onReload()"

nbButton>. For this onReload function when the farmer selects to refresh the Pod Data list the

function triggers a call to update the information on the list.

 onReload(){

 this.getPodData();

 }

 changeSort(sortRequest: NbSortRequest): void {

 }

The data used on the frontend is sourced from the backend via API calls as explained in §

5.2.8.2. The API call structure lets the backend know what information is needed and for which

farm. The example below the call is “'https://localhost:44385/DynamoDB/PodData/id?=’ +

this.farmId “ the call is requesting information from DynamoDB for the Farm with the user’s

Farm ID. Once the call is returned the data is mapped to its appropriate model and displayed by

the frontend.

 getPodData()

 {

 this._http.get('https://localhost:44385/DynamoDB/PodData/id?=’ + this.farmId).subscribe(

 result => {

 let tempdata: any = result;

 let tempData: TreeNode<FSEntry>[] = [];

 for (let element of tempdata) {

 let itemData = {} as TreeNode<FSEntry>;

 let item = {} as FSEntry;

 item.Pod = element.name;

 item.Temp = element.temp_Sensor_Value + '%';

 item.Eui = element.devEui + ' °F';

 item.ReadTime = this.formatTime(element.time);

 item.Moisture = element.moisture_Sensor_Value;

 item.Battery = element.bat_Value

 item.Warning = this.checkWarning(element.temp_Sensor_Value,

 element.moisture_Sensor_Value,

 element.bat_Value)

 itemData.data = item;

 tempData.push(itemData);

 }

 this.data = tempData;

 this.dataSource = this.dataSourceBuilder.create(this.data);

 });

The data that is returned to the frontend is in a format that is defined by its data model.

The data models are defined similar in both frontend and backend as seen below. This allows the

website to be added to over time, since the data models can be changed without having to rewrite

the entire call structure.

 Backend

The backend of the web application handles the logic and data retrieval from the

database. When an API call is made to from the frontend, it’s routed to the appropriate call

function. For the Pod data API call, the backend routes the call to the [HttpGet]

[Route("PodData")]. The function uses the information passed from the frontend to retrieve the

requested data from the DynamoDB database.

 [HttpGet]

 [Route("PodData")]

 public async Task<List<PodData>> GetPodData([FromQuery] string id,string paginationToken = "")

 {

 try

 {

 return await _podDataContext.GetaAll(id);

 }

 catch (Exception ex)

 {

 throw new Exception($"Amazon error in GetUser table operation! Error: {ex}");

 }

 }

Once the function gets the API call with the required information, it waits for the

information to be retrieved form the backend DynamoDB interface. The DynamoDB interface

makes an API call using the information to the DynamoDB database in AWS. The API call

carries conditions so that only the information that is being requested is returned.

 public async Task<List<T>> GetaAllPods()
 {

 var scanConditions = new List<ScanCondition>()

 {

 new ScanCondition("DevEui", ScanOperator.NotEqual, "1"),

 };

 var searchResults = base.ScanAsync<T>(scanConditions, null);

 return await searchResults.GetNextSetAsync();

 }

The function call is a template-based function, which lets the function know what model

to use for the information. The interface for the function can be seen below. The value T is

replaced with the appropriate class which represents the data model to be used. The class that

represents the data model can be seen at the end of § 5.4.6.3.

namespace SoilSensor.Data.Interface

{

 public interface IDynamoDBContext<T> : IDisposable where T : class

 {

 Task<T> GetByIdAsync(string id , string hash);

 Task SaveAsync(T item);

 Task DeleteByIdAsync(T item);

 string GetTable();

 Task<List<T>> GetaAll(string id);

 Task<List<T>> GetaAllPods(string id);

 }

}

6 MECHANICAL SKETCH AW
As stated previously in the Engineering Requirements, the dimensions of the pod should be

no larger than 90 x 90 x 100 mm, which will allow the pod to fit into the average planter.

6.1 FIRST DESIGN ITERATION

In the first design iteration, the dimensions of the pod itself was minimized, excluding

external sensors as seen in Figure 130.

Figure 130: Phase 1 Mechanical Sketch of Sensor Pod.

The capacitive soil moisture sensor upon which the design will be based has dimensions of

76.22 x 14 x 7 mm. The other sensor shown represents an electrochemical sensor. Both sensors

must make contact with the soil in order to obtain readings. The minimum size of each bottom

side of the pod can be is dependent on the size of the sensor connector. The top of the pod is a

dome because it is an optimal shape for a cylindrical battery. In the square perimeter of the dome

will be housed the battery and microcontroller.

6.2 SECOND DESIGN ITERATION

 After taking a closer look at the first design iteration, it appeared that configuring the

sensors on the pod in this manner made them more susceptible to damage. Whether it be from

storing, planting, or using, the sensors themselves could be broken by a force exerted on them, or

worse, the connector could be broken, damaging the seal, and allowing water to get into the pod

and ruining the components.

 Another problem with the first design iteration is that the pod was so small that if a

second battery were needed, it would not fit inside the pod. At the time of creating this design,

the current and voltage draw for the components was unknown. Now that the current and voltage

draw of the components and transmissions are known, adding a second battery is necessary for

the design.

 To prevent external components from being damaged and to allow space for a second

battery, a second design iteration was completed and can be seen in Figure 131.

Figure 131: Phase 2 Mechanical Sketch of Sensor Pod.

The physical sizes of the electronics are listed in Table 44.

Table 44: Electronic Component Dimensions.

 MFG Length (mm) Width (mm) Height (mm)

Soil Moisture Sensor 101020614 76.22 14 7

Battery 623360 61 36 5.7

PCB TBD TBD TBD 0.78

Microcontroller PIC24FJ256GB410 10 10 1.1

LoRaWAN Module RN2903 26.67 17.78 3.34

Antenna TBD 82 - -

The batteries will be located on the bottom of the pod to make the pod bottom-heavy so that the

orientation of the pod when it lands will be approximately the same every time. The minimum

height for the bottom of the pod was calculated in Equation 23.

ℎ𝑚𝑚𝑚𝑚𝑚𝑚 = 2ℎ𝑏𝑏𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑑𝑑 + ℎ𝑃𝑃𝑃𝑃𝐵𝐵 + ℎ𝐿𝐿𝑔𝑔𝑅𝑅𝑑𝑑𝐿𝐿𝐴𝐴𝑁𝑁 = 2(5.7) + 0.78 + 3.34 = 15.52 [𝑚𝑚𝑚𝑚] (23)

Given that the minimum height of the bottom is 15.52 mm, the top of the pod can be no larger

than 84.48 mm.

 While it is necessary to protect external circuitry, it is also important to maximize the

area inside the housing to allow for additional component design. The soil moisture sensor is

76.22 mm long, and is resting atop a triangular plane that is angled toward the center of the pod,

depicted in Figure 132.

Figure 132: Top Housing Area and Height Requirements.

To allow for a symmetric design, the angle of the sensor is limited to:

𝜃𝜃 = 𝑐𝑐𝑙𝑙𝐻𝐻−1 � 45
76.22

� = 53.815° (24)

By using the angle found in Equation 24, the minimum height of the top of the pod is calculated
as:

𝑥𝑥 = 45 tan(𝜃𝜃) = 61.5 [𝑚𝑚𝑚𝑚] (25)

Therefore, the height for the top of the pod must be between 61.5 mm and 84 mm.

The optimal volume of the pod would be to have minimum distance for the top housing of

the pod and maximum distance for the bottom housing of the pod because the area of a square is

greater than the area of a triangle. However, if the top height is set to a minimum of 61.5 mm, the

pod would not completely protect the sensor. By examining the orthogonal view and the right-

side view of Figure 131, it can be seen that the top of the pod comes to a point. If the height were

chosen such that the top of the sensor touched the top of the pod, the sensor would be hanging

over the sides of the pod. For this reason, an additional 16.5 mm was added to the height of the

top housing, resulting in a minimum height of 78 mm. To satisfy the 100 mm height

requirement, the height for the bottom housing became 22 mm.

It has not yet been determined if the antenna will be enclosed in the housing or if it will be

externally attached to the top of the pod. Given the frequency range of 915 MHz, the length if the

antenna is calculated as follows:

𝜆𝜆1/4 = �1
4
� 𝑟𝑟
𝑠𝑠

= �1
4
� 3∗108

915∗106
= 82 𝑚𝑚𝑚𝑚 (26)

Assuming a quarter wavelength antenna to optimize the power consumption in relation to range,

the antenna chosen will be 82 mm in length. Therefore, the antenna will fit inside the housing,

and the placement will depend on the arrangement of circuitry.

6.3 THIRD DESIGN ITERATION

The Sensor Pod from the second design iteration was further analyzed and detailed to

match specific components purchased for the project. A breakdown of the third iteration designs

can be seen in Figures 133-137.

Figure 133: Phase 3 Mechanical Sketch: Top Housing.

The top of the Sensor Pod was revised to have more accurate cutouts. The first cutout,

found on the side, was reconfigured to match the exact dimensions of the magnetic pogo-pin

connectors used for quick disconnect of sensors. The holes on the bottom of the top housing

were created as a means of connecting the top housing to the base through the use of screws. The

round cutouts on all four side faces of the top housing are the size of a terminal screwdriver so

that the screws can be inserted through the pod and secured to the base. Plugs can be inserted

into these holes in order to make the Sensor Pod water tight. A hole was also drilled into the top

of the shell in order to allow room for the antenna.

Figure 134: Phase 3 Mechanical Sketch: Base.

Screw holes were added to the top of the Sensor Pod base to connect to the top housing.

In addition to this, a square cutout was added in order to have an access point for the batteries to

connect to the main PCB. The battery connector cutout aligns with the connector cutout on the

battery pack, as will be seen in Figure 137. The Sensor pod must be water-tight; however, the

farmer should also be able to easily access the batteries to recharge them. Because of this, it was

determined that the best way to seal the base while still giving the farmer easy access would be

to use four screws on the bottom of the base. The base lid is seen in Figure 135.

Figure 135: Phase 3 Mechanical Sketch: Base Attachment.

The primary purpose of the base attachment is to secure the battery pack while granting easy

access to the farmer.

Figure 136: Phase 3 Mechanical Sketch: Battery Pack.

Each Sensor Pod requires two batteries to operate for an entire growing season. As stated

previously, the batteries are located at the bottom of the pod to make the Sensor Pod bottom-

heavy so it will fall correctly out of the planter during automatic installation. The batteries are

connected in parallel to satisfy the Engineering Requirement of a supplied current time of 5600

mA-H. The area in which the batteries set is the exact dimensions of two batteries; no extra room

was left to prevent the batteries from moving around and possibly coming disconnected. The

area where the wires set is deeper in dimension to allow the wires to have the correct bend radius

so they are less likely to break.

In the case that a battery needs recharged, the farmer should not have to go through the

hassle of opening the Sensor Pod circuitry and disconnecting the battery from the main PCB

itself. In doing so, the farmer not only will struggle to open the top of the pod, but also has a

greater chance of breaking the internal circuit. To avoid such problems, a battery pack, as shown

in Figure 137, is located inside of the base. The two batteries are connected in parallel to the

battery PCB, which has a quick-disconnect connector on the top half of the board that runs back

to the main PCB. The connector PCB is mounted to the lid of the battery pack and aligns with

the wireway of the pack.

Figure 137: Phase 3 Mechanical Sketch: Battery Pack Lid.

When it is time for the famer to recharge the batteries, he must simply remove the four

screws on the base attachment, remove the battery pack, and then connect the battery pack to the

charger. It is not even necessary to remove the batteries from the pack; connecting the charger to

the external connector will charge both batteries at once since the batteries are connected in

parallel. After the batteries have been fully charged, the farmer can reinsert the battery pack into

the pod and secure the base attachment to the base by inserting the four screws. The process is a

simple recharge without ever having to interact with the Sensor Pod circuitry.

6.4 POD SHELL AND FORCE OF IMPACT

Using basic Dynamics concepts, the material and thickness of the pod shell were

determined. The average farm planter travels approximately 5 kph [23]. Through observation it

was determined that the largest distance the sensor pod would fall is 1.5 m, corresponding to

falling from a potato planter. The force of impact was determined by Equations 27-29,

corresponding to velocity, kinetic energy, and impact energy respectively.

𝑠𝑠 = �2𝑙𝑙ℎ = �2(1.5)(9.81) = 5.425 𝑚𝑚/𝐻𝐻 (27)

Once the velocity of the pod was determined, the value was inserted into the Equation 28 to

determine the kinetic energy of the pod. The mass of the pod was estimated to be 0.1 kg, based

off components and pod shell material.

𝑇𝑇𝐴𝐴 = 1
2
𝑚𝑚𝑠𝑠2 = 1

2
(0.1)(5.425)2 = 1.5 𝐽𝐽 (28)

The impact energy equation was used to take into consideration the geometry and energy of the

pod shell.

𝑈𝑈 = 𝜎𝜎2𝐴𝐴𝐿𝐿
2𝐸𝐸

 (29)

σ is the minimum yield strength of the material, A is the area of the pod shell, L is the length of

the shell. E corresponds to the material energy, as calculated in Equation 30.

𝐸𝐸 = 𝑚𝑚𝑚𝑚𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑔𝑔𝑑𝑑𝑚𝑚𝑚𝑚

= 2.3∗106

0.015
= 1.5 ∗ 109 (30)

The pod shell prototypes will be 3D printed. The two types of materials the University of Akron

Electrical Engineering 3D printers can print is ABS plastic and PLA plastic. By examining the

mechanical composition of each plastic, it was seen that ABS plastic had a higher yield strength,

and therefore was more durable than PLA plastic [24]. Through this analysis, it was determined

that ABS plastic would be used for the sensor pod shell prototype.

 The length of the pod shell was divided into two components: the base of the pod

(square) and the top housing of the pod (triangle). Although the total height of the pod is 100mm,

this does not take into consideration the length of the hypotenuse in Figure132. The total length

was determined to be the length of the base plus the length of the top housing, which is half the

length of the base because the top housing is a 45º right triangle.

 Rearranging Equation 30 to solve for area, the minimum thickness of the pod shell can be

determined.

𝑚𝑚 = 2𝑈𝑈𝐸𝐸
𝜎𝜎2𝐿𝐿

= 2(1.5)(1.5∗109)
(29.6∗106)2�0.05+120.05�

= 684.8 ∗ 10−6 𝑚𝑚 (31)

The impact energy U was defined to be equivalent to the kinetic energy found in Equation 28,

because if the impact energy was less than the kinetic energy, the pod shell would not be able to

withstand the force of impact, which would result in the pod shattering upon impact. Note that

Equation 31 is the area of the entire pod shell, it does not say what the thickness is of an

individual side.

Figure 138: Pod Shell Geometry.

To find the thickness of an individual side, as referenced in Figure 76, the geometry of the shell

base was used to construct Equation 32.

𝑚𝑚 = (2𝑥𝑥)2 → 𝑥𝑥 = √𝐴𝐴
22

= √68.5
4

= 2.069 ∗ 10−3 𝑚𝑚 (32)

The minimum thickness the ABS plastic pod shell can be without shattering upon impact is 2

mm thick.

6.5 SENSOR POD PROTOTYPES

Once the design iterations were complete, the 3D models were printed using ABS plastic.

The prototypes for Pod 1 are shown in Figures 139-141.

Figure 139: 3D Prototype: Pod Base.

Figure 140: 3D Prototype: Battery Pack.

Figure 141: 3D Prototype: Top Housing w/ Base.

A second set of prototypes for Pod 2 was created. The fully assembled Sensor Pod can be seen in

Figure 142.

Figure 142: Fully Assembled Sensor Pod.

The battery pack of Pod 2 is located in Figure 143. The batteries attach to the connector PCB

shown.

Figure 143: Assembled Battery Pack.

A third protype of the same design was created. The three Sensor Pods are seen in Figure 144.

The middle pod displays the PCB, quick disconnect, and sensor designs.

Figure 144: Sensor Pod Prototypes.

7 FUTURE IMPLEMENTATION
Apart from fully programming and utilizing the battery monitoring system, the processes

for installation and retrieval were also analyzed and designed for future implementation.

7.1 AUTOMATED INSTALLATION AW

Wired soil sensors currently exist in farm fields. It takes many hours to manually install all

of the sensors into the soil in all the fields a farmer owns. To reduce the labor as well as the time

it takes for install, the Sensor Pods can be attached to the inside of a planter for automatic

installation. The Sensor Pods can be placed into a tube, similar to a PVC pipe, with 4 slits cut out

for brackets to hold the sensor pods in place within the tube. A half-view of the setup is seen in

Figure 145.

Figure 145: Automated Installation Contraption.

The bottom two brackets are in parallel to hold the sensor about to be planted into place.

The top two brackets are inserted to hold the remaining pods in place, separating them from the

bottom sensor. Each bracket will be connected to a linear cylinder, and each bracket set will be

connected to an electric solenoid. The two solenoids will work independently from one another.

The automated installation process works as follows.

 Both solenoids start in a closed state, as seen in the figure. The controls of the installation

contraption will be connected to the odometer of the planter. Once the planter travels x-number

of meters, the lower solenoid is activated, opening the bottom two cylinders, and releasing the

bottom pod. Once the pod is released, the bottom cylinders close. The upper solenoid is then

activated, opening the top set of brackets to allow the Sensor Pods to shift down to the bottom

brackets. The upper solenoid is then deactivated, closing the top set of cylinders and brackets.

The planter travels x-number of meters, and the process begins again until every Sensor Pod is

installed. The Sensor Pods are released and buried with the seeds in order to ensure the pods will

be planted where the roots of the seeds will grow.

7.2 RETRIEVAL PROCESS LF, AW

A few different types of retrieval processes were analyzed but never implemented. The

first is to use the LoRa transceiver circuitry. On the instance the that the Sensor Pod voltage goes

below a certain threshold and it is determined that the pod will not last and entire growing

season, the Sensor pod will alert the farmer that the battery is low and give the farmer the option

to begin the Retrieval Process. The farmer would have a retrieval device that contains a second

LoRa transceiver that could be taken into the field. Once in the field, the farmer will start the

Retrieval Process and drive the LoRa receiving unit to the Sensor Pod that has the almost dead

battery. The module in the Sensor Pod would transmit a constant signal for 5 minutes so that the

farmer can locate and retrieve it. The only problem using this method is that it would be an extra

cost to the farmer since the average person does not have a LoRa receiving device laying around

their house.

A more cost-effective approach for the farmer would be to use the LoRa module with an

AM radio. LoRa communicates on the 615 MHz US frequency band. The AM radio frequency

range is between 550-1720 kHz. In order to reduce the LoRa frequency to the frequency that can

be received by an AM radio, a class AB power de-amplifier circuit would be added to the main

PCB. A power amplifier will alter the output voltage and current from the LoRa module to match

the desired input voltage and current to the AM radio. The power outputted from the module is

18mW. Once the desired receive frequency is determined, the power inputted to the radio can be

calculated. When this value is calculated, the power from the module can be divided by the

power from the radio to determine the circuit gain of the amplifier.

 A disadvantage to the above two proposed processes is that LoRa transmission consumes

a significant amount of power, as explained in § 5.4.1.2. The retrieval process is activated

because the battery is almost depleted. Using the LoRa module for transmission, and allowing it

to transmit consistently for 5 minutes, will consume a lot of power. The farmer would have to

retrieve the pod while the pod had enough battery left for the transmission to be possible because

once the battery is depleted, the pod would no longer be able to transmit a signal to be retrieved.

 The last, and most practical, process that was analyzed was to use a GPS tracker. The

manufactured tracking device can be placed on the bottom side of the main PCB and connected

to the farmer’s phone through an app. An example of a practical GPS tracker that can be used is

the Nano Hornet GPS Tracker seen in Figure 146.

Figure 146: MN5D10HS Nano Hornet GPS Tracker. Image retrieved from https://trackimo.com/micro-gps-tracking-chips/.

The OriginGPS tracking device has a low transmission power and high reading accuracy. It also

has dimensions of 10x10x3.8mm, which would easily fit onto the main PCB. The device would

be fully integrated into the circuit so that it can be activated when the battery retrieval process

begins.

8 DESIGN TEAM INFORMATION RK, AW
The Soil Sensor Network team consists of two electrical and two computer engineers.

Below is a list of the members on the team.

Aléxis Alves, Computer Engineering. ESI (Y)

Luke Farnsworth, Electrical Engineering. ESI (N)

Ross Klonowski, Computer Engineering. ESI (Y)

Andrea Wyder, Electrical Engineering. ESI (N)

Ross Klonowski is the project manager, Luke Farnsworth is the hardware manager, Aléxis Alves

is the software manager, and Andrea Wyder is the archivist.

9 PARTS LIST AW

9.1 SCHEMATICS PARTS LIST

Once the compiled set of schematics was created in EagleCAD, a Bill of Materials (BOM)

was exported and formatted, as seen in Table 45.

Table 45: Design Schematics Parts List.

Refdes Part Num. Storage Description
Battery

BAT1 623360 3.7V, 2800mA-H lithium-ion battery
Voltage Regulator

IC1 XC9140A331MR-G 3.3V step-down regulator
C1 UA stock 4.7uF capacitor
C2 UA stock 10uF capacitor
L1 UA stock 4.4uH inductor

Microcontroller
C6-
C13 UA stock 0.1uF capacitor (ceramic if possible)

C14
UA stock

10uF
capacitor (tantalum/ceramic if
possible)

R3 UA stock 10kΩ resistor
R4 UA stock 100Ω resistor
X1 UA stock RJ-11 PCB connector

Temperature Sensor
IC4 MAX6607IXK+T 3.3V temperature sensor
C15 UA stock 1nF capacitor
C16 UA stock 0.2uF capacitor

Soil Moisture Sensor
R1 UA stock 150kΩ resistor
R2 UA stock 3.3MΩ resistor
C3 UA stock 10pF capacitor
C4 UA stock 10nF capacitor
C5 UA stock 10nF capacitor
- UA stock 20pF capacitor

U1 UA stock TLC555 timer

LoRa Module
IC2 RN2903 3.3V LoRa Module

ANT1 RSRA6982700SSM 3.3V Antenna
- 1825910-6 - Reset Switch

The parts were chosen based off the Engineering Analysis and Accepted Technical Design

sections. The RefDes column indicates the referenced part in the schematics section, Part Num.

indicates the manufacturer part number, Storage indicates the value of the component, and

Description indicates the type of device.

 The next semester the Sensor Pods were reconfigured for the implementation stage, and

the new Parts List for the PCBs and their components is shown in Table 46.

Table 46: Implementation Schematics Parts List.

Refdes Frame Part Num. Description Case on PCB
SENSOR POD SHELL

N/A Pod Shell 310889508
#2-56 x 1/4 in. Phillips Machine
Screws N/A

N/A PCBs G01K PCB Foot Mounts N/A
MAIN PCB COMPONENTS

C1 555 Timer TMK107BBJ106MA-T 10 uF capacitor 0603 (1608)

C2 555 Timer TMK063B7103KP-F 0.01uF capacitor 0603 (1608)

C3 PIC24 TMK107BJ104KAHT 0.1 uF capacitor 0603 (1608)

C4 PIC24 TMK107BJ104KAHT 0.1 uF capacitor 0603 (1608)
C6 PIC24 TMK107BJ104KAHT 0.1 uF capacitor 0603 (1608)
C7 PIC24 TMK107BJ104KAHT 0.1 uF capacitor 0603 (1608)
C8 PIC24 TMK107BJ104KAHT 0.1 uF capacitor 0603 (1608)
C9 PIC24 TMK107BJ104KAHT 0.1 uF capacitor 0603 (1608)

C10 PIC24 TMK107BJ104KAHT 0.1 uF capacitor 0603 (1608)

C11 Reset TMK107BBJ106MA-T 10 uF capacitor 0603 (1608)

C12 PIC24 TMK107BBJ106MA-T 10 uF capacitor 0603 (1608)

R3 PIC24 RMCF2010JT3M30 4.7k ohm resistor 2010
R4 555 Timer RMCF2010JT3M30 3.3M ohm resistor 2010
R5 555 Timer RMCF0805JT150KTR-ND 150k ohm resistor 2010
R6 Reset RMCF0805JT10K0 10k ohm resistor 8050

R7 Reset RMCF0805JT470R 470 ohm resistor 8050
R9 LED RMCF0805JT1K00 1k ohm resistor 8050
R10 LED RMCF0805JT1K00 1k ohm resistor 8050
R11 LED RMCF0805JT1K00 1k ohm resistor 8050

R15 Battery Monitor RMCF0805JT4K70 4.7k ohm resistor 8050
R16 Battery Monitor RMCF0805JT4K70 4.7k ohm resistor 8050
D1 LED AP2012EC LED Lights Red CHIP-LED0805
D2 LED 17-21SYGC/S530-E2/TR8 LED Lights Green CHIP-LED0805
D3 LED APT2012NW LED Lights Orange CHIP-LED0805
JP1 Jumpers N/A 3 PIN Header N/A
JP2 Jumpers N/A 3 PIN Header N/A
JP3 Jumpers N/A 3 PIN Header N/A
J1 Regulator B02B-PASK(LF)(SN) 2 PIN Header N/A
J2 555 Timer CONN02SMLPCB/*FLPCB 2-pin connector male/female N/A
J3 Temp Sensor CONN03SMLPCB/*FLPCB 3-pin connector male/female N/A
IC2 RN2903 RN2903A-I/RM103-ND LoRa Module N/A
IC3 PIC24 PIC24FJ256GB410-I/PT Microprocessor N/A
U1 555 Timer TLC555QDRQ1 TLC555 timer N/A
SW1 Reset 1825910-6 Reset switch N/A

VOLTAGE REGULATOR PCB COMPONENTS
C14 Regulator TMK107BBJ106MA-T 10 uF capacitor 0603 (1608)
C15 Regulator AMK107BBJ226MA-T 22 uF capacitor 0603 (1608)

R12 Regulator RMCF0805JT10K0 10k ohm resistor 8050

R13 Regulator RMCF0805JT560K 560k ohm resistor 8050

R14 Regulator RMCF0805JT100K 100k ohm resistor 8050

L1 Regulator VLCF4020T-2R2N1R7 2.2 uH shielded inductor N/A

IC1 Regulator STBB1-APUR 2.0 V - 5.5 V IC buck boost
regulator

DFN10 (3 x 3
mm)

TEMPERATURE SENSOR PCB COMPONENTS
C1 Temp Sensor TMK107BBJ106MA-T 10 uF capacitor 0603 (1608)
C2 Temp Sensor 0805B204K500CT 0.2uF capacitor 0603 (1608)
U1 Temp Sensor MAX6608IUK+T temperature sensor 0805 (2012)

BATTERY MONITORING PCB COMPONENTS
C5 Battery Monitor EMF107B7105MAHT 1 uF capacitor 0603 (1608)
C13 Battery Monitor EMF107B7224MAHT 0.22 uF capacitor 0603 (1608)
R1 Battery Monitor RL1220T-R010-J 10m ohm resistor 8050
R2 Battery Monitor RMCF0805JT200K 200k ohm resistor 8050
R3 Battery Monitor RMCF0805JT1K00 1k ohm resistor 8050

U1 Battery Monitor STC3100IST IC Battery Monitoring 8-TSSOP
CONNECTOR PCB COMPONENTS

J2
Moisture
Sensor CONN02SMLPCB/*FLPCB 2-pin connector male/female N/A

J3 Temp Sensor CONN03SMLPCB/*FLPCB 3-pin connector male/female N/A

The parts were chosen based off the Accepted Technical Design as well as the size constraints of

the PCB in order to have it fit into the Sensor Pod.

9.2 MATERIALS BUDGET LIST AW

Once the schematics were created and a BOM was exported, a Materials Budget List was

created to keep track of what has been purchased. The information on the BOM was inserted in

columns 3, 4, and 5 of the Material Budget List, as seen in Table 47.

Table 47: Material Budget List Fall Semester.

Order
Form Qty

Ref
des Part Num. Description

Suggested
Vendor

Vendor
Part Num. Cost

Total
Cost

RESEARCH & DEVELOPMENT

1 1 - 101020614 Soil Moisture
Sensor Digikey 101020614 $6.07 $6.07

1 2 (IC3) DM164139 Development
Boards Digikey DM164139-ND $71.39 $142.78

2 1

-

PIC24FJ256GB410

Development
Board
Accessory: Plug-
In Module (PIM) Microchip MA240038 $25.00 $25.00

3 1

-

1110748

Development
Board
Accessory:
Socket Adapter Digikey A800AR-ND $11.44 $11.44

POD INTERIOR

1 8 IC4 MAX6607IXK+T Temperature
sensor Digikey MAX6607IXK+T $1.70 $13.60

1 8
BAT1

623360
Battery (Out of
Stock on
Amazon) Amazon 623360 $7.47 $59.76

1 2 - ADA1904 Battery Charger Amazon ADA1904 $9.33 $18.66
SOIL MOISTURE SENSOR

3 4 R1 - 150K ohm
resistor UA stock - $

- $ -

3 4 R2 - 3.3M ohm
resistor UA stock - $

- $ -

3 4 C3 - 10pF capacitor UA stock - $
- $ -

3 4 C4 - 10nF capacitor UA stock - $
- $ -

3 4 C5 - 10nF capacitor UA stock - $
- $ -

3 4 - - 20pF capacitor UA stock - $
- $ -

3 4 U1 - TLC555 timer UA stock - $
- $ -

VOLTAGE REGULATOR CIRCUIT

4 4 C1 - 4.7 uF capacitor UA stock -
 $
- $ -

4 4 C2 - 10 uF capacitor UA stock -
 $
- $ -

4 4 L1 - 4.4 uH inductor UA stock -
 $
- $ -

4 4 IC1
XC9140A331MR-

G
Step-down
regulator Digikey

893-1180-1-ND -
Cut Tape (CT) $1.03 $4.12

POD EXTERIOR

1 2 ANT1
RSRA6982700SS

M Antenna Arcantenna
RSRA698/2700SS
M $15.00 $30.00

PROGRAMMABLE DEVICES
LoRa MODULE

1 2 IC2 RN2903 LoRa Module Digikey
RN2903A-
I/RM103-ND $12.80 $25.60

4 4 - 1825910-6 Reset switch Digikey 450-1650-ND $0.10 $0.40
MICROCONTROLLER

4 32
C6-
C13 -

0.1 uF capacitor
(ceramic if
possible) UA stock

-
 $ - $ -

4 4 C14 -

10 uF capacitor
(tantalum if
possible) UA stock

-
 $ - $ -

4 4 R3 -
10k ohm
resistor UA stock - $ - $ -

4 4 R4 -
100 ohm
resistor UA stock - $ - $ -

4 4 X1 - RJ-11 PCB
connector UA stock - $ - $ -

 Total Spent $337.43

Development
Costs $185.29

 Budget Spent $152.14

 Budget $600

 Budget Remaining $447.86

Multiple Parts Request Forms (Order Forms) make up the Material Budget List. The first column

of Table 46 displays on which form each part was ordered, and column 2 displays how many

were ordered.

 For the final design, five sensor pods were constructed. To avoid backordered parts, five

of every part was ordered in the design phase so that each pod would have all of its components

beginning the implementation phase. Once the difficulty of soldering microcircuitry was

experienced, extra micro components were ordered in case of damage during construction and

testing. A few components exist on the Material Budget List that do not exist on the BOM

because they are development components that were used this design phase but were not

implemented in the final design. The final design budget can be found in Table 48.

Table 48: Material Budget List Spring Semester.

Order
Form Qty. Refdes Part Num. Description

Suggested
Vendor Vendor Part Num. Cost

Total
Cost

VOLTAGE REGULATOR PCB

6 4 IC1 MIC59150YME
Voltage
Regulator Digikey MIC59150YME $1.88 $7.52

8 1
IC1

MAX763ACSA+
3.3V Step-
Down Voltage
Regulator Digikey MAX763ACSA+-ND $4.67 $4.67

BUCK-BOOST

8 7
IC1

STBB1-APUR
2.0 V - 5.5 V IC
buck boost
regulator Digikey 497-11971-2-ND $2.48 $17.36

8 10 L1 VLCF4020T-2R2N1R7 2.2 uH shielded
inductor Mouser

810-
VLCF4020T2R2N1R7 $0.47 $4.70

8 5 C14 TMK107BBJ106MA-T 10 uF capacitor Mouser
963-
TMK107BBJ106MA-T $0.47 $2.35

8 10 C15
AMK107BBJ226MA-
T 22 uF capacitor Mouser

963-
AMK107BBJ226MA-T $0.35 $3.50

8 10 R12 RMCF0805JT10K0
10k ohm
resistor Digikey RMCF0805JT10K0CT-

ND $0.20 $2.00

8 10 R13 RMCF0805JT100K
100k ohm
resistor Digikey

RMCF0805JT100KTR-
ND $0.02 $0.20

8 10 R14 RMCF0805JT560K
560k ohm
resistor Digikey RMCF0805JT560KTR-

ND $2.00 $20.00
MAIN PCB

7 2 - R2-56X1/4
Sensor Pod
Screws Mouser 608-R2-56X1/4 $0.57 $1.14

7 100
- M20X100C

Sensor Pod
Screw
Connectors Mouser

761-M20X100C
$0.18 $18.00

7 1 - G01K
PCB foot
mounts Amazon G01K $9.99 $9.99

10 1

- 310889508

#2-56 x 1/4 in.
Phillips
Machine
Screws

Home
Depot

9002676

$8.42 $8.42
MICROCONTROLLER

6 8 IC3
PIC24FJ256GB410-
I/PT Microprocessor Microchip PIC24FJ256GB410-

I/PT $5.83 $46.64

5 50 C3-C12 TWK107B7104MVHT 0.1 uF
capacitor Mouser

963-
TWK107B7104MVHT $0.31 $15.50

5 6 C2 TMK063B7103KP-F 0.01 uF
capacitor Mouser

963-
TMK063B7103KP-F $0.10 $0.60

5 6 C1 TMK107BBJ106MA-T 10 uF capacitor Mouser
963-
TMK107BBJ106MA-T $0.51 $3.06

https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926

5 10 J2, J3 B3B-ZR(LF)(SN) 3-pin
connector Digikey 455-1658-ND $0.18 $1.80

5 6 J1 B02B-PASK(LF)(SN) 2-pin
connector Digikey 455-1817-ND $0.25 $1.50

5 6 X2 SMA CONNECTOR SMA connector Mouser 471-SMACONNECTOR $1.08 $6.48

6 50 C3-C12 TMK107BJ104KAHT 0.1 uF
capacitor Digikey 587-3472-2-ND $0.04 $2.00

6 10 C2 C0603C103J3GACTU 0.01 uF
capacitor Digikey 399-7838-2-ND $0.25 $2.50

6 10 C1 TMK107BBJ106MA-T 10 uF capacitor Digikey 587-6023-2-ND $0.30 $3.00

10 10 C2 C0603C103J3GACTU 0.01 uF (10,000
pF) capacitor Mouser 80-C0603C103J3G $0.17 $1.70

10 5 C1 TMK107BBJ106MA-T 10 uF capacitor Mouser
963-
TMK107BBJ106MA-T $0.35 $1.75

10 2 IC3
PIC24FJ256GB410-
I/PT Microprocessor Microchip PIC24FJ256GB410-

I/PT $5.83 $11.66
10 5 U2 TLC555QDRQ1 TLC555 timer Digikey 296-22999-2-ND $0.35 $1.75

EXTERNAL SENSOR CONNECTORS

6 8 J2 CONN02SMLPCB
2-pin
connector male UA Stock WM4200-ND - -

6 8
J2

CONN02SFLPCB
2-pin
connector
female

UA Stock WM2011-ND
- -

6 8 J3 CONN03SMLPCB
3-pin
connector male UA Stock WM4201-ND - -

6 8
J3

CONN03SFLPCB
3-pin
connector
female

UA Stock WM2012-ND
- -

LORA MODULE

6 4 IC2 RN2903 LoRa Module Digikey
RN2903A-I/RM103-
ND $12.80 $51.20

INTERNAL MOISTURE SENSOR

7 8 C2 TMK107BJ104KAHT 0.1 uF
capacitor Digikey 587-3472-2-ND $0.07 $0.56

7 8 U1 TLC555QDRQ1 TLC555 timer Digikey 296-22999-2-ND $0.83 $6.64

7 7 R1 CR2010-JW-101ELF 100 ohm
resistor Digikey

CR2010-JW-
101ELFTR-ND $0.14 $0.98

7 7 R2
RMCF2010JT10K0TR-
ND

10k ohm
resistor Digikey RMCF2010JT10K0CT-

ND $0.20 $1.40

7 7 R3 RMCF2010JT4K70 4.7k ohm
resistor Digikey RMCF2010JT4K70TR-

ND $0.20 $1.40

7 7 R4 RMCF2010JT3M30
3.3M ohm
resistor Digikey RMCF2010JT3M30TR-

ND $0.20 $1.40

7 7 R5
RMCF2010JT150KTR-
ND

150k ohm
resistor Digikey RMCF2010JT150K $0.20 $1.40

10 5 R4 RMCF2010JT3M30
3.3M ohm
resistor Digikey RMCF2010JT3M30TR-

ND $0.02 $0.10

10 10 R5
RMCF2010JT150KTR-
ND

150k ohm
resistor Digikey RMCF2010JT150K $0.20 $2.00

10 20 R9-R11 RMCF0805JT1K00 1k ohm resistor Digikey
RMCF0805JT1K00TR-
ND $0.02 $0.40

10 10 R6 RMCF0805JT10K0
10k ohm
resistor Digikey RMCF0805JT10K0CT-

ND $0.02 $0.20

10 10 R7 RMCF0805JT470R
470 ohm
resistor Digikey RMCF0805JT470RTR-

ND $0.02 $0.20

https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926

DEBUGGING

7 1 - 1825910-6 Reset switch Digikey 450-1650-ND $0.10 $0.10
10 10 D1 AP2012EC LED Lights Red Mouser 604-AP2012EC $0.13 $1.30

10 10 D2 17-21SYGC/S530-
E2/TR8

LED Lights
Green Mouser

638-
1721SYGCS530E2 $0.16 $1.60

10 10 D3 APT2012NW LED Lights
Orange Mouser 604-APT2012NW $0.19 $1.90

ANTENNA

6 3 ANT1 RSRA6982700SSM Antenna Arcantenna RSRA698/2700SSM $15.00 $45.00
TEMPERATURE SENSOR PCB

5 6 U1 MAX6608IUK+T
temperature
sensor Digikey MAX6608IUK+TR-ND $1.49 $8.94

5 6 C1 TMK063BJ102KP-F 1 nF capacitor Mouser
963-TMK063BJ102KP-
F $0.10 $0.60

5 6 C2 TWK107B7104MVHT 0.1 uF
capacitor Mouser

963-
TWK107B7104MVHT $0.31 $1.86

6 5 U1 MAX6608IUK+T
temperature
sensor Digikey MAX6608IUK+TR-ND $1.49 $7.45

6 10 C1 C0603C102K3RACTU 1 nF capacitor Digikey 399-7834-2-ND $0.07 $0.70

6 10 C2 TMK107BJ104KAHT 0.1 uF
capacitor Digikey 587-3472-2-ND $0.07 $0.70

7 7 C2 0805B204K500CT 0.2uF capacitor Mouser
791-
0805B204K500CT $0.45 $3.15

TEMPERATURE SENSOR CONNECTOR PCB

6 5 J2 CONN03SMLPCB
3-pin
connector male UA Stock WM4201-ND - -

6 5 J2 CONN03SFLPCB
3-pin
connector
female

UA Stock WM2012-ND
- -

MOISTURE SENSOR CONNECTOR PCB

6 5 J3 CONN02SMLPCB
2-pin
connector male UA Stock WM4200-ND - -

6 5
J3

CONN02SFLPCB
2-pin
connector
female

UA Stock WM2011-ND
- -

BATTERY PACK PCB

6 4 - 623360 3.7V 2800mA-
Hr Battery Amazon 623360 $10.99 $43.96

BATTERY MONITORING PCB

10 7 U1 STC3100IST
IC Battery
Monitoring Newark 55T3932 $2.19 $15.33

10 10 R1 (Rcg
Datasheet) RL1220T-R010-J

10m ohm
resistor Digikey RL12T.010JTR-ND $0.02 $0.20

10 10 R15, R16 RMCF0805JT4K70 4.7k ohm
resistor Digikey RMCF0805JT4K70TR-

ND $0.18 $1.80

10 10 R2 (Rosc
Datasheet) RMCF0805JT200K

200k ohm
resistor Digikey

RMCF0805JT200KTR-
ND $0.02 $0.20

10 10 C5 (C1
Datasheet) EMF107B7105MAHT 1 uF capacitor Mouser

963-
EMF107B7105MAHT $0.02 $0.20

10 10 C13 (C2
Datasheet) EMF107B7224MAHT

0.22 uF
capacitor Mouser

963-
EMF107B7224MAHT $0.02 $0.20

10 10 R3 (R1
Datasheet) RMCF0805JT1K00 1k ohm resistor Digikey

RMCF0805JT1K00TR-
ND $0.20 $2.00

PCB DESIGNS

6 1 set of 5 -
Soil Moisture
Capacitor JLCPCB - $2.00 $2.00

6 1 set of 5 -
Capacitor to
Main Board JLCPCB - $4.00 $4.00

6 1 set of 5 -
Temperature
Sensor JLCPCB - $4.00 $4.00

6 1 set of 5 -
Temperature
to Main Board JLCPCB - $4.00 $4.00

6 1 set of 5 -
Main Board
Rev 1 JLCPCB - $4.00 $4.00

10 1 - -
Main Board
PCB w/ stencil JLCPBC - $10.50 $10.50

10 1 - -
Battery Pack
PCB JLCPCB - $4.00 $4.00

 Total Spent $440.70

 Budget Spent $152.14

 Budget $600.00

 Budget Remaining $7.16

Each design team was given a $600 budget to be used for prototypes and final designs. To

keep track of the budget, the Total Cost column of the Materials Budget List was added up and

subtracted from the total budget. The components in blue (development components) were

subtracted from the total cost. Since these components can be reused for future design teams, the

university absorbs the costs and it is not considered part of the $600 design team budget. The

components in red (experimental components) were used for testing but never implemented in

the final design. Two tables were created to separate design costs (Fall semester) and

implementation costs (Spring semester). At the end of Spring semester, the Soil Sensor Network

Design Team’s remaining budget is $7.16.

9.3 COST COMPARISON ANALYSIS AW

The Soil Sensor Network is geared towards family farms. Most likely commercial farms

can afford commercial-grade equipment to monitor soil properties, however, family farms cannot

afford this luxury. Table 49 contains a cost analysis of the Soil Sensor Network, including pod

costs and upfront costs.

Table 49: Sensor Pod Network Cost.

Upfront costs are defined as costs that farmers will only have to pay once. These include

the gateway and battery charger. The gateway can support up to roughly 1000 pods because of

its low bandwidth. Given that the average size of a large family farm is 5.7 km2 and that there is

one Sensor Pod every tenth of a kilometer, a large family farm on average would need 57 pods to

monitor their field. This means one gateway is more than capable of managing the traffic of all

the Sensor Pods.

The price to build one pod is roughly $54. If this design were being sold in the market, it is

reasonable to make the assumption that buying supplies in bulk, and possibly working with

vendors, would decrease the cost of the material by at least 30 percent. The cost of the pod would

then become roughly $38 to manufacture. If manufacturing is done overseas, the cost of

manufacturing the pod would decrease significantly more. By manufacturing in bulk and selling

for $50 a pod, the company would make a substantial profit.

To gain a better understanding of how cost effective the proposed approach is to farmers,

the average cost of commercial-grade soil monitoring equipment currently on the market is

shown in Table 50.

Table 50: Market Costs for Sensor Networks.

As seen above, equipment with the same sensor types of sensors costs over $1000. In addition to

this, companies that sell this equipment only give farmers the option to rent out the

communications system. Most wireless communications systems use licensed frequency bands,

which means the user has to pay data rates to be granted access to the band since frequency is a

limited resource. The proposed solution uses LoRa communication which operates on an

unlicensed frequency band and does not require monthly or annual payments, further reducing

operational costs.

10 PROJECT SCHEDULES AA, RK, AW
The workload for the Soil Sensor Network project was distributed in two different ways. A

Gantt Chart was used for a top-level work distribution to remind the team when sections were

due and which team (electrical or computer) was responsible for which section. Azure DevOps

was used on a daily basis and updated weekly to give a visual representation of current progress.

10.1 AZURE DEVOPS SPRINT BOARD

Azure DevOps is a project management board, broken into sprints, that displays the

progress a team is making per week. As seen in Figure 147, the work was first split up into main

categories.

Figure 147: Azure DevOps Board Sprint 3.

For Sprint 3, a few of these categories included the Midterm Report, Project, and Engineering

Analysis. These were then broken down into subcategories and assigned to individual members.

For instance, the Engineering Analysis was further broken into Circuit Analysis, Computer

Network Analysis, Electronics Analysis, Communications Analysis, Antenna Design, and

Electrochemical Sensor Design. Each subcategory can be organized into three columns: To Do,

Doing, and Done. The goal for each sprint is to complete each subcategory and move it to the

Done column before the end of the week. Weekly sprints were chosen due to rapidly

approaching deadlines. As with Agile Development, any subcategory that does not get completed

by the end of the sprint can be reevaluated and carried over to the next sprint if needed.

It can be argued that DevOps is a better alternative than Microsoft Projects for multiple

reasons. The software is free and accessible for a small project team of up to five users. It also

offers an interactive user interface where teams can physically move tasks, issues, and

improvements from one state to another to visualize the progress of their project. The reports for

these sprints can then be exported to track progress over the duration of the project. Azure Dev-

Ops was not relied upon as heavily during the last semester of the project.

10.2 DESIGN GANTT CHART

A Gantt Chart is used to keep track of project milestones throughout the semester. The

chart is populated with every task to be completed. After each sprint, the Sprint Week and

Progress columns are updated; the sprint displays the week the task was worked on and the

Progress displays the status of the task. If the task was started but not completed, the Progress

column is assigned as “Doing” and a comment is made to tell what part of the task was

completed during that sprint. An example of the Design Gantt Chart can be seen in Figure 148.

Figure 148: Design Gantt Chart.

10.3 IMPLEMENTATION GANTT CHART

The Implementation Gantt Chart followed the same format at the Design Gantt Chart,

which can be seen in Figures 149 and 150.

Figure 149: Implementation Gantt Chart (1).

1 Task Description Days to Complete Date Started Date Due Sprint Week Progress Completed By
2 Project Design 91 days Wed 8/26/20 Wed 11/25/20

3 Midterm Report 40 days Wed 8/26/20 Mon 10/5/20 1, 2, 3, 4, 5 Done ALL

4 Cover page 40 days Wed 8/26/20 Mon 10/5/20 1 Done Ross
5 T of C, L of T, L of F 40 days Wed 8/26/20 Mon 10/5/20 Done Andrea
6 Problem Statement 40 days Wed 8/26/20 Mon 10/5/20 1, 2 Done ALL
7 Need 40 days Wed 8/26/20 Mon 10/5/20 0 Done ALL
8 Objective 40 days Wed 8/26/20 Mon 10/5/20 0 Done ALL
9 Background 40 days Wed 8/26/20 Mon 10/5/20 1, 2, 11 Done ALL

10 Marketing Requirements 40 days Wed 8/26/20 Mon 10/5/20 1 Done Andrea

11 Engineering Requirements Specification 40 days Wed 8/26/20 Mon 10/5/20 1, 2 Done ALL

12 Engineering Analysis 40 days Wed 8/26/20 Mon 10/5/20 1, 2 Done ALL

13 Circuits (DC, AC, Power, …) 40 days Wed 8/26/20 Mon 10/5/20 1, 2, 3 Done Luke / Andrea

14 Voltage Regulator 40 days Wed 8/26/20 Wed 11/23/20 9 Luke
15 Battery 40 days Wed 8/26/20 Wed 11/23/20 6, 9 Luke / Andrea / Alex

16 Electronics (analog and digital) 40 days Wed 8/26/20 Mon 10/5/20 1, 2, 3 Done Luke / Andrea

17 Soil Moisture Sensor Analysis Wed 8/26/20 Mon 10/5/20 4 Done Andrea
18 Soil Nutrient Analysis Wed 8/26/20 Mon 10/5/20 4 Done Andrea
19 Antenna Analysis Wed 8/26/20 Mon 10/5/20 4 Done Andrea / Alex
20 Signal Processing Wed 8/26/20 Mon 10/5/20 TBD
21 Communications (LoRa) 40 days Wed 8/26/20 Mon 10/5/20 2 Done Ross / Alex / Andrea
22 Electromechanics 40 days Wed 8/26/20 Mon 10/5/20 N/A N/A N/A
23 Computer Networks 40 days Wed 8/26/20 Mon 10/5/20 2, 5 Done Alex / Ross
24 Embedded Systems 40 days Wed 8/26/20 Mon 10/5/20 2, 5 Done Alex / Ross
25 Accepted Technical Design 40 days Wed 8/26/20 Mon 10/5/20 3 Done ALL
26 Hardware Design: Phase 1 40 days Wed 8/26/20 Mon 10/5/20 2, 3 Done Luke / Andrea

27 Hardware Block Diagrams Levels 0 thru N
(w/ FR table)

40 days Wed 8/26/20 Mon 10/5/20 2, 3 Done Luke / Andrea / Alex

28 Software Design: Phase 1 40 days Wed 8/26/20 Mon 10/5/20 1, 2, 3 Done Ross / Alex

29
Software Behavior Models Levels 0 thru N
(w/FR table) 40 days Wed 8/26/20 Mon 10/5/20 1, 2, 3 Done Alex / Ross

30 Mechanical Sketch 40 days Wed 8/26/20 Mon 10/5/20 2, 3 Done Andrea

31 Team information 40 days Wed 8/26/20 Mon 10/5/20 0 Done ALL
32 Project Schedules 40 days Wed 8/26/20 Mon 10/5/20 ALL Done ALL
33 Midterm Design Gantt Chart 40 days Wed 8/26/20 Mon 10/5/20 N/A N/A N/A
34 References 40 days Wed 8/26/20 Mon 10/5/20 4 Done ALL
35 Midterm Parts Request Form 47 days Wed 8/26/20 Mon 10/12/20 4 Done ALW
36 Midterm Design Presentations Day 1 0 days Wed 9/23/20 Wed 9/23/20 N/A Done ALL
37 Midterm Design Presentations Day 2 0 days Wed 9/30/20 Wed 9/30/20 N/A N/A N/A
38 Project Poster 14 days Wed 10/21/20 Wed 12/4/20 13 Doing ALL
39 Final Design Report 50 days Tue 10/6/20 Wed 11/25/20 12 Done ALL
40 Abstract 48 days Tue 10/6/20 Mon 11/25/20 11 Done Andrea

Figure 150: Implementation Gantt Chart (2).

10.4 ACTUAL GANT CHART

The Actual Gantt Chart for the final semester implementation followed the same format as

the previous two Gantt Charts. This Gantt Chart provided a more detailed description of how and

when each subsystem would be designed and integrated, as seen in Figures 151 and 152.

41 Hardware Design: Phase 2 48 days Tue 10/6/20 Mon 11/23/20 10 Done Luke / Andrea
42 Modules 1…n 48 days Tue 10/6/20 Mon 11/23/20 10 Done Luke / Andrea
43 Simulations 48 days Tue 10/6/20 Mon 11/23/20 10 Done Luke / Andrea
45 Soil Moisture Sensor 48 days Tue 10/6/20 Mon 11/23/20 7 Done Andrea
46 Schematics 48 days Tue 10/6/20 Mon 11/23/20 8 Doing Andrea
47 Soil Moisture Sensor 48 days Tue 10/6/20 Mon 11/23/20 7 Done Andrea
48 Voltage Regulator 48 days Tue 10/6/20 Mon 11/23/20 7 Done Andrea
49 Temperature Sensor 48 days Tue 10/6/20 Mon 11/23/20 8, 10 Done Andrea
50 Microcontroller 48 days Tue 10/6/20 Mon 11/23/20 8, 9 Done Andrea / Alex
51 LoRa Module 48 days Tue 10/6/20 Mon 11/23/20 8, 9 Done Andrea / Alex
52 Prototype 48 days Tue 10/6/20 Mon 11/23/20 11 Done Luke / Andrea
53 Soil Moisture Sensor 48 days Tue 10/6/20 Mon 11/23/20 7 Done Andrea
54 Voltage Regulator 48 days Tue 10/6/20 Mon 11/23/20 9, 10 Done Luke
55 Temperature Sensor 48 days Tue 10/6/20 Mon 11/23/20 6 Done Alex
56 Software Design: Phase 2 48 days Tue 10/6/20 Mon 11/23/20 11 Alex / Ross
57 Modules 1…n 48 days Tue 10/6/20 Mon 11/23/20 11 Alex / Ross
58 Code (working subsystems) 48 days Tue 10/6/20 Mon 11/23/20 11 Alex / Ross
59 LoRa Transceiver Communication 48 days Tue 10/6/20 Mon 11/23/20 11 Ross
60 Gateway/Senet Setup 48 days Tue 10/6/20 Mon 11/23/20 11 Ross
61 Database 48 days Tue 10/6/20 Mon 11/23/20 11 Alex
62 Front End/Back End Programming 48 days Tue 10/6/20 Mon 11/23/20 11 Alex
63 EWS API 48 days Tue 10/6/20 Mon 11/23/20 11 Alex
64 Web Application 48 days Tue 10/6/20 Mon 11/23/20 11 Alex
68 System Integration Behavior Models 48 days Tue 10/6/20 Mon 11/23/20 12 Alex/ Ross
69 Embedded (General) 48 days Tue 10/6/20 Mon 11/23/20 12 Alex
70 Trigger Sensor Readings 48 days Tue 10/6/20 Mon 11/23/20 12 Alex
71 Send Data to Gateway/Hub 48 days Tue 10/6/20 Mon 11/23/20 12 Alex
72 48 days Tue 10/6/20 Mon 11/23/20 12
73 48 days Tue 10/6/20 Mon 11/23/20 12
74 Parts Lists 48 days Tue 10/6/20 Mon 11/23/20 12 Done ALL
75 Parts list(s) for Schematics 48 days Tue 10/6/20 Mon 11/23/20 1, 2 Doing Andrea / Luke

76 Materials Budget list 48 days Tue 10/6/20 Mon 11/23/20 1, 4, 6 Done Andrea

77 Proposed Implementation Gantt Chart 48 days Tue 10/6/20 Mon 11/23/20 N/A N/A N/A
78 Final Parts Request Form 13 days Sun 10/11/20 Sat 10/24/20 6, 7, 12 Done Everyone
79 Subsystems Demonstrations Day 1 0 days Tue 11/10/20 Tue 11/10/20 N/A N/A N/A
80 Subsystems Demonstrations Day 2 0 days Tue 11/17/20 Tue 11/17/20 11 Done Everyone
81 Voltage Regulator 0 days Tue 11/10/20 Tue 11/17/20 11 Done Luke
82 Soil Moisture Sensor 0 days Tue 11/10/20 Tue 11/17/20 11 Done Andrea
83 Enbedded 0 days Tue 11/10/20 Tue 11/17/20 11 Done Alex / Ross
84 Communications 0 days Tue 11/10/20 Tue 11/17/20 11 Done Alex / Ross
85 Display 0 days Tue 11/10/20 Tue 11/17/20 11 Done Alex / Ross

Figure 151: Actual Gantt Chart (1).

Figure 152: Actual Gantt Chart (2).

11 CONCLUSIONS AND RECOMMENDATIONS
Monitoring water management for irrigation systems is an unresolved issue the farming

industry has struggled with for a long time. The proposed solution is to create an affordable

Sensor Pod WSN that consists of a unit that can be “planted” with the crops and wirelessly

transmit data through LoRaWAN communication. A capacitive soil moisture sensor was

designed by using a timer circuit and multi-parallel plate PCB capacitor. The data collected was

sent to the microprocessor through an analog input, which was then packaged by the LoRa

module and transmitted to the Gateway through a quarter wavelength monopole antenna. The

Gateway sends the information to the Database where it can be analyzed, trended, and stored,

and then be displayed visually through the web application so that farmers can have better water

management.

For the development phase, the group committed to the Engineering and Marketing

Requirements listed in this paper. Development was planned by using a Gantt Chart and Azure

DevOps platform to ensure the Wireless Sensor System is completed in a timely manner. The

overall design of the Sensor Pod was focused on power efficiency to increase battery life to

ensure the Sensor Pod would last the entire growing season. To verify that the pods could last the

required length of time, a power consumption analysis was performed. The results showed that

the pods would last longer than the expected duration taking sleep, active, and transmit modes

into consideration.

To complete the soil moisture sensor, capacitors were chosen to satisfy the required 80%

accuracy. For the mechanical design, a force calculation was completed to determine the

thickness of the walls of the Sensor Pod, and models of the Pods were 3D printed. To progress

the software development, a prototype subsystem for gathering sensor data from the two sensors

was constructed. Furthering the web application, an Alpha version for the backend web server

along with a DynamoDB Cloud database for the data storage was designed. An Alpha version of

the front end allowed farmers to interface with the data collected and view trend. The interface

also monitored soil and battery conditions to provide alerts when the conditions exceeded

threshold limits as well as Sensor Pod status. To support and verify the Communications

Analysis with regards to range, a distance test was performed to verify the stated range and

planting depth were possible within the conditions defined in the analysis.

Moving forward, a few design changes should be implemented if the Soil Senor Network

design is to be manufactured and sold. On the main PCB, the battery system discussed should be

incorporated so that accurate power dissipation readings can be monitored. Also on the main

PCB, a GPS circuit should be implemented for the retrieval process so that the farmer can easily

find the Sensor Pod before the battery depletes. Another electrical design change is to add a

power switch to the bottom of the Sensor Pod so the farmer can turn the pod off at the end of

each growing season without having to disconnect the battery. On the software side, a QR

detection code should be implemented so that when the farmer logs into his farm through the

mobile application, the Sensor Pod can be scanned and automatically listed as one of the pods on

the farm without a manual entry. The last design addition is to give the farmers the option to

purchase an “automatic planting” kit to decrease the time it takes the farmer to install the pods in

the field.

With well-defined engineering and marketing requirements that were created at the

beginning of the project, the Sensor Pod was continuously developed to be a low-cost and

accessible alternative to what farmers have available to them on the market today. Considering

all implemented and proposed designs for the Wireless Sensor Pod, the device becomes a

marketable product for irrigation management, regardless of the size of the farm.

12 ACKNOWLEDGEMENTS
The authors would like to thank Dr. Nathan Ida for technical assistance and expertise in

antenna communications, signal propagation, and sensor design, Dr. Kye-Shin Lee for technical

assistance in capacitive soil moisture sensor design, Dr. Hamid Bahrami for academic

advisement, Professor Gregory Lewis for project oversight and guidance, Mr. Erick Rinaldo for

parts orders, Mr. Max Fightmaster for PCB assembly guidance and 3D model construction, and

Jacob Lenart for 3D modeling assistance.

13 WORKS CITED
[1] Hrozencik, Aaron. “Irrigation & Water Use.” USDA ERS - Irrigation & Water Use, 23 Sept.

 2019, www.ers.usda.gov/topics/farm-practices-management/irrigation-water-

 use/#definitions.

[2] “Smart Agriculture Sensors: Helping Small Farmers and Positively Impacting Global Issues,

 Too.” Mouser Electronics - Electronic Components Distributor,

 www.mouser.com/applications/smart-agriculture-sensors/.

[3] Manimaran, P., and Yasar Arfath. An Intelligent Smart Irrigation System Using WSN and

 GPRS Module. An Intelligent Smart Irrigation System Using WSN and GPRS

 Module.

[4] Kumar, Yugal, and Divyansh Thakur. Applicability of Wireless Sensor Networks in Precision

Agriculture: A Review. Applicability of Wireless Sensor Networks in Precision

Agriculture: A Review.

[5] Tokitsu, Hiroshi, et al. Fertigation System, Fertigation Control Server, Salts Accumulation

Determination Method, and Soil EC Sensor. 18 Feb. 2020.

[6] Ersavas, Bulut F, et al. METHODS AND SYSTEMS FOR IRRIGATION CONTROL. 26 Jan.

2016.

[7] Masruroh, Siti Ummi, et al. Performance Evaluation of Instant Messenger in Android

Operating System and IPhone Operating System. Performance Evaluation of Instant

Messenger in Android Operating System and IPhone Operating System.

[8] Peters, Troy, and Kefyalew Desta. Practical Use of Soil Moisture Sensors and Their Data

for Irrigation Scheduling. 2013, Practical Use of Soil Moisture Sensors and Their Data

for Irrigation Scheduling.

[9] Sample, David J, and James S Owen. Understanding Soil Moisture Sensors: A Fact Sheet for

Irrigation Professionals in Virginia. Understanding Soil Moisture Sensors: A Fact Sheet

for Irrigation Professionals in Virginia.

[10] Kasalica, B., et al. “Effect of a High DC Electric Field on Plant Leaves Reflectivity.” Taylor

 & Francis Online, 24 Feb. 2007,

 www.tandfonline.com/doi/abs/10.1080/00207230108711337.

[11] Adla, Soham, et al. “Laboratory Calibration and Performance Evaluation of Low-Cost

 Capacitive and Very Low-Cost Resistive Soil Moisture Sensors.” US National Library of

Medicine National Institutes of Health, 8 Jan. 2020,

www.ncbi.nlm.nih.gov/pmc/articles/PMC7014303/.

[12] Ida, Nathan. Engineering Electromagnetics. Springer, 2015.

[13] Mohan, Vivek. “10 Things About LoRaWAN & NB-IoT.” Inside Out,

blog.semtech.com/title-10-things-about-lorawan-nb-iot.

[14] “LoRaWAN What Is It?” LoRa Alliance, Nov. 2015.

[15] Valerio, Pablo. “Top Wireless Standards for IoT Devices.” IoT Times, 14 Nov. 2019,

iot.eetimes.com/top-wireless-standards-for-iot-devices/.

[16] “PIC18F2525/2620/4525/4620 Data Sheet.” Microchip, May 2008,

ww1.microchip.com/downloads/en/devicedoc/39626e.pdf.

[17] “16-Bit Flash Microcontrollers with Dual Partition Flash Memory, XLP, LCD,

Cryptographic Engine and USB On-The-Go.” Microchip, Nov. 2019,

ww1.microchip.com/downloads/en/DeviceDoc/PIC24FJ256GA412-GB412-Family-Data-

Sheet-DS30010089E.pdf.

[18] Mary Dunckel, Michigan State University Extension. “Small, Medium, Large – Does Farm

Size Really Matter?” MSU Extension, 2 Oct. 2018,

www.canr.msu.edu/news/small_medium_large_does_farm_size_really_matter.

[19] “Low-Power Long Range LoRa® Technology Transceiver Module.” Microchip, Jan. 2018,

ww1.microchip.com/downloads/en/DeviceDoc/50002390E.pdf.

[20] “TLC555 LinCMOS™ Timer.” Texas Instruments,

www.ti.com/lit/ds/symlink/tlc555.pdf?HQS=TI-null-null-digikeymode-df-pf-null-

wwe&ts=1603553851426.

[21] “Linear and Switching Voltage Regulators – An Introduction.” PREDICTABLE DESIGNS,

 23 Nov. 2020, predictabledesigns.com/linear-and-switching-voltage-regulators-

 introduction/.

[22] “Ada, Lady. “Li-Ion & LiPoly Batteries.” Adafruit Learning System, learn.adafruit.com/li-

ion-and-lipoly-batteries/voltages.

[23] “Acrylonitrile Butadiene Styrene (ABS) and Its Features.” Acrylonitrile Butadiene Styrene

(ABS Plastic): Uses, Properties & Structure, omnexus.specialchem.com/selection-

guide/acrylonitrile-butadiene-styrene-abs-plastic.

[24] Jim Patrico, Progressive Farmer Senior Editor. “Planter Speeds: How Fast Is Too Fast? -

DTN.” AgFax, 13 Mar. 2014, agfax.com/2014/03/13/planter-speeds-fast-fast-dtn/.

14 APPENDIX

14.1 FRONTEND MODELS

14.1.1 Farm Overview

 Type Script Component:
import { HttpClient } from '@angular/common/http';

import { Component, Input, OnInit } from '@angular/core';

import { DataBaseCRUDInterfaceService } from '../services/DataBaseCRUDInterface.service';

@Component({

 selector: 'app-farmOverview',

 templateUrl: './farmOverview.component.html',

 styleUrls: ['./farmOverview.component.scss']

})

export class FarmOverviewComponent implements OnInit {

 @Input() farmId: string;

 farmInformations: FarmInfo;

 farmStatus: FarmStatus;

 farmGraph: Graph;

 options:any;

 podList: any;

 constructor(private _http: HttpClient, _Data: DataBaseCRUDInterfaceService) {

 this.getFarmInfo();

 this.getFarmStatus();

 this.getFarmGraphData();

 this.options = {

 tooltip: {

 trigger: 'axis',

 axisPointer: {

 type: 'line',

 label: {

 backgroundColor: '#6a7985'

 }

 }

 },

 legend: {

 data: this.farmGraph.top5Pods,

 textStyle: {

 color: "#ffffff"

 }

 },

 grid: {

 left: '3%',

 right: '4%',

 bottom: '3%',

 containLabel: true

 },

 xAxis: [

 {

 type: 'category',

 boundaryGap: false,

 data: ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']

 }

],

 yAxis: [

 {

 type: 'value',

 show: false

 }

],

 series: [

 {

 name: this.farmGraph.top5Pods[0],

 type: 'line',

 stack: 'counts',

 areaStyle: { normal: {} },

 data: this.farmGraph.podsData[0]

 },

 {

 name: this.farmGraph.top5Pods[1],

 type: 'line',

 stack: 'counts',

 areaStyle: { normal: {} },

 data: this.farmGraph.podsData[1]

 },

 {

 name: this.farmGraph.top5Pods[2],

 type: 'line',

 stack: 'counts',

 areaStyle: { normal: {} },

 data: this.farmGraph.podsData[2]

 },

 {

 name: this.farmGraph.top5Pods[3],

 type: 'line',

 stack: 'counts',

 areaStyle: { normal: {} },

 data: this.farmGraph.podsData[3]

 },

 {

 name: this.farmGraph.top5Pods[4],

 type: 'line',

 stack: 'counts',

 areaStyle: { normal: {} },

 data: this.farmGraph.podsData[4]

 }

]

 };

 }

 ngOnInit() {

 }

 getFarmInfo() {

 this._http.get('https://localhost:44385/DynamoDB/Farm?id='

 + this.farmId +

 '&hash=1').subscribe(

 result => {

 let data: any = result;

 let itemData = {} as FarmInfo;

 for (let element of data) {

 if (element.devEui != 1) {

 this.podList.push(element.name)

 }

 else {

 itemData.Name = element.name;

 itemData.Location = element.location;

 itemData.Owner = element.owner;

 itemData.Size = element.size;

 this.farmInformations = itemData;

 }

 }

 }

);

 }

 getFarmStatus() {

 this._http.get('https://localhost:44385/DynamoDB/Status/Farm?id=' + this.farmId + '&hash=1').subscribe

(

 result => {

 let data: any = result;

 let itemData = {} as FarmStatus;

 for (let element of data) {

 if (element.devEui != 1) {

 this.podList.push(element.name)

 }

 else {

 itemData.avgTemp = element.avgTemp;

 itemData.avgMoisture = element.avgMoisture;

 itemData.pods = element.pods;

 itemData.tWarning = element.tWarning;

 itemData.mWarning = element.mWarning;

 itemData.bWarning = element.bWarning;

 this.farmStatus = itemData;

 }

 }

 }

);

 }

 getFarmGraphData(){

 this._http.get('https://localhost:44385/DynamoDB/Status/Farm?id=' + this.farmId + '&hash=1').subscribe

(

 result => {

 let data: any = result;

 let graphData = {} as Graph;

 graphData.top5Pods = data.pods;

 graphData.podsData = data.podData;

 }

);

 }

}

 interface FarmInfo {

 Name: string;

 Location: string;

 Owner: string;

 Size: string;

 }

interface FarmStatus {

 avgTemp: number;

 avgMoisture: number;

 pods: number;

 tWarning: number;

 mWarning: number;

 bWarning: number;

}

interface Graph {

 top5Pods: string[];

 podsData: any;

}

 HTML Component
<div class="container-fluid">

 <div class="row h-10">

 <div class="col-md-8">

 <nb-card size="tiny">

 <nb-card-header>Farm Information</nb-card-header>

 <nb-card-body>

 <p>Farm Name: {{this.farmInformations.Name}}</p>

 <p>Owner: {{this.farmInformations.Owner}}</p>

 <p>Location: {{this.farmInformations.Location}}</p>

 <p>Size: {{this.farmInformations.Size}}</p>

 </nb-card-body>

 </nb-card>

 </div>

 <div class="col-md-4">

 <nb-card size="tiny">

 <nb-card-header>Farm Status</nb-card-header>

 <nb-card-body>

 <p>Avg Moisture: {{this.farmStatus.avgTemp}}</p>

 <p>Avg Temp: {{this.farmStatus.avgMoisture}}</p>

 <p>Pod Connected:{{this.farmStatus.pods}}</p>

 <p>Warnings:

 Temp: {{this.farmStatus.tWarning}}

 | Moisture: {{this.farmStatus.mWarning}}

 | Battery: {{this.farmStatus.bWarning}}</p>

 </nb-card-body>

 </nb-card>

 </div>

 </div>

 <div class="row flex-row">

 <div class="col-md-8" height="17rms">

 <nb-card size="large">

 <nb-card-header>Moisture</nb-card-header>

 <div echarts [options]="options" theme="macarons" class="chart"></div>

 </nb-card>

 </div>

 <div class="col-md-4">

 <nb-card size="large">

 <nb-card-header>Podlist</nb-card-header>

 <nb-list>

 <nb-list-item *ngFor="let device of this.podList">

 {{ device }}

 </nb-list-item>

 </nb-list>

 </nb-card>

 </div>

 </div>

</div>

14.1.2 Pod List

 Type Script Component
import { HttpClient } from '@angular/common/http';

import { Component, OnInit } from '@angular/core';

import { ActivatedRoute, Router } from '@angular/router';

import { NbSortDirection, NbSortRequest, NbTreeGridDataSource, NbTreeGridDataSourceBuilder } from '@nebula

r/theme';

import { DataBaseCRUDInterfaceService } from '../services/DataBaseCRUDInterface.service';

@Component({

 selector: 'app-sensorPodList',

 templateUrl: './sensorPodList.component.html',

 styleUrls: ['./sensorPodList.component.scss']

})

export class SensorPodListComponent implements OnInit {

 customColumn = 'ReadTime';

 testing: string;

 defaultColumns = ['Pod','Battery','Moisture','Temp','Warning'];

 allColumns = [this.customColumn, ...this.defaultColumns];

 dataSource: NbTreeGridDataSource<FSEntry>;

 sortColumn: string = 'ReadTime';

 sortDirection: NbSortDirection = NbSortDirection.DESCENDING;

 list: string[];

 data: TreeNode<FSEntry>[];

 distinctArray: any;

 podStatusList: PodStatus[];

 tmpMax = 100;

 tmpMin = 0;

 moistureMax = 90;

 moistureMin = 30;

 private _dataSourceBuilder: NbTreeGridDataSourceBuilder<FSEntry>;

 constructor(private router:Router, private route:ActivatedRoute , private dataSourceBuilder: NbTreeGridD

ataSourceBuilder<FSEntry>,private _http: HttpClient, _Data: DataBaseCRUDInterfaceService) {

 this._dataSourceBuilder = dataSourceBuilder;

 this.getPodData();

 }

 ngOnInit() {

 }

 onReload(){

 this.getPodData();

 }

 changeSort(sortRequest: NbSortRequest): void {

 }

 getDirection(column: string): NbSortDirection {

 return NbSortDirection.DESCENDING;

 }

 getPodData()

 {

 this._http.get('https://localhost:44385/DynamoDB/PodData' + this.farmId)

 .subscribe(

 result => {

 let tempdata: any = result;

 let tempData: TreeNode<FSEntry>[] = [];

 for (let element of tempdata) {

 let itemData = {} as TreeNode<FSEntry>;

 let item = {} as FSEntry;

 item.Pod = element.name;

 item.Temp = element.temp_Sensor_Value + '%';

 item.Eui = element.devEui + ' °F';

 item.ReadTime = this.formatTime(element.time);

 item.Moisture = element.moisture_Sensor_Value;

 item.Battery = element.bat_Value

 item.Warning = this.checkWarning(element.temp_Sensor_Value,

 element.moisture_Sensor_Value,

 element.bat_Value)

 itemData.data = item;

 tempData.push(itemData);

 }

 this.data = tempData;

 this.dataSource = this.dataSourceBuilder.create(this.data);

 });

 this._http.get('https://localhost:44385/DynamoDB/Farm/AllPods').subscribe(

 result => {

 let data: any = result;

 let itemData = {} as PodStatus;

 for (let element of data) {

 itemData.Name = element.name;

 itemData.DeviceEui = element.devEui;

 itemData.statusBattery = element.battery;

 itemData.statusConnection = element.connection;

 this.podStatusList.push(itemData);

 }

 });

 }

 formatTime(time: string)

 {

 var tmpDate: Date = new Date(time)

 var localtime: string = "" + tmpDate.getHours() + ":" + tmpDate.getMinutes() + ":" + tmpDate.getSecond

s();

 return localtime;

 }

 checkWarning(tmp: number,moisture: number,bat: string){

 var warningmsg: string = '';

 var list: string[]= [];

 if(tmp > this.tmpMax || tmp < this.tmpMin)

 list.push("Temp");

 if(moisture > this.moistureMax || moisture < this.moistureMin)

 list.push("Moisture");

 if(bat == 'Low')

 list.push("Battery");

 if(list.length == 0)

 {

 warningmsg = "-"

 }

 else

 {

 list.forEach(element => {

 warningmsg += element;

 if(element != list[list.length-1])

 warningmsg += ', '

 });

 warningmsg += " Warning";

 }

 return warningmsg;

 }

}

interface TreeNode<T> {

 data: T;

 children?: TreeNode<T>[];

 expanded?: boolean;

}

interface PodStatus {

 Name: string;

 DeviceEui: string;

 statusBattery: string;

 statusConnection: string;

}

interface FSEntry {

 ReadTime: string;

 Pod: string;

 Eui: string;

 Data: string;

 Battery: string;

 Moisture: string;

 Temp: string;

 Warning: String;

}

 HTML Component:
<nb-card size="tiny">

 <nb-card-header>Pod Status List</nb-card-header>

 <nb-list>

 <nb-list-item *ngFor="let device of this.podStatusList">

 " {{ device.Name }}: {{ device.DeviceEui }}

 | Battery: {{ device.statusBattery }}

 | Status: {{ device.statusConnection }}"

 </nb-list-item>

 </nb-list>

</nb-card>

<nb-card size="giant">

 <nb-card-header>

 Pod Data

 <button (click)="onReload()" nbButton>Refresh</button>

 </nb-card-header>

 <div overflow-y=scroll>

 <nb-card>

 <nb-card-body>

 <table [nbTreeGrid]="data" nbSort (sort)="changeSort($event)" equalColumnsWidth>

 <tr nbTreeGridHeaderRow *nbTreeGridHeaderRowDef="allColumns"></tr>

 <tr nbTreeGridRow *nbTreeGridRowDef="let row; columns: allColumns"></tr>

 <ng-container [nbTreeGridColumnDef]="customColumn">

 <th nbTreeGridHeaderCell [nbSortHeader]="getDirection(customColumn)" *nbTreeGridHeaderCellDef>

 {{customColumn}}

 </th>

 <td nbTreeGridCell *nbTreeGridCellDef="let row">

 <nb-tree-grid-row-toggle [expanded]="row.expanded" *ngIf="row.data.kind === 'dir'">

 </nb-tree-grid-row-toggle>

 {{row.data.ReadTime}}

 </td>

 </ng-container>

 <ng-container *ngFor="let column of defaultColumns" [nbTreeGridColumnDef]="column">

 <th nbTreeGridHeaderCell [nbSortHeader]="getDirection(column)" *nbTreeGridHeaderCellDef>

 {{column}}

 </th>

 <td nbTreeGridCell *nbTreeGridCellDef="let row">

 {{row.data[column]}}

 </td>

 </ng-container>

 </table>

 </nb-card-body>

 </nb-card>

 </div>

14.1.3 Home

 Type Script Component
import { HttpClient } from '@angular/common/http';

import { Component, Output } from '@angular/core';

import { Router } from '@angular/router';

import { delay } from 'rxjs/operators';

import { DataBaseCRUDInterfaceService } from '../services/DataBaseCRUDInterface.service';

@Component({

 selector: 'app-home',

 templateUrl: './home.component.html',

 styleUrls: ['./home.component.scss']

})

export class HomeComponent {

 @Output() farmId: string;

 @Output() validFarmID: boolean;

 status = "primary"

 constructor(private _http: HttpClient, _Data: DataBaseCRUDInterfaceService, router: Router) {

 }

 getFarmId() {

 this._http.get('https://localhost:44385/dynamodb/Farm?id='

 + this.farmId +

 '&hash=1').subscribe(

 async result => {

 let data: any = result;

 if (result == null)

 status = "error"

 else {

 status = "Success";

 this.farmId = result;

 this.validFarmID = true;

 await delay(5);

 this.router.navigateByUrl('/farm-overview')

 }

 }

);

 }

}

 HTML Component
<!-- Presentation Only -->

<!-- <h1>Soil Sensor Monitoring (Design Team 7)</h1>

<p>Team Members:</p>

 Alexis Alves

 Andrea Wyder

 Luke M Farnsworth

 Ross Klonowski

 -->

<!-- <nb-card >

 <nb-card-header>

 </nb-card-header>

 <nb-card-body>

 </nb-card-body>

</nb-card> -->

<div class="container">

 <nb-card status={{this.status}} size="tiny" display="flex" align-items="center" justify-

content="center">

 <nb-card-header text-align="center">Sign in</nb-card-header>

 <nb-card-body class="items-col">

 <div class="align-content-center">

 <input type="text" nbInput fullWidth shape="round" placeholder="Farm ID">

 </div>

 </nb-card-body>

 <nb-card-footer>

 <div class="col text-center">

 <button class="btn btn-primary" (click)="getFarmId()">Login</button>

 </div>

 </nb-card-footer>

 </nb-card>

</div>

14.1.4 About

 Type Script Component
import { Component, OnInit } from '@angular/core';

@Component({

 selector: 'app-about',

 templateUrl: './about.component.html',

 styleUrls: ['./about.component.scss']

})

export class AboutComponent implements OnInit {

 constructor() { }

 ngOnInit() {

 }

}

 HTML Component
<h1>Soil Sensor Monitoring (Design Team 7)</h1>

<p>Built with:</p>

 ASP.NET Core and C# for cross-platform server-

side code

 Angular and TypeScript for

 client-side code

 Nebular for layout and styling

 DynamoDB for the cloud Database

 <a href='https://aws.amazon.com/api-

gateway/'>AWS API Gateway for a Fowarder Endpoint for Senet

 Lamda for Processing and Modling AWS API data to Databa

se

 ngx-echarts for Charts

14.2 BACKEND MODELS

14.2.1 Domain Models

 Farm Table Data
namespace SoilSensor.Models.DomainModels

{

 [DynamoDBTable("Farm_Test_1")]

 public class Farm

 {

 [DynamoDBProperty]

 [DynamoDBHashKey]

 public string FarmId { get; set; }

 [DynamoDBRangeKey]

 public string DevEui { get; set; }

 // Property only assigned to DevEui - FarmInformation

 [DynamoDBProperty]

 public string Name { get; set; }

 [DynamoDBProperty]

 public string Location { get; set; }

 [DynamoDBProperty]

 public string Owner { get; set; }

 [DynamoDBProperty]

 public string Size { get; set; }

 // Property assigned all DevEui for pods

 [DynamoDBProperty]

 public string PodName { get; set; }

 [DynamoDBProperty]

 public string Status { get; set; }

 }

}

14.2.2 Sensor Pod Data
namespace SoilSensor.Models.DomainModels

{

 [DynamoDBTable("Sensor_Data_Test")]

 public class PodData

 {

 [DynamoDBProperty]

 [DynamoDBHashKey]

 public string DevEui { get; set; }

 [DynamoDBProperty]

 public string ReadTime { get; set; }

 [DynamoDBProperty]

 public string Moisture_Sensor_Value { get; set; }

 [DynamoDBProperty]

 public string Temp_Sensor_Value { get; set; }

 [DynamoDBProperty]

 public string Bat_Value { get; set; }

 [DynamoDBProperty]

 public string Data { get; set; }

 }

}

14.2.3 Controller

 API Router
namespace SoilSensorWeb.Controllers

{

 [ApiController]

 [Route("[controller]")]

 public class DynamoDBController : ControllerBase

 {

 private IDynamoDBContext<Farm> _farmContext;

 private IDynamoDBContext<PodData> _podDataContext;

 public DynamoDBController(IDynamoDBContext<Farm> farmContext, IDynamoDBContext<PodData> podDataCon

text)

 {

 _farmContext = farmContext;

 _podDataContext = podDataContext;

 }

 [HttpGet]

 [Route("Farm")]

 public async Task<Farm> GetUserAsync([FromQuery] string id, [FromQuery] string hash)

 {

 try

 {

 return await _farmContext.GetByIdAsync(id,hash);

 }

 catch (Exception ex)

 {

 throw new Exception($"Amazon error in GetUser table operation! Error: {ex}");

 }

 }

 [HttpGet]

 [Route("Farm/All")]

 public async Task<List<Farm>> All(string id,string paginationToken = "")

 {

 try

 {

 return await _farmContext.GetaAll(id);

 }

 catch (Exception ex)

 {

 throw new Exception($"Amazon error in GetUser table operation! Error: {ex}");

 }

 }

 [HttpGet]

 [Route("Farm/AllPods")]

 public async Task<List<Farm>> AllPods(string paginationToken = "")

 {

 try

 {

 return await _farmContext.GetaAllPods();

 }

 catch (Exception ex)

 {

 throw new Exception($"Amazon error in GetUser table operation! Error: {ex}");

 }

 }

 [HttpGet]

 [Route("PodData")]

 public async Task<List<PodData>> GetPodData([FromQuery] string id,string paginationToken = "")

 {

 try

 {

 return await _podDataContext.GetaAll(id);

 }

 catch (Exception ex)

 {

 throw new Exception($"Amazon error in GetUser table operation! Error: {ex}");

 }

 }

 }

}

 API Controller Class
namespace SoilSensor.Data.Controllers

{

 public class DynamoDBContext<T> : DynamoDBContext, IDynamoDBContext<T>

 where T : class

 {

 private DynamoDBOperationConfig _config;

 private string _tableName;

 public DynamoDBContext(IAmazonDynamoDB client, string tableName)

 : base(client)

 {

 _tableName = tableName;

 _config = new DynamoDBOperationConfig()

 {

 OverrideTableName = tableName

 };

 }

 public async Task<T> GetByIdAsync(string id, string devEui)

 {

 return await base.LoadAsync<T>(id, devEui, _config);

 }

 public async Task SaveAsync(T item)

 {

 await base.SaveAsync(item, _config);

 }

 public async Task DeleteByIdAsync(T item)

 {

 await base.DeleteAsync(item, _config);

 }

 public string GetTable()

 {

 return _tableName;

 }

 public async Task<List<T>> GetaAll(string id)

 {

 var scanConditions = new List<ScanCondition>() {

 new ScanCondition("FarmId", ScanOperator.Equal,id)

 };

 var searchResults = base.ScanAsync<T>(scanConditions, null);

 return await searchResults.GetNextSetAsync();

 }

 public async Task<List<T>> GetaAllPods()

 {

 var scanConditions = new List<ScanCondition>()

 {

 new ScanCondition("DevEui", ScanOperator.NotEqual, "1"),

 };

 var searchResults = base.ScanAsync<T>(scanConditions, null);

 return await searchResults.GetNextSetAsync();

 }

 }

}

 API Controller Data Type
namespace SoilSensor.Data

{

 public class DynamoDBOptions

 {

 public string Farm { get; set; }

 public string PodData { get; set; }

 }

}

 API Controller Interface
namespace SoilSensor.Data.Interface

{

 public interface IDynamoDBContext<T> : IDisposable where T : class

 {

 Task<T> GetByIdAsync(string id , string hash);

 Task SaveAsync(T item);

 Task DeleteByIdAsync(T item);

 string GetTable();

 Task<List<T>> GetaAll(string id);

 Task<List<T>> GetaAllPods(string id);

 }

}

14.2.4 Startup Configuration
 public class Startup

 {

 public Startup(IConfiguration configuration)

 {

 Configuration = new ConfigurationBuilder()

 .SetBasePath(Directory.GetCurrentDirectory())

 .AddJsonFile("appsettings.json")

 .Build();

 }

 public IConfigurationRoot Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services)

 {

 services.AddControllersWithViews();

 services.AddSpaStaticFiles(configuration =>

 {

 configuration.RootPath = "ClientApp/dist";

 });

 Environment.SetEnvironmentVariable("AWS_ACCESS_KEY_ID", Configuration["AWS:AccessKey"]);

 Environment.SetEnvironmentVariable("AWS_SECRET_ACCESS_KEY", Configuration["AWS:SecretKey"]);

 Environment.SetEnvironmentVariable("AWS_REGION", Configuration["AWS:Region"]);

 var awsOptions = Configuration.GetAWSOptions();

 services.AddDefaultAWSOptions(awsOptions);

 var client = awsOptions.CreateServiceClient<IAmazonDynamoDB>();

 var DynamoDBOptions = new DynamoDBOptions();

 ConfigurationBinder.Bind(Configuration.GetSection("DynamoDBTables"), DynamoDBOptions);

 services.AddScoped<IDynamoDBContext<Farm>>(provider => new DynamoDBContext<Farm>(client, Dynam

oDBOptions.Farm));

 services.AddScoped<IDynamoDBContext<PodData>>(provider => new DynamoDBContext<PodData>(client,

 DynamoDBOptions.PodData));

 }

 // This method gets called by the runtime. Use this method to configure the HTTP request pipeline.

 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

 {

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

 else

 {

 app.UseExceptionHandler("/Error");

 app.UseHsts();

 }

 app.UseHttpsRedirection();

 app.UseStaticFiles();

 if (!env.IsDevelopment())

 {

 app.UseSpaStaticFiles();

 }

 app.UseRouting();

 app.UseEndpoints(endpoints =>

 {

 endpoints.MapControllerRoute(

 name: "default",

 pattern: "{controller}/{action=Index}/{id?}");

 });

 app.UseSpa(spa =>

 {

 spa.Options.SourcePath = "ClientApp";

 spa.UseProxyToSpaDevelopmentServer("http://localhost:4200");

 });

 }

 }

}

	Soil Sensor Network
	Recommended Citation

	List of Figures
	List of Tables
	Abstract AW
	1 Problem Statement
	1.1 Need AA, LF, RK, AW
	1.2 Objective AA, RK, AW
	1.3 Soil Sensor Network Background AA, RK, AW
	1.4 Marketing Requirements

	2 Engineering Analysis
	2.1 Electronics Analysis
	2.1.1 Soil Sensor Analysis AW
	2.1.2 Soil Nutrient Analysis AW
	2.1.3 Antenna Analysis AW

	2.2 Circuit Analysis
	2.2.1 Battery Analysis
	2.2.1.1 Battery Research AA, LF, AW
	2.2.1.2 Battery Testing LF

	2.2.2 Voltage Regulation Analysis LF, AW
	2.2.2.1 Voltage Regulator Research
	2.2.2.2 Voltage Regulator Testing

	2.2.3 555 Timers AW

	2.3 Communications Analysis
	2.3.1 LoRa Modulation AA
	2.3.2 LoRaWAN MAC Protocol AA, RK, AW
	2.3.3 Communication Range AA, AW

	2.4 Computer Networks Analysis RK
	2.5 Embedded Systems Analysis AA, RK

	3 Engineering Requirements AA, LF, RK, AW
	4 Engineering Standards
	4.1 Data Format AA
	4.2 Programming Language AA, RK
	4.3 Communications RK
	4.4 Connector Standards RK, AW

	5 Accepted Technical Design
	5.1 Hardware Design
	5.1.1 Block Diagrams
	5.1.1.1 Level 0 Block Diagram AA, RK, AW
	5.1.1.2 Level 1 Block Diagram AA, RK, AW
	5.1.1.3 Level 2 Block Diagram AA, LF, RK, AW
	5.1.1.4 Level 3 Block Diagram AA, AW

	5.1.2 Schematics
	5.1.2.1 Circuit Overview AW
	5.1.2.2 Battery Monitor AW
	5.1.2.3 Voltage Regulator
	5.1.2.3.1 Voltage Regulator Phase 1 LF, AW
	5.1.2.3.2 Voltage Regulator Phase 2 AW

	5.1.2.4 Microcontroller AA, RK, AW
	5.1.2.5 LoRa Module AA, RK, AW
	5.1.2.6 Soil Moisture Sensor AW
	5.1.2.6.1 Moisture Sensor Phase 1 AW
	5.1.2.6.2 Moisture Sensor Phase 2 AW
	5.1.2.6.3 Moisture Sensor Phase 3 AW

	5.1.2.7 Temperature Sensor AW
	5.1.2.8 Connectors AW
	5.1.2.9 Debugging Circuitry AA, AW

	5.1.3 Simulations AW
	5.1.3.1 Soil Moisture Sensor AW
	5.1.3.2 Temperature Sensor LF

	5.1.4 PCB Designs AA, AW
	5.1.4.1 Main Board PCB
	5.1.4.2 Power Management System
	5.1.4.3 External Sensors
	5.1.4.4 Connectors

	5.2 Software design
	5.2.1 Embedded Firmware AA, RK
	5.2.1.1 Trigger Sensor Reading AA, RK
	5.2.1.2 Gateway/Hub Data Communication AA, RK

	5.2.2 Software Block Diagrams AA
	5.2.2.1 Level 1 Block Diagram AA, RK, AW
	5.2.2.2 Level 2 Software Block Diagram

	5.2.3 LoRa Communication Setup RK
	5.2.4 Data Flow AA
	5.2.5 Gateway / Senet Server RK
	5.2.6 API & Lambda Function AA
	5.2.7 Database AA
	5.2.7.1 Farm Table AA
	5.2.7.2 Sensor Data Table AA
	5.2.7.3 Sensor Pod Table AA
	5.2.7.4 Interfacing AA

	5.2.8 Web Application AA
	5.2.8.1 Frontend Web Application AA
	5.2.8.1.1 Web Pages (View)
	5.2.8.1.2 Interaction (Controller)

	5.2.8.2 Backend Web Application AA

	5.3 Prototypes: Design Verification
	5.3.1 Voltage Regulator AA, LF, AW
	5.3.2 Soil Moisture Sensor AW
	5.3.2.1 Setup and Procedure
	5.3.2.2 Results

	5.3.3 Temperature Sensor LF
	5.3.4 Microcontroller Data Collection AA
	5.3.5 Lora Module Communication RK
	5.3.6 LoRaWAN Propagation Models AW
	5.3.6.1 Pathloss Over Distance
	5.3.6.2 Rain Attenuation

	5.3.7 Database AA

	5.4 Prototypes: Implementation
	5.4.1 Power Management RK
	5.4.1.1 Voltage Regulator
	5.4.1.2 Battery Testing

	5.4.2 Soil Moisture Sensor AA, RK, AW
	5.4.3 Temperature Sensor RK, AW
	5.4.4 Embedded Firmware RK
	5.4.4.1 Microcontroller Data Collection AA, RK
	5.4.4.2 Support Functions RK

	5.4.5 Communication
	5.4.5.1 LoRa Module Communication RK
	5.4.5.2 Distance Testing AA, RK, AW
	5.4.5.3 UA Propagation Model AW

	5.4.6 Web Application AA, RK
	5.4.6.1 Website Interface
	5.4.6.2 Frontend
	5.4.6.3 Backend

	6 Mechanical Sketch AW
	6.1 First Design Iteration
	6.2 Second Design Iteration
	6.3 Third Design Iteration
	6.4 Pod Shell and Force of Impact
	6.5 Sensor Pod Prototypes

	7 Future Implementation
	7.1 Automated Installation AW
	7.2 Retrieval Process LF, AW

	8 Design Team Information RK, AW
	9 Parts List AW
	9.1 Schematics Parts List
	9.2 Materials Budget List AW
	9.3 Cost Comparison Analysis AW

	10 Project Schedules AA, RK, AW
	10.1 Azure DevOps Sprint Board
	10.2 Design Gantt Chart
	10.3 Implementation Gantt Chart
	10.4 Actual Gant Chart

	11 Conclusions and Recommendations
	12 Acknowledgements
	13 Works Cited
	14 Appendix
	14.1 Frontend Models
	14.1.1 Farm Overview
	14.1.1.1 Type Script Component:
	14.1.1.2 HTML Component

	14.1.2 Pod List
	14.1.2.1 Type Script Component
	14.1.2.2 HTML Component:

	14.1.3 Home
	14.1.3.1 Type Script Component
	14.1.3.2 HTML Component

	14.1.4 About
	14.1.4.1 Type Script Component
	14.1.4.2 HTML Component

	14.2 Backend Models
	14.2.1 Domain Models
	14.2.1.1 Farm Table Data

	14.2.2 Sensor Pod Data
	14.2.3 Controller
	14.2.3.1 API Router
	14.2.3.2 API Controller Class
	14.2.3.3 API Controller Data Type
	14.2.3.4 API Controller Interface

	14.2.4 Startup Configuration

