The University of Akron

IdeaExchange@UAkron

Williams Honors College, Honors Research The Dr. Gary B. and Pamela S. Williams Honors
Projects College
Spring 2021

Soil Sensor Network

Andrea Wyder
The University of Akron, alw179@uakron.edu

Ross Klonowski
The University of Akron, rak112@uakron.edu

Alexis Alves
The University of Akron, ara87@uakron.edu

Luke Farnsworth
The University of Akron, Imf78@uakron.edu

Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

0 Part of the Digital Communications and Networking Commons, Systems and Communications
Commons, and the VLSI and Circuits, Embedded and Hardware Systems Commons

Please take a moment to share how this work helps you through this survey. Your feedback will
be important as we plan further development of our repository.

Recommended Citation

Wyder, Andrea; Klonowski, Ross; Alves, Alexis; and Farnsworth, Luke, "Soil Sensor Network" (2021).
Williams Honors College, Honors Research Projects. 1300.
https://ideaexchange.uakron.edu/honors_research_projects/1300

This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela
S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University
of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College,
Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more
information, please contact mjon@uakron.edu, uapress@uakron.edu.

https://ideaexchange.uakron.edu/
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/1300
https://ideaexchange.uakron.edu/honors_research_projects/1300?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1300&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Soil Sensor Network

Senior Project Final Report

Design Team 7
Alexis Alves
Luke Farnsworth
Ross Klonowski

Andrea Wyder

Faculty Advisor: Dr. Bahrami

23 April 2021

TABLE OF CONTENTS

LIST OFf FIGUIES w.coueeeeueceunecesseeeessesesssesesssesesssssessssssssssessss s sess s s 48R R SRR AR SRR E SRR AR R AR SRR RS 7
5] 0 o) (=3P 11
Abstract AW et RS RS RRS R RS AR RS R R R R 13
N o 0] 0 1= ¢ U 7 U= 1<) o OO 14
1.1 Need AA, LF, RK, AW ... ssanns .14
1.2 Objective AD, RK, AWl sssss s s ssss s s assssssassssssssssasssssssassans 14
1.3 Soil Sensor Network Background AA, REK, AW st ssssssssssssssssassassns 15
1.4 Marketing REQUITEIMENTES.coicuueeeueressseeessseeesssesesssssessssesssssssssssssssssesssssesssssesesssesssssese s s s e ssssssssssssseses 20

2 ENGINEETING ANALYSIS crrveuureeuureeesseeesssesessseeesssesessssesesssesssssasssssasssssesssssesssssesesssesesssesessssesssssesesssasesssasssssassssssssssssssssssssssasess 21
2.1 ElECLIONICS ANALYSIS covuuieeeueeesueeessesesssesesssesssssesessssssssssesssssasesssesssssassssssssssessssssesssssesssssesesssasesssasssssssssssssssssasssssasesas 21
211 Soil Sensor Analysis AW ottt s s s s s 22
212 Soil Nutrient Analysis AW Lttt s bbb 24
2.13 Antenna Analysis AW ettt s e s bbb R R 25

2.2 CITCUIE ANALYSIS cuuieruseeeusreeessreessssesesssesesssesesssesssssesesssasesssesssssesssssesssss e sss e es e8RS AR AR AR E R E SRR 29
2.2.1 BatLeTY ANALYSIS c.ueeuueeeeeeesseressesesssesesssesesssessssssssssssssssssesssssasssssssss e ss e essse s s bbb E s R 29
2.2.1.1 Battery Research AA, LF, AW st ss sttt ssssssssssassssssases 29
2.2.1.2 Battery Testing LE s 31

222 Voltage Regulation Analysis LE, AW e retsesttssseessesssssesssssssssssssssss s sssssssssssssssssssssssssens 32
2.2.2.1 Voltage Regulator RESEATCH. ... eesseesssessse s sss s ssssss s ssssesesssesesasesesassseens 32
2.2.2.2 Voltage REGUIALOT TESTING ..ocuuieereeesneeesseseesseeesssesesssessesesssesssssasssssssssas 33

2.2.3 555 Timers AW st ssssssssssss 34

2.3 CommUNICAtiONS ANAYSIS ccuuirueereeeseresssesesssesessasssssessssss 35
2.3.1 LoRa Modulation DA o ———————— 36
232 LoRaWAN MAC Protocol AA, RK, AW oot ssssssssssssssssssssssssssssssssssssans 37
2.3.3 Communication Range AA, AW ..t snssnsnas 38

24 Computer Networks Analysis REK ettt s sssse s st sss e s ess s ss s sp s s sasneens 42
2.5 Embedded Systems Analysis AA, RK ettt ssssesssssss s s ss s sssssssssssssssses 45
Engineering Requirements AA, LF, RK, AW s s s sssssssssssssssans 47

4 ENGINEETING STANAATTS ..oevueeeeeeeseeessseeesssesesssesessesessssesesssesesssassssses st ssssesesssesesss e bs s e ER R R R b b nbeas 49
4.1 DataFormat AA o ——————— .50
4.2 Programming Language 2 W 2 L O 51

4.3 Communications 2 O 51

4.4 Connector Standards REK, AW s sss s sss st sassssessssssssssassssssssssssasssssasssssssane 51

AcCCEPLEd TECHNICAL DESIZN ..oieeureeenererueressseeessseserssssessseesesssesssssesessssssssssses e s es R bbb 52
5.1 HaUAWare DESIGIN .. eceeeeeuseeessesessseeesssesssssesessssssssssssessssssssssssss s sss s sss s ssss e ess s s s s s bbb bbb 52
51.1 BIOCK DIAZTAIMS. couuteeuueeeeseeesseeesssesesssesssssesesssessssssssssssssssssessssssssssssssss s ss s essses s bbb e 52
5.1.1.1 Level 0 Block Diagram AA, RK) AW oouretsesessssssesssssssssssssssessssssssssssssssssssssaseess 53
5.1.1.2 Level 1 Block Diagram AA, RK, AW, 55
5.1.1.3 Level 2 Block Diagram AA, LF, RK, AW ..ssssssssssssssssssssssssssssssssssssnns 59
5.1.14 Level 3 Block Diagram AD, AWt sssssssssssas 62
512 Bl 0 T=) 0 U (ol 64
5.1.2.1 Circuit Overview AW s 64
5.1.2.2 Battery Monitor AW ettt st e s e s bR bR 65
5.1.2.3 VOItage REGUIALOTovveeeuuereeesssssessssssssssssess 67
5.1.2.4 Microcontroller AA, RK) AWl sssas 72
5.1.2.5 LoRaModule AA, RK AW cosrssesssees 74
5.1.2.6 Soil Moisture Sensor AW st ssssssees 75
5.1.2.7 Temperature Sensor AW oo 80
5.1.2.8 Connectors AW s 81
5.1.2.9 Debugging Circuitry DA, AW et ssssssssssssssssss 83
513 Simulations AW ottt 85
5.1.3.1 Soil Moisture Sensor AW s sssssssees 85
5.1.3.2 Temperature Sensor LE o 87
514 PCB Designs AD,) AW .ot ss s sss st ss s s s bbb bbb e 89
5.1.4.1 Main BOArd PCB ... ceeeeereessimessssssssssssesses 89
5.1.4.2 Power ManagemeNnt SYSTEIM ... mmmressssssesessesss 92
5.1.4.3 EXEEINAL SENISOIS ..ouuireerrisseseessssssesssssssssssssessses 95
5,144 COMMECEOTS. cuuurreesseusssesesssssssssessessssssssssessssssss s ssesssssss s R s RS RRR R R R R R EES 96
5.2 SOFEWATE AESIZN .eeuieeueeeureeesseeeseeeesssesesssesssssesssssssssss s ss s se s bs s SRR eSS RS R R SRR bR Rt 97
5.2.1 Embedded Firmware Y 2 U L 98
5.2.1.1 Trigger Sensor Reading S S U 2 99
5.2.1.2 Gateway/Hub Data Communication AA, RK e 100
522 Software Block Diagrams AA et 100
5.2.2.1 Level 1 Block Diagram AA, RK, AW s sssssssssssssssssssssssssens 100
5.2.2.2 Level 2 Software BlOCK DIaBrammeeemmseesssmssess 103

523 LoRa Communication Setup 2 LT 106

524 Data Flow) 107

525 Gateway / Senet Server | 20 A 109
526 API & Lambda Function A ettt 111
52.7 Database AU e R R RS 113
5.2.7.1 Farm Table A et R bR 113
5.2.7.2 Sensor Data Table AD oot 114
5.2.7.3 Sensor Pod Table AA et sr s 115
5.2.7.4 Interfacing AA 115
528 Web Application A e bR 116
5.2.8.1 Frontend Web Application AA o ——————— 117
5.2.8.2 Backend Web Application AA e ————————— 120
5.3 Prototypes: Design VerifiCation ... ceeeeessesesssesesssesssesssssasssssssssanns 121
5.3.1 Voltage Regulator AA, LF, AW sttt ss s sss st sssss s ssssssassassasses 121
532 SOIl MOISTUIE SENSOT AW ceceeeeceeseeeseeessesesssesessse s ssss s sesssessss et ss s s s s sasasssasnees 124
5.3.2.1 Setup and ProCeAUIEmmrresssmsssesses 124
5.3.2.2 RESUIES.coureetuseersseseesssessessssesesssssssessssesssssss s sssss s es s bs bR RS R R E R 126
533 Temperature Sensor) LT 131
534 Microcontroller Data Collection AA e 132
535 Lora Module Communication REK tttetetesssssesesse s s sesssssesssssssssss s s sssssssesns 135
536 LoRaWAN Propagation Models AW ettt es s ss e ssa s 137
5.3.6.1 PathloSS OVET DIiSTANCE....ieeereeseeessssmeseessssssssssssssessssssssssssessasssessans 137
5.3.6.2 RaiN AtLENUATION.cccccercevsrcererseessssssessssssssssssssessssssssssssssssssssssssssssssessasns ..139
537 Database AA et r e 141
54 Prototypes: IMPIEMENTATION .o eeeeeeeeeseeersseeessseeessssesesssesess s s ssssasssssasesanas 145
54.1 Power Management REK ettt s sssssesesssss st ess s ssss s ss st sp s s 145
54.1.1 Voltage ReGUIALOTwceeerreesssssssssessssssssesssssssssssssssssssssssssssssssssssssessses ..145
54.1.2 Battely TESTINEZ s cceeeseursssessssssssssesseses 146
54.2 Soil Moisture Sensor AA, REK) AW ..ot sss s s ssssssasssssssssssssssassassases 154
54.3 Temperature Sensor REK AW s sss s ss s s ssassas s sssss s sssassassssssnses 157
544 Embedded Firmware REK e teteteteesssesssse s sessse bbb ss e e ss s s 160
5.4.4.1 Microcontroller Data Collection = AA, RK s ssssssssssssssssssssssssssnssens 161
5.4.4.2 Support Functions RK ettt sssssssssssssssssssssssssssssesees 162
545 COIMNIMUINIECATION covuvreeuseeesseeersseeessseeessseeeesssesesssesesssese bbb bR RS ReEER R R R 164

5.4.5.1 LoRaModule Communication 2 164

5.4.5.2 Distance Testing
5.4.5.3 UA Propagation Model AW
546 Web Application

5.4.6.1 Website Interface
5.4.6.2 Frontend
5.4.6.3 Backend
6 Mechanical Sketch
6.1 First Design Iteration
6.2 Second Design Iteration

6.3 Third Design Iteration

6.4 Pod Shell and Force of Impactcccucecrmeeennne.

6.5 Sensor Pod Prototypes

7 Future Implementation

7.1 Automated Installation

7.2 Retrieval Process

8 Design Team Information

9 Parts List

9.1 Schematics Parts List

9.2 Materials Budget List

9.3 Cost Comparison Analysis

10 Project Schedules

10.2 Design Gantt Chart
10.3 Implementation Gantt Chart
10.4 Actual Gant Chart
11 Conclusions and Recommendations
12 Acknowledgements

Cited .

13 Works

14 Appendix
14.1 Frontend Models

14.1.1

14111
14.1.1.2

14.1.2

Farm Overview

Pod List

HTML Component........eeneeens

AA, RK, AW
10.1 Azure DevOps Sprint Board

14.1.2.1 Type Script COMPONENT ..o ieerrrerssresssssssssesssssssssssssssssssssssssssssessssssssssssssssssssssssssssssssssssas
14.1.2.2 HTML COMPONENL: coortrurrermnresmssssesssassssass
L G S & () 4o OO
14.1.3.1 Type Script COMPONENT ..couureerreerssssssssssssssessssssssssssssssssssssssssssessssssssssssssssssssssssssssssssssssss
14.1.3.2 HTML COMPONENT..itiirrrerermmsesessmssesss
T4.1.4 ADOUL wceueeeeeeeeeeeeseeeesssesesssesesssesesssesessses s es b E xR R8RS £ RS E RS SRR ER SRR SRR RS R R
14.14.1 Type SCript COMPONENT ..o ieerreersssesssesssssesss s sssssssssssss
14.1.4.2 HTML COMPONENT..irtiiririmrernrmrermsmsesssesessssssssssssssssasssssssssssssssssssssssasssssasssannes
14.2 BaCKENA MOAELS ...coueeeereeeeeesneeesseeesssesessseeessssssssssssesssesssssssss s ss e essse s R bR E R
T14.2.1 DOMAIN MOAELS couieeuiieeumeeeseeeessesesssesesssesesssssessssssssssssssssssesssssssssssssssss st ssssasesssese s s s sesssasessssssssnas
14.2.1.1 Farm Table Data ... eeeeessesesssesesssssssssssesssssssssssssssssssssasssssssssannes
14.2.2 SENSOT POO DAL c.uuiieuireeureeesnseessesesssesesssesesssssessssssssssssssssssesssssssssssssssssssssasssssasssssesesasasssssasssssssssssssssssasssanas
T4.2.3 CONTIOILET couureeueeeeeeeesseeesssesessseeessssecesssesesssesesssesesss bbb R AR R R e R R R
T4.2.3.1 AP ROUEET coouieeueeeueeeesseesssesesssesesssesesssssesssss e ss s s s ss s ss s s R
14.2.3.2 AP CONLIOILET CLASS cooutieeurerursersneessssesesssesesssesssssesssesssssasssssasesssasssssasesasas
14.2.3.3 API CoNtroller Data TYPe...remmsesmssas
14.2.3.4 AP CONLIOIEr INEEITACE. ..o ieeereeeesreeesneeesseeesseeesssseessssssss s ssssssssssss s sssss s ssssesesasasssasasesasas

14.2.4 Startup CONfIGUIAtION ... ceeeeeeseeereseeerssesessseecesssesesssesssssssessssssssssssssssssssssssasesees

LIST OF FIGURES

Figure 1: SparkFun Soil Moisture Sensor. Image Retrieved from
https://www.sparkfun.com/ProductS /13322 ... eeseeessseessesssssasssasssesasns 22
Figure 2: Analog Capacitive Soil Moisture Sensor. Image retrieved from
https://www.reichelt.com/de/en/development-boards-soil-moisture-sensor-capacitive-analogue-

debo-Cap-SeNS-P223 620 NEMIZIE 1. oot seeessseeessseeess s se s s s e s s R bbb 23
Figure 3: Power Radiation Polar Plot for Directional Antennas. Image Retrieved from
https://www.sciencedirect.com/science/article/pii/S2215098616304256.......ccomrermeeerrmmeeremeeerrmeernseeeens 26
Figure 4: Power Radiation Polar Plot for Dipole ANTENNAS. ... eeeeerneeesneessseeessesesssesssssssssssssssssssssssssssesees 27
Figure 5: Power Radiation Polar Plot for Monopole ANtENNAS.........eemeeesmeeesseeessssessssssssssssssssssssssssssees 28
Figure 6: LORAWAN COMMUNICAtION STACK. ...ccuuiieereeereeesseeessesessseeesssesessesssssesssssasssasasesns 35
Figure 7: LoRa Communication CHIRP (Modulated Data). Image retrieved from........cnnees 36
Figure 8: MAC Layer FOIMIAL. ... eeeeseeesseeesecsseessseesseesssssssessssssssssssssssssessssassssessssssssessssessssasssssssssessssssssassssasssssssssssssessanas 37
Figure 9: LoRaWAN Class Types. Image retrieved from https://witekio.com/blog/lorawan-a-
AEAICAtEA-TOtTIEEWOTK/ c.ovreeeeeeeeeereeeerseecsseecesssscessssesssesesssesesssss bbb RS R R 38
Figure 10: Database STIUCTUTE. ... eeeeneeesseeessseeesssesesssesessssssssssssssssssesssasesssasssssssssssssssssesssssesesssasssasasesssssssssssssssssssssssesss 50
Figure 11: Level 0 Block Diagram of Soil SENSOT NEtWOTK.......oeeeeeecessneeesseeessesssssssssssssssssssssssssssssssssesees 53
Figure 12: Level 1 Block Diagram of Soil SENSOr NeTWOTIK......oucecermereemmseessseeesssssessssssessssssessssesssssssesesss 55
Figure 13: Level 2 Block Diagram for Soil SENSOr NEtWOTK......eerreemsseesssesessmssessssssesssssssssssssssessssseseess 59
Figure 14: Level 3 Block Diagram for Soil SENSOr NEtWOTK.....ceerreemmreessesessmsssessssssssssssssssssssssssssseseess 63
Figure 15: EagleCAD Soil Sensor Network Circuit OVEIVIEW......cereemreessmesessmssesssssssessssssssssssssssssssseseess 64
Figure 16: EagleCAD STC3100IST Battery MOMNILOT....errermeressseseesmssssessssesesssssssssssssssssssesssssssssssssasesessas 66
Figure 17: EagleCAD XC9140A331MR-G Boost Voltage Regulator.cueeeeeens .67

Figure 18: Internal Circuitry for Voltage Regulator XC9140A331MR-G. Image retrieved from
https://www.digikey.com /htmldatasheets/production/1228326/0/0/1/xc9140-series.html.68
Figure 19: EagleCAD STBB1-APUR VOItage ReGUIALOTcureerreemmeeeesmsseeessssesessmssssssssssssssssssssssssssssssssesesses 70
Figure 20: Buck-Boost Voltage Regulator STBB1-APUR Pinout. Image retrieved from
https://www.st.com/content/ccc/resource/technical/document/datasheet/20/a6/10/e0/63/85/
43/c1/DM00037824.pdf/files/DM00037824.pdf/jcr:content/translations/en.DM00037824.pdf..71

Figure 21: EagleCAD PIC24F]J128GB410 MiCrOCONIIOIIET ... ieeeeeermmereessreseessssesessmsesessmssssesssssssssssssssssssssssesss 73
Figure 22: EagleCAD RN2903 LORA TraNSCOIVEL. ...ceermreerseeesssesessssesessssssesssssssssssssssssssssssssssessssssessssssessessas 74
Figure 23: EagleCAD Capacitive Soil Moisture Sensor: Iteration L......eeeeseseessseesseseees 75

Figure 24: TLC555 Timer Datasheet: Astable Circuit. Image retrieved from
https://www.ti.com/lit/ds/symlink/tlc555.pdf?HQS=TI-null-null-digikeymode-df-pf-null-

WWERESTL1O0355385T426. ..o reeumereersseeeessssesesssssesesssssesssssssssessasesssssssesesssssesessssseseessasssessasseseesssssssessassssessasesesssssessesssnees 76
Figure 25: EagleCAD Soil Moisture Sensor: Iteration IL...... o reeeesseeesssssessssssesssssssssssssssssssesessas 78
Figure 26: Soil Moisture Sensor Internal Circuit: Iteration II1.eeeeeeeeeseeesssessssesesssseseess 80
Figure 27: EagleCAD MAX6607IUK+T TeMPEIratUre SEISOL. ..cccuuureermrersssseessssesessmssesessssssssssssssssssssssesssseseess 81
Figure 28: EagleCAD Moisture Sensor to Main Connector Board.eemeeesseeessssesssssessssseseess 82
Figure 29: EagleCAD Temperature Sensor to Main Connector Boad.cccoueenmeeeerreeennn. 82
Figure 30: EagleCAD Debugging Test Vias and LEDS. ... eeesessesessssesssssssssssssssssssssssssssssssssssssess 83
Figure 31: EagleCAD Manual ReSet PUSHDULLOMN. c..iuuieeeeeeeeessereeesescessscssssesesssesssssesssssssssssssssssssssssesssssesssssessssseseens 84
Figure 32: PIC24F]256GB410 Microcontroller and RN2903 LoRa Module Breakout Pins.cccooucuuu... 85
Figure 33: LTSpice Capacitive SOIl SENSOT CITCUIL. ... eereeeeeeseeeesseeeesssecesssesssssesssesssssessens 86

Figure 34: LTSpice: Soil Moisture Sensor Simulation C1=TO0PF. ... eeeeeseeesssseessssesssssesssssssssees 87

Figure 35: LTSpice: Soil Moisture Sensor Simulation C1=20PF. ... eeeesseeeesseesssssesssssessssesssees 87

Figure 36:LTSpice: Temperature Sensor Simulation CIFCUIL. ... eeeeessmeeesseeessseeesssesesssssessssssssssssssssssssssees 88
Figure 37: Temperature Sensor Simulation Diagrram. ... ceeeseeessesessssessssssssssssssssssssssssssssssssssssssess 89
Figure 38: Main PCB DESIZN. ..o eereesseesseessseessssessssessssesssssssesssssssssssssssssssssssasssssssssssssessssassssasssnas 90
FIGUIE 39: MAIN PCB...ooeeeeeeeeecereceeessseesssessseessessssessssesssse s s s s R R R £ R SRR R R 91
Figure 40: Buck-Boost Voltage Regulator PCB DeSI@N.coeeeeeessmeeesneeesseeesssssesssess 92
Figure 41: STBB1-APUR Voltage Regulator PCB. ... ecesecessecessssesssssssessssssssssssssssssssssssssssessssssssssseseens 92
Figure 42: Battery Monitoring PCB DESIGN.eeeeeseesseesseesssessssssssssssssssssssssssssssssessssssssssssssssssessssesssssssans 93
Figure 43: Battery MONItOring PCB. ... ecssresseessseesesssesssssesssssssssssssssssssssssssssssessssas s ssssssssesssssssssssssssssssssans 93
Figure 44: Battery PACK PUB DESIZIN. ..ooieereeereeeeaerersseseesssssssssssssssessssesssssasssssssssssesssssesssssesssssasssssassssssssssssssssssasssssasssss 94
Figure 45: Battery PACK PUB. ...t cessseessssesssssssssssssssssss s sss s bs s s ss s bbb bbb 94
Figure 46: SOil MOISTUIe SENSOT PUB. ... reeeeeseecissescessssessesssssesssssssssssessssssssssssssssesssssess s sssess s ssssssssssasssssssssns 95
Figure 47: Temperature SENSOT PCB. ... sssssessssssssssssssssssss s s sssssssssssssssssesssssssssssans 96
Figure 48: External Sensor to Main Board PCB DeSign.......ceeeeesssens 97
Figure 49: External Sensor to Main Board PCBS. ... eeecesssssssssssssssssssssssssssssssssssesssssassssssssssseseens 97
Figure 50: Level 1 Embedded FIOWCRAT ... cesseeessssesssssssssssssssssssssssssseeees 98
Figure 51: Level 2 Embedded Flowchart: Trigger Sensor Readings.ccoeereesmmreessmesessmseessmssseessseseess 99
Figure 52: Level 2 Embedded Flowchart: Send Data to Gateway/Hub.......ccccoouvernenn. 100
Figure 53: Level 1 Software BIOCK DIagram. ... erreermeeessseseesssssesssssssssssssssssssssssssssssssssesessssesssssasssssssasesees 101
Figure 54: Level 2 Software BIOCK DIagram.....coerreermeressmeseesmssessssssssssssssssssssssssssssssssssessssssssssssssesssssasesees 104
Figure 55: Data FIOW FIOWCRATIT. ... reerssseerssescesssssessssssssssssssssssssssssssessssesessssssssssssssssessasssssssassssssasseseess 107
Figure 56: RG191 Senet Laird GAEWAY.ocerreerseessseessssesessmssssssssssssssssssssssssssssssssssessssesessssesssssssesssssasesess 109
Figure 57: API & Lambda Function FIOWCRATT.reereemseessssseessssesessssssesssssssssssssssssssssssssssesessssesees 112
Figure 58: Lambda Function PSEUAO COAE......mmmmmeemmeseesmssessssssssssssssssssssessssssesssssssessssssssssasssssssassesess 112
Figure 59: Farm Table BaSeliNe......ereemeresssesesssssessssssssssssssssssssssssssssesessssessssssessessasesessssessssassesssssssessess 113
Figure 60: Sensor Data Table Baseline.eeeeeesmseesssssessssssssssssessssssesssssaeee 114
Figure 61: SENSOI POA TADIE. ...o.iveeeeeerserersmeseessseseessssssessssesssssssesssssssessssssessssssssssssssesessssssesssssessessasssssssassssssaseseess 115
Figure 62: Level 3 Web Application View and Controller Flowchart.cneeeennnn. 118
Figure 63: Frontend Navigation Calls. ... eremeesmeeesssssessssssssssssessssssesssssaeee 119
Figure 64: Frontend RoUting Table......eeeeeescesssseessssessssssssssssssessssesessssns 120
Figure 65: Backend API Controller PSEUAO COAE.mrmmmreemmerersseeessmsssesssssssssssssssssssssssssssssssssessssssesees 120
Figure 66: Backend Modeling PSEUAO COAE.eereeseeesseeessesesssssessssssssssssssssssssssssssssssssssssssesssssesesssasesasns 121
Figure 67: XC9140A331MR-G Voltage Regulator Prototype CirCUit o eerneeessseeessesssssesessseeesasesesanns 122
Figure 68: STBB1-APUR Buck-Boost Voltage Regulator Prototype CirCuit.oenereenneeesseecssseseennns 123
Figure 69: Data Collection from STBB1-APUR Buck-Boost Voltage Regulator.necesneeennn. 123
Figure 70: Capacitive Soil Moisture Sensor PrototyPe SELUP. ..eeemeessneessseeessssesssssssssssssssssssssssssesans 125
Figure 71: MOiSture SENSOT iN SOIL . eeeeeseecessseessseeeesssesesssssesssesssssssssssssssssssssssesssssssssssesees 125
Figure 72: Soil Moisture Sensor Control LOWer Limit: Al ... eeeeseessseessssessssessssssssssssssssssssssns 126
Figure 73: Capacitive Soil Moisture Sensor Control Upper Limit: Water........eenecssseees 126
Figure 74: Container 1: SUPET SOIL DIY. . cereeessnseessseeesssesesssesssssesessasssssesssssasssssasssasaees 127
Figure 75: Container 1: Super Soil with 1 Tbsp Water Added.ccoeenmeeenmeerrreeernneeens 127
Figure 76: Container 1: Super Soil with 5 Tbsp Water Added (Saturation).........eeeeeessneeennns 128
Figure 77: Container 2: SANAY SOIl DIY. . eeneeiesseeessessssssssssessasssssesssssasssasasssaseees 129
Figure 78: Container 2: Sandy Soil with 1 Tbsp Water Added........oeneneeennneeesneeissnesessesesssssesssssesns 129
Figure 79: Sandy Soil with 4 Tbsp Water Added (Saturation). ... eesessssessssessssssssssess 130

Figure 80: Soil Moisture Measurements Frequency vs. Additional Water Graph........ccn. 131

Figure 81: TC1047A TeMPEIatUI® SENSOT ... eeseeesseesseesseesssssssessssessassssssssssssssssssssssans 131
Figure 82: TC1047A Temperature SENSOT PINOUL. ... sessssesssessssessnes 132
Figure 83: Explorer 16/32 Development Board DEMO.cceeeneemeeesmesesssesssssessssssssssssssssssssssssssssssssnes 133
FIGUIE 841 MaIN PrOGTAL. ... ieecceueceeeeseessnsessesessessssesssssessssessssssssssssassssasssssssssssssas s ssssssssssssassssassssasssssssssssssassssassssssssnees 134
Figure 85: ANAlOZ SAMPLINE. ...ccuuieeeeeeueeieueeeesseeeesseesesssesesssesesssesesssssesssssssssssssss s ssss s es R 135
Figure 86: RN2903 LoRa Module with 6" Monopole ANteNNa.........oeeeeseeeesseeeenns 135
Figure 87: Screenshot of YAT Terminal for Serial Communication.ceeeneesmeeesmeeesseeesssssesns 136
Figure 88: Senet Screenshot of Successfully Delivered LoORa MeSSage.......coceemeeernmeeessmeeesmesessseeesssesesns 137
Figure 89: LORAWAN Signal Path LOSS. .. ceeeeeesnseissseeessesssssesssssessasssssasssssassssasssaseees 139
Figure 90: LORAWAN Rain AtEENUATION. .o ceeeeeeeeseeeseessseessessssesssseessseesssesssessssessssessssssssssssssssssasssssssssssssessssassssassaseess 140
Figure 91: Sensor_Data_Test_BaSEliNe.. .. eereesseeessesssssesssssesessasssssesssssasssasasssasaees 141
Figure 92: DyNamoDB Table. ... eessessssssssessssesssssesessssssssssssssssssssssssssssssssssssssnnes 141
Figure 93: AWS API GAtEWaAY...oeeeeeemeesmerssesssessssesssseesssssssessssessssesssssssssssssssssssssssssssssssssssessanas 142
Figure 94: Lambda FUNCtion DeSi@N FIOW. ... sssees 142
Figure 95: Lambda FUNCLION PSEUAO COE. ..cumeeeeenerersesessesesssssessees 143
Figure 96: PoOStMan AP Call.... e ssssssssesesssssssssssssssssssssssssssssssssssssasens 144
Figure 97: DynamoDB Table.eesmssesssssessesessssssssssssssssssssssssssssssssesssssaese 144
Figure 98: Battery Testing Setup (Sponsored by Keithley).cmmeeeeeessne 146
Figure 99: PIC24F]J256GB410 ACtIVE MOE. ..ccoumrreerereerseseessssesesssssessssssssssssssssessmsssssssssssssssssssssssssssssssssessesssssesessas 147
Figure 100: PIC24F]256GB410 Active TranSmit MOME.reereeeemesessssesssssssssssssesssssssssssssssssseseess 148
Figure 101: PIC24F]J256GB410 S1eeP MOE. ..coureerrereerreseerssesessssnesesssssssssssssssessmsssssssssssssssssssssssssssssssessessssesessas 148
Figure 102: Current Draw of Sensor Pod in Different PIC Modes.eemeeermseessesssesessesessssesees 149
Figure 103: Soil Moisture SENSOr REAAINEGS.eereereeesssessssssssssssssssesesssesessas 155
Figure 104: Trended Soil MOiStUre SENSOI DALA. ..couceermeeeesmeeeesmesessssesesssssssessssesesssssssssssssssssssssssssssssssssaseseess 155
Figure 105: PCB vs. Adafruit SOil MOISTUIE SENSOT.cuureereeermeeessseseessssssessssesesssssssssssssssssssssssssssssssssseseess 156
Figure 106: Temperature SENSOr REAAINEGS. ... eereermeeesssesssssesssssessssesessmssssssssssssssssssssssssssssssssssssssesessas 159
Figure 107: Senet Portal DEVICE EUL ... cereeereeessesssssnesesssessssssssesssssesssssssssssssssssssssssesssssssesessssessssssessessas 164
Figure 108: 3.3km Distance Testing Communication SELUP. ... eeeermeeessmmssessesessssesessssssssssssesessaesees 169
Figure 109: Distance Testing SENSOTr POA SETUP.rceereermeeesmssesssssssssssesessssesessssssssssssssssssssssessassssssssseseess 170
Figure 110: Senet Data from Distance Testing: Initial POSItiON....coeeereermmeeessmseesssssseesssesessssesesssseeees 171
Figure 111: Senet Data from Distance Testing: 3.3 KIM.....cccoeemeeesneessnssesssssessssesesssssssssssssssssssesess 172
Figure 112: DiStance TEST: 6 KIM. ... uieeeeeeseeceseecessesesssesesssesessssssssssssssssssssssesssssssssssasssssesssssasesssassssssssssssssssssssssssssssanas 172
Figure 113: Satellite View of Gateway and Sensor Pod Locations. ... 173
Figure 114: Senet Data from Distance TeStING: 6 KIM....orernreenecernscessseessssessssesssssssssssssssssssssssssssssssssssssns 173
Figure 115: Senet Data from Distance Testing: RSSI and SNR......nrennecseeesnecesssesssseesssessssssess 174
Figure 116: Propagation Model on the University of Akron Campus: 500m Distance.........cccueweeermeeenn. 176
Figure 117: Senet Data from Distance Testing: RSSI and SNR......nrenecseeessecesseeessesesssessssssssas 177
Figure 118: Soil Sensor Network Web Application: Sit€ Map. ...eeemeesseesssessssesssssssssssssssssssssns 178
Figure 119: Soil Sensor Network Web Application: Main [INterface. ... eeneesmeeesseeessseesns 178
Figure 120: Soil Sensor Network Web Application: Home Page......cccooeenrmrerrnercnnns 179
Figure 121: Soil Sensor Network Web Application: Farm ID Sign IN. ..eeneeeeseeesseeessseees 179
Figure 122: Soil Sensor Network Web Application: Farm OVEIrVIEW......eeeeesmessssesesssesesssssesas 180
Figure 123: Soil Sensor Network Application: Farm Information and Farm Status........eenn. 180
Figure 124: Soil Sensor Network Web Application: Trended Dataeeeesmeeessmeeesmesesseeesssesess 181
Figure 125: Soil Sensor Network Web Application: POd LiSt......eremeeesessesesssesssssssssssssssssssesas 181
Figure 126: Soil Sensor Network Web Application: Pod Status List and Pod Data......cccueneeersneennn. 182

Figure 127: Soil Sensor Network Web Application: Pod Status LiSt.....c.cconeeene. 182
Figure 128: Soil Sensor Network Web Application: Pod Data........eeeen. ..183
Figure 129: Soil Sensor Network Web Application: About Page.c.ccoourenrmreernneens .183
Figure 130: Phase 1 Mechanical Sketch of SENSOr POd. ... seesssssssssessssssssssesssssessssessss 190
Figure 131: Phase 2 Mechanical Sketch of SENSOr POd. ... ceeceeeeseeessseesssesssssssssssssssssssssssssss 192
Figure 132: Top Housing Area and Height REQUITEMENTS.coocucenmreeenneeesmeeesseeessseesssessssssssssssssssssssssssss 193
Figure 133: Phase 3 Mechanical SKetch: TOP HOUSING. c..eeieerneeereeesneeessesessseessnns 195
Figure 134: Phase 3 Mechanical SKetCh: BaSe.eeeeessesessessesssssesssssns 196
Figure 135: Phase 3 Mechanical Sketch: Base AttaChmMent.......eeneeseeesseessseesssesssssssessssesssssssssssssas 197
Figure 136: Phase 3 Mechanical Sketch: Battery Pack. ... cneeneessesessseessssesssssssssssssssssssssssssssssans 198
Figure 137: Phase 3 Mechanical Sketch: Battery Pack Lid.......concenneeeennneens .199
Figure 138: POd SHEll GEOMELTY. c..veuueeeeeeeeeeeseeessssesssesessssssssssesssssesssssasssssssssssssssssssssssesssssssssssesssssessssssasssssasssssasssasanes 202
Figure 139: 3D Prototype: POA BaSe....eeiisseessssesssesesssssesssessssssssssssssssssssssssasssssssssssssssssasssssesssasasssasasssasaees 202
Figure 140: 3D Prototype: Battery PacCK. ... seeeerseeeeseecissscsssaseees 203
Figure 141: 3D Prototype: TOp HOUSING W/ BaASE...crreneeessesssesssseessnas 203
Figure 142: Fully Assembled SENSOT POd. ... reeeneeesirsssesssssessees 204
Figure 143: Assembled Battery PAcCK......reeesesesssessessssssesssssssssessas 205
Figure 144: SENSOr POA PrOtOtYPES. . cerreeereseesseesssssssssssssesessssessssssssssssssssssssssessssssssssssssssssessasesessssssessssessesaas 205
Figure 145: Automated Installation CONEIraption. ... ceeeereessssesessssssesssesessssssesssssssssssassssssssssssssssseseess 206
Figure 146: MN5D10HS Nano Hornet GPS Tracker. Image retrieved from

https://trackimo.com/micro-gps-tracking-Chips/. ...meereeessssesessessssssssssssssssssssssssans 209
Figure 147: Azure DevOPS BOArd SPTINt 3. .. ceeeeeereeeessesesssnessssssssssssssesesssssssessssssssssssssssssssssssssssssessassesessas 221
Figure 148: Design GANtL CHATT. ... eeeeseeeesseeessssesesssesesssssesssssssssssssssssessssesssssssesssssssesssssssesssssssssessssesssssssaseesaas 223
Figure 149: Implementation Gantt Chart (1) . eereeeesmesesssesesssssesssssssssssssessssssssssssesssssssesssssasssesss 224
Figure 150: Implementation Gantt Chart (2). ... eeereesmsesssesesssssssssssesssssssssssssssssssssssssesssssssesesss 225
Figure 151: Actual Gantt Chart (1) o ceeeereeesseeesseesessssesessssesessssssssssssesssssssesssssssessssssesessssesessssessesssessessas 226
Figure 152: Actual Gantt Chart (). . ceeeereeessessssessssssesessssesessssesesssssessssssssssssassssssssesssssssessssssesessssessessas 227

LiST OF TABLES

Table 1: Soil MOIStUIre SENSOT ANALYSIS...icuieeurerureersessssesssssesssssesesssesssssesssssssssssssssssesssssesssssesssass 23
Table 2: Chemical Composition of SOil SENSOT ANALYSIS. ..ceereerrerseresesesssesesssesessssssssssssssesssssssssssssssssssssssessssns 24
TaDLE 3: ANETEININA ANALYSIS. .uuireuureerueeessseeessseeessseeesssesesssessssssesssssasssssasssssasssssesesssesesssesesssessasesssssasesssese s e s e b e sbssassrasesssssess 28
Table 4: Battery POWET ANALYSIS. ..oiuureeeeeureesseeessssesesssesesssesssssasessssssssssssssssssssssasssssssssssasssssasssssasesssasssasasssssssssssssssssasessnas 30
Table 5: Voltage Regulator COMPATiSOMNS. .. eereeeseeessseessssesssssesssssesssssasssssssssssasssssesssssesssssessssssssssasssssasssssasesanas 33
Table 6: Top Wireless Standards for [oT Devices. Retrieved from [0T EE Times......conennecennmecesneeens 44
Table 7: Engineering and Marketing REQUITEMENTS.......ccceereenrersnecrsseecessesessesessssesssssssssssssssssssssssssssssssssesssssns 47
Table 8: Engineering Standard SPeCifiCations. ... eeeeseeeseeessssesssessssssssssssssssssssssssssssssssssssssesssssesssssesesanns 49
Table 9: Level 0 FR Table: SENSOIS. c..rerreesmesessssssesssssssssssssssssssessssssessssssssssssssssssssssesesssssesssssssssssssasassssass 53
Table 10: Level 0 FR Table: GAteWay /HUD. ... seessesssssssssssssssanns 54
Table 11: Level 0 FR Table: SEIVET. ... ereermseresssssseesssssssssssssssssssssssssessssssesssssssssssssssssessssesssssssssssssassssssases 54
Table 12: Level 1 FR Table: BAtLEIY. ... eeesneeesseeessseesssssessesssssesssssasssassssssssssssssasssssssssanas 56
Table 13: Level 1 FR Table: SENSOr PO MiCIrOPIOCESSOTcueeueeeseersseeessesssssesesssssessssssssssssssssssssssssssssssssssssssens 56
Table 14: Level 1 FR Table: Sensor Pod Lora MOAUIE.eeeeeemseesssesessssssesssssssssssssssssssssssssssssessssnes 56
Table 15: Level 1 FR Table: SENSOT L.....reeereesssessssssesssssssssssssssssssssssssssssssseee 57
Table 16: Level 1 FR Table: SENSOI 2.....eererseseessseesssssesssssssssssssssssssssssssssesssssaeee 57
Table 17: Level 1 FR Table: Gateway Lora MOAUIE. ... reerererseresseseesssannes 57
Table 18: Level 1 FR Table: Gateway MiCrOCONEIOILET. ... eerrersreessssseessssesessmsesesssssssssssssssssssssssssssesesssanes 58
Table 19: Level 1 FR Table: Data StOrage.....erermeressmesessssssssssssssesssssssssssssessssesssssaeee 58
Table 20: Level 1 FR Table: Software AppPliCatioN.....eereerseressmsssanes 58
Table 21: Level 2 FR Table: ANEENNA. ...cereereermsseseessssessssssssssssssssssssssssssssessssssssssssaeee .60
Table 22: Level 2 FR Table: Transceiver MOAUIE. ... eemeermesessssessssssssssssssssssssssssssessssssessssssssssssasnes 60
Table 23: Level 2 FR Table: VOItage ReGUIALOT ... reerreesmseesssesessmsssesssssssssssssssssssssssssssssssssesssssssssssssasnes 61
Table 24: Level 2 FR Table: LIN€AT INTEZIALOT . ..cccurereerersseseessseseesssesessmssesssssssesssssasnes 61
Table 25: Level 2 FR Table: Capacitive Discharge CirCUILTY. ..corcrreemmeeesmsesessssessssssesssssssssssesssssaeee 61
Table 26: Level 2 FR Table: NES55 TIIMET. ..erreersreessseeessssesesssssssssmssssssssssesssssssssssssssssssssssessssesssssssesssssass 62
Table 27: Level 2 FR Table: TeMPErature SENSOT ... rermmreessseesssssssssssssssssssssssssssessssssesssssssesssssssssessases 62
Table 28: Level 1 Software Block Diagram: FR Table: GateWay......cc.cceeeemereesmmmseessmesesssesessssssesssseseess 101
Table 29: Level 1 Software Block Diagram: FR Table: Senet Server.........ccoouuueeens .102
Table 30: Level 1 Software Block Diagram: FR Table: AWS API/Lambda.ccoeereermmeeermeeeessneeees 102
Table 31: Level 1 Software Block Diagram: FR Table: Database.cerermereemmmeeeesmseesssssssessssesessans 102
Table 32: Level 1 Block Diagram: FR Table: Backend of the Application. ... eermeeersmmeseessreeeesnas 103
Table 33: Level 1 Block Diagram: FR Table: Frontend of the Application:......cneenmeeessmeeesssseesssnees 103
Table 34: Level 1 Software Block Diagram: FR Table: LOIC.ueeneesesessesesssssesssssessssssssssssssssssssseees 104
Table 35: Level 1 Software Block Diagram: FR Table: Model........cooneennerercnneens ...105
Table 36: Level 2 Software Block Diagram: FR Table: CONtroller. ... eeeesneeessseeessseesssseesseees 105
Table 37: Level 2 Software Block Diagram: FR Table: VieW......neennecernseeeesneecnnns 105
Table 38: Data FIOW: FR Table: GAt@WAY. ...ocweeeeeeseeesssesesssesessesssssesssssasssssaseens 108
Table 39: Data FIow: FR Table: SENEt SEIVET.crerrseemsesesmeseesmsssessssssssssssssssssssssssssessssssessssssssssessas 108
Table 40: Data Flow: FR Table: Amazon Web Server (AWS). ... neneeensseessneens 108
Table 41: Data Flow: FR Table: Web AP PliCAtioN ... ereeeeesseeessesesssesessssesssssesssssssssssesssssssssssssssssssssssesssssesees 109
Table 42: Senet UPLNK DAta.oeeeeeeeneessnsesssssessssesssssssssssesssssesssssssssssssssssssssssssssssssssssesees 110
Table 43: Soil Moisture Measurements with Incremental Increase of Water.......oeeemmeeeesssneeeens 130

Table 44: Electronic COmMpONent DIiMENSIONS.oureueeeeesesesssessssesessssssssssssssssssssssssssssasssssssssssssssssssssssesssssesees 192

Table 45: Design SCheMatiCS PArts LiST. ... eeeeesseeesssesesssesesssssssssssssssssssssssssssssssssssssssessssssssssssasssssasssssasssssasesas 210

Table 46: Implementation SChematics Parts LiStu.... o eeeeesseeessesesssssssssessessess 211
Table 47: Material Budget LiSt Fall SEMESTET.ieereeseeeesseeeessesessssssesssesssssssssssesssssssssssssssssssssssesssssesssssessssseseens 213
Table 48: Material Budget LiSt SPTiNg SEIMESTET eeeeenreeeeseseesssesesssesssess 215
Table 49: SensOr POA NEtWOIK COST.uumrerreermresssssesssssessssssssesssssssssssssssssssssssssssssssssssssesssssssessssssssssssssasessaas 219

Table 50: Market COStS fOr SENSOT NETWOTKS...ocercrisrsssassssssssssnes 220

ABSTRACT AW

Water management during crop irrigation is a problem for the agricultural industry. To
help farmers better maintain water usage, a wireless soil sensor network comprised of a sensor
pod and wireless communication has been designed and implemented. It was proven that the
sensor pod can be installed 6-8 inches below the ground and communicate up to at least a 6km
distance back to the gateway. The senor pod shells have a 2 mm thick shell to prevent the pod
from shattering when coming into contact with the ground after being released from the planter,
as calculated through the force of impact equations. The sensor pod contains a capacitive soil
moisture sensor with an accuracy of 90% and a temperature sensor with an accuracy of +0.2°C.
Lithium-ion batteries with a 2800 mA-H rating were chosen to ensure the sensor pods would be
power-efficient in order to last an entire growing season. The sensor data is transmitted
wirelessly through LoRaWAN communication using a RN2903 transceiver and a quarter
wavelength, 3” monopole antenna. A Sentrius Laird gateway was used to collect and forward
sensor pod data to the Senet dashboard. The Senet dashboard then forwarded the data to a web-

based application that farmers can reference to check the status of their fields.

Keywords:

e Capacitive soil moisture sensor
e LoRaWAN communication

e RN2903 transceiver

e Senet gateway

e PIC24 microcontroller

e Mobile-friendly application

1 PROBLEM STATEMENT

Owners of large farms need a way to efficiently monitor water consumption and the health
of their field. Traditional Wireless Sensor Networks that are aimed at collecting data from the
soil use costly equipment. The new Wireless Sensor Network proposed will take advantage of
advanced protocols and embedded systems available to aid in the process of growing and

maintaining crops with technology that is more accessible to farmers.
1.1 NEED AA,LF,RK, AW

The agriculture industry experiences water shortages in different areas and at different
times due to the mobility of water as a resource; the amount of water in a given area one day may
not be the same amount of water there the next day. In addition to water scarcity, water cost is
also a serious concern for farm owners. Because of this, there is a need for an easier and more
reliable method for monitoring water consumption and soil composition of crops for the farming
industry. Current methods of manually monitoring water distribution can lead to irrigation
systems over watering, which wastes money, or under watering, which creates bad harvests.
Many soil sensing systems that help eliminate water inefficiencies are networked together
through physical wires, leading to difficult installations. There is a need for an off the shelf,

easy-to-install sensor system that can be accomplished by using wireless soil sensors.

1.2 OBJECTIVE AA,RK, AW

The goal of this project is to create a low-cost, power-efficient software-sensor network that
acquires soil data from sensors, contained in a single Sensor Pod, to aid in irrigation and crop
management. The Sensor Pods can be “planted” with the crops throughout the field for easy

installation. Data will be transferred using wireless communication and will then be stored in the

Cloud to be accessed through an app. This will allow farmers to check the history of their crops
and forecast when the most water will need to be supplied to their field. The sensor system
created will automatically update at predetermined intervals throughout the day to give updates
on the status of the crop. These interval times of reading can be altered to conform to a farmer’s
needs and schedule preferences. These updates will be used to inform the farmer when crops are

in need of water.

1.3 SoOIL SENSOR NETWORK BACKGROUND AA, RK, AW

According to the United States Department of Agriculture, 80 to 90 percent of water in the
United States is consumed by the agriculture industry [1]. To compensate for water management
inefficiencies, an automated, sensor-based irrigation system is needed. Improvements in
irrigation efficiency can go a long way in reducing water consumption globally for the
agriculture industry. A scalable solution that includes soil sensors and automated irrigation is
needed to achieve these desired changes. This system can be developed with a feedback loop
relaying information from data acquisition sensors in a field back to a remote interface that
would control the irrigation system, only activating the sprinklers located in water-depleted
areas. The system can be tailored for the type of crop in the field in order to ensure accurate
water management. The data collection will be stored and trended in the Cloud, which can then
be accessed through a software application so farmers can better maintain their crops. The
creation of a software-sensor network system is important in reducing agricultural water

consumption.

The theory behind the Soil Sensor Network system is to “plant” a Sensor Pod into the

ground to collect data useful for crop and water management. The sensors will be stored in a

container that can be mounted on farm planting equipment to allow for automated planting. Once
the Sensor Pods are planted, they are in position to communicate with a base station through
LoRaWAN technology. To save energy, the Sensor Pod will take measurements only when
triggered. Once triggered, the sensors will collect data and transmit it to the base station, which
will then relay it to the Cloud. The web server in the Cloud will analyze the data over time and
create trends that farmers can access from their device to be used to monitor the moisture levels

and other valuable properties of their fields.

In order to acquire data from the system, a few sensors will be integrated, one of which
will be a capacitive soil moisture sensor. To measure moisture levels in the soil, capacitive soil
sensors use the discharge rate of the soil to calculate soil moisture content. Other sensors that
will be researched and analyzed for potential use are electrochemical sensors, salinity sensors,
and pH level sensors. These three types of sensors have the ability to measure nutrient and pH
levels of the soil to tell farmers when and what kind of fertilizer needs to be added to the field.
The sensors chosen to be used will be combined into the Sensor Pod. Each Sensor Pod’s location

can be recorded through a unique identification.

Although current automated irrigation designs have proven to be very effective in the
field, they also have limited communication abilities. In general, implementations involve a
microprocessor for computation and decision making, sensors for capturing data, and a network
to connect the sensors to a base station. The entire network of Wireless Sensor Units (WSU)
forms a Wireless Sensor Network (WSN). A variety of communication protocols have been used
for the relay of data between sensors and the base station. One of the implementations of an
automated irrigation system has relied upon Global System for Mobile Communication (GSM),

an older form of telecommunications that is available in remote areas. General Packet Radio

Service (GPRS) is another form of communication that uses 2G and 3G cellular networks, which

are also outdated [3].

In recent times, technologies such as LoRa have been suggested to be the backbone of the
WSN. LoRaWAN, a low-power wide-area network (LPWAN), has become more popular in
agriculture technology communication due to its low cost and long-range capabilities. LoRa
technologies operate off of the unlicensed spectrum, allowing the costs of data communication to
be relatively cheap compared to the currently used licensed spectrum (i.e.: 4G technologies) [4].
LoRa operates on the 915 MHz frequency in the U.S. with a physical range capability of 10 km
in rural areas, making it a preferred method of communication for agricultural sensor networks
[3]. Most sensors do not use wireless communication but rather rely on physical wires for power
and communication back to a base station. This method restricts the measurement to local areas
due to the sensors being physically connected. The WSN has recently been used for
communication in agricultural sensory systems; an example of this is the patent by RainBird
Corporation, which uses WSN to monitor and control irrigation [6]. This technology allows for a
wider range of monitoring that can more accurately be attained by using LoRa as a means of

communication to standalone sensors.

Automated soil sensing has previously been implemented in dry, remote locations, such
as India, and has shown promising results. Ozawa et. al. patented an underground sensor design
in February of 2020 to be used for fertigation. The sensor was attached to a discharge valve that
would distribute minerals into the soil through salinization to prevent pollution and
oversaturation of salt. The soil electrical conductivity (EC) sensor measured soil content and
communicated back to a main controller through a wireless fertigation system [5]. In a paper

published at Karpagam Academy of Higher Education, the results from their smart irrigation

system yielded a significant water usage reduction. The traditional method they observed had
used 174 liters of water per drip hole, whereas their system used just 14 liters per drip hole [3].
With almost 90% water savings, the proposed design by Ozawa et. al. was very effective and
showed that under good conditions, the system can save water and help farmers efficiently

manage crops.

In addition to a capacitive soil sensor, many other types of sensors can be used to collect
data that is useful for crop growth management. Popular sensors include air humidity sensors,
water level sensors, and soil moisture sensors. Similarly, the focus of the project will be on
capturing soil moisture readings, as well as potential readings on pH levels. The two methods for
measuring moisture in soil are soil water content and soil water tension [8]. Soil water content
sensors measure the mass ratio of the soil of when it is wet to when it is dry. Soil water tension

sensors measure the force it takes the roots to grow through the soil.

The three most commonly used sensors that measure soil water content are neutron
probes, time domain transmission (TDT) sensors, and frequency domain reflectors (FDR) [8] [9].
Neutron probes can sample large areas at a time accurately, but are expensive and have strict
government regulations [8]. TDT sensors use wave propagation to measure water content, do not
require government paperwork, and are relatively cheap and accurate. However, TDT sensors
encounter much signal interference and are typically planted permanently in the ground. FDRs,
also known as capacitive sensors, use the soil as a capacitor and are cheaper and more accurate
than TDT sensors. Disadvantages to this sensor are that it must be calibrated, and it cannot

measure as large of areas as neutron probes [8] [9].

The two most commonly used sensors that measure soil water tension are tensiometers

and granular matrix sensors. Tensiometers work much like a thermometer, consisting of a glass,

water-filled tube and gauge. They are extremely accurate and a cheaper solution than water
content sensors. However, tensiometers require large amounts of maintenance, must be reset
often, and don’t work well below freezing temperatures because of the water-filled tube.
Granular matrix sensors are extremely inexpensive and are capable of logging data. However,

these sensors are also more inaccurate because they rely heavily on the salt content of the soil [8]

[9].

For the project at hand, the sensors are solely used to collect data at specific points in
time, which will then be processed through a server. This eliminates the need to log data in the
sensor itself as granular matrix sensors do. The desired sensor is a volumetric-based soil
moisture content sensor that covers an optimal amount of distance for its cost; a capacitive
(FDR) sensor has been chosen to be used rather than a resistive (EC) sensor in order to prevent
corrosion. The less distance the sensor can cover, the more sensors will need to be planted. In
addition to soil moisture readings, it is also important to measure soil compaction to determine
the available capacity for additional volumes of water per square inch of soil [2]. Local farmers
have also requested that a pH level reading solution be implemented. Unlike current irrigation
sensor technology, Sensor Pods containing all necessary sensors will be buried in the ground and
communicate wirelessly to a base station within the WSN. The sensor readings will be cycled so

that only one sensor is turned on at a time to maximize power efficiency.

The presentation of acquired sensor data to the user about their land and irrigation system
is a critical part of the proposed automated irrigation system. The data must be able to be
accessed remotely - in the field and on the farm. It also must be accessible through common
technology mediums, such as a smartphone or web application. The most commonly used mobile

operating system internationally is Android, dominating the market by supplying services to

82.8% of all smartphone users [7]. A web application will be created for ease of use, as well as
its accessibility to many smartphone users. To be accessible anytime, on the farm or not, a
database of sensor readings must be stored in the Cloud. Web servers, such as what Amazon
hosts, are relatively cheap and can be easily integrated with the proposed web application. Using
technology that is already available to many people will help promote the adoption of this new

type of WSN for automated soil sensing and irrigation.

The goal of the automated irrigation system, from a farmer’s perspective, is to save water
and monitor the health of their crops. Whether the system is deployed in the middle of the United
States or on the other side of the world in rural China, this versatile soil monitoring system will
help farmers save water and money. When the soil sensors have an established connection via
LoRa, data transmission will be reliable and precise. The data that the soil sensors acquire will be
transmitted via the WSN back to a gateway that can be accessed through any internet connected

device so that farmers can know the status of their crops and know when watering is needed.

1.4 MARKETING REQUIREMENTS

Marketing and engineering requirements play a valuable role in designing and constructing
new products. The following sections describe how each set of requirements is used. The
marketing requirements are used to validate the engineering design specifications laid out which
ensure the development of a product that the intended user finds desirable. A list of these

requirements is listed below.

1. The Sensor Pods will be compatible with most planters to allow for automated
installation of sensors to field.

2. The sensors will accurately measure moisture in the soil.

3. The sensors will be power efficient in order to last an entire growing season.
4. A detailed interface will display sensor data collection history and trended data.
5. Wireless communications with the system will enable convenient access anywhere and

anytime.

When creating marketing requirements, it is important to keep the end user in mind. The Soil
Sensor Network is a project designed to aid farmers (or farmhands) in irrigation by allowing
them to monitor the status of their fields. The requirements listed were chosen to create the
foundation for a design that will be easy implement and easy to use, and therefore will save

farmers time by automating a process that is currently done by hand on family farms.

2 ENGINEERING ANALYSIS

In the design stage of the Wireless Sensor System, it is important to look closely at all
technologies and processes that are available to meet the requirements of marketing and
engineering. This may include analyzing cost, materials, electrical components, and
technological advantages and disadvantages. A complete engineering analysis will provide a

thorough investigation of preexisting technologies and guide future development.

2.1 ELECTRONICS ANALYSIS

With the constraints of energy availability and environmental factors, multiple types of

sensors and antennas were analyzed in order to accurately measure and transmit soil data.

2.1.1 Soil Sensor Analysis AW

The two most commonly used types of soil moisture sensors on the market are of the
resistive and capacitive types. A resistive soil moisture sensor is designed with two conductive

plates, as seen in Figure 1.

®een®

=1 "

e e -
Boll Mainturs Behisr

1 2

Figure 1: SparkFun Soil Moisture Sensor. Image Retrieved from https://www.sparkfun.com/products/13322.

A voltage is applied to one of the nodes on conducting Plate 1, and a current is sent from Plate 1,
through the soil, to Plate 2. The moisture in the soil acts as a conductor. If the soil is extremely
wet, most of the current sent from Plate 1 will arrive at Plate 2. However, if the soil is extremely
dry, Plate 2 will receive almost no current from Plate 1. Resistive soil moisture sensors are easy
to design, which can be as simple as connecting two conducting surfaces to an NPN transistor

coupled with a potentiometer.

There are two main problems with this type of design. First, the sensor introduces a DC
current into the soil. Second, it has exposed circuitry that is susceptible to corrosion. Introducing
a DC current can be harmful to plants because it decreases the capacity for light reflectivity [10].
Light reflectivity plays an important role in photosynthesis by preventing the plant from

absorbing too much light. When plants absorb too much light, the light waves break down the

plant’s chemicals used for photosynthesizing, which causes the plant to die over time. The
second problem, exposed circuitry, is a cost expense to the farmer. When components are
exposed to the elements, they corrode more quickly, thereby decreasing the lifetime of the

sensor. A decreased lifetime means the farmer has to buy replacement sensors more frequently.

To prevent these issues, a capacitive soil moisture design was chosen to be used to detect
moisture levels in the soil. The comparison of the resistive and capacitive soil moisture sensors is

presented in Table 1.

Table 1: Soil Moisture Sensor Analysis.

Description MFG Part Number Advantages Disadvantages
Resistive soil SENO114 Circuit Simplicity | Introduce DC current
molsture sensor 101020008 Corrode easily
Capacitive soil 101020614 Corrosion resistant | Circuit complexity
molsture sensor 1528-2753-ND Better accuracy Calibration complexity

Capacitive soil moisture sensors have fully enclosed circuitry that consists of a timer, discharge

capacitor circuit, and linear integrator. An example of such a sensor is shown in Figure 2.

Figure 2: Analog Capacitive Soil Moisture Sensor. Image retrieved from https://www.reichelt.com/de/en/development-
boards-soil-moisture-sensor-capacitive-analogue-debo-cap-sens-p223620.html?r=1.

Corrosion is not an issue for capacitive soil moisture sensors, and studies show that the
capacitive sensor is more accurate than the resistive sensor, sometimes having a higher accuracy
than the data sheet guarantees [11]. Both sensors are relatively cheap to build, however, the
capacitive sensor has more complex circuitry compared to that of the resistive sensor. The
discharge rate of the capacitor is heavily dependent on volumetric water content and soil
properties.

Soil itself is a conductive material, and therefore has its own discharge rate. Every type of
soil has a different discharge rate, which affects the discharge rate of the capacitor. Because of
this, the capacitor contained in the discharge circuitry must be calibrated to the conductivity of

the material in which it will be placed.

2.1.2 Soil Nutrient Analysis AW
Another type of sensor that local farmers requested to have on the Sensor Pod was one to

analyze pH or soil nutrient levels. Table 2 lists multiple options that were researched.

Table 2: Chemical Composition of Soil Sensor Analysis.

Description MFG Part Number Advantages Disadvantages
Electrochemical EC4-1000-H2 Measures multiple | Expensive
sensors chemical readings

EC4-1000-H2S 1 the soil

Fits in Sensor Pod

Circuit simplicity

pH level sensor ZPS CIO-000-00064 | pH level readings Too big for Sensor Pod

Easy to implement | Expensive

Optic sensor reading | PIR-02 pH level readings Mechanical design

litmus paper complexity

Circuit simplicity
Single use paper

Salinity sensor N/A Salinity readings Too big for Sensor Pod

Easy to implement | Expensive

The three types of sensors that could track the desired data are electrochemical, pH level, and
salinity sensors. It was determined that none of the three types of sensors would be feasible due

to their size or cost.

A fourth option considered was to use an optic sensor that could read the color of an LED
flashing through a litmus paper. Optic sensor circuitry can be designed using power-efficient
components that are low cost and small relative to the size of the Sensor Pod. Although a litmus
paper test is not reusable, farmers only test the nutrient levels of their soil once before the
growing season (before the crops are planted) and once during the growing season. However, an
obstacle that would need to be overcome in order to implement such a sensor is the complexity

of the mechanical design.

Litmus paper tests can only read the pH levels of content absorbed. This means that
opening a door and placing the litmus paper into the dirt will not work because the litmus paper
will not be able to absorb the dirt unless it is saturated. Litmus paper testing would require the
pod to have a compartment containing distilled water that could be released and filtered through
the dirt to be absorbed by the paper. The mechanical design and power consumption required by
such a design render this option unfeasible. After multiple options were researched extensively,

it was determined that adding a soil nutrient sensor was outside the scope of the project.

2.1.3 Antenna Analysis AW
To maintain power-efficient transmission, directional, dipole, and monopole antennas

were researched. Since the Sensor Pods will be planted beneath the surface of the soil, the

antenna chosen must have a strong enough power radiation to be transmitted through both the
soil and air to arrive at the gateway. A directional antenna was a reasonable option because its
small beamwidth allows it to easily penetrate through the soil without high amounts of signal

loss. The polar plot for the power radiation of such an antenna is presented in Figure 3.

?_’? 1 Base
12? — -{}_E Eﬂ Station
0.6
15?_ | 04 30
|I: 1 -D: l.'_
180 -JR-N— ‘ -}n
210 430
240300
210
(a)

Figure 3: Power Radiation Polar Plot for Directional Antennas. Image Retrieved from
https://www.sciencedirect.com/science/article/pii/S2215098616304256

The directional antenna is the most efficient of the three antennas when it comes to power
radiation because the beam is capable of being directed towards the gateway. However, directing
the antenna would require a motor, which consumes an unacceptable amount of power in
comparison to the battery capacity. Since power is a constraint, using a directional antenna is not

a viable option.

If it is not possible to direct the antenna, a small beamwidth is not desired because it does
not allow room for orientation error. For instance, the pod orientation of how it lands when
initially planted is unknown. If a directive antenna is used and the pod falls such that the antenna
is sideways, the transmitted data will never reach the gateway because the antenna is not aimed

in that direction.

For this reason, an antenna with a larger beamwidth, such as a dipole antenna, is

necessary to allow for orientation error. The power radiation polar plot is shown in Figure 4.

120

150

180

210

240

0.8

0.6

04

0.2

270

Base

® Station

30

330

300

Figure 4: Power Radiation Polar Plot for Dipole Antennas.

Although the dipole antenna is a better option than the directional antenna considering power

consumption, it is still not optimal. As can be seen in the power radiation plot, half of the power

is radiated toward the base station, and the other half is radiated down below the Sensor Pod

toward the dirt, never reaching the base station. This means that at least 50% of the power

consumed is wasted.

To prevent wasted power consumption, a monopole antenna will be used. The power

radiation diagram of a monopole antenna is shown in Figure 5.

Station

20
120 — 60
N\
0.8
150 06 |
I
04
0.2//
180 0
.
™~
\
\
\
|
210 |
240 S/ 300
270

Base

30

330

Figure 5: Power Radiation Polar Plot for Monopole Antennas.

A monopole antenna operates much like a dipole antenna, but only consumes half the power. By

using a monopole antenna, it is possible to concentrate all the radiated power upwards to the

surface of the soil.

Both monopole and dipole antennas have a larger beamwidth which means there is a

greater chance of signal scattering. Although signal scattering is a factor that must be taken into

consideration, scattering does not weaken the signal to the extent that it cannot reach the

gateway. A comparison of the three different types of antennas researched is shown in Table 3.

Table 3: Antenna Analysis.

Description Advantages Disadvantages
Monopole LoRa processors optimized for Larger beamwidth could lead to
monopole antenna use signal scattering
Circuit Simplicity
Power efficiency
Dipole Circuit Simplicity Larger beamwidth could lead to

Covers large range of frequencies

signal scattering

Directional Antenna

Small beam width allows for
better soil penetration

Complex circuitry

Stronger, more concentrated Not power efficient
signal allows for better
transmission over longer distance

By analyzing the beamwidth, power consumption, and power radiation of each antenna, it was
determined that the monopole antenna is the most viable option. A quarter wavelength was

chosen in order to further reduce power consumption.

2.2 CIRCUIT ANALYSIS

The Wireless Sensor Pod is powered by a Lithium-Ion battery that is intended to power
3.3V components and last an entire growing season. To accomplish this, a circuit analysis was

conducted to verify the battery life and input power on all circuit components.

2.2.1 Battery Analysis
In order for the sensor pod to last the intended duration of time, a battery was chosen that
would be able to output a voltage high enough to allow all components to operate despite the

charge of the battery.

2.2.1.1 Battery Research AA, LF, AW

One of the major constraints for circuit design is power consumption. Given that the
Sensor Pod has a dimension requirement of 90 x 90 x 100 mm, all batteries used must fit into this
size requirement. To determine how much voltage and current are needed to power the

components, a list of devices with their power consumptions was created.

Table 4: Battery Power Analysis.

Description N;l:l(l;n::::t \(])0 l;::;:i?é) Current Draw
Soil Moisture Sensor Built In-House 33 100 pA
Microcontroller PIC24F265 3.3-3.7 Active: dependent on peripherals
Deep Sleep: 500 nA
Lora Module RN2903 3.3-3.7 Transmit: 121 mA
(Antenna) Sleep: 1.3 pA
Temperature Sensor MAX6607IXK+T 1.8-3.6 15 pA max

Every device chosen can operate safely at 3.3 V. Because of this, the base voltage the

battery will supply is 3.3 V. A standard battery operates at 3.7 V, so a voltage regulator will be

implemented between the battery and microcontroller to ensure safe operation of components
and increase the life of the Sensor Pod. The microcontroller and LoRa devices are able to
conserve power by entering into different power modes, such as active, idle, or sleep. Active
mode means the device is on and actively waiting for commands to transmit and receive data.

Idle mode means the device is on but has limited functionality. Sleep mode is when the device

turns off the majority of its functionalities and waits for a “wake up” signal.

Equation 1 was used to determine how long the battery will be in use throughout the

growing season.

5 minutes 3 uses 153 days hour
* * *

use day growing season 60 minutes

It is not required for the sensors to take readings at every instant of every day. Traditionally
farmers take soil readings two to three times per day. In the calculation above, worst-case

scenario was assumed. For the project at hand, sensor readings will be taken three times a day,

= 38.25 [Hrs]

(M

and it will take up to five minutes to transmit the data back to the gateway. The sensors will be
on this cycle for an entire growing season, which lasts approximately 153 days, or five months.
To conserve power, the ideal mode of operation for the microcontroller and LoRa module when

the sensors are not collecting data is sleep mode.

When deciding on the size of the battery, the following assumption were made. The
current draw for the sensor pod c is assumed as 73.5 mA*H; this will cover the average current
draw during the hours of operations. As calculated in Equation 1, the total hours of operation 4 is
38.25 Hrs. The mA-H of the battery b required for proper operation of the Sensor Pod is

calculated as follows:

c * h = b[mAH] = (73.2) * (38.25) = 2800[mAH] (2)

As seen through Equation 2, the minimum size for the battery is 2800 mA*Hr. For this reason, a
battery with a size of at least 2800 mA*H was chosen. An estimated current draw for the system
of approximately 73.5 mA and an estimated time of 38.25 hours based off of the length of an
average growing season (5 months) and a run time of 5 minutes 3 times a day, as seen in
Equations 1 and 2, the estimated size of battery would be approximately 2800 mA*Hr. The
microprocessor requires 3.3 V to run optimally, with a minimum of 2 V and a maximum of 5 V.
A buck-boost voltage regulator has been implemented to maintain a battery voltage of at least 3.3
V, and will send a signal to the farmer if the voltage drops below 3.3 V so the Sensor Pod can be

retrieved before the battery dies if this situation occurs.

2.2.1.2 Battery Testing LF
In order to provide increased battery life, the battery is interfaced with a switching

regulator, allowing limited voltage and current pull from the battery. The battery depleted after

approximately 40 hours when a 100 Q resistor load was applied with a current draw of
approximately 70 mA. This was calculated using Equation 2. Based off the time of depletion, it
will take approximately 38 hours before the battery enters its end-of-discharge voltage, 2V,
given a maximum allowable battery voltage of 4.2V. The end-of-charge voltage was determined
based on the discharge profile graph from the Adafruit website and the maximum voltage is

based off of the base battery voltage [22].

2.2.2 Voltage Regulation Analysis LF, AW
In order to preserve battery life through increased efficiency, voltage regulators that

could be integrated into the circuit were researched.

2.2.2.1 Voltage Regulator Research
Several voltage regulators were analyzed when designing the power stage. These were

the linear, the switching, and the Single-Ended Primary-Inductor Converter (SEPIC) regulators.

The linear regulator was first chosen due to its simplicity and virtually noiseless supply.
However, this type of regulator dissipates excess voltage as heat, making it power inefficient.

Because power efficiency is an integral aspect of the application, this regulator will not be used.

The SEPIC regulator was analyzed next. The design consists of a boost converter
followed by an inverting buck-boost regulator. This was quickly disregarded, as it creates

circuitry that is too complex and too large to fit within the size constraints.

A switching regulator was found to be one of the best choices for design implementation.
The switching regulator is similar to a buck regulator in that it has a high power efficiency, 80-
90%, but does not have the downsides of a buck regulator, such as complex circuitry and an

inverted output [21]. The reason the switching regulator is able to step up or step down voltage

without having the same issues as the buck regulator is due to the fact that the switching

regulator does not have a large voltage conversion range. The comparison of the four types of

regulators can be seen in Table 5.

Table 5: Voltage Regulator Comparisons.

Linear Regulator Switching Buck Regulator SEPIC
Regulator
Power Efficient No Yes Yes Yes
Inverted Output No No Yes No
Complex Circuitry No No Yes Yes
Noise Created None Low High High

The switching regulator allows the system to convert high or low voltage to the desired voltage
without causing too much noise to be produced. It also requires no complex circuitry for filtering
and gives a noninverted voltage output. This will allow use of minimal PCB space because of

simpler circuit configuration.

Although the switching regulator was efficient, after more research it was not found to be
the most efficient. The switching regulator, as stated previously, has an 80-90% efficiency. This
means the circuit could lose up to 20% of its supplied power. More research was conducted and a
buck-boost regulator was found to have the highest efficiency, 97%, while not being as complex

as the SEPIC regulator.

2.2.2.2 Voltage Regulator Testing

During the design phase, the switching boost regulator was tested. The voltage regulator
was connected to a power supply so that when the voltage was increased and decreased the input
voltage to the circuit after the regulator could be measured at a constant value to prove the

regulator was working properly. A few problems were encountered during testing. The first was

that the regulator has a minimum current draw in order to activate. The default setting on the
power supply is 0 A. Once the current was set to the minimum current of the regulator, the
regulator worked for the first twenty minutes and then stopped. After much troubleshooting it
was found that the regulator needed a couple resistors in front of one of the pins to act as a
voltage divider and prevent the component from being burned out. The circuit was reconfigured
and a new regulator was put in place. The reconfigured circuit design worked properly, but it was
soon realized that a switching boost regulator only boosts the voltage up to 3.3V and has no

effect on the upper-end voltage above 3.3V.

The final design tested was the buck-boost regulator. After constructing the correct
circuit design, the regulator entered its boost stage between 2.9-3.2V, then entered its buck stage
between 3.4-3.7V. The third stage, pass-through, was entered when the voltage dropped below

2.9V. A PCB of the circuit was created to be used in the implementation phase.

2.2.3 555 Timers AW
There are various types of 555 timers that can be used when designing a circuit. The
TLCS55 timer was chosen because it has an operating voltage of 3.3V and is located in the

university stock room. Having the parts in stock eliminates shipping time and minimizes cost.

A timing circuit can be either monostable or astable. A monostable circuit consists of two
states; the circuit is stable in the first state and unstable in the second state. The circuit only
enters the second state if the trigger input of the timer is externally excited. Once the circuit
enters the second state, it produces a single output pulse and then returns to the first state. An
astable timing circuit consists of two states of which neither are stable. The circuit therefore

oscillates between the two states automatically without receiving an external trigger signal.

The Sensor Pod circuitry is located inside the pod, which is buried in the ground during
operation. Because of this, a monostable circuit would be extremely difficult to use since an
external signal is required to transfer from state one to state two. An astable circuit can be
implemented more easily because it oscillates between the two states and does not require an
external excitation. This type of timer produces a square wave at its output that can be used to

measure how long the capacitive sensor circuit takes to discharge.

2.3 COMMUNICATIONS ANALYSIS

When designing the Wireless Sensor Network (WSN), reliable and power efficient data
transmission is extremely important. As will be discussed in the Computer Network section, the
Sensor Pods will be communicating via the Long-Range Wide Area Network (LoRaWAN). This
will allow sensor readings from the farm to be transmitted long distances to a gateway while
maintaining power efficiency. As shown in the communication stack in Figure 6, there are two

main sections to LoORaWAN: the MAC layer and physical layer.

Application

- | LoRaWAN® MAC |
LoRaWAN’ | MAC Options |
= | Class A | | Class B | | Class C |

= " ,
LgRa LoRa® Modulation
—

coniiecn [ETE] ENE UETH) T B

Figure 6: LoRaWAN Communication Stack.

The MAC layer is broken down into the LoRaWAN MAC Protocol and Mac Option

class. The physical layer is composed of LoRa Modulation and Regional ISM Band.

2.3.1 LoRa Modulation AA
Long Range (LoRa) modulation, as will be further explained in the Computer Network
section, is a Low-Power Wide-Area Network (LPWAN) protocol developed by Semtech. At the
physical layer, LoRa modulation is based on Compressed High-Intensity Radiated Pulse
(CHIRP) spread spectrum, and although the modulation is proprietary to Semtech, a base
understanding of how the physical layer operates can still be explained. The standard
composition of the LoRa’s physical layer, as shown in Figure 7, is composed of the preamble

(up-chirp), sync (down-chirp), and data modulated.

Up-Chirp thm-Chlr!:l

A '] r
,

Frequency

T
Symbol

Sync Data

Time

Figure 7: LoRa Communication CHIRP (Modulated Data). Image retrieved from

The preamble is used for detection of LoRa chirps, which is followed by sync for time
synchronization. Time synchronization is important so that the receiver is synchronized with the
incoming signal so that the data packets can be interpreted properly. Data modulation is
implemented to allow for signals to be transmitted over higher frequencies in order to decrease
the size of the receiving antenna. The Regional ISM band of the physical layer is used for
regional standards. For the current application, US 915 frequency is used. The North American

band has 64 up-links at 125 Hz along with 8 up-links at 500 Hz and 8 down-links at 500 Hz.

2.3.2 LoRaWAN MAC Protocol AA, RK, AW

LoRaWAN is the MAC layer that operates on top of the LoRa physical layer.
LoRAWAN MAC protocol operates similar to ALOHA protocol, although the packet lengths
can change for LORaWAN. The LoRaWAN frame format is composed of the MAC header,

MAC Payload, and Message Integrated Code (MIC), as shown in Figure 8.

MAC Header MAC Payload MIC

Figure 8: MAC Layer Format.

The MAC Header contains information with regards to the protocol version and message type,
and MIC is used for message authentication calculate based on a portion of the MAC Payload
and Network Key. The MAC Payload, while holding the actual Data (encrypted by the App
Session Key), also contains information with regards to the application layer such as device key,
app session key, port, etc. The Network Key is used to validate the MIC and aids in

authentication and routing to the correct network.

The LoRaWAN module consumes the most power when transmitting and receiving data.
LoRaWAN devices can be classified into three types based on receiving patterns: Class A, Class
B, and Class C. The class chosen will dictate how much power is consumed/conserved. The
device is able to conserve power by entering into one of the three different modes described in
the Circuit Analysis. It is important to choose the correct class because the device is unable to
conserve power, by entering sleep mode, while transmitting or receiving data. Figure 9 displays

the power consumption of the three device types.

Class A [uplink transmission] Rx1

Class B [uplink transmission } R

x1

[t t
Class C uplink transmission J
[Rx2] [—]

Figure 9: LoRaWAN Class Types. Image retrieved from https://witekio.com/blog/lorawan-a-dedicated-iot-network/

Class A devices first transmit data Rx/, which is followed by one or two periods in which
it can receive messages Rx2. Class B and C expand the amount of time, or the number of periods,
for receiving a message. Class B allows for additional time-synchronized receive period, and

Class C keeps the receive period continuous while the device is not transmitting.

The use of additional periods for receiving messages in the Class B and C devices are not
required for the Soil Pod WSN application. Not only would this increase the power consumption
of the devices without adding any benefits, but also would restrict the device from a power-
saving sleep mode. Therefore, Class A is the optimal choice to ensure low power consumption

while not hindering operations of the device.

2.3.3 Communication Range AA, AW
To ensure effective communication of the LoRa device to the gateway, the range of
operations must be taken into consideration. As stated in the Engineering Requirements, the

range necessary for a large family farm was 3.39 km. To verify the module could communicate

over this range, the average distance for a large family farm was calculated and compared to the

maximum possible range of the LoRa device.

The distance required for proper communication on an average-sized farm was first

calculated.

V5.75 km? = [2.4 km] (3)

The assumption for the above calculation is that the farm is square in shape and the average size
of a large family farm as stated by the USDA is 1421 acres, or 5.75 km?, with a perimeter of 2.4
km [18].

The longest distance would be the hypotenuse of the farm:

2.4 km

= [3.39 km| 4)

cos 45

The range needed for communication on such a farm is 3.39 km, assuming a square field. To
account for changes in shape and position of the gateway, a twenty percent deviation can be

applied.

3.39 km + (3.39 km * 0.2) ~ 4 [km] (5)

The LoRa communication needs to reach a range of 4 km to insure proper operation of the WSN.

When calculating the maximum possible range for the LoRa module some factors needed
to be taken into consideration. These factors are the power transmitted, sensitivity of the
receiver, and signal attenuation due to the soil. All equations listed below were sourced from
Engineering Electromagnetics Third Edition [14]. To the calculate the range, the terms in the

average power in Equation 6 were rearranged to solve for range R as seen in Equation 7.

— Praa (6)

av = HnR2

_ Prad
R= wfzmam, (7)

This R will be the maximum possible range given that P, ., is power radiated in terms of mW
and P,, is average power. Given that the LoRa transmitter is rated at a maximum of 18 dBm

(Pt max), the power of P,.;; can be derived from Equation 8 and solved for in Equation 9 [19].

Pt,max = 10 10910 (Prad) (8)
Zp

Ppoq = 1010 tmax = 1018 = 63 [mW] 9)

Next the power received by receiver B, is determined as shown in Equation 10.

Prec = jrat s Ao = y2e4x (20D) (10)

2mR2 € 2nR2 an

Here A, is the effective area, and assuming worst-case scenario of a uniform radiation, the value
D is set to 1. Since B, is in mW and the sensitivity of the LoRa gateway is in dBm, a

conversion must be made to create a common unit.

sensitivity = 1010g,0(B-..) = 10log;, (Pmd [@) (11)

2nR2 | 4m

P 0.328 sensitivity
Prag |9%8) — 107 w0 (12)
2mR 4T

Equation 12 is then rearranged to solve for the distance R as shown in Equation 13.

0.3282P, 44
R = \[sensitivity (13)

8m2 (10 10)

Since the Sensor Pod will be under ground, the signal loss due to soil attenuation needs to
be considered. For the calculation performed in Equation 14, the conductivity of the soil o is
dependent on the soil properties and frequency. For simplicity, the conductivity of the soil will
be approximated to 0.1 [S/m]. The relative permittivity & is approximately five times that of
permittivity in free space €o. The angular frequency o is dependent on the frequency at which the

signal is being transmitted.

o o 0.1
we 2mey 2m(915x109)[5(8.854%10712)]

Soil loss = tanb,,s = = 0.39 (14)

Furthermore, the signal loss can also be accounted for by calculating the attenuation constant a,
as seen in Equation 15. The relative permeability is considered to be equal to the permeability in

free space Lo.

Np

@ = [Tfueo = /(915 * 109) (4 + 10-7)(0.1) = 19 |*2| (15)

The attenuation constant can then be used to find the signal power that will reach the surface if
buried at a distance d of 6 inches, or 0.15 m. The surface power Psuuce 1s calculated in Equation
16. Note that the radiated power P, is considered to be 0 dBm, or 1 mW, at the transmitter’s

output.
Psyrface = Prage 2% = 1e7209(015) = 0.0034 [mW] (16)

The radiated power at the surface, accounting for the loss caused by the soil during propagation,
was found to be 0.0034 mW. Now that the power that reaches the surface is known, it can be
inserted into Equation 17 to find the distance the signal can travel. The sensitivity as shown on

the datasheet is -146 dBm [19].

0.3282%pP 0.3282x0.0034
R = rad_—_ — = 108 [km 17
8”2 <1OS€nS:llt(')lUlty> \/ 871'2 (10—14.6) [] ()
Since it is not possible with the known information to account for every loss (i.e.: soil properties,
antenna position, exact depth, etc.) the distance will be derated by 50% to account for these

losses.
Rlosses = 12_8 = 54 [km] (18)

Comparing the maximum range with the necessary range stated in the Engineering
Requirements, it is evident that the required range falls well within the possible range of LoRa

communication.

2.4 COMPUTER NETWORKS ANALYSIS RK

When developing a Wireless Sensor Network (WSN), there are many different
communication protocols that can be chosen. The choice should be application specific, taking
into account the outdoor environmental conditions, as well as requirements for data transmission.
The Sensor Pods will be planted underground and will be placed at a target distance of roughly
3.3 kilometers from its destination (receiver/Gateway). The pods will not be easily serviceable
once installed because they are underground. For this reason, interaction with the pods will only
take place at the beginning and end of growing seasons. With the requirements of range coverage
and environmental factors, a few different communication standards will be considered.

One common method of data transmission in home networks and embedded systems is
the use of Wi-Fi. In general, Wi-Fi excels at short-to-medium range communication between

tablets, smartphones, and many other embedded devices. Current Wi-Fi Standards support 5

GHz and 2.4 GHz bands in which devices can connect. Although the faster 5 GHz frequency can
handle greater bandwidth, it can be easily obstructed, proving reliable only for short distances.
The slower 2.4 GHz band will stretch longer distances, up to 300 feet, but is also easily
obstructed by structures such as walls or floors in a home. In both cases, this is not even close to
the target distance for the SPU to transmit data.

A much longer communication protocol that has been popular since 2015, is the LoRa
protocol. LoRa is a highly specialized, long distance routing protocol for embedded devices.
Compared to other Low Power Wide Area Networks (LPWAN), the battery life of LoRa-
powered devices is three to five times longer [13], proving the power efficiency of the distance
routing protocol. The data transmitted is limited to small payloads, which is adequate for the
Sensor Pod because only lightweight data, such as sensor readings and time stamps, are going to
be transmitted. According to LoRa Alliance, baud rates range from 0.3 kbps to 50 kbps. When
choosing LoRa communication, the frequency band at which it operates must be considered. In
the U.S, the 902-928 MHz band has been allocated for LoRa usage, which requires U.S. specific
modules for operation [14].

The Narrow Band Internet of Things (NB-I0T) is another long-range communication
protocol that is supported by the Third Generation Partnership Project (3GPP) and GSMA [15].
There are a few key similarities between it and LoRa technology. They are both low power
networks that target long range distances. One key difference is that it uses the licensed
spectrum, which is what the cell networks operate on, as opposed to the unlicensed portion of the
spectrum. Using the 3G and 4G networks requires access to cell towers, which costs money to

use, and the farms where the WSN is located may not have a strong connection to them.

The final communication protocol that will be analyzed is Zigbee. This is another
communication protocol in addition to LoRa, that operates in the “amateur” 902-928 MHz band
of frequencies. The advantage of using Zigbee is that it can be integrated into existing Zigbee-
powered networks. In contrast, the compatibility of LoRa will depend on the OEM who made the
embedded device. For the application of the Wireless Sensor Network, only official Sensor Pods
that are of the same type will be integrated into the system, therefore there is no extra care that
needs to be taken to ensure compatibility.

When considering the range of communication that Zigbee can support, it is often
regarded as the premier smart home network communication. Zigbee usually transmits from 10
meters to a maximum of roughly 100 meters, given a perfect line of sight. This is where Zigbee
falls short of the transmission requirements of the Wireless Sensor Network.

Wi-Fi, LoRa, NB-IoT, and Zigbee are some of the most powerful protocols in the

industry. Comparisons of these technologies are shown in Table 6.

Table 6: Top Wireless Standards for IoT Devices. Retrieved from IoT EE Times.

Owner Frequency (MHz) Range Power requirement Security Compatibility
. ‘ Compatible across
Zigbee Zigbee Alliance ggg ggg.fu(:)urope) ﬁg;t?i?::ers lé:ﬁ:og ; Frekertiel ::’: b?isolrct Zighee devices.
9 " P DotDot OS.
, 169, 433, 868 (Europe) Up to 6.2 miles or Basic 64-128
Ii P : lo]
Lo-RaWan LoRa Alliance 915 (US) 107K, Low-Power tic eyt Depends on OEM
GSMA - Cellular LTE Bands: Application
LTE-M Cartiises 450-2350 (uplink) Global Band dependant NSA AES-256 dependant
IEEE 802.11af Open - IEEE 470 - 710 Application
h A
(White-Fi) Certified (Digital Dividend) Short, upto 100m | Low We dependant
IEEE 802.11ah Open - IEEE 860 (ELwope) Up to 13 miles or . Application
aLow Certified 900 (US) 20 km Mo WPA dependant
(Hal.ow) 700 (China) : ep

For its long-distance capabilities, ease of use, and low cost of operation, LoRa will form the

WSN communication backbone.

2.5 EMBEDDED SYSTEMS ANALYSIS AA, RK

At the core of the Wireless Sensor Pod will be an embedded processor. For the application of a
Wireless Sensor Network, a series of low power embedded device is crucial to delivering
extended battery life while buried in soil. A few different microprocessors ranging in power,
communications, and Input/Output specifications will be analyzed.

First, a common choice for developers is the PIC family of processors. In particular, the
8-bit PIC18F2525 has a few key features that make it suitable for the Wireless Sensor Pod.
According to Microchip’s datasheet, this microcontroller can accept a wide range of input
voltages, from 4.0V down to 2.0V to support low voltage inputs in power-sensitive applications
[16]. The downfall of this processor is that it does not have any Universal Asynchronous
Receiver Transmitter (UART) ports. The Lora Module and at least one of the soil sensors will
require one UART port each.

In the PIC24F “GB” family of Microchip processors exists the PIC24FJ256GB410. This
processor is desirable because there are 6 total UART ports, which will make it possible to
connect the LoRa Transceiver to the chip. The LoRa transceiver uses 2 UART Ports (1 optional)
to communicate with the microprocessor. Another core feature of this microcontroller is that it
implements Extreme Low-Power (XLP) operation. The availability of multiple sleep modes is
vital to the survival of the Sensor Pod during the growing season. Maximizing the life of the
battery means that it will not need to be serviced. When the Sensor Pod is not acquiring or
transmitting measurements, it will be placed into a deep sleep mode, optimally consuming
around 650 nA when running the Real Time Clock Calendar (RTCC). The RTCC can be run in

deep sleep mode to generate an interrupt, which will feed back into the microcontroller to wake

it up. For all the reasons listed, the PIC24FJ256GB410 Microcontroller will be the brains of
every Sensor Pod.

The main Microcontroller that is responsible for taking measurements, will also be joined
alongside a LoRa transceiver module. This module will take care of the physical layer of data
communication from the Sensor Pod to the Gateway. A RN2903 transceiver is connected to the
microchip through UART and will be used to support antenna communications. Since LoRa is
band-limited in different countries, this transceiver has been chosen since it operates within the
valid 902 to 928 MHz frequencies.

As was previously described with the main microcontroller, this embedded chip also
allows for an ultra-low-power consumption mode called “Deep Sleep”. In its idle state when
powered with 3.3 V, it is expected that the transceiver will draw about 2.8 mA. In sleep mode,
current consumption decreases by more than a factor of 2000, only consuming 1.3pA. This
information is only an approximation, and assumes an ambient temperature of about 25 °C. The
transceiver can also assume to be powered from a 3.3V battery, although it can support input
voltages as low as 2.1V. The RN2903 Module can be powered from the main microcontroller of
the Sensor Pod to reduce wiring complexity, making manufacturing and design easier and
cheaper [17].

On-board UART support will be used for communication between the microcontroller
and the transceiver. The RN2903 transmits data with a default baud rate of 57 kbps, which
should be adequate for the low amount of data that will be transmitted. Another connection that
must be made on the transceiver is to the antenna, attached at the RF port.

When choosing embedded components, such as the microcontroller and transceiver

module, the necessary ports, power consumptions, and frequencies has to be analyzed. A

PIC24FJ256GB410 microcontroller will be used for its multiple UART ports and a RN2903 will
be used as a transceiver for the external LoRa antenna because of the deep sleep mode and

compatibility with the necessary frequency range.

3 ENGINEERING REQUIREMENTS AA, LF, RK, AW

The Wireless Sensor System developed should meet strict engineering requirements.
These requirements will set certain specifications, for components regarding power management
and communications to design a marketable product; it will take advantage of current
technologies used in the industry. The following table will guide the design and engineering

process of the Wireless Sensor System.

Table 7: Engineering and Marketing Requirements.

Marketin Engineerin
. 5 gl. ne Justification
Requirements Requirements
The Sensor Pod system will The Sensor Pod is battery-powered and must last
3 be low power, requiring a an entire growing season (3-5 months) since the
maximum of 5600mA-H. pod is in the ground and cannot be recharged mid-

season. The Sensor Pod is also small, and therefore
the battery must be small to be able to fit inside the
pod.

The Sensor Pod will be
designed with energy efficient
circuitry; when no sensors are
in use, the pod’s energy
management system will
allow the electronics to enter
sleep mode, automatically
“waking up” to take a reading
3 times per day.

The Sensor Pod dimensions Having a Sensor Pod of this size will allow it to be
will be no larger than 90 x 90 | inserted into a mechanism attached to the planter

1 x 100 mm (excluding antenna) | so that the pod can be “planted” with the seed,

to allow for easy installation. | minimizing installation time.

Wireless communications of
the sensor pod must transmit
data a minimum distance of

Rough Calculation:

Avg. distance between sensors: 1 per 25 acres

3.39 km. Avg. size of large family farm (USDA): 1421 acres
Convert to 1421 acres to km?: 5.75 km?
Distance (perimeter/side):
sqrt(5.75): 2.4 km
3,5 ,
Hypotenuse (longest distance):
2.4/cos(45): 3.39 km
Communications will have the ability to be
transmitted long distances to connect with
individual Sensor Pods.
The sensor pod will Farmers do not need to know what the moisture of
automatically measure and the soil is at every instant of the day. Typically,
2,4 transmit the soil moisture measurements are only taken 2-3 times a day
level and temperature three according to local farmers.
times a day.
The sensor data will be stored | Displaying and trending field data is a request from
5 and trended to give a visual local farmers.
representation of field
analytics.
The soil sensor will be able to | The average accuracy of a commercial soil
measure the moisture level of | moisture sensor is 94-97%. Since the sensors are
) the soil with a minimum 80% | being designed and built, the sensors may be less
accuracy. than 94% accurate, but must be accurate enough
for the farmers to know when and to what extent to
irrigate their field.
Sensor Pods will accurately Communication beneath soil is crucial because the
5 communicate wirelessly Sensor Pods are located underground.
through at least 3 inches of
soil.
An application will contain If the Sensor Pods are not communicating with the
fault detection to determine if | server, farmers will not know when the field needs
4,5 communication has been lost | to be watered. Therefore, farmers need to know if

with the Sensor Pod and will
alert the farmer.

communication has been lost.

An application will alert the According to local farmers, irrigation systems are
farmer if excessive soil set to turn on at a certain time and run for a certain
2 4.5 conditions occur (i.e.: if the duration. If a field is exceptionally dry, the
> soil is exceptionally dry) so irrigation system may need to run for longer to
immediate action can be supply enough water to the field.
taken.

Marketing Requirements

1. The Sensor Pods will be compatible with most planters to allow for automated installation of
sensors to field.

The sensors will accurately measure moisture in the soil.

The sensors will be power efficient to last an entire growing season.

A detailed interface will display sensor data collection history and trended data.

Wireless communications with the system will enable convenient access anywhere and
anytime.

wbkwbD

4 ENGINEERING STANDARDS

The Wireless Sensor System will be built upon common industry standards and
specifications. Certain standards may be used for increased security, physical durability, and a
robust software infrastructure. The six main engineering standard specifications are listed in

Table 8.

Table 8: Engineering Standard Specifications.

Standard Use
Data Formats SQL Web Server

C/ C++ Main Microcontroller
Programming Languages TypeScript Web Server Frontend

C# Web Server Backend
Connector Standards UART LoRa Module and
Microcontroller

Communications LoRa Sensor Pods

The above table mentions specific programming languages, such as C and C++ for the main
microcontroller, and LoRa communication for the Sensor Pods. These standards will be followed

for each of the components listed.

4.1 DATA FORMAT AA

A few key data types and data storage conventions will be used to maintain farm data for
the Wireless Sensor System. The Database will be structured in the format depicted in Figure 10,

broken down into three tables: Farms, Sensor Pods, and Sensor Data.

Database Stucture
Farm Entity Farm Entity Data Type
Key | FarmID |Farm Name T im Int Slring
Sensor Pods Entity Sensar Pods Entity Data Type
ey Farm I | SensorlD | Sensor Mame 1 ot It Int Slring
Sensor Data i Sensor Data Data Type
ey [Farm IO | Sensar D | Sensor Type | Sensar Value | Reading Date Int | Int [Int] Int (Enurm} [Int] Date Format
¥
Sensar Type Enum Table
a Muoisture Reading
1 Temperature Reading

Figure 10: Database Structure.

The Farm tables will contain an entry for each Farm with their Name and a Farm ID. The Farm
ID will be the main connection point to organize the collection of Sensor Pods and Sensor Data
that belong to a specific farm. The Sensor Pods table will contain a Farm ID for farm
assignment, Sensor ID, and a Sensor Name. The Sensor Data table will then hold all data
collected and will contain the Farm ID, Sensor ID, Sensor Type, Sensor Value, and Reading
Date. These values will ensure that each entry can be traceable to a specific Sensor Pod and

Farm.

4.2 PROGRAMMING LANGUAGE AA, RK

Best practices and techniques will be used in the development for the software of the Soil
Sensor Network. Programming languages like C/C++ will be used for the embedded
microcontroller programming. Higher level languages like TypeScript and C# will be used to

develop the user interface.

4.3 COMMUNICATIONS RK
The Wireless Sensor Pod communications will comply with FCC Radio regulatory
Approvals, including under § 15.247, titled “Operation within the bands 902-928 MHz, 2400-

2483.5 MHz, and 5725-5850 MHz”.

4.4 CONNECTOR STANDARDS RK, AW
The RJ45 connector is used to connect the microchip to a PC for programming via a RJ11

cable. In the NEC § 725.144 it states that a cable must not exceed the current rating of its

connector. An RJ11 cable has a lower current rating than an RJ45 connector, and therefore meets

the new 2017 NEC standard.

Both types of connectors were considered for programming the PIC, however due to the
small space requirements of the board and Pod, header pins were placed on the edge of the board
instead. The header pins connected to a PICKit 3 programming device that is specially designed

for Microchip processors.

When using cables for an outdoor environment application, IP ratings must be taken into
consideration. IP67 rating states that the component is water resistant up to 1 meter. Since the

Sensor Pod is only buried 6 inches below the soil, IP67 rating will suffice for this application. P2

https://www.law.cornell.edu/cfr/text/47/15.247
https://www.law.cornell.edu/cfr/text/47/15.247

and P3 connectors will be used for the connections from the main PCB to the supplementary

PCBs and exterior sensors.

5 ACCEPTED TECHNICAL DESIGN

The Wireless Sensor System can be broken down into multiple subsystems comprised of

hardware and software.

5.1 HARDWARE DESIGN

There are four main components to hardware design: block diagrams, schematics,
simulations, and printed circuit boards (PCB). Block diagrams give a basic top-down overview
of the major subsystems. Once the subsystems are broken down into basic components,
schematics were created. Schematics show the circuit design that can be implemented during the
prototype stage. Before prototyping, simulations were created to verify the ideal circuit design
and give a general understanding of how the circuit will operate. PCBs were then designed based
off the schematics and simulations to create a microcircuit that would meet the dimensions stated

in the Engineering Requirements.

5.1.1 Block Diagrams

The following section consists of block diagrams ranging from Level 0 to Level 2 to show

the design process used to create the Soil WSN systems and subsystems.

5.1.1.1 Level 0 Block Diagram

AA, RK, AW

The wireless sensor network components can be categorized into three different

functional blocks, as seen in Figure 11.

The functions of the Sensor Pod, Gateway, and Server are shown in Tables 9-11.

Server

Gateway / Hub -+ Power

Data Transmission

Sensor Pod

Soil property

Figure 11: Level 0 Block Diagram of Soil Sensor Network.

Table 9: Level 0 FR Table: Sensors.

Module Sensor Pod
Designer Andrea Wyder, Luke Farnsworth
Inputs Power

Wake-Up Signal (Microchip)

Soil Properties

Output Acquired Soil Data
Location of Pods
Description | Wireless sensors units acquire measurements from soil to transmit to
a gateway.
Table 10: Level 0 FR Table: Gateway/Hub.
Module Gateway/Hub
Designer Aléxis Alves, Andrea Wyder
Inputs Battery Powered
Soil Data
Location of Sensor Pods
Output Soil Data communicated via HTTP
Description | The gateway will communicate with Soil Sensors and relay that
information to the database.
Table 11: Level 0 FR Table: Server.
Module Server
Designer Aléxis Alves, Ross Klonowski
Inputs Soil data communicated via HTTP from gateway
Output Soil data communicated via HTTP to software application
Description | The server enables remote use of the automated irrigation system, as

well as serves as a database.

5.1.1.2 Level 1 Block Diagram

The three tiers of Level 0 were broken down further as seen in Figure 12.

Server

Software
Data Store Application
A
/
v
Gateway / Power
Hub
Data Transmission
Sensor Pod
Lora Module Micracontroller H Battery
Sensor 2 Sensor 1
A A
Soil Property Soil Property

L L

Figure 12: Level 1 Block Diagram of Soil Sensor Network.

AA, RK, AW

The first tier, the Sensor Pod, consists of a Lora module, microcontroller, battery, and two soil

property sensors. The functional requirements for the first tier are listed in Tables 12-16.

Table 12: Level 1 FR Table: Battery.

Module Battery
Designer Luke Farnsworth, Andrea Wyder
Inputs None
Output Power
Description | The battery will power the microprocessor.

Table 13: Level 1 FR Table: Sensor Pod Microprocessor.
Module Sensor Microcontroller
Designer Aléxis Alves, Ross Klonowski
Inputs Battery Power, Sensor Data, LoRa communication
Output LoRa communication, Sensor Interrupt
Description | Collects sensor readings for data transmission.

Table 14: Level 1 FR Table: Sensor Pod Lora Module.

Module Sensor Pod Lora Module
Designer Aléxis Alves, Ross Klonowski
Inputs Battery Power, Data from Microprocessor
Output RF Communication

Description

The LoRa module communicates to the gateway.

Table 15: Level 1 FR Table: Sensor 1.

Module Sensor 1
Designer Luke Farnsworth, Andrea Wyder
Inputs Power
Wake-Up Signal (Microchip)
Soil Properties
Output Acquired Soil Data
Location of Pods
Description | Sensor 1 will collect data from the soil and then transmit the soil
properties to the microprocessor.
Table 16: Level 1 FR Table: Sensor 2.
Module Sensor 2
Designer Luke Farnsworth, Andrea Wyder
Inputs Power
Wake-Up Signal (Microchip)
Soil Properties
Output Acquired Soil Data
Location of Pods
Description | Sensor 2 will collect data from the soil and then transmit the soil

properties to the microprocessor.

The second tier, the gateway/hub, consists of a Lora module and microcontroller, and power

source. These functional requirements for the second tier are listed in Tables 17 and 18.

Table 17: Level 1 FR Table: Gateway Lora Module.

Module Gateway Lora Module
Designer Aléxis Alves, Ross Klonowski
Inputs Power Source

Output

New sensor readings from Sensor Pod™

Description | Transmits sensor readings to gateway
Table 18: Level 1 FR Table: Gateway Microcontroller.
Module Gateway Microcontroller
Designer Aléxis Alves, Ross Klonowski
Inputs Power, Ethernet, Lora Data communication
Output Data
Description | The microcontroller further processes data for upload to server

The third tier, the server, consists of data storage and a software application, which are listed in

Tables 19-20.

Table 19: Level 1 FR Table: Data Storage.

Module Data Storage
Designer Aléxis Alves, Ross Klonowski
Inputs New Sensor Data
Output Requested Sensor Data
Description | Persistent storage of Sensor Pod readings.
Table 20: Level 1 FR Table: Software Application.
Module Software Application
Designer Aléxis Alves, Ross Klonowski
Inputs Farm data from Web Server
Output An Interface for the Automated Irrigation System
Description | A software application will communicate with a web server for use
on the farm or offsite.

5.1.1.3 Level 2 Block Diagram

AA, LF, RK, AW

The Sensor Pod was further broken into a second level to analyze designed sensor

components. This can be seen in Figure 13.

Data Store

Server

Software
Application

Gateway / L

Power

Hub -

Data Transmission

Sensor Pod

Lora Module

Voltage

Regulator

Battery

Li-ion Battery

i

Down
Link
Up f _
Lk Chip
—

Microcontroller

Soil Moisture Sensor

Linear

Integrator

Discharge
Reading

Capacitive
Discharge
Circuitry

A

-«—Discharge Rate

=

Temp Sensor

Soil Property

L

Soil Property

-

Figure 13: Level 2 Block Diagram for Soil Sensor Network.

The LoRa Module can be further broken down into the antenna and transceiver module, as

explained in Tables 21-22.

Table 21: Level 2 FR Table: Antenna.

Module Antenna

Designer Andrea Wyder

Inputs Data Signal

Output Data Signal

Description | The Antenna will act as a means for the Sensor Pod and Gateway to
wirelessly send and receive data.

Table 22: Level 2 FR Table: Transceiver Module.

Module Transceiver Module
Designer Aléxis Alves, Ross Klonowski
Inputs Power

UART Data Communication from Main Processor
Received Signal from LoRa Antenna

Output Data Signal

Description | The transceiver module will implement the LoORaWAN
Communication protocol at the physical layer to enable long
distance communication between Sensor Pod and Gateway.

Within the battery exists a voltage regulator and Lithium-Ion battery. The voltage regulator
maintains how much voltage is distributed to the components. The functionality of the regulator

1s described in Table 23.

Table 23: Level 2 FR Table: Voltage Regulator.

Module Voltage Regulator

Designer Luke Farnsworth, Andrea Wyder

Input Voltage

Output Voltage

Description | The regulator will regulate the voltage that is introduced to the
system.

The soil moisture sensor is comprised of a linear integrator, capacitive discharge circuit, and a
555 timer. The voltage discharge is fed through the timer to create a discharge rate, which is then
connected to a linear integrator that converts the discharge rate to a ramp function so it can be
used as an analog input signal to the microcontroller. Further details for these components are

found in Tables 24-26.

Table 24: Level 2 FR Table: Linear Integrator.

Module Linear Integrator

Designer Luke Farnsworth, Andrea Wyder

Input Voltage Discharge Rate

Output Analog Voltage Signal as Ramp Function

Description | Since the amplitude of the voltage increases linearly over time, the
linear integrator will convert the discharge rate to a ramp function
and will send the function back as an analog signal.

Table 25: Level 2 FR Table: Capacitive Discharge Circuitry.

Module Capacitive Discharge Circuitry

Designer Luke Farnsworth, Andrea Wyder

Input Voltage

Output Voltage

Description

Discharge rate will determine the moisture of the soil.

Table 26: Level 2 FR Table: NE555 Timer.

Module NES555 Timer

Designer Luke Farnsworth, Andrea Wyder

Input Voltage

Output Voltage Discharge Rate

Description | An NE555 timer will be used to measure the time it takes for the
capacitor to discharge.

Another tool on the sensor pod is the temperature sensor as seen in Table 27. This will be an off-

the-shelf sensor that meets all necessary power requirements.

Table 27: Level 2 FR Table: Temperature Sensor.

Module Temperature Sensor
Designer Luke Farnsworth
Inputs Voltage
Temperature
Output Analog Voltage Signal
Description | The temperature sensor will read the temperature of the soil.

5.1.1.4 Level 3 Block Diagram AA, AW
Examining the Level 2 Block Diagram more closely through circuits and simulation, it
was determined that the linear integrator circuit in the Sensor Pod was unnecessary. A third

iteration of the Hardware Block diagram can be seen in Figure 14.

Server
Software
Data Store Application
I
/
-
\d
Gateway / Power
Hub -
A
Data Transmission
Sensor Pod
' -
(\ Lora Module Battery
Antenna - ~
A Voltage)
Down Regulator 3
Link ‘
I's v ~
L blr__ | Transceiver | Li-ion Baltery
Link Module -
.
A
— J
Y
L Microcontroller
-
Soil Moisture Sensor) l) \
Discharge Rate
555 | s
emp Sensor
Discharge Timer
(— Reading
Capacitive |
Discharge | -
Circuitry
Soil Property Soil Property

Figure 14: Level 3 Block Diagram for Soil Sensor Network.

No new functional requirement tables are shown for this diagram because they are the same as
the tables for the Level 2 Block Diagram. The only change is that the discharge rate exiting the

555 Timer will go straight into the analog input of the microcontroller rather into a linear circuit.

5.1.2 Schematics

Once the hardware block diagrams were completed, schematics were created for each

subdivision of the level 3 block diagram to gain a better understanding of how to connect all of

the components together.

5.1.2.1 Circuit Overview AW
The hardware of the Soil Sensor Network is broken down into eleven different
components, as seen in Figure 15.
N 1]273]4]57]6%) 112 a [71 1 4 5 8
e H I : B £ B
| I,‘“\‘“.," [‘ T ‘_' ‘: 1' Ll\ 5 7 1 _'_‘-:_] _u‘ T 8 i ‘:3 —
e 1 ;T L S
| - h91g 989 - AlA
cle Ly u*|\-=\|-=-m‘ﬁ|-\ ik | H =1 H
L. 9 : - i " ¥ g 1] La . f ' : ‘ 3| ‘:‘i, ENSOF B
R Rl 5 e c :
8| =) HE 2 H BT M
I] R . b { — =y D|D 5
A. \rf - i: ‘ ._ ‘L : [lJ - :‘.(:: : ‘
i Jl ‘ mm'.' 8 ‘ MW ;
[4 | [71 | / 3 I 4 I 5 € [1] I 5

Figure 15: EagleCAD Soil Sensor Network Circuit Overview.

5 € 7 8
LAYOUT DESIGNED BY ALEXIS ALVES

The circuit is powered by two 3.7V, 2800 mA-H batteries designed to last the duration of a

growing season. The batteries are connected to a battery PCB that is separate from the main

board, and the connector for the battery can be seen in the JUMPER CONNECTORS block.

Since all components operate at 3.3V rather than 3.7 V, a voltage regulator was implemented to

ensure the voltage supplied to the circuit remained at a constant 3.3V. The voltage regulator was

placed on a separate breakout board as well and can be seen in the VOLTAGE REGULATOR

CIRCUIT block.

From the voltage regulator, the power is supplied to microcontroller, as seen in the
PIC24FJ256GB410 MICROPROCESSOR CIRCUIT block. The microcontroller collects data
from the sensors and transfers the information to the LoRa module, which is seen in the RN2903
LORA TRANCEIVER MODULE CIRCUIT. The two sensors connected to the microcontroller
are a soil moisture sensor and a temperature sensor. The soil moisture sensor has both internal
and external circuitry. The internal circuitry can be seen in the SOIL MOISTURE SENSOR
CIRCUIT block. The external circuitry attaches to the connector at the right side of the block.
The temperature sensor is on an external board, but the connector can be seen in the
TEMPERATURE SENSOR CONNECTOR block. The sensor data, once transferred to the LoRa
transceiver, is transmitted to the gateway through an antenna, also located in the LORA
TRANCEIVER MODULE CIRCUIT block, which in turn is transmitted and stored in the
database by a network server. The blocks pertaining to the RESET SWITCH, DEBUGGING
TEST VIAS, DEBUGGING LED CIRCUIT, and PIC24FJ256GB410 BREAKOUT PINS are

additional circuits integrated for testing and debugging.

5.1.2.2 Battery Monitor AW
The battery monitor is beneficial to the Sensor Pod circuit design in order to monitor

voltage, current, and temperature of the battery to give an accurate estimation of when the

battery will fully deplete so that the farmer will know if the pod will need to be retrieved in order

to recharge the battery.

1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8
A P$1 —j — P$8 A
ps2 —i 1 pg7
. GNFE— 1 SDAge]
BAT PO — 8 SChgs
B B
Ul) EMFL07B7105MAHT
voo JZ_BAT_PQ : :
| R1 VIN 8 VIN -
R2 GND cG 6
I T T e b c
RMCF0805JT200K RL1220T-R010-J I
“scloa b
| IR L
o =
D STC3100IST D
E an E
Sheet: /11 [Aw
1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8

Figure 16: EagleCAD STC3100IST Battery Monitor.

Following the recommended component values on the STC3100IST datasheet, a 200k} resistor R2
was connected to the oscillator input pin ROSC to shift the voltage rails from GND and Vpp to V+ and
V- with a bias resistance so that the monitoring unit could properly read and interpret the voltage
coming from the battery. A 10m() resistor R1 was connected to the gas gauge current sense pin CG
to monitor the current draw of the circuit. A 1uF capacitor C5 was connected to the V¢ pin to aid in
noise reduction. A 1kQ resistor R8 was coupled with a 220uF capacitor C13 and connected to Vc,
Vin, and GND in order to filter the voltage being inputted to the main power pin. The SDL an SDA

pins are read /write pins that are used to control the shift registers of the 12C interface.

The STC3100IST has 32 RAM registers in order to store information concerning battery life,
discharge rates, charging cycles, etc. so that the farmer knows if the battery needs charged or
replaced. The battery monitor maintains its power-on stage down to 2V. Upon each new battery
connected, the monitor assigns it a new ID in order to keep track of which battery is connected and

what that specific battery’s life cycle has been.

5.1.2.3 Voltage Regulator
As stated previously, the voltage regulator chosen was required to have a supply voltage
of around 3.7V and output a voltage of 3.3V. The two main design iterations are discussed in

detail in the following section.

5.1.2.3.1 Voltage Regulator Phase 1 LF, AW
To meet these specifications, the XC9140A331MR-G boost switching regulator was

chosen to be used in the first design iteration.

._”_

B : : 1 Y B

=

, .llu.n_
of Wbty

1 2 3 4

Figure 17: EagleCAD XC9140A331MR-G Boost Voltage Regulator.

The voltage regulator pin 2 CE is powered by the battery. An LC circuit comprised of L/ and C/
is attached to pin 3 Lx to aid in switching, and a capacitor C2 filters out any unwanted noise

between the output pin Vout and the ground pin GND before returning to ground.

PFM Comgparator Unit

arasiic Diode
Controller aur
| Current Sense ! s B Vaur

o | %
Buffer Discharge i

Diriver

H and 4'
;—'—l PFM Controlier |— Inrush
Currrent —‘ il Eﬂ GMD

Protection

Vour

Wi Wy - Detector

ypa
Cenfroller Logic

Hysteresiz UVLO
Comparztor L B Vear

(=t :

.

Figure 18: Internal Circuitry for Voltage Regulator XC9140A331MR-G. Image retrieved from
https://www.digikey.com/htmldatasheets/production/1228326/0/0/1/xc9140-series.html.

The importance of using a 4.7 uH inductor for the Lx pin is for inrush current protection.
Lx is the input switch, and when inrush current is introduced to the input switch melting/blow-up
can be caused. The output of the circuit is connected to the microcontroller to provide a 3.3V

input.

5.1.2.3.2 Voltage Regulator Phase 2 AW
Although the boost regulator proved to be successful, after testing and reevaluating the
purpose of the regulator for the project, it was determined that the boost was not the most
optimal solution. The batteries chosen could fully charge up to 4.2V. Since the voltage threshold
on a few of the components was 3.7V, if only a boost regulator were to be used those
components had the potential of being burned out. As the name implies, a boost regulator boosts
the voltage when it falls below a certain threshold (i.e.: 3.3V); it has no effect on the circuit when

the voltage is above that threshold.

The other two types of regulators researched were linear and buck-boost. A linear
regulator is an easy solution — it does not require complex circuitry, extensive reading into a
datasheet, or additional programming. However, one of the main engineering requirements is
low power such that the pods will last an entire growing season. A linear regulator requires the
same amount of current to operate at both higher and lower voltages; the additional power
supplied to the circuit is dissipated as heat. The purpose of a regulator in this project is to keep
the power consumption at a minimum, and although a linear regulator will maintain the correct
voltage being supplied to the circuit, the operation of a linear regulator is extremely inefficient,
consuming more power than what would be consumed if the regulator didn’t exist in the circuit.

Therefore, this is not a viable solution for the project.

The third type of regulator is a buck-boost regulator. A buck-boost regulator sets a target
voltage given the pin configuration. If the supplied voltage is larger than the target voltage, the
regulator steps the voltage down to the target voltage. Similarly, if the supplied voltage is smaller
than the target voltage, the regulator steps the voltage up to the target voltage. This design is
power efficient and optimizes battery life. The design chosen was a STBB1-APUR buck-boost

regulator, as seen in Figure 19.

+3V3
P$l —t = A P$8 N
Ps2 —f— —A— ps7
Ps3—F & pss
o4 1 pss
GND
i1
2.2uH +3V3 +3V3 +3V3
’_mﬁ_‘ 1
]
Tod R i 6
— o
VIN 5 1
VIN = = your
Lg vina 29 FB L G5
oiC14 EN PGND =
x 7| MODE/SYNC EPAD S “eout
. GND
o~ STBEB1-APUR 2
—
- _
GND GND GND GND GND GND
Voltage Regulator
The. _ | _DT07 Soil Sensor Network
d‘m 4/5/2021 9:26 AM
Sheet: 2/11 | A7

R s

Figure 19: EagleCAD STBB1-APUR Voltage Regulator.

The orientation as specified from the datasheet is shown in Figure 20.

T T1
o LJd LI o]
1 | y 10
— —
2) : | (9
35 | f .8
L I
40 | | 7]
S) |_| r_| L6
r
1 1 11
Pin Symbol Name and function
1 VOUT Output voltage
2 Sw2 Switch pin. Intemnal switches are connected 1o this pin. Connect inductor between SW1
16 SW2
3 PGND Power ground
4 S5wWi Switch pin. Internal switches are connected io this pin. Connect inductor between SWH1
and SW2
5 ViM Power input voltage. Connect a ceramic bypass capacitor (10 pF minimum) between
this pin and PGND
] EN Enable pin. Connect this pin 1o GND or a voltage lower than 0.4 V 1o shut down the IC

A vollage higher than 1.2 V' is réquired to enable the IC

T MODE /SYNC Operation mode selection. f MODE pin is low, the STBB1-AXX automatically switches
between pulse skipping and fixed frequency PAWM according to the load level, If MODE
pin is pulled high, the STBB1-AXX works in PWM mode. When a square waveform s
applied, this pin provides the clock signal for oscillator synchionization

a WINA, Supply voltage for control stage
9 GHND Signal grownd
10 FB Feedback vollage

Exposed pad Power ground

Figure 20: Buck-Boost Voltage Regulator STBB1-APUR Pinout. Image retrieved from
https://www.st.com/content/ccc/resource/technical/document/datasheet/20/a6/10/e0/63/85/43/c1/DM00037824.pdf/fi
les/DM00037824.pdf/jcr:content/translations/en.DM00037824.pdf.

The two configuration pins that dictate how the regulator operates are pins 6 and 7. Pin 6 is the
enable pin which communicates to the regulator when to turn off and on. The enable pin was
pulled high (Vpp) so that the boost mode would be activated once the regulator reached at least a
1.2V input. Pin 7 is the mode select (sync) which communicates to the regulator how often to
oscillate between frequencies. The mode select pin was originally pulled low so that the

regulator would operate based off the load, however in reality, the regulator got stuck between

the skipping and fixed frequency pulses and did not operate as intended. The circuit was

modified on the PCB and the regulator then performed as expected.

5.1.2.4 Microcontroller AA, RK, AW
From the voltage regulator, power is supplied to the microcontroller through the Master
Clear (MCLR) pin. The voltage divider R3 and R4 coupled with capacitor C// are used for
resetting and programming the microprocessor. The capacitors C6-C10 and C12-C14 are
decoupling capacitors that are used to suppress high frequency noise. The microcontroller is
programmed with a MPLAB In-Circuit Debugger/Programmer via the RJ45 connector coming in

to pins 24 and 25.

1 [2 | 3 [4 [5 [6 4 [8
2 1L1
1T
GND ci12
A §|$|3|:;|x|3|3|3|s|;|3|$|3|5|$ma g qqhth
ca EEEAFJHBGB‘HO-I PT
OUEN Uz I8 035883 25BRR -
% 1 Emﬂ:ggg&'ﬂiﬂfﬂmﬂ_’ﬁt’gg E.E
|| o -1 rois vss 5
4.7k £ voD_1 soscomcis
-2 Res SOSCIRC13 7>
|7 eoo
5| RES RDO o
——1 RET RDI1
& i) BO10
R3 LEDO 7 | A<t RO Fes ena
B gy 2 ggj ppg =2 BOA
LED2 # RC4 RALS %
=1 RGE& RALld —
= RE7 VSS 4
33 | Be2 OSCOMRC15 [— o
RCIR OSCHGLKIRC1? |——
| MELR A} pes voo s |82 WOD
GND 13 | ygg 4 RAS 61—@
""" VoD 16 1 ypo 2 RA4 —w—_m
tH] j 1L man RAs |52 SDA2
da | peg Pl _‘E;_SCLZ N
c 18 meg DeRGZ |-k G o
REs—22— RBS D-RG3 A 15
REA—2— RE4 VusEIVE - =
RBI™ 22 1 omp rre
PGECL 24 | RB1 RF2 52
| PGEDL 25 | REO RF3 |51 - EN_D
3] [
$r—-mgﬁm$m22 P e B R e B (};?-Ewm
SRR P EELEEIR EEELEEEET: &ND
D ﬁxﬁ[aha;g 3«»%"%?'%"5:'
oo -
23 53 8933
St 228
o (=)
= = =
2
x
8 o 9
| = E
E A 4 el
" o
E .II'H: PICZAF J256GE410 MCroconeiier
o .y . - . . D70V Soil Sensor Metwork
GND GND GND dﬂ"gﬂr\gmy etk
Sheer 311 []
1 [2 [3 [4 | 5 | 6 7 [8

Figure 21: EagleCAD PIC24F]128GB410 Microcontroller.

The microcontroller supplies power to all other components of the circuit. The analog

input pins 41 and 44 read in data from the temperature sensor and soil moisture sensor.

The collected data is then sent to the LoRa module via pins 78 and §83.

5.1.2.5 LoRa Module AA, RK, AW
The LoRa module has three main connections, which are for data, power, and signal

transmission, as seen in Figure 22.

1 2 3 4 - 6 I 8
IC2
RMN2903A-I RM105
A ; GND_1 NC_6 % A
—2—| UART_RTS GND_8 |-
—— UART CTS GND_9 |2
——| RESERVED_1 GND_10 |5 +
—— RESERVED_2 NC 7 S
RB4 2 UART_TX PGC_INT |30
RB5 e UART_Rx PGD_INT -2~
B o— B8 1 cnp 2 RESET |—== B
% GPIO13 GND_11 g‘j
=1 GPIO12 VDD 2 NEL
. £ eND_3 GPIcO |32
VDD 13 VDD _1 GPIO1 37
GPIO11 GPIO2 |3
5 % GPIO10 GPIO3 |2 C
ﬁ 15 1 nea cPioa |22
ENU x %?—— NC_2 GPIOS —f‘:%
= 4.4 N s GND_12 |—5= .
L | @ = NC_4 NC B =
2 % NC_5 GPIOG —:j
2] ©Np_4 GPIO7 [—2o
2L) eND s GPios |22
D i 221 cnos Gpiog |22 D
21 R GND_13 F2—e
GND_7
E —te RN2903 LoRa Module E
GND The. 5767 soi Somsor Networ
dw 4/5/2021 10:30 AM
Shest 4711 | A
1 2 3 4 o 6 | 8

Figure 22: EagleCAD RN2903 LoRa Transceiver.

Like the other components, this module is supplied with 3.3V. For data communication
with the microprocess, one UART port is used to transmit serial data. The third connection that is
made is at the RF port of the LoRa transceiver, which connects to a 3”, quarter-wavelength

monopole antenna.

5.1.2.6 Soil Moisture Sensor AW
As stated previously, a capacitive soil moisture sensor was designed and constructed. Many

capacitive soil moisture sensor circuits were analyzed to aid in design.

5.1.2.6.1 Moisture Sensor Phase 1 AW
Capacitive soil moisture sensors can be broken down into three basic components: a timer, a
capacitive discharge circuit, and a linear integrator. The schematic for a simple timer-capacitive

discharge circuit can be seen in Figure 23.

o e

3 L
=

. =

Figure 23: EagleCAD Capacitive Soil Moisture Sensor: Iteration I.

The timer is coupled with the discharge circuit to measure discharge rate over time. The
capacitors C2 and C4 are placed in parallel to aid in noise reduction. Two resistors acting as a
voltage divider are placed after the input voltage to ensure the correct power is being inputted to
the timer. The diode D/ is put in place as a current buffer so that no current will come back

through the output of the timer.

The discharge circuit in its simplest form is a capacitor C/ on the order of nano Farads. The
timer clocks how long the capacitor takes to discharge. The discharge rate is then fed into a

linear integrator. There are a few different methods that exists for creating linear integrator

circuits; the most common method is using an op-amp connected to resistors and capacitors.
Since the amplitude of the voltage increases linearly with time, the integrator converts the linear

function to a ramp function which can then be read by the microcontroller as an analog input.

5.1.2.6.2 Moisture Sensor Phase 2 AW
To further the soil moisture sensor design, calculations were completed to determine the
values for each component. The NE555 timer used previously was replaced with a TLC555 timer
in order to keep consistent with the voltage values of the other components of the sensor pod. All
other components (microcontroller, LoRa module, etc.) operate at a minimum of 3.3V. When
examining the datasheet for the NE555 timer, it was found that the timer had a minimum
operating voltage of 5V. Because of this, the NE555 timer was replaced with a TLC555 timer.

The two timers are essentially the same, but the TLC555 timer has the ability to operate at 3.3V.

To determine the resistor values acting as a voltage divider for the timer, the TLC555
datasheet was referenced [20]. The timer is used as a DC oscillator in the application of a
capacitive soil moisture sensor, and as explained in the Electronic Analysis section, is created

using an astable circuit. The astable circuit located in the datasheet can be seen in Figure 24.

Voo
(5Vio15V)
0.01 uF jl__“‘
Open =
Ra (see Note A) | 5 8
CONT Voo
4
4?(“ RESET
DISCH 3
Rg § 6) ouT Qutput
F THRES
TRIG
GND
cT il
Decoupling CONT voltage to ground with a capacitor can improve
operation. This should be evaluated for individual applications.

Figure 24: TLC555 Timer Datasheet: Astable Circuit. Image retrieved from
https://www.ti.com/lit/ds/symlink/tlc555.pdf?HQS=TI-null-null-digikeymode-df-pf-null-wwe&ts=1603553851426.

Reading further into the datasheet as to what signal each input requires, the voltage being
supplied to the discharge pin is typically around one-third of the voltage supplied to the input
Vcc. The threshold input monitors the voltage across the timing capacitor and determines when
the circuit should oscillate from state one to state two [20]. Since R4 and Rp act as a voltage
divider, and the input does not have a maximum voltage threshold, Equation 19 was used to find

a ratio of the values of Ra and Rs.
1 2 1 2
1(§RA+§RB)=Vcc=1R >Ry +2Ry =R (19)

By using Equation 19, it was noted that the ratio of the resistors was more important than the size
of the resistors. For 555 timers, R4 and Rp are on the order of kilohms. The standard resistors that
satisfy the 1:2 ratio are 150kQ and 330kQ resistors. After simulating the circuit, it was found that
this ratio was not accurate for the circuit at hand, and the 330kQ resistor had to be exchanged for

a 3300kQ (or 3.3MQ).

The capacitor C is used to eliminate noise in most cases, but for the soil sensor
application, C is a representation of the capacitive discharge circuit. For the sensor pod
prototype, the timer will measure the discharge rate of a parallel plate capacitor. The capacitance

needed for C is calculated using Equation 20.

eS _ (5g9)S _ (5+8.854x10712)(0.05+0.02)
d~ d 0.005

C =

= 8.854 [pF] ~ 10 [pF] (20)

It is recommended by the TLCS555 timer datasheet that the control voltage input be connected to
at least a 10nF capacitor if it is not being used. For this application, a 100nF capacitor was used
to connect the control input to ground. The second iteration of the soil sensor schematic is

located in Figure 25.

1 2 3 4
A A
B 4§ B
— +
‘ L e
7 ~
Ofgkron vy
D JLCE55 Timer and Soil Moisture Sensor D
DTO7 Soil Sensor Network
Date: J1/22/2020
Sheet: 50F6 | AW
il [2 [3 | 4

Figure 25: EagleCAD Soil Moisture Sensor: Iteration I1.

The linear integrator circuit was omitted on the second iteration of schematics. Although
voltage is one method that can be used to measure discharge rate and be sent through a linear
integrator circuit to be inputted back to the microprocessor, it may not be the most
straightforward method of measuring the capacitor. After taking a closer look at the linear
integration circuit, it was determined that more than an integrating op-amp is needed to convert
the information to a signal that can be read by the microcontroller. This method contains
complex circuitry and is very difficult to implement, so measuring voltage to determine the

discharge rate of the capacitor is not a good method for the Sensor Pod application.

A second method to measure discharge rate is to measure capacitance and relate the

capacitance value to frequency. Since the 555 timer acts as an oscillator, where part of the time

the circuit is in state one and the other part of the time it is in stage two, the output of the signal
is a square wave. Although many of the capacitive soil moisture sensors on the market use the
linear integration method, the frequency method is desirable because the timer sends a square
wave signal that can easily be read by the microcontroller and converted to frequency because as

seen in Equation 21, frequency directly corresponds with time.

f=1/t @2y

As stated previously, the discharge capacitance increases linearly with time. Using this logic, the
oscillations of the signal should increase and decrease depending on how quickly the soil sensor

capacitor discharges.

5.1.2.6.3 Moisture Sensor Phase 3 AW
The third design iteration of the soil moisture sensor timing circuit was due to a design
change of the timer itself. For testing purposes in iteration two, a pin through TLC555 timer was
used. Once the design was transferred to a PCB, it was necessary to transfer the pin through
component to a surface mount component to optimize board space; the surface mount component
was a third the size of a pin through component. However, when the component was transferred,

it was found in the datasheet that the circuit design had a slight change, as seen in Figure 26.

A L £
A CE550DRC 3.3 N =18 R4 A
[GNE —_—

we)
l
|
|
.
(wy)

D - D
SME
uf[\ sy T
1 2 [3 ' 4 5 [G 7 8

Figure 26: Soil Moisture Sensor Internal Circuit: Iteration I11.

Once the design was changed to match the configuration on the datasheet, the circuit performed

as expected.

5.1.2.7 Temperature Sensor AW
The MAX6607IUK+T temperature sensor was implemented into the design in addition
to the moisture sensor. The typical application circuit for the sensor package consists of 2 noise
reducing capacitors. The analog output from the temperature sensor will be fed into pin 41 of the
microcontroller in order to be read by the microprocessor. This temperature sensor produces an

output voltage that is proportional to absolute temperature and relates the two via Equation 22.

Vout—500mv
10mv/°C

T(°0) = (22)

This gives an analog output that is able to be read by the microcontroller. The schematic for this

type of circuit design can be seen in Figure 27.

: ! 2 3 4 - 6) ! 8
VP\D
A U1 A
|] MAX6608IUK+T .
2

1
B % NC ouT P2 ; 2 B

GND VCC g N 3

A o~ . J1

——]
Ol el
B O—% | 3 %
= 5.
— S é
D GND D
B ' ,Ih MAX6607IUK+T Temperature Sensor .
E Jdne. DTO7 Soil Sensor Network E
Of I{Slty 4/5/2021 12:39 PM
Sheet: 6/11 ! AW
) 2 . 4 - 6 f | 8

Figure 27: EagleCAD MAX66071UK+T Temperature Sensor.

5.1.2.8 Connectors AW

Connector boards were created as an intermediate step to connect the external sensors to
the main board. The external sensors, temperature and moisture, contained one side of a
magnetic connector. The other side of the magnetic connector was mounted to the connector

board, which would eventually be attached to the inside face of the pod.

1121313]|5|/6[7138
A 2. B A
2 B o I
B 1 2 B
22-23-2021
C C
D - —{D
_apacitor_to_MainBoar
-r]—lle . DTO7 Soil Sensor Network
E mﬁw 4/13/2021 3:20 PM E
Of Sheet: 7/11 [AW
1113141 651718

Figure 28: EagleCAD Moisture Sensor to Main Connector Board.

1[2]3[4[5]6[7]8
Al 2 J1 A
ol 1
Bl |i] - B
— 3
C 22-23-2031 C
D mp o MainBoarc D
:H]c . [[H f‘.l...-' Soil I:}Iml:nl:“\l:".':.-cark
E Df ISIY [Z132021 333 M E
Sheet. 8/11 [aa
11 2121415186171 8

Figure 29: EagleCAD Temperature Sensor to Main Connector Boad.

On the back side of the connector board there is a WM4200-ND 2-pin connector for the
soil moisture sensor and a WM4201-ND 3-pin connector for the temperature sensor. These male
connectors are attached to a male connector on the main board through a wire containing a
WM2011-ND (2-pin) or WM2012-ND (3-pin) female connector on either end. Connector boards
were chosen to be used rather than hard-wired connections from the external pod to the main

board because if the wired connection were to break, it would be difficult and time consuming to

unsolder and resolder the connections. In the case of quick disconnects, if a wire or connection

point is faulty, it can easily be exchanged for another connector.

5.1.2.9 Debugging Circuitry AA, AW
The debugging circuitry for the main board consists of LEDs, a reset switch, and additional

pinouts for the PIC microcontroller and LoRa module.

1 - 3 4 5 6 71 N
1.00k D1
A LEDD — sm—5f— A
i 5
LEDL MiAs 4
B R10 i B
1.00k D3
ED? _'\.'\'\'.V_ Bi Py
R11 wa |
c & |C
D D
i i) 3 4 | 5 6 T |=48

Figure 30: EagleCAD Debugging Test Vias and LEDs.

The three LEDs in the circuit are connected to the PIC in order to determine whether or not the
PIC and LoRa module are properly entering and exiting sleep mode. Another debugging method
used on the main PCB were test vias. Test vias are a larger size via located in the board such that
a probe can fit through the hole in the case of testing for circuit continuity or voltage. The first
test via was located after the analog pin on the soil moisture timing circuit and before the trace
arrived at the PIC pin. The second test via was located between the supplied voltage to the timer
circuit and where the voltage was inputted to the timer circuit at Vpp. These two test vias were
chosen to give access to test if the subsystem was working properly in the case the signal was not
being transferred to display a correct reading on the Senet server. It is important to monitor this
subsystem as opposed to other subsystems because the majority of hardware subsystems were

placed on a breakout board that connected to the main PCB whereas in this case, the subsystem

was on the PCB and therefore harder to troubleshoot if no test vias existed. This subsystem was
proven to work during the design phase on a PCB, which is the reason the circuit was placed

directly on the main PCB.

Cg &
Z / o
' | ISCP
D ¢ ¥ D
E 4 F E
cii L |
GND
1 2 3 8

Figure 31: EagleCAD Manual Reset Pushbutton.

The Master Clear (MCLR) pin on the PIC24 serves two specific purposes: resetting the
device and for device programming and debugging. Having the capability to reset the device
with a single switch or button allows for faster debugging by reducing the need to manually
remove the power source for reset. The MCLR also must be properly configured for the device
to be programmed and debugged properly. Although this is not needed for production due to the

prototype nature of this project, the MCLR pin had to be configured for testing and development.

- | 2 1 3 | = 5 | 6 | 7 | 8
A RB9--RB14 RB3--RB8 RDO--RD5 RD6--RD11 A
10027011-106HLF 10027011-106HLF 10027011-106HLF 10027011-106HLF
_RRBR141 | , reg 1 [RDO 1 [, _RDA | ,
B RB132 | , RBZ 2 | , RD1 2 | , _RD2 | ; B
RB123 3 RB6 3 3 RDZ2 3 3 _RD8 | 4
— | _RB114 | , RB5 % RD3 4 | , _RD3 | ,]
o RB10S | ¢ RB4 5 5 RD4 5 i RDEO] ¢ [
_RB9 6 | ¢ RB3 6 | ¢ RD5 6 | RDBL| &
D D
— the Breakout Pins —
. . DTO7 Soil Sensor Network
E rSItyT not saved! E
Of 1 Sheet: 1/1 | AA
1 | 2 | 3 | 4 5 [6 [7 | 8

Figure 32: PIC24F]256GB410 Microcontroller and RN2903 LoRa Module Breakout Pins.

To create a more modular PCB, breakout pins were connected to GPIO pins on both the
PIC24FJ256GB410 microcontroller and RN2903 LoRa module. Pins RB0O to RB8 were used for
testing and debugging the program. The remaining pins were reserved for testing and developing

additional features.

5.1.3 Simulations AW
Before building a prototype, it is important to verify the designed circuit design will
function as theorized before physically implementing it. The most efficient way to do this is
through simulation. Both the soil moisture sensor and temperature sensor were designed in
LTSpice and simulated. It was not possible for the voltage regulator to be simulated due to the

limited amount of information the manufacturer released on the device.

5.1.3.1 Soil Moisture Sensor AW
The same circuit as in Figure 20 was constructed in LTSpice and a simulation was run to
verify the calculations were correct and that the circuit would work properly once built. The

circuit can be seen in Figure 24.

,,,,,,,,,,,,,,,,,,,,,,,, 555 TIMER (DC OSCILLATOR) CIRCUIT
g GND U Vcc
vl
TRIG DIS
< Vanalog] out THRS
NESSS | | |
RST cv
S| v2 Cc2 im
% 10n liﬂp
3.3V ~
~7 .tran .001 g‘:::ﬁig;s
VOLTAGE SUPPLIED CIRCUIT
BY MICROCONTROLLER

Figure 33: LTSpice Capacitive Soil Sensor Circuit.

Although a TLC555 timer is used in both the Eagle CAD schematic and implemented into the
actual circuit, an NE555 timer was used for simulation because it was the only timer in the
LTSpice directory. There are very few differences between the TLC555 an NE555 timer; the
main difference is that the NE555 timer controls the ‘on’ state by altering frequency whereas the
TLCS55 timer controls the ‘on’ state by altering duty cycle. The timer for a soil sensor is used as
an oscillator, as mentioned previously, and is only concerned with the change in time (ratios of
time) given a capacitive discharge. For this reason, the way the timer measures time is irrelevant

for the simulation.

To simulate the capacitive discharge rate of the soil moisture sensor, C/ was set to 10 pF
for the first simulation, and then set to 20 pF for the second simulation. As seen in Equation 20,
the capacitance value directly corresponds to the permittivity of the soil. Soil with a greater
amount of moisture has a higher permittivity. The permittivity causes the capacitance to be

higher or lower. Since it is difficult to simulate the effect of the permittivity of moisture on the

soil, the capacitor value was varied, which essentially ‘varied’ the permittivity. The results from

the first simulation with C/ equal to 10 pF is seen in Figure 25.

Figure 34: LTSpice: Soil Moisture Sensor Simulation C1=10pF.

The capacitor C!/ discharged in approximately 40 ps, resulting in a 25 kHz frequency.

The soil moisture sensor was then set to 20 pF and the simulation was re-run. The results

from the second simulation can be seen in Figure 26.

V(vanalog)

Figure 35: LTSpice: Soil Moisture Sensor Simulation C1=20pF.

As expected, the discharge rate doubled to 80 pF, resulting in a 12.5 kHz frequency. It is
important to maintain a frequency in the kHz range to stay within the limit of operation for the

TLCS55 timer (2 MHz) while also optimizing the sampling rate.

5.1.3.2 Temperature Sensor LF
The circuit shown in Figure 27 was used to simulate a similar temperature sensor to the

MAX6607. The temperature sensor being simulated is the LM35, which has a similar port set up

and similar outputs. While the LM35 has 3 ports and the MAX6607 has 4 ports, the MAX6607

has a pseudo-3 port network because two of the ports are grounded together.

The LM35 also has a minor change with its transfer function. The MAX6607 has a
500mV offset at the 0°C mark in order to allow measurement of negative temperatures, whereas
the LM35 does not have the offset at the expense of accuracy at higher temperatures. With this in
mind, both give similar linear responses, making the LM35 a viable substitute for the MAX6607

in the simulation.

Figure 36:LTSpice: Temperature Sensor Simulation Circuit.

As seen in Figure 28, as temperature increases, the output voltage increases at a linear

rate.

Figure 37: Temperature Sensor Simulation Diagram.

Referring back to Equation 22, the simulation graph verifies that the temperature sensor is
responding as intended. Since the simulation runs properly for the LM35, it can be assumed it

will also run properly for the MAX6607 temperature sensor.

5.1.4 PCB Designs AA, AW
Each of the schematics were taken and configured into a PCB. The voltage regulator and

battery monitoring boards were placed onto breakout boards to aid in troubleshooting. The soil

moisture sensor and temperature sensor were placed on separate boards as well since they are

external to the device. All individual boards are connected to the main board.

5.1.4.1 Main Board PCB
The three main components on the main board are the PIC microprocessor, LoRa
transceiver module, monopole antenna, and internal soil moisture sensor components. As seen in

Figure 38, the microprocessor is located at the top center, the LoRa module at the bottom right,

the antenna in the center of the board, and the internal soil moisture sensor components at the

bottom center.

-
x ™ | IH—II cil
(E= A s A | . | ¥ =

3 i {Hejpp't;ensdr’

-

Wil C10

|_TJ-|_f.| |

A'I_I'ERY MUNITUR
5 |
=

= ® i RMNZ903AH_RM1OG

1= .._' nsar, Jumpgr’" | _|_
.__]: I| L +

e
E | L
g | _I
ﬁ . Y 1 | |
@)senshrect

= -l"

£

-
—

RES ARES F

FPL JRES
gt Lo

REZ AP

,[

Figure 38: Main PCB Design.

The antenna was placed at the center of the board so that if it was necessary that it extruded
through the top of the pod, it would be aligned with the tip of the pyramid and maintain
symmetry. All other components were fitted around it. The designs of the voltage regulator and

battery monitor, at the point of ordering the PCBs, had not been tested and proven to work; they

were placed on separate breakout boards so that they could be switched in and out for testing
until a working prototype was created. The soil moisture sensor circuit was proven to work the

previous semester, so the circuit was directly placed onto the board.

- .

e PR —— .
iR 103

Figure 39: Main PCB.

Many design enhancements were included to help with testing and troubleshooting the
circuit. At the top left of the board, a reset button with three LEDs next to it can be seen. The
reset button enables the Master Clear (MCLR) pin on the PIC to be manually reset without
resetting the code. The three LEDs are attached to PIC in order to verify the microcontroller is
entering and exiting sleep mode properly. In addition to this, spare PIC pins are connected to
breakouts across the top and left side of the board in case additional components need tested that
were not part of the original design. The breakout pins will be removed once the prototype is

complete. Test point vias are next to each individual circuit (microprocessor, transceiver,

moisture sensor) that allow the power, ground, and signal traces going to each component to be

probed for troubleshooting purposes.

5.1.4.2 Power Management System

The power management system is broken down into three main sections. The first system
is the buck-boost voltage regulator. As stated previously, a buck-boost regulator was used in
order to maintain 3.3V despite whether the battery is charged above or below the desired voltage.

The PCB layout is shown in Figures 40 and 41 .

%

T

n
T T AT

V-VI-\

I
(
(
2
I

-
[’S]
 —

(N
ING\

w1 Z LU
|

| =
STBB1-APUR

-,

€
Ll

i.
k

-y A-¥BL1920€ |
dyp g |

T r' > £
4 0O L
I.: i.?u;l ﬂg

1 STBB1-APUR ° &

Figure 41: STBB1-APUR Voltage Regulator PCB.

S0£012

The headers on either side are not only utilized for power and signal connections, but also for

stabilizing the board onto the main board.

The second section of the system is the battery monitoring PCB.

N
%
1
Q-
A
-
e
/) 00

1
GHD

2
BAT POS
|+ 1

1
VIN

——

el

o
>
(“‘\
<3

EMEL107B71OSMAHT
BATZF’O_

|
RMCF0O805JT1KO

-V!\

U

<*RL1220T ROlD J

ONON
A\ \
Ne— — vV

A*L J——
N V] é V|
3

NG

PRV RV V1
S
=\ "\

L
(

N-l ANILCT

[C3 1LUUVIO |

-
1

Figure 43: Battery Monitoring PCB.

The battery monitor is connected to the battery before the voltage regulator and collects
data such as voltage, current, and battery depletion. The microcontroller is capable of monitoring

system voltage, but this is after the voltage has gone through the regulator. Since a buck-boost

regulator is used, this means the regulator will stabilize the supplied voltage to 3.3V until the
battery is almost fully depleted. A monitoring circuit is useful because it will monitor the actual
battery voltage, not the regulated voltage. The monitor can then send a signal to the
microcontroller which can then transmit a signal to alert the farmer if the battery is low and the

Sensor Pod is in need of retrieval.

The third system involved in power management is the battery pack PCB.

Figure 44: Battery Pack PCB Design.

Figure 45: Battery Pack PCB.

As will be discussed in later sections, all designs created must keep the end user in mind. When a
farmer needs to recharge the Sensor Pod batteries, it is most convenient if they can both be
recharged at once. The battery pack PCB connects two batteries in parallel on the under-side of

the board to a circuit that has a third connector on the top-side of the board. The top connector is

connected to a wire going to the main PCB; when the batteries need recharged, the top connector
can be disconnected from the main PCB and connected to the battery charger. Charging the pack

from the top connector will allow both batteries to charge at the same time.

5.1.4.3 External Sensors

The external sensors on the pod are a soil moisture and temperature sensor. The soil
moisture sensor, as depicted in Figure 46, is a multi-level parallel plate capacitor with power
going to one lead and ground going to the other. The middle pogo pin on the magnetic connector
is unused. The other half of the circuitry containing the timer is on the Main PCB, internal to the

Sensor Pod.

J423I358R_Y4

Figure 46: Soil Moisture Sensor PCB.

The temperature sensor circuit is completely external. One capacitor is connected to Vcc and the

other is connected to the output. Both capacitors are used for noise reduction.

MAXG6608IUK+T

Figure 47: Temperature Sensor PCB.

For future design implementation, it should be noted that each eternal sensor should have a clip

quick disconnect clip on the top of it so that the sensor is more firmly secured to the pod.

5.1.4.4 Connectors

Both external sensors have an intermediary connector PCB that is mounted to the inside
of the Sensor Pod walls. An example of the intermediary connector for the temperature sensor is
shown in Figures 48 and 49. The only difference between the temperature sensor intermediary
connector and moisture sensor intermediary connector is that the temperature sensor PCB has a

3-pin male connector whereas the moisture sensor PCB has only a 2-pin male connector.

Figure 49: External Sensor to Main Board PCBs.

The black magnetic connector is secured to the inside wall of the pod and connects to the
magnetic connector of the external sensor. The white connector attaches to a wire that is routed

to the main PCB.

5.2 SOFTWARE DESIGN

The two main software components of the Wireless Soil Sensor Network are the web
application and the embedded software. The web application will act as an interface for the user
to visualize and maintain their farm data. The embedded software will be the main control

program for Sensor Pod operation. The design of each component has a different focus, such as a

power-efficient embedded software and a user- and mobile-friendly web application. These

ideas must be kept in mind to meet Engineering Requirements.

5.2.1 Embedded Firmware AA, RK

The flowchart in Figure 50 depicts the general series of events that the embedded
components of the Sensor Pod will adhere to. Note that the creation of the flowchart begins at
Level 1 because Level 0 is a hardware representation of the embedded system, which is

encompassed into the Level 0 Block Diagram.

¥

Imitizalization

¥

 EE—
Board Entars

Slaep mode J
Remans in
Sleep mode

— !
Y

¥ag
A J

Board Wakes
Up

Trigger
Sensors
Reading

Y

—_—

Send Data to
Hub/Gateway

|

Figure 50: Level 1 Embedded Flowchart.

The flow of control for the embedded system follows a strict set of events. First, the system
initializes, which will configure the system for data acquisition and transmission. To save power,
it will enter a sleep mode and continuously check for a timer expiration. If the timer has expired,
the system will reset the timer, “wake up”, and trigger the sensors to take readings. The sensor
readings can then be transmitted to the gateway for data storage. The system will then “go to

sleep” and wait until the timer expires and the process will begin again.

5.2.1.1 Trigger Sensor Reading AA, RK
Triggering a sensor reading will follow four steps to acquire soil data. When a timer has

expired, the sensors equipped on the Sensor Pod can be activated and take a measurement. The

microcontroller will then process the acquired data, and package it to be sent over LoORaWAN

protocol to the Gateway.

Resat Timer

Micracontraller
Sensars Ara Sensors Take Packages

Activated Jeasurements Diata for
C Measurements Mesurements _Dara
ransmiban

Send Dala to
Hub/Gateway

Figure 51: Level 2 Embedded Flowchart: Trigger Sensor Readings.

5.2.1.2 Gateway/Hub Data Communication AA, RK
To efficiently manage power and transmit data to the gateway, a strict set of steps should
be followed. When a reading is triggered, the reading will be processed and put in a form that the
main microcontroller can send to the LoRa transceiver. Once the transceiver is “woken-up”, it
will receive the payload, and transmit data to the Gateway. When data transmission is complete,

the LoRa module can go back into its sleep mode and wait for the process to be completed next

cycle.
Trigger
Sensors
Reading
N 7
. Send Data to Hub/'Gateway
| ' |
Microcontraller
| Sends L —— Transmitls Lora Module |
) Sensor Data — 1ur:1 ' L "\L — Daia ta —»| Entar Slaep
| to Lora Walkes up Gateway/Hub Mode |
i WModule |
S SN -
Board Entars
Sleep mode [
Remains in
Sleaep mode
Figure 52: Level 2 Embedded Flowchart: Send Data to Gateway/Hub.
5.2.2 Software Block Diagrams AA

The following software block diagrams depict the overall architecture at each design level.

5.2.2.1 Level 1 Block Diagram AA, RK, AW
Further expanding the Level 3 Block Diagram seen in Figure 52, the data storage, server,

and gateway were broken down into additional components.

Server

Software Apllication
Data Store

—atl - atl
. Aplication Apllicaton

Database Backend Frontend

Formated Data

AWS API/
Lambda

Decoded Data

GateWay/Hub

Senet Server

Encoded Data

GateWay

Sensor Pod

Figure 53: Level 1 Software Block Diagram.

Sensor Pod data is sent first to the Gateway, and then encoded to be sent to the Senet server.

Table 28: Level 1 Software Block Diagram: FR Table: Gateway.

Module Gateway

Designer Ross Klonowski

Inputs LoRa radio messages

Output Encoded data

Description | Gateway collects data over LoRa frequencies and forwards data to
the Senet server

Table 29: Level 1 Software Block Diagram: FR Table: Senet Server.

Module Senet Server

Designer Ross Klonowski

Inputs Encoded data from the Gateway

Output Decoded data sent to AWS API/Lambda via HTTP
Description | A hub for sensor data to be stored and forwarded for use in the

application

Data Store is broken down into the database and AWS/API/Lambda blocks.

Table 30: Level 1 Software Block Diagram: FR Table: AWS APl/Lambda.

Module AWS API/Lambda
Designer Aléxis Alves
Inputs Raw Senet data
Output Formatted data sent to database via HTTP
Description | Interface between database and Senet server; models data to match
format of database
Table 31: Level 1 Software Block Diagram: FR Table: Database.
Module Database
Designer Aléxis Alves
Inputs Formatted data from AWS API
Output Formatted data sent to application backend via HTTP
Description

The Server is comprised of a Frontend and Backend of the application, as seen in Tables 32-33.

Table 32: Level 1 Block Diagram: FR Table: Backend of the Application.

Module Backend of the Application

Designer Aléxis Alves

Inputs Formatted data sent from database via HTTP

Output API call sent to the frontend of the application

Description | Handles all operations regarding database interface modeling and
logic calls.

Table 33: Level 1 Block Diagram: FR Table: Frontend of the Application:

Module Frontend of the Application

Designer Aléxis Alves

Inputs API call sent from the backend of the application

Output Data displayed to user

Description | User interface for Wireless Sensor System interaction; handles
displaying data

5.2.2.2 Level 2 Software Block Diagram

The software application frontend and backend of the software block diagram was further

broken, as seen in Figure 54.

Software Apllication

Application Backend Application Frontend
Logic Contraller
Model View

Figure 54: Level 2 Software Block Diagram.

The backend of the application was further broken down into Logic and Model blocks, as seen in

Tables 34-35.

Table 34: Level 1 Software Block Diagram: FR Table: Logic.

Module Logic

Designer Aléxis Alves

Inputs API Calls

Output Results

Description | This handles all logic operation in the backend such as acquiring
data, calculation, and validation.

Table 35: Level 1 Software Block Diagram: FR Table: Model.

Module Model

Designer Aléxis Alves

Inputs Results

Output Modeled Results

Description | The modeling operation is used to format any results from requested

from the logic operation.

Tables 36-37.

The frontend of the application was further broken down into Controller and View, as seen in

Table 36: Level 2 Software Block Diagram: FR Table: Controller.

Module Controller
Designer Aléxis Alves
Inputs User interaction
Output API call
Description | The controller operation reacts to user interaction and makes the
respective API to the backend.
Table 37: Level 2 Software Block Diagram: FR Table: View.
Module View
Designer Aléxis Alves
Inputs Modeled Result
Output Application display
Description | This View operation is used to render the display page with modeled

results from the backend.

5.2.3 LoRa Communication Setup RK
There is a slew of commands that must be sent to the transceiver to enable the transceiver
for communication to the Gateway. Commands follow a general format consisting of about four
fields. The first field can be “mac” for commands regarding the mac protocol or “radio” for
commands regarding the physical layer of communication. The next field is either a “set” or
“get” for if a setting should be read from or written to. The last two commands will be the field
desired, and then the parameter, if the command is to change a setting. For example, to set the
device’s address, the following command can be sent: “mac set devaddr 123456789 In this
case, the mac layer’s device address will be set to the included parameter. This general format
should be used for the other commands that are needed. To configure the RN2903 to work with
the application in Senet, the Network Access Key, Application EUI, and Application Key must

also be set.

Another important command that must be sent is to turn on Cyclic Redundancy Check
(CRC) which is used for error correction when the packet is sent to the destination. To further
improve communication reliably, the Adaptive Data Rate (ADR) will be turned on which adds
information to the messages about the device, which then allows the destination to optimize the
data rate of transmission. The last and most important step is to join the network. Using the
preconfigured keys and parameters, the “mac join abp” will make the mote attempt to join the
network. Activation By Personalization (ABP) is one of two methods that allow a device to be
added to a network. This means that information is exchanged between the node and network

server before addition to the network.

5.2.4 DataFlow AA
The flowchart in Figure 55 shows the flow of data from the Gateway to the web

application.

Gateway

HTTP

Senet Server

REST

AWS AP/

Database Interface 1
L ambda DataBase

Database Interface

Web
Application

Figure 55: Data Flow Flowchart.

Tables 38-41 give a brief overview that explains how the data is moved from each component

from the gateway to the web application.

Table 38: Data Flow: FR Table: Gateway.

Module Gateway

Designer Ross Klonowski

Input LoRaWAN Communication

Output HTTP Call

Description | The gateway receives information form the sensor pods via
LoRaWAN communication. It then forwards the information via
HTTP calls to the Senet server.

Table 39: Data Flow: FR Table: Senet Server.

Module Senet Server

Designer Ross Klonowski

Input HTTP Call

Output REST API Call

Description | The Senet Server receives information from the gateway by mean of
HTTP calls. Once the information is received the server decodes the
information and stores it locally. The server than utilizes a link
forwarded to offload information to the database by REST API calls
to an API endpoint.

Table 40: Data Flow: FR Table: Amazon Web Server (AWS).

Module Amazon Web Services (AWS) API / Lambda

Designer Aléxis Alves

Input REST API Call

Output Database Interface

Description | The AWS API is used as an endpoint for REST API calls. Once the

REST call is received it is then routed by a Lambda function. The
lambda function which is written in node.js parses the call for
information and converts the payload from HEX to String before and
sends it to the database using the database interface.

Table 41: Data Flow: FR Table: Web Application.

Module Web Application

Designer Aléxis Alves
Input Database Interface
Output Database Interface

Description | Once the data is in the database the web application can interface
with it using the database interface. The web application backend
can then use the database interface to change, get, delete, and create
data.

5.2.5 Gateway / Senet Server RK

The Gateway is a key component that collects and forwards all the data that is transmitted
from the Sensor Pods. For the star topology network that has been created for this Wireless
Sensor System, the Gateway chosen should reliably capture data from all Sensor Pods, even if
they are communicating at the same time. For this application, a Gateway from Laird has been

chosen which is shown in Figure 56.

Figure 56: RG191 Senet Laird Gateway.

The Gateway can listen to the United States LoRa frequencies, which are designated as the 902 —

928 MHz band. The Gateway also conveniently features wired LAN and Wireless connectivity

for data to be forwarded to the internet/ loT Hub.

When transmitted data is received by the Gateways, it is then forwarded to a network

server. For this application, the Senet network server was chosen to be used. Senet is an IoT Hub

where the devices, such as Sensor Pods and Gateway, can be registered. The Gateway is

registered with an external omnidirectional antenna, proper location, and network connection,

which is wired-ethernet. Next, the Sensor Pods that will communicate with the Gateway should

be registered. In the registration process, a device ID should be inputted into Senet that can be

obtained from the device. Senet also generates a couple different fields including application

EUI Network Access Key, and Application Session Key which should be inputted on the Sensor

Pod. Once all devices are registered properly, Senet can begin receiving messages from the

Gateway and the Pods in which it is connected.

Senet stores the data and provides access to the metadata associated with it, such as the

timestamp, any acknowledgements, packet length, sequence number, and much more. This

information can be seen in Table 42.

Table 42: Senet Uplink Data.

Gateway -« Joinld SeqNo RSSI SNR Data Rate Frequency
11/18/2020 04:30:24.142 PM (i 00250C00010008D3 Uplink 23 -132 -9 0 903.3 MHz
11/18/2020 04:29:45.516 PM 00250C00010008D23 Uplink 22 -131 -14 0 9027 MHz
1111812020 04:29:17.228 PM 00250C00010008D3 Uplink 20 -129 -7 0 902.5 MHz

Channel

5
2

Port App Payload ...

5 O
5 M
6 08

With the added metadata, the Senet provides information to troubleshoot issues with the devices,

such as if communication strength was unusually low. There are many graphs that display useful

information about past received data, such as if signal strength is decreasing or if packets have

stopped going through which could indicate a node failure. The graphs also show Ethernet errors

and Gateway Utilization. One of the most important features of the Senet server is its ability to
store and forward the data. Details regarding this will be discussed in § 5.2.6. All in all, the Senet

Hub is a tool to view and debug the status of the system’s communications.

5.2.6 APl & Lambda Function AA

The Sensor Pod data that is received and decoded by the Senet server is stored on the
Senet platform. This platform/database has a limited storage size and provides a limited
application interface for detailed retrieval of data. This is not an ideal method since the data
stored must be cleansed so that applications can interpret it and make trends. The solution to this
issue is to forward the data from the Senet server to an external database that allows for more
control and long-term storage of data. To accomplish this solution, a link forwarder on the Senet
server is used to forward data. The link forwarder uses a RESTful API to generate a POST call to

forward the data to an API endpoint.

The API endpoint interface will be used to route RESTful calls to a Lambda function.
The Lambda function is a serverless program written in node.js. It is used here to modify the data

to match the database models before sending it to the database.

The API endpoint will be implemented with AWS API. As shown in Figure 36, once the
API call reaches the AWS API endpoint, it is validated for authorization and request structure

issues. If the call does not contain a valid authorization key, the API will terminate and return a

403 code. If there is an issue with the call structure, a 4xx/5xx code is returned. If both criteria

are met the call is finally routed to the Lambda Function.

AWS AP

Endpaint

YES. Authorized? eV

YE Request OK? 5

Lambda Rewm code Return code
Function Al Sxx 403

| —

L

—

Reguest
Return code 2xx

Figure 57: APl & Lambda Function Flowchart.

Once the Lambda Function receives the API call it will process the call through a function as

described in the pseudo code in Figure 58.

dynamo = new AWS.DynamoDB.DocumentClient();

API_Route_Handler([call)
try {
data = call.body;
Item = convertToDatabaseltemFormat(data);
Item.data.convertHEXToString();
body = dynamo.put(Iltem);
break;

} catch (err) {
statusCode = '400";
body = err.message:

} return{
statusCode = 200,

5

b

Figure 58: Lambda Function Pseudo Code.

The function first parses the API call body, converting it to match the database item format
model. The actual data portion is then converted from data type HEX to a String. Once the
information is converted, a DynamoDB API call is made to place the item into the database
table. If no issue occurs with this process, the data is successfully placed in the database and the
Lambda Function will notify the API Endpoint to return a success code of 200 back to Senet.

Otherwise, the error message along with an error code of 400 is returned.

5.2.7 Database AA
The database that is being used is AWS DynamoDB, a type of database based upon
NoSQL. This type of structure is more flexible and scalable to work with since its structure can
be modified. DynamoDB uses database tables to store data, which are ultimately held in database
Items. These Items are composed of a Partition key and an optional Sort key which will be
discussed when further explaining the tables in the database. For the Soil Sensor database, three

tables will be used for managing data: Farm Table, Sensor Data Table, and Sensor Pod Table.

5.2.7.1 Farm Table AA
The Farm Table is used to sperate information for different farms. The information

contained in the Farm Table will be a Sensor Pod list as well as the sensor data from the pods.

The Farm Table baseline, as shown in Figure 38, will require items to be composed of a Partition

Key (Farm ID) and a Sort Key (Farm Name).

{
"Farm ID": { // Partition Key
"N":"ID" // N -Number
2
"Farm Name": { //Sort Key
"S": "Farm Name" //S - String
}
¥

Figure 59: Farm Table Baseline.

The Farm ID will be used to maintain a unique ID for each farm, while the Farm Name will be
used for sorting against a user set Name for their Farm. The Farm ID will also be used as a
parent ID for other tables, which will allow for querying of data from other tables that are

connected to specific Farm.

5.2.7.2 Sensor Data Table AA
The Sensor Data Table holds data from all pods regardless of the farm in which it

belongs. The baseline for this table, as shown in Figure 60, used Partition Key DevEUI to denote

which Sensor Pod the data originated from along with a Sort Key Read Time to allow sorting to

be used for data querying.

"DevEui":{ // Partition Key
"S":"EUI" //S - String

"Read Time": { //Sort Key
"S": "Time" [/S - String

8

"Sensor Type": {

"N": "Sensor type" // N - Number

8

"Data": {

"S§":"Data" //S - String
¥

}

Figure 60: Sensor Data Table Baseline.

The table has additional fields that hold the data and the data type. The DevEUI will be used as
child link information in the Sensor Pods Table, which will specify which farm the pod and the

data belong to for data modeling and populating the web application display.

5.2.7.3 Sensor Pod Table AA
The Sensor Pod Table is used as a list of all Sensor Pods, holding information regarding
Sensor Pod information as well as which Farm the pod is a part of. The baseline for the Sensor

Pod Table is shown in Figure 61.

{

"DevEui": { // Partition Key
"S":"EUL" // S - String
}

"Farm ID": { //Sort Key
"N":"Farm ID" // N - Number

}

"Sensor Pod Name": {

"S": "Pod Name" //S - String

}
¥

Figure 61: Sensor Pod Table.

Similar to the Sensor Data Table, the Partition Key is Dev Eui while the Sort Key is Farm ID.
Additionally, there is an optional Sensor Pod Name for user-specified naming. The Dev EUI is
used for identification of the Pod but also acts as a Parent link for Sensor Data. The Farm ID is
used as Child link to the Farm Table for designating which farm the Pod belongs. The Sensor
Pod list acts as a way to couple the Farm Table and Sensor Data Table as well as keeps a track of

all Pods that are active.

5.2.7.4 Interfacing AA
The DynamoDB Database uses a handful of interfaces to access the information stored in
it. For a DynamoDB application, two main methods can be utilized for interfacing with the
database: AWS.DynamoDB.DocumentClient and Amazon.DynamoDBv2. These two methods
use the same underlying DynamoDB API with variations dependent on programming language.

As explained in the Data Flow section, the database interface is accessed from both AWS API/

Lambda and the Web Application. When accessing from the AWS API/ Lambda,
AWS.DynamoDB.documentClient() is used for interfacing. Since AWS API / Lambda and
DynamoDB are both integrated into AWS services, no authentication is needed to access the
database. The AWS.DynamoDB.DocumentedClient() is a Class in node.js that uses the

DocumentedClient DynamoDB API to make calls to the database for reading and writing data.

When Accessing the database from the web application backend using
Amazon.DynamoDBv2, authentication is needed. The web application backend settings hold a
set of AWS Security Keys that are needed for authentication when accessing the database. The
Amazon.DynamoDBv2 is a DynamoDB software development kit that allows for .NET Core to
make DynamoDB API calls to the database for reading and writing data. Both these methods are

used to access the database information in a secure and efficient way.

5.2.8 Web Application AA

The web application is designed based on a Model, View, Controller (MVC) design. The
MVC design, as the name suggests, breaks all web application operation into three groups:
model, view, and controller. The model operation is all logic involving modeling data, view is all
operations involving displaying information to the user, and controller is all operations involving
user interaction with the web application. The standard flow of this design separates the web
application into a frontend and backend. The user interacts with the frontend controller, which
then makes a request to the backend logic. The backend receives the request and handles all logic
with modeling and fulfilling the request before returning it to the frontend view. The frontend

view will then display the requested information.

The backend application runs on a dedicated server and handles all model and other
operation logic. In the case of the Soil Moisture Sensor Application, this will be all logic
involved with connecting to the database and modeling the information from the database. The
purpose of offloading this kind of logic to the backend is to reduce the amount of computation
that the browser end (frontend) needs to perform. This is favorable due to the limited number of
computational resources on the browser; the server end (backend) is more suitable for these

computations due to the greater number of resources available.

The application frontend runs on the user’s browser and handles all webpage display
rendering (view) and all user requests (controller) to the backend logic. By separating
responsibilities, the user experience will be more fluid and responsive. It also allows for a layer
of security to be implemented by placing restrictions on request from the frontend by means of

security tokens.

The application frontend and backend need a method to communicate between each other
for transfer of request and replies. This is accomplished by implementing an API on the backend
that will route, process, and model all requests from the frontend. This is an asynchronous
method, where the request makes a promise API call to the backend. The frontend will then wait
until the request is fulfilled before utilizing the data from the request; while waiting for this
promise, the frontend will process and compute other information that is not dependent upon the

requested data.

5.2.8.1 Frontend Web Application AA
To give users the ability to use and access the Wireless Sensor System, an easy-to-use
interface will be created. The general flow of user interaction is shown in Figure 62. When the

user starts the application, they will be taken to homepage. The homepage will greet the user and

request the desired Farm ID. Once a specific ID is given, the user will be taken to the desired
Farm Overview page. There will also be a side menu to allow the user to navigate to other
sections of the application at any time once a farm has been selected. The application will be
spilt into three main pages consisting of a Homepage, Farm Overview, and Sensor Pod List. The

pages are further explained in § 5.2.8.1.1 Web Pages.

Start User
Action
' Sensor Pod
Home Page Home Page: Navigation Menu Sensor Pof List List
No Farm ID Entered
Farm Overview

Farm

. Overview

Valid Farm ID Yes

Page

(Default)

Figure 62: Level 3 Web Application View and Controller Flowchart.

5.2.8.1.1 Web Pages (View)
The three main pages of the web application — Homepage, Farm Overview, and Sensor
Pod List — each serve a specific purpose. Each page makes an API call to the backend for

required data needed to display prior to rendering the page.

The Homepage is used as an entry point for the application; it greets the user and
determines the farm in which the user wishes to view and interact. The page makes a call to the
backend to validate Farm ID before calling for the page to route to the Farm Overview page of
the desired valid Farm ID. The Farm Overview page is used a means to display all important

information from the Soil Sensor System belonging to a desired Farm. The page also displays all

data trending for the farm as well a small list of all Sensor Nodes associated with the Farm. The
Sensor Pod List page is used as detailed list of all Sensor Pods associated with the current farm.
This list will provide all information available related to Sensor Pod. All data displayed on these

pages is requested from the backend prior to the page rendering.

5.2.8.1.2 Interaction (Controller)

As stated earlier the frontend application only handles view and controller operations. In
the figure all transition are handles by API calls to the backend based on the user’s interaction.
There are two main types of API calls to the backend: data call and logic call. The data call
requests data from the database and will expect a data returned in a model that fits the current
page. Logic call requests logic operation such as validation, calculation, and other logic
operation too heavy for the frontend to handle, the request return results of the logic operation. A
good example of a logic call to the backend is a request to navigate to another page as shown in

Figure 63 and 64.

{Zli
class="nav-item"
[routerLinkActive]="['link-active']"
[routerLinkActiveOptions]="{ exact: true }"
=
 Homepage
<Z/li}
<li class="nav-item" [routerLinkActive]="['link-active']">
<a class="nav-link text-dark" [routerLink]="['/ sensor-pod-list ']’
> Sensor Pod List
<Z/li}
=li class="nav-item" [routerLinkActive]="['link-active']">
<a class="nav-link text-dark" [routerLink]="['/farm-overview 7"
> Farm Overview </a

Figure 63: Frontend Navigation Calls.

RouterModule.forRoot(]
{ path: ", component: HomepageComponent, pathMatch: 'full' },
{ path: 'sensor-pod-list, component: SensorPodListComponent },
{ path: 'farm-overview', component: FarmOverviewComponent}

1.

Figure 64: Frontend Routing Table.

5.2.8.2 Backend Web Application AA

The backend application, as explained earlier, is designed to handle all logic including
gathering and modeling data from the database, then returning the data to the frontend to be
displayed. The following example will demonstrate how these calls are handled for data call and
modeling. Most logic and data calls are written in the same formats; a sample of the code will be
shown below, and the full code can be referenced in the Appendix.

When the backend receives a data API call, it is routed to the proper API Controller. An
example of the API Controller for DynamoDB is shown in Figure 65. The API call contains the
information for the operation to which the call refers. In the example, the API call is as such:

(api/DynamoDB/getitems(parameter)).

[ApiController]
[Route("api/DynamaDb")]
public DynamoDbController()
{
[Route("getitems")]
Getltem(table , parametar)
{
request(table , item)
response = await dynamoDbClient.ScanAsync(request);

if(response)

Return Model(response.items, “sensorPods”)
Else

Return emptyltem;

Figure 65: Backend API Controller Pseudo Code.

As shown, the API will make a call to the DynamoDB database to collect all data related to the

request. This data is then modeled based on the type of information that is being requested. An

example for this case is shown in Figure 66. The data returned is mapped to a model that is

appropriate for the frontend application.

Model(response.items, “sensorPods”)
{
Obj SensorPod {
DevEui,
}
response.items.mapto(sensorPods){
new SensorPod temp:;
temp.DevEui = I'esponse.i|tems.DevEui
Return temp;
b
J

Figure 66: Backend Modeling Pseudo Code.

The information that is returned to the front is the data that was requested which is also modeled
to meet the frontend view format. Logic call are similar to this without the need for modeling of

the information; instead, the request result is returned.

5.3 PROTOTYPES: DESIGN VERIFICATION

To show the final design has the ability to be implemented next semester, prototypes were

designed and implement to test proof of concept.

5.3.1 Voltage Regulator AA, LF, AW
The circuit from Figure 17 was used to construct a test circuit for the XC9140A331MR-G

voltage regulator. The circuit consisted of two capacitors and one inductor from UA stock with

ratings of 10 pC, 4.7 uC, and 4.7 pH, as seen in Figure 67. The circuit was first powered using a

voltage source in order to show that the system would regulate any voltage to approximately

3.3V. It was quickly found that this would not work due to the fact that voltage sources do not

supply a high enough current to trigger the switching function of the regulator.

The circuit was then powered using a battery. The battery voltage was measured to be
3.9V as the input for the circuit. The output voltage was approximately 3.2V, showing the
voltage regulator working as intended. This was not quite the 3.3V expected, but it is an
acceptable result. There are a few possible reasons why the result was not what was expected.
The first is the breadboard itself. There is a possibility that some of the wires shorted to other
rails, causing voltages to change and be inaccurate. The second is the result of a no-load circuit.
The output voltage was measured without respect to a load of any kind. This could change the
results of the voltage that is being outputted. The final is a connection issue with the
XC9140A331MR-G and the adapter. A faulty connection to the board or an inconsistent

connection could cause the output to not be what was desired.

Figure 67: XC9140A331MR-G Voltage Regulator Prototype Circuit.

After additional research it was found that the XC9140A331MR-G was not the most
optimal regulator to be used, as it only had an 80-90% efficiency, being the most likely reason

the voltage stabilized at 3.2V rather than 3.3V. A STBB1-APUR buck-boost regulator was

breadboarded, which boosted the lower-end voltage up to 3.3V and bucked the upper-end

voltage down to 3.3V. This type of regulator has a 97% efficiency.

Figure 68: STBB1-APUR Buck-Boost Voltage Regulator Prototype Circuit.

The STBB1-APUR regulator was never fully tested before the implementation stage due

to time constraints, but when implemented onto a PCB, the circuit performed as expected.

Supplied Voltage| Regulated Volltage Mode
2 2 Passthrough
2.1 2.1 Passthrough
59 2 Passthrough Buck-Boost Regulator
23 23 Passthrough
24 24 Passthrough
2.5 2.5 Passthrough
2.6 2.6 Passthrough
2.7 3.28 Boost
2.8 3.28 Boost
2.9 33 Boost
3 3.3 Boost
31 33 Boost
3.2 3.3 Boost
33 33 6 7 8 9 10 11 12 13 14 15 16 17 18
34 33 Buck Supplied Voltage Regulated Volltage
35 33 Buck
3.6 3.32 Buck
3.7 3.33 Buck

Figure 69: Data Collection from STBB1-APUR Buck-Boost Voltage Regulator.

Data from the PCB regulator was trended and plotted. The regulator operated in passthrough
mode until reaching 2.7V. It then transferred to boost mode, increasing the voltage to 3.3V. Once
exceeding 3.3V, the regulator entered buck mode in which it decreased the voltage to 3.3V.
Another way to verify the regulator was operating as expected is to look at the value when the
supply voltage was at 3.3V. For the previous regulator, the regulated value when 3.3V was
supplied fluctuated quite a bit due to only being 80-90% accurate. In the case of the buck-boost

regulator, the voltage remained constant at a 3.3V supplied voltage.

5.3.2 Soil Moisture Sensor AW
A parallel plate capacitive soil moisture sensor was constructed using two copper pennies
with a plastic dielectric. The capacitor was placed in two types of soil and measured time
constants when water was added incrementally. The data points were plotted to determine if a
direct relationship between frequency and capacitance existed. This capacitor was designed to

test proof-of-concept for the PCB capacitor that will be implemented next semester.

5.3.2.1 Setup and Procedure

The circuit from Figure 25 was constructed using a breadboard, Diligent Analog 2
Discovery, and UA stock components. Two types of soil were collected and tested. The first was
the Earth & Wood Super Soil, which has a similar dielectric constant to fertilized soil in a field.
The second was a more porous (sandy) soil, chosen to be compared to the fertilized soil to
observe the difference in rate of saturation. Both soil types were baked at 150°C for two hours to
extract the moisture from the soil. Once cooled, 3 oz of soil from each type was placed into 50z

containers to be tested. The capacitive soil moisture sensor setup can be seen in Figure 70.

Figure 70: Capacitive Soil Moisture Sensor Prototype Setup.

Capacitive soil moisture sensors must be calibrated to the environment. To verify the range of
the sensor, values were taken for when the sensor was in air (minimal moisture) and when the
sensor was in water (maximum moisture). The sensor was then placed in each container, as seen
in Figure 71, and collected readings of the soil when water was added incrementally by 1 Tbsp

from O Tbsp to 5 Tbsp.

Figure 71: Moisture Sensor in Soil.

5.3.2.2 Results
The upper and lower calibration limits were first found to be used as control values by

measuring the time it took to discharge in air, Figure 30, and the time it took to discharge in

water, Figure 72. The time it takes a capacitor to discharge is known as the time constant.

BUUPIRUEEE e

Figure 72: Soil Moisture Sensor Control Lower Limit: Air.

The smallest time constant possible was found to be 64.82 s, equivalent to a 15.43 kHz

frequency.

Figure 73: Capacitive Soil Moisture Sensor Control Upper Limit: Water.

The largest time constant possible was found to be 124.7 us, equivalent to a 7.94 kHz frequency.

Once the upper and lower limits of the discharge rate were defined, the time constant for dry

Super Soil was measured. The results can be seen in Figure 74.

Figure 74: Container 1: Super Soil Dry.

The time constant for dry, fertilized soil was measured to be 70.37 pus, equivalent to 14.21 kHz.
One Tbsp of water was then added to the container, and the waveform was captured as seen in

Figure 75.

Figure 75: Container 1: Super Soil with 1 Thsp Water Added.

The time constant changed to 83.95 us, equivalent to 11.91 kHz.

The slow increase in time constant was to be expected. When the capacitor is inserted
into the soil, the soil essentially becomes part of the dielectric between the parallel plates of the
capacitor. When the dielectric decreases, the capacitance increases, as proven in Equation 20. A
larger capacitance directly corresponds to a longer time to discharge, meaning a larger time
constant. The amount of water in the soil was then increased incrementally to 2 Tbsp, 3 Tbsp, 4

Tbsp, and 5 Tbsp, and data was recorded for each increment.

Figure 76: Container 1: Super Soil with 5 Thsp Water Added (Saturation).

When a fifth tablespoon of water was added, the soil reached saturation and could not absorb any
more water. The soil saturated at a time constant of 124.7 ps, or at 7.94 kHz. The results can be

seen in Table 43.

Once saturation was reached for the Super Soil, the capacitive sensor was placed in the

porous (sandy) soil and process began again.

Figure 77: Container 2: Sandy Soil Dry.

The time constant of sandy soil was measured to be 74.07 pus, equivalent to 13.5 kHz.

I

0.4 ms

Figure 78: Container 2: Sandy Soil with 1 Tbsp Water Added.

The time constant of sandy soil with 1 Tbsp of water added was found to be 85.19 us, or 11.73
kHz. The same procedure followed for the Super Soil was also followed for the sandy soil,

increasing water content incrementally by 1 Tbsp and recording data for each increment.

H

6us OX:1259us 1/AX: 7.94117647 kiz

I
-0.4 ms

Figure 79: Sandy Soil with 4 Thsp Water Added (Saturation).

Once 4 Tbsp of water were added to the sandy soil, the soil reached saturation. The results can be

seen and compared to the Super Soil in Table 43.

Table 43: Soil Moisture Measurements with Incremental Increase of Water.

Water Added (Tbsp) Super Soil Sandy Soil
Time Constant (usec) | Frequency (kHz) | Time Constant (usec) | Frequency (kHz)
0 70.37 14.2 74.07 13.5
1 83.95 11.9 85.19 11.7
2 97.53 10.3 97.53 10.3
3 101.2 9.8 115.4 8.66
4 122.2 8.2 125.9 7.9
5 124.7 7.9 125.9 7.9

As can be seen from the results, the sandy soil started with a higher time constant and
saturated more quickly than the Super Soil. This is to be expected because the sandy soil is more
porous than the Super Soil; more porous soil contains more aggregate and therefore cannot
absorb water as easily as an organic soil. The frequency data was plotted for both types of soil

and can be seen in Figure 80.

Capacitive Soil Moisture Readings

~
N
=
1
A
>
o
=
=
=
(=g
=
[
e
=
T
2
<
=
1
Z
a

3} 4
WATERAMOUNT ADDED (TBSP)

Figure 80: Soil Moisture Measurements Frequency vs. Additional Water Graph.

The frequency of the soil has a relatively linear decrease until saturation is reached in both the
case of the Super Soil and sandy soil. The graph verifies that there is a direct correlation between
frequency and amount of water added. The given data also verifies that the microcontroller will
be able to easily read and interpret soil moisture data accurately by converting the time constant

to frequency.

5.3.3 Temperature Sensor LF
Due to extenuating circumstances, the MAX6607IUK-T was not available for use in the
first prototype demonstration. Instead, the TC1047A onboard temperature sensor was used,

shown in Figure 81.

& 4 ‘TEP\AP

Figure 81: TC1047A Temperature Sensor.

It has a similar pin layout and operation voltage to the MAX6607. Both sensors also give the

same output, as seen in Equation 22. This allows for either part to be interchangeable for testing

purposes. As seen in Figure 82, the MAX is a 4-pin integrated circuit while the TC, shown in

Figure 81, is only a 3 pin.

our [1] 5] GND

Maam
MAX6607
NC. [2]

Al3 3 Voo

SC70

Figure 82: TC1047A Temperature Sensor Pinout.

The reason these can both be seen as 3 pin layouts is because the A and GND are both grounded,
giving a pseudo-3 pin layout. Both integrated circuits will also give an analog voltage output that

will be converted using the onboard ADC.

5.3.4 Microcontroller Data Collection AA
To demonstrate data collection with the Microcontroller, the Explorer 16/32 development
board with a PIC24FJ128GA010 PIM was used along with a capacitive moisture sensor. This is
a similar PIM that will be used in the final design of the Wireless Sensor Pod. The demonstration
portrays how to read the analog signal from the sensors. Two sensors were used in the program,
including the built-in temperature sensor on the development board and a capacitive soil
moisture sensor that was connected externally via Input/Output pins. Both sensors output an
analog voltage signal that can be captured by the microcontroller and displayed on the Explorer
16/32 LCD display. Applying heat to the temperature sensor on the board will indicate a change

in the reading displayed on the screen, which can be seen in Figure 83.

Figure 83: Explorer 16/32 Development Board Demo.

The main component of the demonstration is creating an effective program to read the
sensors. The pseudocode in Figure 61 represents the setup and control of the microprocessor.
There is a simple while loop which runs periodically and can be controlled with a delay. For each
pass in the loop, both the analog ports will be accessed and then the value which they return will
be processed and cleansed so that the LCD screen can properly display the temperature and

moisture levels. The code in Figure 84 shows the process of data acquisition.

temp;
Avg_temp,Avg moisture;
i;
Vout_T,Vout_M;
quant_res = 3.3
T _degC;
T_degF;
Moisture Level;

str[38];
output[38];
(1)

Avg_temp = 8;
Avg moisture =8;

2 = ReadSensor(1);

13

Vout T = Avg_tempguant_res;
Vout M = 4 noisturequant_res;

T_degC = (Vout_T - @.5)*1e;
T degF = T degC * 1.8 + 3
Moisture Level = MoistureScale(Vout M);

LCDPrint(Moisture , 1,Moisture lLevel };
LCOPrint(Temp_F , 2,T_degF };

ms_delay(258);

Figure 84: Main Program.

In the final design of the project, the LCD will be replaced with the LoRa communication
subroutine, which will transmit the cleansed data to Gateway, allowing the application to be

viewed on the Web Application.

To enable analog to digital conversion of the sensors, a separate file called “ADC.c” was
included. This file provides logic for reading the analog channel. A code snippet for the A/D
conversion is shown in Figure 85. The ReadADC function is a routine for using the A/D

converter and returning the conversion result, which is the acquired temperature or moisture

level to be stored in the “temp” variable. Then, each reading is added to the sum in the loop to

eventually generate the average value over the course of 32 readings.

Figure 85: Analog Sampling.

5.3.5 Lora Module Communication RK
To demonstrate Microchip processor to LoRa module communications, a couple
development motes were configured for testing. Development motes are small-sized,
prefabricated units that use similar hardware to what will be used in the final design. As seen in
Figure 86, the motes feature an LED screen for debugging and information about the current
state of the mote. There is also a micro-USB port on the mote to send serial commands to the
Lora Modules directly, as the microchip processor simply forwards all UART communication to

the RN2903 LoRa transceiver.

Figure 86: RN2903 LoRa Module with 6" Monopole Antenna.

As mentioned in detail in § 5.2.2, there are a set of parameters on the LoRa transceiver
that must be configured before sending data to the Gateway and the Senet Portal. The Mote can
be accessed via serial communication with any PC. An application called Yet Another Terminal
(YAT) can be used to access the USB Serial Bus. The terminal can communicate with the LoRa
chip with a baud rate of 57600 Bps, and Serial Settings of 8/N/1 which means 8 data bits, no
parity, and 1 stop bit. Once updating all of the necessary parameters, a “mac join abp” command
can be sent which will respond back with “ok™ meaning the command was in proper format and
was sent, and “accepted” if the join procedure to the network was successful. The command

format and response can be seen in Figure 87.

E YAT - [[Terminal1] - COMB - Open - Connected] — O >
}_ File Termninal Send Receive Log View - 5 X
BERE R OO |sc 2 81016 v |[BE .
Manitor Predefined Commands
.(_
4 [Cis] Shif+F1_F12f0 se
mac join abp <Define.. >
ok .
accepted <Define...»
mac tx wncnf 4 123456739 f—
ok <Define...>
mac_tx_ok <Define.. >
<Define...»
<Define...>
Send Text
mac tx uncrf 4 123456785 L Send Text (F3)
Send File
<Sef a fle...» w
1, Mone) is open and connected || |RTS i | CTS @ |DTR i@ |DSFE i [DCD i
0:00.000

Figure 87: Screenshot of YAT Terminal for Serial Communication.

After joining the network successfully, messages can be sent to the Gateway and
Forwarder. Figure 88 depicts a transmit command being sent. This command contains a keyword
“mac” which means the mac OS layer will be accessed to send a message. It is followed by “tx
uncnf”’, which means a message will be transmitted of unconfirmed type. An unconfirmed

message means it does not require an acknowledgement from the Server.

Seq No RSSI SNR Data Rate Frequency Channel Port App Payload ---

3 -136 -10 0 903.1MHz = 4 0123456789

Figure 88: Senet Screenshot of Successfully Delivered LoRa Message.

Finally, the last two parameters are the port number and the test payload. Once the command is
sent, an “ok” message is received indicating the syntax was correct, and “mac_tx ok’ meaning
uplink transmission is successful. In Figure 65, a few pieces of the metadata of that message can
be seen as well as the payload which is a hex value. From this demonstration we can see that the
Gateway and Forwarder side of the system has been proven and is ready for integration with real

Wireless Sensor Pods.

5.3.6 LoRaWAN Propagation Models AW
To verify LoORaWAN communication would work to send signals over a distance of 3.3
km, propagation models were created to theorize how the signal would respond over different

distances and weather conditions.

5.3.6.1 Pathloss Over Distance
LoRaWAN transmits signals over an unlicensed frequency band, ranging from 433 MHz
to 923 MHz, depending on the country in which the signal is transmitted. To best determine how

the signals are affected, three frequencies of LoraWAN (433 MHz, 750 MHz, and 923 MHz)

were plotted against a distance ranging from 0 to 10 km. Path losses that were considered were
those of free space and soil attenuation. The loss due to the soil was calculated previously in §
2.1.3. The path loss components were then subtracted from the total radiated power, defined as
18 mW in § 2.1.3, to determine the signal power that will arrive at the receiver. The received

power was then converted to dBm and plotted against distance using MATLAB.

%$free space path loss

c = physconst('lightspeed');

freg = [433 750 923].*le6; Sstandard frequencies for LoRaWAN comms
RO = (0:10000) ;

apathloss = fspl (RO, c./freq);

% path loss over distance given optimal LoRaWAN transmission

Pt max = 18; %in dBm

Prad = 10" (Pt max/10); %in mW

PathLoss = 10." (apathloss./10); %in mW

soilloss = 3.4; %in mW
Prec = (Prad - apathloss.*107"-3 - soilloss); S%convert apathloss to mW

Prec dBm = 10*1loglO (Prec); S%convert mW to dBm
loglog (RO, Prec dBm);

%plot pathloss over distance for given frequencies

grid on;

legend ('Range: 433 MHz', 'Range: 750 MHz', 'Range:923 MHz',
'location', 'northeast')

xlabel ('Distance (m) ') ;

ylabel ('Received Power (dBm) ')

title('LoRaWAN Signal Path Loss')

LoRaWAN Signal Path Loss

Range: 433 MHz|]

17757 ! Range: 750 MHz | --

[Range: 923 MHz |

’é‘“ 17.756 i 1

m I]

E L E

@ 17755} 1

= []
o

o []

B 17754})

= 1

@]

g I !

o 177931]

17.752}

10° 101 107 10° 10*
Distance (m)

Figure 89: LoRaWAN Signal Path Loss.

Taking all path losses into consideration, it was theorized that only a 0.05 dBm drop would occur

between 0 and 10 km for all frequencies of LoORaWAN communication.

5.3.6.2 Rain Attenuation
Another important characteristic that should be considered is if LoRa communication is
affected by inclement weather. The frequency was swept from 433 MHz to 915 MHz, and rain

attenuation was plotted against it in MATLAB.

%$propagation loss due to rain

RO = 1le3; % 1 km range

rainrate = [1, 4, 16, 50]; % rain rate in mm/h

el = 0; % 0 degree elevation

tau = 0; % horizontal polarization

freqg = (433:915)."'*1e9;

for m = l:numel (rainrate)

rainloss(:,m) = rainpl (RO, freq,rainrate (m),el,tau)"';
end

loglog (freqg/le6,rainloss);
grid on;

% subplot (3,1,2)

ylim ([0 207]);

legend ('Light rain', "Moderate rain', 'Heavy rain', 'Extreme rain',
'Location', 'SouthEast');

xlabel ('Frequency (GHz) ') ;

ylabel ('Rain Attenuation (dB/km) ')

title ('LoRaWAN Rain Attenuation for Horizontal Polarization');

LoRaWAN Rain Attenuation for Horizontal Polarization

2"10' -

=

o

=z

c

.8

—

1]

S

c

a

< \

£

m

o
Light rain
Moderate rain
Heavy rain
Extreme rain

5 6 T 3] 9
Frequency (GHz) x10°

Figure 90: LoRaWAN Rain Attenuation.

Four different rain rates were plotted to determine if rain had an effect on signal
propagation. Rain droplets are known to cause interference in signals with low frequencies

because the geometry of the droplet can reflect and scatter the signal [12]. As seen from the

MATLAB simulation, LoRa operates on a high enough frequency band that rain has minimal

effect on signal transmission.

5.3.7 Database AA

To demonstrate a proof of concept for the DynamoDB database, a test database table,
AWS API, and Lambda function were created. The concept was tested populating a test table
using API call to AWS API, similar to the way Senet interfaces with AWS API and Lambda
Function. The test database table, AWS API, and Lambda function was created and setup as

follows.

The test table Sensor Data Test table, as shown in Figures 91 and 92, was created

following the baseline standard for Sensor Data table explained in The Database section.

uDe.VE.uirl: "S"._

"ReadTime": "s",

"Data": "s"
Figure 91: Sensor_Data_Test_Baseline.
Sensor_Data_Test Close o0 = m @
Overview Items Metrics Alarms Capacity Indexes Global Tables Backups Contributor Insights Triggers Access control Tags
e o
Scan: [Table] Sensor_Data_Test: DevEui, ReadTime Viewing 0 to 0 items
DevEui €@ « ReadTime

An item consists of one or more attributes. Each attribute consists of a name, a data type, and a value. When you read or write an item, the only atinibutes that are required are those that make up the primary
key. More info

Figure 92: DynamoDB Table.

The test AWS API AWS API Test was created as shown in Figure 93. This API was set

to no require any antiunification or authorization to allow for test of just the database interface.
The following setting were defined.

Auth: NONE

ARN: arn:aws:execute-api:us-east-2:634076630397:id74erdi4d /*/*/AWS_API_Test
Query Strings: TableName

Type: LAMBDA

Region: us-east-2

HTTP Status: 200

Output passthrough: Yes

The information received from AWS API is then sent to a Lambda function.

Resources Acons= ® /AWS_API_Test - ANY - Method Execution
i _ JAWS API Test . Method Request tegral Reques!
TEST
Auth: NONE
ARN.

Region: us-east-2

26340

Query Stri

Client

Method Response

ntegration Response

Bal |dv S epquien

HTTP Status: 200

HTTP status pattern: - v
Models:

Output passthrough: Yes

Figure 93: AWS API Gateway.

The Test Lambda Function AWS_API Test was also created and set as the target
location of the AWS API AWS API Test. The test lambda function is shown in Figure 94. The

code for this test function is also depicted in Figure 95.

Lambda Funetions AWS_API_Test ARN - [J arn:aws:lambda:us-east-2:634076630397:function:AWS_API_Test

AWS_API_Test Throttle Qualifiers ¥ || Actions ¥ | test v [Test |
Permissions Monitoring
v Designer
‘ Eﬁ Lambda_Test
£ Lavers ()
[4 ceorevey @ ErTTT

+ Add trigger

Figure 94: Lambda Function Design Flow.

const AWS = require(aws-sdk];
const dyname = new AWS. DynamoDE. DocumentClientd);

exports.handler = asvnc (event, contesx) == {

lez bady;
let statusCode = "200";
constheadsrs ={

'Content-Tvpe': "applicaton,json',
I
leztest={

"operation”: "create”,
rTabIEName": "Sensor_Dats Test’,
"ltem"; {
"DevEu":"Null",
"Diata":"Hull",
"ReadTime":"Hull"
b
1

oy {
switch (eventhtpMethod) {
case 'POST"
var obj = JS0ON.parseleventhbody);
test.Item, DewEui = obj.devBui;
test.ltem, ReadTime = obj.ooime Hexto Sting():
testltem, Data = objpdu;

consolelogtest):
body = await dynamo. put{test).promise]];
break:
caze PUT":
body = await dynamo.update(]SON. parse{event. body] . promizel);
break;
default:
throw new Emror(” Unsupported method "${eventhtpMethod} ™)

X
Y camch (er] {

statusCode = "400;

body = ermmeszage:
t finally {

body = 50M.stringify (body):
h

return {
statusCode.
bady,
headers,

I

k

Figure 95: Lambda Function Pseudo Code.

Once the database table, AWS API, and Lambda function is created the concept can be
tested by making Postman API calls to the AWS API to create an item entry. An example of this

API call is shown in Figure 96.

POST w* | htps:/fid74erdidd.execute-api.us-east-2.amazonaws.com/default/AWS_AP|_Test
Params @ Authorization Headers (9) Body @ Pre-request Scripe Tests Setting
nane form-data W rm-urlencoded ® raw binary GraphQL JSON

“ack® rtrue,

"ackDnMsgId": 10@88@

2= ® W W NN B

Figure 96: Postman API Call

A handful of POST calls were tested to the AWS API similar to the one above. The results of

these call are shown in the populated database table in Figure 97.

Sensor_Data_Test Close o0 = H @

Overview | Items Metrics | Alarms |~ Capacity Indexes Global Tables Backups | Contributor Insights Triggers = Access control Tags

° o

Scan: [Table] Sensor_Data_Test: DevEui, ReadTime Viewing 1 to 10 items
~
© Add filter

DevEui @ ~ | ReadTime -~ Data -

0004A30B00206BFA 2020-11-11T00:24:14. 1237 T 78T M 55%

0004A30B00206BFA 2020-11-18T18:47:50.090Z T 73TM 30%

0004A30B00206BFA 2020-11-18T18:49:09.318Z T 73TM 50%

0004A30B00206BFA 2020-11-18T18:57:16.468Z T 80fM 30%

0004A30B00206BFA 2020-11-18T721:30:24.142Z O

0004A30B00206BFA 2020-11-24T721:19:51.803Z O#EgO

0004A30B0020C3FD 2020-11-11T00:23:35.926Z T 80f M 99%

0004A30B0020C3FD 2020-11-11T00:26:26 3827 T70TM 33%

0004A30B0020C3FD 2020-11-11T00:26:08.366Z T73(M0%

0004A30B0020C3FD 2020-11-12T00:28:08.366Z T73TM 30%

Figure 97: DynamoDB Table.

5.4 PROTOTYPES: IMPLEMENTATION
Once the Design Verification Phase was complete, PCBs were ordered, and the software

was integrated with the finished hardware prototypes for complete system implementation.

5.4.1 Power Management RK
Since the Sensor Pod is designed to stay buried beneath the ground for an entire growing
season, reducing the energy required of the Pod is one of the most important concerns of the
project. The original calculations for power requirements suggested that two batteries would be
needed for a total of 5600mA-H, but it is important to know the actual power draw in real-world
use. Reducing the energy pulled from the battery required looking at all components of design,
including the power draw of the program, the voltage regulator chosen (if used), as well as what
type of current each component will draw in active and sleep modes. In this section, the Sensor
Pod’s energy requirements and results from a real-world application of a battery test will be

shared.

5.4.1.1 Voltage Regulator

After further review, it was found that all components in the Sensor Pod circuit had a 3V-
3.7V threshold. The battery chosen is 100% full at 3.7V but can be charged up to 4.2V. Initially
when designing the circuit, a voltage regulator was considered so that it could regulate the upper-
end voltage down to 3.3V and the lower-end voltage up to 3.3V. The lithium-ion battery chosen
may charge to 4.2V, but because of the chemical reactions that occur internally, the battery will
never supply more than 3.7V to the circuit. When the lithium-ion battery is depleted, it’s voltage
will be around 3.2V. This means the battery should never deplete past the 3.2V threshold.

Because of these datasheet findings, it was determined that a voltage regulator was unnecessary

for Sensor Pod application. All power monitoring for the system can be accomplished through

the PIC24FJ256GB410 microcontroller along with the RN2903 LoRa module.

5.4.1.2 Battery Testing

Once the final PCB design and program were completed, a proper analysis of battery
consumption and current draw could be performed. The Fluke Handheld multimeters provided in
the Lab did not have low enough current ranges to analyze the Sensor Pods. Instead, a Keithley
Digital Multimeter with a 6-and-a-half-digit resolution of accuracy was used. This device can
acquire current measurements down to 10pA, which is necessary since the PIC uses around

650nA in sleep mode. The test setup can be seen picture below.

Figure 98: Battery Testing Setup (Sponsored by Keithley).

The Sensor Pod is connected in series to the Digital Multimeter, setup as an Ammeter,

along with a single 2800mA-H battery. The test involved letting the test program run, which had

sensors connected, as well as the antenna for transmission to simulate real conditions. The
special test program was designed to connect to the LoRa network, acquire sensor
measurements, transmit them, and go to sleep. The RN2903 LoRa transceiver sleep mode was
activated, along with the PIC’s deep sleep mode. The program executed this process every 10
seconds so that many sleep mode cycles could be observed on the Multimeter. Figures 99-101
show output from the Pod captured with a UART to USB adapter, contrasted with the Virtual

Front Panel of the Multimeter.

o Lt

+012.54
mA

Figure 99: PIC24F]256GB410 Active Mode.

In the above figure, the Ammeter is reading ~12mA of current draw while taking current
measurements in the active mode of the program which is taking sensor measurements and

initializing the LoRa subsystem.

DACISHE (WA TA ACTIUIEST THOM / MU TIVE TER STHTEM

= = 0845447
mA

Figure 100: PIC24F]256GB410 Active Transmit Mode.

In Figure 100, the screenshot was acquired in the very short duration of the transmit process in
which the LoRa transceiver uses the antenna to transmit to the Gateway. This point in the

program is the most power-intensive and is the part that should be kept to a minimum to preserve

battery life.

.000,0878
mA

s
EQEQE

Figure 101: PIC24F]256GB410 Sleep Mode.

After taking measurements and transmitting, the circuit pulls an instantaneous current draw of

about 88uA which is the lowest sleep state that the Sensor Pod will be in.

EGraph Data Scale Trigger

+83.75mA
+73.75mA
+63.75mA
+53.75mA
+43.75mA
+33.75mA
+23.75mA
+13.75mA —

+03.75mA — |

-06.24mA | | | I |
00:32.0 00:37.0 00:42.0 00:47.0 00:52.0 00:57.0 01:02.0

defbuffer1
L]

Figure 102: Current Draw of Sensor Pod in Different PIC Modes.

Since sleep mode in the test program was designed to only last 10 seconds, the multimeter could
capture multiple cycles in a relatively short amount of time. In Figure 102, two cycles were
captured in which the Sensor Pod, including the PIC and LoRa transceiver, were awakened from

the sleep state to take measurements, transmit, and go back to sleep.

After capturing a few cycles, the buffer data could be extracted for further analysis. A
program was created to analyze one period of sleep and one period in the active state. To
determine the amount of charge depleted from the battery in the mentioned periods, the amount
of time between each reading can be multiplied by the current reading. The equation is as

follows.

Charge Depleted in One Wakeup Cycle (mAh) = 1000 * Y57 (time (5)) Current Measurements (4) (33)

n=wakeup \ gox60

After integrating through each period, the charge depleted from the battery could be calculated
and extrapolated to determine what the battery consumption would be like during a full growing
season. For a 153-day growing season, and transmitting 3 times a day, the Sensor Pod would
draw 26.19mA-H in its active state, and 323.14mA-H in its lowest power state. All-in-all, that
would be about 347.33mA-H, or depleted charge from the 2800mA-H battery used. This
calculation satisfied the engineering requirement that the Pod would be a low power device

requiring less than 5600mA-H.

To meet the engineering and marketing requirements for that the Sensor Pod be low
power, code was added to the main program to trigger certain sleep modes and processes that

would reduce power consumption.

while(1) {
reset_analysis();
ms_delay(100);
reset_analysis();
ms_delay(100);
reset_analysis();
DSCONbits.RELEASE = 0;

LED_@_SetHigh();
ms_delay(300);
LED_1_SetHigh();
ms_delay(300);
LED_2_SetHigh();

char buf[15

sprintf(buf, "Iteration: %d ", iteration++);
iteration++;

Console_Write(buf);

sprintf(buf,"ALARRBITS: %d", RTCCON1Hbits.ALMRPT);
Console_Write(buf);

sprintf(buf,"ALARRBITS: %d", ALMTIMEH);
Console_Write(buf);

char vddBuffer[4] = "";
RN2903_Query Command("sys get vdd", vddBuffer, 0);

Console_Write("After query of vdd...");
Console_Write(vddBuffer);

char newBuf[10];

int vdd = atoi(vddBuffer);

sprintf(newBuf, "Dynamic VDD(mV) is %d", vdd);
Console_Write(newBuf);

float vddVolts = vdd / ;

sprintf(newBuf, "Dynamic VDD(V) is %f", vddVolts);
Console_Write(newBuf);

t = Read_ADC(vddVolts);
Read_Moisture_Sensor();

sprintf(message, "The Temperature is: %f", t);
Console_Write(message);

sprintf(message, "The Moisture is: %f", m);
Console_Write(message);

encodeMessage(message, vddVolts, t, m);
Console_Write(message);

int portNumber = 1;
transmit("uncnf", portNumber, message);
GetTime();

Console_Write("Entering SleepMode...");
console_wr\ite("************");
LED_©_SetLow();

LED_1_SetLow();

LED_2_SetLow();

RN2903_Write("sys sleep 9000");
GetTime();

ms_delay(50);

EnterDeepSleep();

The code above is the main part of the program that executes just after connecting to the
LoRa network. Variables for data are allocated, and the function calls which operate on them are
called near the end. At the very end, the sys sleep 9000 command is sent to the LoRa transceiver,
and the EnterDeepSleep() function is called which puts the PIC in deep sleep until scheduled to

wake up.

The following is a sample of code which enables power savings for the sensor Pod. After
executing assembly instructions that directly interact with the sleep mode registers, the Sleep()

system function can be called to finally put the PIC in deep sleep mode.

void EnterDeepSleep() {
ms_delay()
asm volatile("MOV #0x8000, W2");

asm volatile("MOV W2, DSCON");
asm volatile("MOV W2, DSCON");
Sleep();

Additionally, every time the Sensor Pod wakes up, an analysis is run to determin why it
woke up. This is important to know to make sure that the Pod is entering its deep sleep state of
operation and reducing energy consumption. Below is code that determines the reason for

wakeup.

void reset_analysis() {

int reset_status;
int reset_device;

if(RCONbits.DPSLP

char buf[255] = "";
RN2903_Read(buf);

reset_status=3;
RCONbits.DPSLP = 0;
DSCONbits.RELEASE = 0;
if (DSWAKEbits.DSWDT) reset_device=2;
else if(DSWAKEbits.DSINTO) reset_device=1;
else if(DSWAKEbits.DSMCLR) reset_device=4;
else if(DSWAKEbits.DSRTCC) reset_device=7;
else reset_device=0;
}
else if(RCONbits.SLEEP){
reset_status=2;
RCONbits.SLEEP =
DSCONbits.RELEASE

}
else if(RCONbits.WDTO){

reset_status=4;
RCONbits.WDTO =
DSCONbits.RELEASE =

}

else if(RCONbits.EXTR){
reset_status=5;
RCONbits.EXTR = 0;
DSCONbits.RELEASE =

}

else if(RCONbits.SWR){
reset_status=6;
RCONbits.SWR = 0;
DSCONbits.RELEASE =

}

else if(RCONbits.POR){
reset_status=1;
RCONbits.POR = 0;
DSGPRO 5
DSGPR1 5

}

else{
reset_status=0;
DSGPRO 5
DSGPR1 5

ms_delay()

switch (reset_status){

case
Console_Write("RTCC Alarm");

case
Console_Write("SwReset");
break;

case
Console_Write("HwReset");
break;

case
Console_Write("Watchdog");
break;

case
Console_Write("DeepSleep");
break;

case
Console_Write("Sleep");
break;

case
Console_Write("POR");
break;

default:
Console Write("a ghost");

5.4.2 Soil Moisture Sensor AA, RK, AW
Reading soil moisture required the use of a separate PCB and connector. A capacitive
sensor is used, which is fed into a dedicated circuit on the PCB. At the PIC, the input capture
port is used to read frequency from the dedicated circuit which can be used to infer what type of
moisture the sensor is being subjected to. To get this method of input capture working, a high
and low moisture reading had to be taken to set thresholds so that a spectrum of soil moistures
that the program will detect could be created. Below is the code that is responsible for capturing

frequency, which is essentially reading rising and falling edges on an input square wave.

double Read_Moisture_Sensor() {
float TimerFreq = H
bool bufferStatus;
uintl6_t datal,data2;
char buf[1=""
float avg = 0;
int i = 0;
int nb_samples = H
for (1 = 0; 1 < nb_samples; i++) {
IC5_Start();
bufferStatus = IC5_IsCaptureBufferEmpty();
if(!bufferStatus) {
datal = IC5_CaptureDataRead();
data2 = IC5_CaptureDataRead();

}

uintl6_t period;

double freq;

period = data2 - datal;
freq = TimerFreq / period;
ms_delay/()

avg = avg + freq;

}
IC5_Stop();

avg = avg / nb_samples;
return (avg);

Essentially, the function above samples the period between two rising edges. The frequency can
be determined from the inverse of the period, and the calculation is then averaged over 15

readings to provide and accurate estimate of the frequency. The value returned to the main

program is the frequency, but this value is converted into a normalized value, from 0 100, when

sent to the database/Web Server.

Two tests were performed on the soil moisture sensor to verify the circuit was working
properly. The first test was purely monitoring the sensor as moisture levels of the soil increased.
A soil moisture sensor was placed in a container with 10 oz. dry dirt. Like the prototype test,
water was added in 2.5 oz increments from 0 oz. (dry) to 10 oz. (saturated). The data obtained

from the experiment is displayed on the webpage in Figure 103.

POd Data

ReadTime ~ Moisture ~ Warning ~

12:20:46 0%

12:21:38

12:22:56

12:23:43

12:25:02 Moisture Warning

Figure 103: Soil Moisture Sensor Readings.

The sensor data was exported into an excel spreadsheet and trended, as seen in Figure 104.

Moisture in Soil

ReadTime | Moisture Percentage (%) | Water Percentage (%)
12:20:46 0 0

12:21:38 24 25

12:22:56 48 50

12:23:43 76 75

12:25:02 100 100

12:20:46 12:21:38 12:22:56 12:23:43 12:25:02

Moisture Percentage (%) Water Percentage (%)

Figure 104: Trended Soil Moisture Sensor Data.

As the moisture levels in the soil increased, the percentage populated from the senor increased

proportionally, proving that the sensor was functional.

To further verify the moisture sensor was accurate, the PCB sensor was placed in soil
with a 97% accurate off-the-shelf sensor from AdaFruit. The PCB sensor was connected to the
Sensor Pod, transmitting data to the gateway to be displayed on the Soil Sensor Network

Application, and the AdaFruit sensor was connected to a development board with an LCD.

Pooat 1 (LSRR L

Pind § el SOROL oD

Pl 1 GORCR r Cy

Figure 105: PCB vs. Adafruit Soil Moisture Sensor.

A picture of the results was taken once the moisture sensor stabilized. Sensor Pod 4 stabilized at

a 94% moisture reading. The Adafruit moisture sensor stabilized at a 88.7% soil moisture

reading. According to the datasheet, the Adafruit sensor is 97% accurate. Assuming worst-case
scenario, the Adafruit sensor reading at 97%, the accuracy of the PCB soil moisture sensor can

be calculated using the following equation.

94—-88.7

PCB accuracy = 0.97 — = 091 =91% (34)

The soil moisture PCB was at least 91% accurate, taking into consideration worst-case scenario.
This fulfilled the Engineering Requirement that the soil moisture sensor must read with at least

an 80% accuracy.
5.4.3 Temperature Sensor RK, AW

The temperature sensor in its final design was attached to the side of the Sensor Pod
housing, and successfully responded to ambient temperatures in air and soil. To reach a complete
design, a dedicated PCB had to first be created that would integrate with the MAX6607
temperature sensor. The magnetic quick disconnect component was then implemented to allow it
to connect to the pod. From the connector to the pod was a 3-wire connection for VDD, ground,
and the analog voltage line. This connection led to the main PCB that would be fed into an
analog voltage input port of the PIC where the program could convert the given voltage to

Fahrenheit degrees. Below is the part of code that handles the analog-to-digital conversion.

double Read_ADC(float vdd) {
float quant_res = vdd /
double ADJ = ;

int digital_value = 0;
double running_sum = H

double average_adc_val = H
ADC1_CHANNEL channel = channel AN15;

int nb_samples = H

int i = 0;

for (i = 0; 1 < nb_samples; i++) {
ADC1 _Enable();

ADC1_ChannelSelect(channel);
ADC1_SoftwareTriggerEnable();

ms_delay(5);

ADC1_SoftwareTriggerDisable();

while (!ADC1_IsConversionComplete(channel));
digital_value = ADC1_ConversionResultGet(channel);
running_sum = running sum + digital_value;
ADC1_Disable();

}

average_adc_val = running_sum / nb_samples;
double volt = average_adc_val * quant_res;
double temp_c = (volt - + ADJ) * 5
double temp_f = (temp_c *) + 32;

return(temp_f);

The temperature is obtained by sampling the analog voltage input port 32 times and taking an
average. This sampling also considers the supply voltage of the temperature sensor by querying
the voltage of the RN2903 since the quantization depends on the supply voltage. This is what the
VDD parameter is for in the Read ADC function. Before the final temperature is returned to the
main program, it is converted from the quantized value to a Fahrenheit value, which is placed in
the message sent to the LoRa server. This information is then displayed on the website for the

farmer to monitor.

The Sensor Pod was powered on and set aside until the temperature stabilized. Heat was
applied to the temperature sensor and the data was collected. The final temperature
measurements were transmitted and stored in the database to be displayed in the Web

Application, which displayed a trend of temperature readings over time.

EELE] REFRESH

11:18:45 Moisture Warning
1:2234 Moisture Warning
11:22551 Moisture Warning
n:37 Moisture Warning
11:2551 Temp, Moisture Warning
11:267 Temp, Moisture Warning
1:27:13 Temp, Moisture Warning
11:282 Temp, Moisture Warning

11:29:7 Temp, Moisture Warning

11:29:56 Temp, Moisture Warning

1130:13 Temo. Moisture Warning

Figure 106: Temperature Sensor Readings.

As heat was applied, the temperature slowly increased, and a temperature warning appeared on
the website to inform the farmer that excessive heat conditions (greater than 100°F) have
occurred. The other excessive conditions monitored were soil moisture and battery life. These
warnings satisfied the Engineering Requirement that an application will alert the farmer if
excessive soil conditions occur (i.e.: if the soil is exceptionally dry) so immediate action can be
taken. Once heat was no longer applied, the values of the temperature sensor began to decrease

to the initial point of stability.

To verify the temperature sensor was working properly, an off-the-shelf temperature
sensor was connected to the explorer board and heat was applied to both the PCB and store-
bought sensor. The results can be seen in Figure 105 of the Soil Moisture Sensor Setup
previously explained. When the temperature sensor was at the stabilized value, the PCB

temperature sensor read 71°F and the oftf-the-shelf read 71.6°F.

5.4.4 Embedded Firmware RK
After prototyping each subsystem such as reading temperature, enabling sleep mode, and
communicating with the LoRa transceiver, it was time to integrate it all for a final revision that
could be flashed to all of the Sensor Pods. Microchip’s dedicated PIC programming IDE,
MPLAB X, helped provide the tools that enable features on the PIC. For example, the Real
Time Clock Calendar that is used to wake up the Pod in deep sleep can be configured within the
editor and will program the registers with proper values. Each Pod ran very similar programs,
which helped make development easier because the only parts that were unique were the LoRa

transceivers on each Pod.

As an overview, the Sensor Pod upon being first power on would initialize all of the
communication and interfacing components, and then connect to the pre-configured LoRa
network. Below is the code that is the beginning of the program which calls functions like

SYSTEM Initialize() to setup the peripherals.

SYSTEM_Initialize();

int val = DSGPRO;

Console_Write("System Initialization");
DSCONbits.RELEASE = 0;

ms_delay(100);
reset_analysis();

char buf[15

sprintf(buf,"DSGPRO: %d", DSGPRO);
Console_Write(buf);

DSGPRO = val + 1;

GetTime();
ms_delay(50);

ms_delay()
LED_1_SetHigh();
ms_delay()
LED_2_SetHigh();
Console Write("Starting

ms_delay()

ms_delay()
GetParams();

Once connected, the Pod is ready to take measurements, encode the data, and prepare it to
send to the Gateway so that the farmer could see it on the Web Application. Once these events
were completed, the Pod goes into deep sleep for many hours, as determined by the RTCC, and

waits until it needs to wake up and take soil measurements in the day.

5.4.4.1 Microcontroller Data Collection AA, RK
The microcontroller and sensors combine to form the Sensor Pod that serves to collect
moisture and temperature readings of the soil. As mentioned in § 5.4.2 and § 5.4.3, each sensor is
associated with its own specialized code to read frequency and analog voltages. In the main
program, the two functions ReadADC() and Read Moisture Sensor() were called. Both return a
value which the program can use later to encode and send the message to the gateway via the
transceiver. Below is a snippet of code which collects the readings from both sensors, and

outputs to the debugging UART connection on the PCB.

Read_ADC(vddVolts);
Read_Moisture_Sensor();

sprintf(message, "The Temperature is: %f", t);
Console_Write(message);

sprintf(message, "The Moisture is: %f", m);
Console Write(message);

Creating the data collecting function streamlines the main program and made maintaining and

debugging the project much easier.

5.4.4.2 Support Functions RK

There were many parts of the Sensor Pod firmware which helped enable acquiring sensor
data, performing sleep mode analysis, debugging the LoRa transceiver, and completing other
various functions. One of the most useful functions of the programming was the implementation
of the UART ports. One UART port was used for debug purposes, and one was used to send

commands to the LoRa transceiver.

The Console Write() function is used to generate a UART signal which can be read by a
UART to USB device, which was used heavily in development and testing of the program. The

code can be seen as follows.

void Console_Write(char *text) {
int i;
for (i = 0; text[i] != "\@'; i++) {
UART2_Write(text[i]);

)i
UART2_Write(@xeD);

UART2_Write(0x0A);

Messaages are written character by character until the null terminator is reached. At the end of
the message, whether it be transmission from the PIC or RN2903 module, the message is always

ended with a carriage return and new line character to signify the end of the sequence.

The UART communication that is used to interface with the LoRa module was very
similar to the UART debugger, but a read sequence was implemented to see statuses and

responses from the LoRa module.

void RN2903 Write(char *text) {

int i;
for (i = 0; text[i] != "\0'; i++) {

UART1_Write(text[i]);

)i
UART1_Write(@xeD);

UART1 Write(0x0A);

}

void RN29@3_Read(char *output) {

memset (output, @,)5
int BUF_LEN = ;
unsigned int i = ©;

while (1) {
char ch;
ch = UART1_Read();
if (ch = "\n") {
if (ch = "\r") {
if (i < BUF_LEN - 2) {
output[i++] = ch;
output[i] = '\@';

The RN2903 Read() function reads what the module responds with after sending a command.
This allows the program to verify that commands are being sent to the LoRa module wih correct
syntax. For example, after a command is sent, the transceiver responds with an “ok” message

when syntax is correct, and perhaps a value when GET command is issued.

Often used with the UART read and write commands, is a delay function. UART
communications takes time to encode and put the bit sequence on the communication bus, which
is why delays are needed. If a message is written, but right after the Sensor Pod goes to sleep and
no delay is used, then the message will not be written. Below is the ms_delay() function that is

specifically designed to work with our chosen PIC and it’s timing.

void ms_delay(int ms) {
T2CON = 0x8030;
TMR2 = 0;

while (TMR2 < ms *);

5.4.5 Communication

Enabling robust and reliable communication links between the Sensor Pods was
paramount when trying to satisfy range requirements. To enable the communication between the
Gateway and Sensor Pod, the transceiver had to execute the correct sequence of commands, and
the Senet Hub had to be configured to receive those messages. This section will provide detail as

to how the Pods were connected to the network, and how Soil data was transmitted.

5.4.5.1 LoRa Module Communication RK
Each sensor pod was designed to support two-way communication to the Gateway, and
Web Application. For each pod to be recognized, the unique pods were registered in the Senet

Portal. Figure 107 shows each unique Sensor Pod, and Gateway all registered in the Senet Portal.

Devices & Gateways E
00250C00010008D3 0004A30B00F966DE 0004A30B00F8EB08
0XCOEE402938FF PCB #4 PCB #2
Status: Registered - [ELL Joined: 3/30/21 09:28 PM Joined: 3/30/21 09:05 PM
Updated: 4/8/21 07:06 PM Last Heard: 4/8/21 07:06 PM Last Heard: 4/8/21 07:06 PM
Last Heard: 4/8/21 07:06 PM Notifier: AWS AP| Gateway - v Notifier: AWS AP| Gateway - v
Daily = Tx~ Daily - Tx~ Daily = Tx~
0004A30B00OF8C3D9 0004A30B00F7ACY5 0004A30B00F45599
PCB #3 PCB #5 PCB #1
Joined: 3/30/21 09:15 PM Joined: 4/6/21 06:55 PM Joined: 3/23/21 06:15 PM
Last Heard: 4/8/21 07:06 PM Last Heard: 4/8/21 07:06 PM Last Heard: 4/8/21 07:06 PM
Notifier: AWS API Gateway - v Notifier: AWS AP| Gateway - v Notifier: AWS API Gateway - v
Daily + Tx~ Daily + Tx~ Daily + Tx~

Figure 107: Senet Portal Device EUL

The Device EUI for each pod was also recorded in the Web Application to separate the data

streams and visualize them correctly to the farmer.

Once the setup was complete, the main program had to execute the Initialization and join

command, to join the LoRa network and begin transmitting data. The transmission power was

kept at its default setting on the RN2903 transceiver of 20dBm to maximize the range and soil

penetration of the signal. Below is the code that can be modified to program each of the 5

prototypes, with different Lora parameters.

int targetBoard = 2;

struct SensorPod {
int debug;
char deviceAddress|[
char deviceEUI[50];
char appEUI[1;
char appSKey[15
char nwkSKey[15

¥
switch(targetBoard) {

case

status = LORA_Initialize(1, "12026C69", "©0O4A30BOOFA5599",

A49558017E8D785702160CA1D", "9EA3BCBB73DFF869F320498F36C44320");
break;

case

status = LORA_Initialize(1, "1202723C", "©004A30BOOF8EBO8",

A57C65088BB466555AE23B12A", "53940E52788C64BC497D2D589A4DCAF2");
break;

case

status = LORA_Initialize(1, "1202723E", "©004A30BOOF8C3D9",

CA6E8664FAA63E3670EA872D9", "DC8D2C19DE2867AE9816780926E9E78F");
break;

case

status = LORA_Initialize(1, "1202723F", "©004A30BOOF966DE",

5946627D0609206FED76ED793", "231DEOA84D17C2A24792E23C4A2872CC");
break;

default:
Console_Write("No Pod Selected");

"00250C0000010001",

"00250C0000010001",

"00250C0000010001",

"00250C0000010001",

"C76C781

"EBCDFF8

"204FE12

"E8667F8

if (status == 0) {
Console_Write("Lora Init failed");

ms_delay()
int connectStatus = ConnectABP();

The LORA Initialize() function was designed to send commands with special parameters, to the

RN2903 module.

int LORA Initialize(int debug, char* device address, char *device eui, char *application_eui,
char *application_s_key, char *application_nwk_s_key) {

char return_buf[15
char command[15

sprintf(command, "mac set devaddr %s", device_address);
Console_Write("# mac set devaddr");
RN2903_Query_Command(command, return_buf, 1);
if (strcmp(return_buf, "ok") != 0) {
Console_Write(return_buf);
return 0;

command[@] = "\0';
sprintf(command, "mac set deveui %s", device_eui);
Console_Write("# mac set deveui);
RN2903_Query_Command(command, return_buf, 1);
if (strcmp(return_buf, "ok") != 0) {
Console_Write(return_buf);
return 0;

command[0] = "\@';
sprintf(command, "mac set appeui %s", application_eui);
Console_Write("# mac set appeui);
RN2903_Query_Command(command, return_buf, 1);
if (strcmp(return_buf, "ok") != 0) {
Console_Write(return_buf);
return 0;

command[@] = "\@';
sprintf(command, "mac set appskey %s", application_s_key);
Console_Write("# mac set appskey");
RN2903_Query_Command(command, return_buf, 1);
if (strcmp(return_buf, "ok") != 0) {
Console_Write(return_buf);
return 0;

command[@] = "\@';
sprintf(command, "mac set nwkskey %s", application_nwk_s_key);
Console_Write("# mac set nwkskey");
RN2903_Query_Command(command, return_buf, 1);
if (strcmp(return_buf, "ok") != 0) {
Console_Write(return_buf);
return 0;

}

Console_Write("# mac set adr");
RN2903_Query_Command("mac set adr on", return_buf, 1);
if (strcmp(return_buf, "ok") != 0) {

Console_Write(return_buf);
return 0;
}
Console_Write("# mac save");
RN2903_Query_Command("mac set adr on", return_buf, 1);
if (strcmp(return_buf, "ok") != 0) {
Console_Write(return_buf);
return 0;

return 1;

Each time the Pod wakes up from its sleep cycle, the above code was executed and, upon

successful completion, would join the network and send data to the Gateway.

Transmitting data to the Gateway is made simple with a transmit command. The most
complicated part was encoding the data to be short enough since LoRa has such a low data rate.
During testing, the data rate is reduced even lower because the rate of transmission is so high.
Soil Temperature, Soil Moisture Level, and Battery Status all had to be communicated in one
transmission. Since the message had to be sent in hex, the first two parameters mentioned were
directly converted to a string, space separated. The string value was then directly converted to

hex, and was appended with a decimal 1, 2, or 3 to reduce the payload length.

void encodeMessage(char *fullMessage, float battery, double tempReading, double moistureReadin

g) {

char payload[15

fullMessage[0] = '\0';

payload[9] \9";

int battery_status = -1;

if (battery >) {
battery_status = 3;

} else if (battery_status >) {
battery_status H

} else {
battery_status

}

if (tempReading
tempReading
}

moistureReading

sprintf(payload, "%2.0f %2.0f", tempReading, moistureReading);
string2hexString(payload, fullMessage);

char snum[1];
sprintf(snum, "%d", battery_status);
strncat(fullMessage, snum, 1);

In normal use, the payload should be large enough to accommodate a string that is twice as large
as mentioned, but for testing it was necessary to make the modifications to allow for a much
faster transmission rate. In normal use, the Pod would communicate 3 times a day, but during
testing it would transmit 6 times a minute for quick feedback. The code below was implemented

to encode the data into hex, which is the desired data format for transmission to the Gateway.

void string2hexString(char* input, char* output){
int loop;
int i;

i=0;
loop=0;

while(input[loop] != "\0"')
{

sprintf((char*) (output+i), "%02X", input[loop]);
loop+=1;
i+=2;

}

output[i++] = "\@';

Once the data is properly encoded, the transmit function was used, which takes in the port

number and encoded data as parameters to send to the Gateway.

transmit(* type, port_num, *data) {

returnBufferl|
returnBuffer2|
command|[1;

(strcmp(type, "uncnf") == 0){

sprintf(command, "mac tx uncnf %d %s", port_num, data);
}

Console_Write(command);
RN2903_Write(command);
processResponse(returnBufferl, returnBuffer2);

5.4.5.2 Distance Testing AA, RK, AW
One of the engineering requirements in need of verification was that the Sensor Pod had
to successfully transmit signals up to 3.3 km. The Gateway and Sensor Pods were transported to
Richville Drive in Massillon where there is an abundance of farmland. A 3.3km distance was
mapped out where communication would be close to direct Line of Sight (LOS), testing as if the

pod was buried in an actual field. The Senet Gateway was setup on the side of the road, as seen

in Figure 108.

Figure 108: 3.3km Distance Testing Communication Setup.

The Sensor Pod was “planted” six inches into a bucket of dirt to verify that it could communicate
through at least 3 inches of soil. Communication through 3 inches of soil was the Engineering
requirement that needed to be fulfilled, but realistically for a root or tube application, the roots
would be approximately 6 inches beneath the soil so it was planted 6 inches deep rather than 3

inches deep to verify the Soil Sensor Network would work for these applications.

Figure 109: Distance Testing Sensor Pod Setup.

Before the Sensor Pod was buried, it was powered on and connected to the Senet Gateway. Once
in the soil, the Senet server was observed to verify the Pod was still communicating to the
Gateway at short distances. The data collected is shown in Figure 110. Received Signal Strength
Indicator (RSSI) and the Signal to Noise Ratio (SNR) were monitored. The first few signals seen
in the figure were fair signal strength because the Sensor Pod was too close to the Gateway.
Antennas have a blind cone in which the distance is too short for the transmitter to send the
signal to the receiver due to the geometry of the antenna’s radiation pattern [12]. The blind cone
will not be a concern to farmers because it is highly unlikely that a pod will be planted directly

next to the gateway in a practical application. In the case of a dropped packet, the Sensor Pod

will attempt to retransmit the packet. When the antenna was moved away from the Gateway,

both the RSSI and SNR were of very good signal strength.

Time R5SI SNR
0470272021 07:26:50.3 m T
04/02/20217 0726:07.796 PM 12 &
04002/2021 07:25:53.795 PM 12 ® -4
04002/2027 07:25:11.745 PM ® 97 5
4y e 0u4002/2021 07:24:42.820 PM 2B 8
Description: PCE @4
04/02/2021 07:24:28.680 PM 92 9
Reported: & days ag
PSR: 0% (0%} 04/02/2021 07:24:14.410 PM 95 4
Tags: 04/02/2021 0724:00.742 PM @ 103 4
000272021 07:23:32.903 PM -73 9
04022021 07:23:18.737 PM 46]
0470272021 07:23:04.545 PM 54 9
04/02/2027 07:22:50.449 PM &6 10
0u/02/2021 07, 274 PM 53 8
Details 0u4702/2021 07:22:22.090 PM -62 g
0470272021 07:22:07.913 PM =50 L]
& 04/02/2021 07:21:54.068 PM &0 10
Application EUL: : B
4 &0 9
Gateway:
Dev Address: 120 : i 10
First Join: 17 0470272027 07:21:11.220 PM 56 g
Last Join: 17 04/02/2021 07:20057.034 PM 54 10
JoinID: 04/02/2021 07:20:42. 864 PM 61 9
Security Sessions: (04/02/2021 07:20:28.699 PM 61 10
Frame Count Up: 130 0470242021 0720:14.572 PM 68 8
Frame Count Down: 21 0u4002/2021 07:20:00.369 PM 62 9

Figure 110: Senet Data from Distance Testing: Initial Position.

The Sensor Pod was driven down the road and measurements were recorded at 3.3km. The RSSI
and SNR both went from very good to fair. When the Sensor Pod was removed from the vehicle

and placed outside, it can be seen that the SNR value went from fair to good and very good.

Description: PCR a4 7
Reparied: 9
PSR O
Tags: 13 @
1B -
@ -105 i
1% o
1M1 4
® 103 2
Details ® 104 3
-113 -7
Application EUI: ®-10 L
Gateway: 116 g
Drew Address: -1 .2
First Jain: ® 103 4
Last Jain: 17 days ag O4/02/2021 07:35:34.855 Pl -112 83
Join 10 € 04/02/2021 07:35:07.163 PM 116 7
Security Sessions: 0

Figure 111: Senet Data from Distance Testing: 3.3 km.

Because the Gateway was receiving a decent signal strength at the 3.3km distance, the
Sensor Pod was driven further down the road and measurements were taken again at 6km. A
visual representation of 6km is seen in Figure 112, and geographical representation of where the

gateway and Sensor Pod were located is seen in Figure 113.

Figure 112: Distance Test: 6 km.

o rC
P = Brinker' St'Sw

[i}

Gateway

1.00 mi

. . L
N T i

Sensor

Measure distance

Total distance: 3.74 mi (6.02 km)

rch Ave SW

Figure 113: Satellite View of Gateway and Sensor Pod Locations.

As shown in Figure 114, the Senet server was receiving packets frequently without dropping
many signals at a 6km LOS distance. Packet numbers are defined in the Seq No column. A

number missing in the sequence corresponds to a dropped packet.

Filter:

04/02/2021 07:52:45.114 PM 235 111 ® -5

04/02/2021 07:52:30.875 PM 234 @ -100 1
04/02/2021 07:52:02.458 PM 232 -120 -1

04/02/2021 07:51:48.229 PM 231 @ -106 -7

04/02/2021 07:51:19.751 PM 229 111 ® -2

Description: PCE #4
04/02/2021 07:51:05.587 PM 228 @ -98 7
Reported: 9 days ago

PSR: 0% 04/02/2021 07:50:51.334 PM 227 @ -1 4

Tags: 04/02/2021 07:50:36.811 PM 226 @ -99 6

04/02/2021 07:50:22.452 PM 225 @ -1 4

04/02/2021 07:50:08.148 PM 224 @ -100 ® -

04/02/2021 07:49:53.909 PM 223 @ -102 5

04/02/2021 07:49:39.522 PM 222 @ 99 6

04/02/2021 07:49:25.222 PM 221 @ -1 5

% 04/02/2021 07:49:10.861 PM 220 @ -1 5

Details

04/02/2021 07:48:56.569 PM 219 @ 98 7

s 04/02/2021 07:48:42.277 PM 218 @ -104 5

Application EUL: 00250C0000010001
04/02/2021 07:47:59.319 PM 215 -118 =
Gatewaw

Figure 114: Senet Data from Distance Testing: 6 km.

There were only three dropped packets from a distance of 6km. The SNR was very good for the
majority of the packets sent. At a 6km distance with the Sensor Pod buried 6 inches beneath the

soil, the packet was transmitted at an average rate of once per minute. Dropped packets and

slower transmission times are to be expected due to the propagation path loss and attenuation of
the soil. The RSSI rate can be calculated by adding the SNR to external noise interference, which
is generated by other signals transmitted on the same frequency. In the case of the test
performed, both the gateway and Sensor Pod were across the street from power stations when
these readings were taken, producing additional unwanted noise that most likely caused the RSSI

to decreasing more quickly than the SNR.

To better understand the communication path taken while the Sensor Pod was driven

down the road, the RSSI and SNR were plotted in the Senet Server.

Channel _Port App Payload -

04/02/2021 07:59:10.334 PM 00250C00010008D3 Downiink T 2 1 9233MHz
04/02/2021 07:59.09.593 P 00250C00010008D3 Downiink 2 1 9233MHz
04/02/2021 07:59.09.335 PM 00250C00010008D3 Uplink 262 -1 -10 1 9023MHz
04/02/2021 07:58:40.674 PM 00250C00010002D3 Uplink 260 413 -2 1 0029 MHz

Status=Successful
[UpSeaNo=262], Li

RReq [DR=4
542D32332E374DI2EI0 A
2 542D323EITADISAEI0

Stalistic: RSSI~ Staistic: SNR +
20

140 BH
07:20:00 PM 07:22:00 PM 07:24:00 PM 07:26:00 PM 07:25:00 PM 07:30:00 PM 07:32:00 PM 07:34:00 PM 07:36:00 PM 07:35:00 PM 07:40:00 PM 07:42:00 PM 07:44:00 PM 07:46:00 PM 07:45:00 PM 07:50:00 PM 07:52:00 PM 07:54:00 PM 07:56:00 PM 07:58:00 PM

isecutive Errors: 0

Figure 115: Senet Data from Distance Testing: RSSI and SNR.

There are three strong signal strengths plotted on the graph, two of which are indicated with red
circles. The first set of signals on the far left of the graph represents the signals transmitted by
the Gateway during initial setup. The second set of signals, indicated by the red circle in the
middle of the graph, are the packets transmitted at the 3.3km distance. The last set of signals,
indicated by the circle on the right, are the packets transmitted at the 6km distance. There are
quite a few dropped packets between these three main locations because the terrain had many

hills; the Sensor Pod lost signal when in major valleys where there was not only no LOS, but

also no way for a signal to escape the valley and arrive at the gateway. In addition to this, the
Sensor Pod was in a bucket of dirt inside a moving vehicle. A moving antenna is more likely to
induce a greater amount of unwanted electromagnetic interference into the air, which causes

signal scattering and interrupts the communication path to the receiver.

5.4.5.3 UA Propagation Model AW

For the Senior Design Day demonstration, it was desired to setup a distance test on the
university property to show proof of concept. In a field, there is a direct Line of Sight (LOS) that
exists between the Sensor Pod and the Gateway, disregarding the soil and electrical box. Because
additional interferences exist on a college campus that do not exist in an open field (i.e.:
buildings, signal interference, ground reflections du to concrete, etc.), it would not be possible
for the signal to propagate 6 km without being received with large amounts of interference.

To determine how far the signal was capable of travelling, a MATLAB simulation was
completed using Site Viewer. A map of the university campus was exported as a .osm file from
Google Earth and referenced in the MATLAB code. The longitude and latitude coordinates, as
well as antenna height, were then defined for the transmitter (Sensor Pod) and receiver
(Gateway). In addition to this, the transmitter was set to a 915 MHz frequency. The model used a
ray tracing method to plot the propagated signal from the Sensor Pod to the Gateway, given the
geographical coordinates. The model also took into consideration building and ground reflections
to determine the strength of the signal. Buildings and ground were assumed to be perfect

reflectors.

viewer = siteviewer ("Buildings", "map.osm") ;

% Create receiver sites around UA campus.
tx = txsite('Latitude',41.075253,
'Longitude', -81.50733,

'AntennaHeight', 0.5,
'TransmitterFrequency', 915e06) ;

% Create transmitter site on 5th floor of ASEC.

rx = rxsite('Latitude',41.076520,
'Longitude',-81.513290,
'AntennaHeight', 22);

¢}

% Compute signal strength using ray tracing propagation model and
default single-reflection analysis.

pm = propagationModel ("raytracing-image-method") ;

ssOneReflection = sigstrength(rx, tx,pm)

¢}

% Compute signal strength with analysis up to two reflections, where
total received power is the cumulative power of all propagation paths
pm.MaxNumReflections = 2;

ssTwoReflections = sigstrength (rx, tx,pm)

% Observe effect of material by replacing default concrete material
with perfect reflector.

pm.BuildingsMaterial = 'perfect-reflector';

ssPerfect = sigstrength(rx, tx,pm)

¢}

% Plot propagation paths.
raytrace (tx, rx, pm)

00 0

Figure 116: Propagation Model on the University of Akron Campus: 500m Distance.

The Gateway (red) was stationed on the 5™ floor of ASEC. The sensor pod was buried three
inches beneath the soil in the container used for the previous distance testing and placed in the

grassy area beside the Natatorium across campus. The propagation model showed, in theory, the

Gateway should receive a strong signal. On demonstration day, the pod was taken to the

determined location and signals were transmitted back to the Gateway.

Filter: Uplinks = Gateway: All ~

Time RSSI SNR

Details

Gateway:

~ A

Description: PCE #5
Reported: 2d
PSR: 02

Tags:

Application EUI: 00250C0000010001

04/08/2021 02:46:48.608 PM
04/08/2021 02:46:15.737 PM
04/08/2021 02:45:26,494 PM
04/08/2021 02:43:31.462 PM
04/08/2021 02:42:25.747 PM
04/08/2021 02:42:09.285 PM
04/08/2021 02:39:24.961 PM
04/08/2021 02:38:35.646 PM
04/08/2021 02:37:13.540 PM
04/08/2021 02:36:57.078 PM
04/08/2021 02:36:24.229 PM
04/08/2021 02:32:34.199 PM
04/08/2021 02:29:49.849 PM
04/08/2021 02:29.00.604 PM
04/08/2021 02:23:48.408 PM
04/08/2021 02:23:31.951 PM
04/08/2021 02:17:14.018 PM

o
w B

-116
-114
114
-129
-125
-125
-132
-128
-127
-121
-102
-64

-67

-60

Figure 117: Senet Data from Distance Testing: RSSI and SNR.

As displayed in Figure 117, signals can be received clearly from a distance of 500m on campus

beneath three inches of soil, verifying the Engineering Requirement that the Sensor Pod will

transmit data through 3 inches of soil.

5.4.6 Web Application

AA, RK

The implementation of the web application followed the design stated in § 5.2.8. The

primary purpose of the web application was to allow farmers an easy and functional way to view

Sensor Pod data and receive alerts. The website was broken into three main pages as shown in

Figure 118, each serving their own primary functions.

Home

I T

Sensor Pod's Farm
List Qverview

About

Figure 118: Soil Sensor Network Web Application: Site Map.

5.4.6.1 Website Interface

Since the website is implemented as a single page application, the layout is broken down
into view window and a side menu as shown in Figure 120. All pages are displayed in the view
window, and only the information inside the view windows is updated when switching pages

allowing for faster page loading. The side menu is used for navigation between pages.

Soil Sensor Monitoring (Design Team 7)

Built waith

- and far aif er-side code

t for Senet
for Pr P data o Database

fi

Figure 119: Soil Sensor Network Web Application: Main Interface.

The Home page used as means to welcome the farmer to the application and ask for a
valid Farm Id to ensure the farmer access only their farms’ information. The page is shown
below in Figure 121, the side menu is limited to only the Home and About page until a valid
Farm ID. During the demonstration, this page was substituted with the interface seen in Figure

122 to introduce the design team, and all pages were available in the menu.

~. Home

D y— Soil Sensor Monitoring (Design Team 7)

(5) Sensor Pod List Team Members:

Alexis Alves

() About Andrea Wyder
Luke M Farnsworth
Ross Klonowski

Figure 120: Soil Sensor Network Web Application: Home Page.

Figure 121: Soil Sensor Network Web Application: Farm ID Sign In.

Once a valid Farm Id is given, the menu bar is updated, and the user is redirected to the
Farm Overview page. The Farm Overview page allows the farmer to view a quick overview of

farm information as seen in Figure 122.

Farm Information Farm Status

rm by DTO7

st, Willard, OH 44890

® Pod 91 @ Pods2 @ Pod#3 @ Pod ¥4 @ Pod 45

Figure 122: Soil Sensor Network Web Application: Farm Overview.

The main functionality of this page are the moisture graph, pod list, and farm information
including any alerts about sensor pods. At the top of the page the farmer can see Farm

Information and Farm Status with information about their farm.

Farm Information Farm Status

Farm Name: Pepperidge Farm by DT07 Avg Moisture: 78%

Owner: Design Team 07 Avg Temp: 79°F

Location: 1199 E Tiffin St, Willard, OH 44890 Pod Connected: 5/6

Size: 50 Acres Warnings: Temp: 0 | Moisture: 5 | Battery: 2

Figure 123: Soil Sensor Network Application: Farm Information and Farm Status.

The moisture graph allows the farmer look at the weekly trend of the moisture percentage
for the farm. And while hovering over a day they can see what the value for the highest

percentage pods.

Moisture

® Pod#1 @ Pod#2 —@- Pod#3 -@- Pod#4 -@- Pod#5

Fri

® Pod #1
Pod #2
Pod #3

® Pod #4
Pod #5

Figure 124: Soil Sensor Network Web Application: Trended Data

The Pod List, as seen in Figure 125, provides a list of pods currently assigned to the farm;

this list only shows names as more detailed information is shown in the Sensor Pod List page.

Podlist
Pod #1
Pod #2
Pod #3
Pod #4

Pod #5

Explorer Board

Figure 125: Soil Sensor Network Web Application: Pod List.

The Pod List Page lets farmers get a more detailed information from their Sensor Pods as shown

in Figure 126. The page has two main components: Pod Status List and Pod Data.

Pod Status List

Explorer Board: 00250C0100001E0A| Battery: high | Status: Connected

Pod 1: 0004A30B00F45599| Battery: high | Status: Connected

Pod 2: 0004A30B00FBEBOB| Battery: high | Status: Connected

Pod Data R

ReadTime ~ - - Moisture ~ - Warning ~

15:21:51 73% Battery Warning

15:22:41 71% Battery Warning

15:23:46 70% Battery Warning

1525:8 65% Battery Warning

15:25:41 65% Battery Warning

15:26:14 60% Battery Warning

15:26:47 63% Battery Warning

15:27:3 50% Battery Warning

15:28:42 100% Moisture, Battery Warning

Figure 126: Soil Sensor Network Web Application: Pod Status List and Pod Data.

The Pod Status List allows for the farmer to see the status of all pods that are currently
assigned to their farm. This list, unlike the one on the Farm Overview page, gives information
about the Sensor Pods device EUI, battery status, and its connection status as shown in Figure

127.

Podlist

Explorer Board: 00250C0100001EQA | Battery: high | Status: Connected

Pod 1: 0004A30B00F45599| Battery: high | Status: Connected

Pod 2: 0004A30BOOF8EBO8 | Battery: high | Status: Connected

Figure 127: Soil Sensor Network Web Application: Pod Status List.

The Pod Data components gives the farmer more detailed information about their Sensor

Pods by listing all data collected. Each entry on the list shows the status and the data collected

form a Sensor Pod along with the time it was taken as seen in Figure 128. Each entry also shows

if any warning was triggered by the information such as temperature and moisture warning.

I LIDEIER REFRESH

ReadTime ~ Moisture ~ Warning ~

15:21:51 73% Battery Warning

15:22:41 71% Battery Warning

15:23:46 Battery Warning

15:25:8 Battery Warning

Figure 128: Soil Sensor Network Web Application: Pod Data.

The About page shows a list of frameworks, database, and language used for the

development of the web application.

& Farm Overdiew Soil Sensor Monitoring (Design Team 7)

(5] Sensor Pod List Built with:

and C+ for cross-platform server-side code
and for client-side code
for layout and styling

for the cloud Database
for a Fowarder Endpoint for Senet
for Processing and Modling AWS API data to Database
for Charts

Figure 129: Soil Sensor Network Web Application: About Page.

5.4.6.2 Frontend

The Web Application as explained in § 5.2.8 is based on a MVC scheme. The frontend of
the application handles displaying and receiving information to the farmer for the backend to
process. Each page of the application is broken into three main components: typescript, html, and
sass. The typescript component handles all typescript logic, while the html and sass components
determine the how the page is displayed. These components are linked together in the typescript

@Componets section.

@Component ({
selector: 'app-sensorPodList',

templateUrl: './sensorPodList.component.html',
styleUrls: ['./sensorPodlList.component.scss']

})

Since the web application has many components that are modular in nature, some of the code is

reused. For this reason, only some of the code is shown in this section, the full source code can

be found in the Appendix.

The following are the four main code schemes for displaying information to the farmer.
To keep information as a standard theme, <nb-card> were used on all schemes to encapsulate the
information in a consistent way. The main way of displaying information is using basic html <p>
tags. This displays information of the web application in standard paragraph form. The
information is pulled from the page typescript components by using Angular expressions

{{information }}.

size="tiny"

Farm Information

Farm Name: {{ .farmInformations.Name}}
Owner: {{ .farmInformations.Owner}}

Location: {{ .farmInformations.Location}}

Size: {{ .farmInformations.Size}}

The list scheme uses the same method to pull information from the typescript
components, though it incorporates a loop components “ngFor” to iteratively add information

from a list to be displayed.

size="large"

Podlist

*ngFor="

{{ device }}

The last two schemes leverage external and internal classes. The graph uses ngx-echart
class; this class is an external chart tool that formats information into custom graphs. The ngx-
echart class was used to aid in the visual representation of the moisture trends. This allows
farmer to better understand information about their farms. The function calls and structure of this

scheme are seen below.

size="large"

Moisture

echarts [options]="options" theme="macarons" class="chart"

The Grid data scheme uses the internal ngTreeGrid class to model the data into a grid list
format. This class was used to keep the aesthetic and flow of the website similar throughout. The
grid was an effective way to display large amounts of data in one location. The use of the grid
also allows for information to be refreshed local only to the grid card to improve performance.
Other functionality, such as the ability to sort by different tabs, allows the farmer to search

through their pod data effectively.

size="giant"

Pod Data
(click)="onReload()" nbButton>Refresh

overflow-y=scroll

[nbTreeGrid]="data"

nbSort (sort)="changeSort($event)"

equalColumnsWidth

nbTreeGridHeaderRow *nbTreeGridHeaderRowDef="allColumns"

nbTreeGridRow *nbTreeGridRowDef=" row; columns: allColumns™

[nbTreeGridColumnDef]="customColumn"

nbTreeGridHeaderCell [nbSortHeader]="getDirection(customColumn)"
*nbTreeGridHeaderCellDef

{{customColumn}}

nbTreeGridCell *nbTreeGridCellDef=" row"
[expanded]="row.expanded"

*ngIf="row.data.kind === "'

{{row.data.ReadTime}}

*ngFor=" column defaultColumns"
[nbTreeGridColumnDef]="column"
nbTreeGridHeaderCell [nbSortHeader]="getDirection(column)"

*nbTreeGridHeaderCellDef
{{column}}

nbTreeGridCell *nbTreeGridCellDef="
{{row.data[column]}}

The frontend handles all interaction from the farmer in the typescript components of each

page. Since most pages are structured in a similar format the Pod List page will be used as an

example. Functions are defined in the typescript component of a page such as onReload() as

seen below can be linked to interaction in the html tags as such <button (click)="onReload()"
nbButton>. For this onReload function when the farmer selects to refresh the Pod Data list the

function triggers a call to update the information on the list.

onReload(){
.getPodData();

}
changeSort (sortRequest: NbSortRequest): void {

The data used on the frontend is sourced from the backend via API calls as explained in §
5.2.8.2. The API call structure lets the backend know what information is needed and for which
farm. The example below the call is “https://localhost:44385/DynamoDB/PodData/id?=" +
this.farmld “ the call is requesting information from DynamoDB for the Farm with the user’s
Farm ID. Once the call is returned the data is mapped to its appropriate model and displayed by

the frontend.

getPodData()

{
._http.get('https://localhost:44385/DynamoDB/PodData/id?=" + .farmId).subscribe(

result {
tempdata: any = result;
tempData: TreeNode<FSEntry>[] = [];
for (element tempdata) {
itemData = {} as TreeNode<FSEntry>;
item = {} as FSEntry;

.Pod element.name;

.Temp = element.temp_Sensor_Value + '%';
.Eui = element.devEui + ' °F';

.ReadTime = .formatTime(element.time);
.Moisture = element.moisture_Sensor_Value;

.Battery = element.bat_Value

.Warning = .checkWarning(element.temp_Sensor_Value,

element.moisture_Sensor_Value,

element.bat_Value)

itemData.data = item;

tempData.push(itemData);

.data = tempData;

.dataSource = .dataSourceBuilder.create(.data);

The data that is returned to the frontend is in a format that is defined by its data model.
The data models are defined similar in both frontend and backend as seen below. This allows the
website to be added to over time, since the data models can be changed without having to rewrite

the entire call structure.

FS
ReadTime: s
Pod: strin
Eui: string
Data: stri
Battery:
Moisture:

m

Tty

e f

lij+]

#|

Temp: str
Warning: S

5.4.6.3 Backend

The backend of the web application handles the logic and data retrieval from the
database. When an API call is made to from the frontend, it’s routed to the appropriate call
function. For the Pod data API call, the backend routes the call to the [HttpGet]
[Route("PodData")]. The function uses the information passed from the frontend to retrieve the

requested data from the DynamoDB database.

[HttpGet]

[Route("PodData")]

Task<List<PodData>> GetPodData([FromQuery] i paginationToken = "")

return _podDataContext.GetaAll(id);
}

catch (Exception ex)

{

throw Exception($"Amazon error in GetUser table operation! Error: {ex}");

Once the function gets the API call with the required information, it waits for the
information to be retrieved form the backend DynamoDB interface. The DynamoDB interface
makes an API call using the information to the DynamoDB database in AWS. The API call

carries conditions so that only the information that is being requested is returned.

Task<List<T>> GetaAllPods()
scanConditions = List<ScanCondition>()

ScanCondition("DevEui", ScanOperator.NotEqual, "1"),
s
searchResults = .ScanAsync<T>(scanConditions,);

return searchResults.GetNextSetAsync();

The function call is a template-based function, which lets the function know what model
to use for the information. The interface for the function can be seen below. The value T is
replaced with the appropriate class which represents the data model to be used. The class that

represents the data model can be seen at the end of § 5.4.6.3.

SoilSensor.Data.Interface

IDynamoDBContext<T> : IDisposable

Task<T> GetByIdAsync(id , hash);

Task SaveAsync(T item);

Task DeleteByIdAsync(T item);
GetTable();

Task<List<T>> GetaAll(id);

Task<List<T>> GetaAllPods(id);

6 MECHANICAL SKETCH

AW

As stated previously in the Engineering Requirements, the dimensions of the pod should be

no larger than 90 x 90 x 100 mm, which will allow the pod to fit into the average planter.

6.1 FIRST DESIGN ITERATION

In the first design iteration, the dimensions of the pod itself was minimized, excluding

external sensors as seen in Figure 130.

PARTS LTST
ITEM PART NAME DESCRIFTION
N i SENSOR POD TOP JHOUSES BATTERY & MICROPROCESSOR
2 SENSOR POD BOTTOM JHOUSES SENSORS & CIROUITRY
E] SOIL MOISTURE SENGO® [MEASLIRES MOISTURE CONTHET
4 ELECTROCHEMICAL SENSOR. |MEASURES PH LEVELS & CHEMICAL COMPOSITION
E T T [] T 3 & 4] T]

Figure 130: Phase 1 Mechanical Sketch of Sensor Pod.

The capacitive soil moisture sensor upon which the design will be based has dimensions of

76.22 x 14 x 7 mm. The other sensor shown represents an electrochemical sensor. Both sensors
must make contact with the soil in order to obtain readings. The minimum size of each bottom
side of the pod can be is dependent on the size of the sensor connector. The top of the pod is a
dome because it is an optimal shape for a cylindrical battery. In the square perimeter of the dome

will be housed the battery and microcontroller.

6.2 SECOND DESIGN ITERATION

After taking a closer look at the first design iteration, it appeared that configuring the
sensors on the pod in this manner made them more susceptible to damage. Whether it be from
storing, planting, or using, the sensors themselves could be broken by a force exerted on them, or
worse, the connector could be broken, damaging the seal, and allowing water to get into the pod
and ruining the components.

Another problem with the first design iteration is that the pod was so small that if a
second battery were needed, it would not fit inside the pod. At the time of creating this design,
the current and voltage draw for the components was unknown. Now that the current and voltage
draw of the components and transmissions are known, adding a second battery is necessary for
the design.

To prevent external components from being damaged and to allow space for a second

battery, a second design iteration was completed and can be seen in Figure 131.

PARTS LIST
PART NUMBER. DESCRIPTION
ISENSOR POD BOTTOM HOUSES BATTERY AND MICROPROCESSOR
ISENSOR POD TOP HOUSES SENSORS & CIRCUITRY
SOIL MOISTURE SENSOR IMEASURES MOISTURE CONTNET
[pH LEVEL or TEMPERATURE SENSOR FINAL SENSOR USED TBD
3 2

[[1

il
=

aw |

g 7 5 5 L3 T

Figure 131: Phase 2 Mechanical Sketch of Sensor Pod.

The physical sizes of the electronics are listed in Table 44.

Table 44: Electronic Component Dimensions.

MFG Length (mm) | Width (mm) | Height (mm)
Soil Moisture Sensor 101020614 76.22 14 7
Battery 623360 61 36 5.7
PCB TBD TBD TBD 0.78
Microcontroller PIC24FJ)256GB410 10 10 1.1
LoRaWAN Module RN2903 26.67 17.78 3.34
Antenna TBD 82 - -

The batteries will be located on the bottom of the pod to make the pod bottom-heavy so that the
orientation of the pod when it lands will be approximately the same every time. The minimum

height for the bottom of the pod was calculated in Equation 23.

hmin = Zhbattery + hPCB + hLoRaWAN = 2(5.7) + 0.78 + 3.34 = 15.52 [mm] (23)

Given that the minimum height of the bottom is 15.52 mm, the top of the pod can be no larger

than 84.48 mm.

While it is necessary to protect external circuitry, it is also important to maximize the
area inside the housing to allow for additional component design. The soil moisture sensor is
76.22 mm long, and is resting atop a triangular plane that is angled toward the center of the pod,

depicted in Figure 132.

Muoisture Sensaor

7B.22 mm
x = (100-16)
= B4 mm

A

Ap——

% Pod Basze
45 mm

Figure 132: Top Housing Area and Height Requirements.

To allow for a symmetric design, the angle of the sensor is limited to:
— —1]_45 — o
6 = cos™'| 22| = 53815 (24)

By using the angle found in Equation 24, the minimum height of the top of the pod is calculated
as:

x = 45tan(0) = 61.5 [mm] (25)
Therefore, the height for the top of the pod must be between 61.5 mm and 84 mm.

The optimal volume of the pod would be to have minimum distance for the top housing of
the pod and maximum distance for the bottom housing of the pod because the area of a square is
greater than the area of a triangle. However, if the top height is set to a minimum of 61.5 mm, the
pod would not completely protect the sensor. By examining the orthogonal view and the right-

side view of Figure 131, it can be seen that the top of the pod comes to a point. If the height were

chosen such that the top of the sensor touched the top of the pod, the sensor would be hanging
over the sides of the pod. For this reason, an additional 16.5 mm was added to the height of the
top housing, resulting in a minimum height of 78 mm. To satisfy the 100 mm height

requirement, the height for the bottom housing became 22 mm.

It has not yet been determined if the antenna will be enclosed in the housing or if it will be
externally attached to the top of the pod. Given the frequency range of 915 MHz, the length if the

antenna is calculated as follows:

= ()= ()2 = 82mm (26)

4) f 4/ 915106
Assuming a quarter wavelength antenna to optimize the power consumption in relation to range,
the antenna chosen will be 82 mm in length. Therefore, the antenna will fit inside the housing,

and the placement will depend on the arrangement of circuitry.

6.3 THIRD DESIGN ITERATION
The Sensor Pod from the second design iteration was further analyzed and detailed to
match specific components purchased for the project. A breakdown of the third iteration designs

can be seen in Figures 133-137.

8 7 6 | 5 d? 4 3 | 2 | 1

SCREW DRIVER:
ACCESS HOLE

B) FQD.GGA 8

@.10 % .75

°
MAIN PCB-
cuTouT
90.00
76.75
SCREW HOLE:
Al o | A
°

PARTS LIST
TTEM] PART NUMBER | DESCRIPTION
1 ‘SENSOR FOD TOP | HOUSES INTERNAL CIRCUITRY
I 3 T F T 1

B 7 [T 5 ql 4

Figure 133: Phase 3 Mechanical Sketch: Top Housing.

The top of the Sensor Pod was revised to have more accurate cutouts. The first cutout,
found on the side, was reconfigured to match the exact dimensions of the magnetic pogo-pin
connectors used for quick disconnect of sensors. The holes on the bottom of the top housing
were created as a means of connecting the top housing to the base through the use of screws. The
round cutouts on all four side faces of the top housing are the size of a terminal screwdriver so
that the screws can be inserted through the pod and secured to the base. Plugs can be inserted
into these holes in order to make the Sensor Pod water tight. A hole was also drilled into the top

of the shell in order to allow room for the antenna.

BATTERY CHARGER
CONNECTOR

BOTTOM VIEW

PARTS LIST
M PART NUMBER I DESCRIPTION
1] POD SHELL BASE | HOUSES BATTERY PACK
T z T 1

B 7 [T 5 q& B

=

Figure 134: Phase 3 Mechanical Sketch: Base.

Screw holes were added to the top of the Sensor Pod base to connect to the top housing.
In addition to this, a square cutout was added in order to have an access point for the batteries to
connect to the main PCB. The battery connector cutout aligns with the connector cutout on the
battery pack, as will be seen in Figure 137. The Sensor pod must be water-tight; however, the
farmer should also be able to easily access the batteries to recharge them. Because of this, it was
determined that the best way to seal the base while still giving the farmer easy access would be

to use four screws on the bottom of the base. The base lid is seen in Figure 135.

$.10 ¥ 1.00

PARTS LIST

ITEM

PART NUMBER

1

DESCRIPTION
SEALS BATTERY PACK INSIDE BASE

[
1
[3 T 5 4& £l 1

POD SHELL BASE ATTACHMENT |
3 2

T T

Figure 135: Phase 3 Mechanical Sketch: Base Attachment.

The primary purpose of the base attachment is to secure the battery pack while granting easy

access to the farmer.

| EXCESS WIRE AND- C
CONNECTOR PCB $3.20 ¥ 2.54

1_

b o

PARTS LIST
TTEM PART NUMBER DESCRIPTION
1] BATTERY PACK [HOUSES BATTERIES
I Z T 1

] 7 [5 q! 4 3

Figure 136: Phase 3 Mechanical Sketch: Battery Pack.

Each Sensor Pod requires two batteries to operate for an entire growing season. As stated
previously, the batteries are located at the bottom of the pod to make the Sensor Pod bottom-
heavy so it will fall correctly out of the planter during automatic installation. The batteries are
connected in parallel to satisfy the Engineering Requirement of a supplied current time of 5600
mA-H. The area in which the batteries set is the exact dimensions of two batteries; no extra room
was left to prevent the batteries from moving around and possibly coming disconnected. The
area where the wires set is deeper in dimension to allow the wires to have the correct bend radius

so they are less likely to break.

In the case that a battery needs recharged, the farmer should not have to go through the
hassle of opening the Sensor Pod circuitry and disconnecting the battery from the main PCB

itself. In doing so, the farmer not only will struggle to open the top of the pod, but also has a

greater chance of breaking the internal circuit. To avoid such problems, a battery pack, as shown
in Figure 137, is located inside of the base. The two batteries are connected in parallel to the
battery PCB, which has a quick-disconnect connector on the top half of the board that runs back
to the main PCB. The connector PCB is mounted to the lid of the battery pack and aligns with

the wireway of the pack.

BATTERY CHARGER
43,00 CONNECTOR CUTOUT

*35‘004‘ $.08 ¥ .10

-5 5 me -
.

107 16

PARTS LIST
ITEM | PART NUMBER | DESCRIPTION
1] BATTERY PACK LID | SECURES BATTERIES AND CHARGER PCB
] T 7 5 5 T T 3 T 7 T 1

Figure 137: Phase 3 Mechanical Sketch: Battery Pack Lid.

When it is time for the famer to recharge the batteries, he must simply remove the four
screws on the base attachment, remove the battery pack, and then connect the battery pack to the
charger. It is not even necessary to remove the batteries from the pack; connecting the charger to
the external connector will charge both batteries at once since the batteries are connected in

parallel. After the batteries have been fully charged, the farmer can reinsert the battery pack into

the pod and secure the base attachment to the base by inserting the four screws. The process is a

simple recharge without ever having to interact with the Sensor Pod circuitry.

6.4 PoOD SHELL AND FORCE OF IMPACT

Using basic Dynamics concepts, the material and thickness of the pod shell were
determined. The average farm planter travels approximately 5 kph [23]. Through observation it
was determined that the largest distance the sensor pod would fall is 1.5 m, corresponding to
falling from a potato planter. The force of impact was determined by Equations 27-29,

corresponding to velocity, kinetic energy, and impact energy respectively.

v =,/2gh =/2(1.5)(9.81) = 5.425m/s (27)

Once the velocity of the pod was determined, the value was inserted into the Equation 28 to
determine the kinetic energy of the pod. The mass of the pod was estimated to be 0.1 kg, based

off components and pod shell material.

Ty = 2mv? = 2(0.1)(5.425)2 = 1.5] (28)

T2

The impact energy equation was used to take into consideration the geometry and energy of the

pod shell.
U= o2 AL 29
=z (29)

o is the minimum yield strength of the material, A is the area of the pod shell, L is the length of

the shell. E corresponds to the material energy, as calculated in Equation 30.

E = stress _ 2.3%10° =15 % 109 (30)

strain 0.015

The pod shell prototypes will be 3D printed. The two types of materials the University of Akron
Electrical Engineering 3D printers can print is ABS plastic and PLA plastic. By examining the

mechanical composition of each plastic, it was seen that ABS plastic had a higher yield strength,
and therefore was more durable than PLA plastic [24]. Through this analysis, it was determined

that ABS plastic would be used for the sensor pod shell prototype.

The length of the pod shell was divided into two components: the base of the pod
(square) and the top housing of the pod (triangle). Although the total height of the pod is 100mm,
this does not take into consideration the length of the hypotenuse in Figure132. The total length
was determined to be the length of the base plus the length of the top housing, which is half the

length of the base because the top housing is a 45° right triangle.

Rearranging Equation 30 to solve for area, the minimum thickness of the pod shell can be

determined.

__ 2UE _ 2(1.5)(1.5%10%)

— -6
=L o (posrion) ~ 08481070 m (31)

The impact energy U was defined to be equivalent to the kinetic energy found in Equation 28,
because if the impact energy was less than the kinetic energy, the pod shell would not be able to
withstand the force of impact, which would result in the pod shattering upon impact. Note that
Equation 31 is the area of the entire pod shell, it does not say what the thickness is of an

individual side.

90 mm

90 mm

!

1‘ X (thickness)

Figure 138: Pod Shell Geometry.

To find the thickness of an individual side, as referenced in Figure 76, the geometry of the shell

base was used to construct Equation 32.

A=@x)? - x=2=""%-2069510"m (32)

The minimum thickness the ABS plastic pod shell can be without shattering upon impact is 2

mm thick.

6.5 SENSOR POD PROTOTYPES
Once the design iterations were complete, the 3D models were printed using ABS plastic.

The prototypes for Pod 1 are shown in Figures 139-141.

Figure 139: 3D Prototype: Pod Base.

Figure 141: 3D Prototype: Top Housing w/ Base.

A second set of prototypes for Pod 2 was created. The fully assembled Sensor Pod can be seen in

Figure 142.

Figure 142: Fully Assembled Sensor Pod.

The battery pack of Pod 2 is located in Figure 143. The batteries attach to the connector PCB

shown.

Figure 143: Assembled Battery Pack.

A third protype of the same design was created. The three Sensor Pods are seen in Figure 144.

The middle pod displays the PCB, quick disconnect, and sensor designs.

Figure 144: Sensor Pod Prototypes.

7 FUTURE IMPLEMENTATION

Apart from fully programming and utilizing the battery monitoring system, the processes
for installation and retrieval were also analyzed and designed for future implementation.
7.1 AUTOMATED INSTALLATION AW

Wired soil sensors currently exist in farm fields. It takes many hours to manually install all
of the sensors into the soil in all the fields a farmer owns. To reduce the labor as well as the time
it takes for install, the Sensor Pods can be attached to the inside of a planter for automatic
installation. The Sensor Pods can be placed into a tube, similar to a PVC pipe, with 4 slits cut out
for brackets to hold the sensor pods in place within the tube. A half-view of the setup is seen in

Figure 145.

Figure 145: Automated Installation Contraption.

The bottom two brackets are in parallel to hold the sensor about to be planted into place.
The top two brackets are inserted to hold the remaining pods in place, separating them from the
bottom sensor. Each bracket will be connected to a linear cylinder, and each bracket set will be
connected to an electric solenoid. The two solenoids will work independently from one another.

The automated installation process works as follows.

Both solenoids start in a closed state, as seen in the figure. The controls of the installation
contraption will be connected to the odometer of the planter. Once the planter travels x-number
of meters, the lower solenoid is activated, opening the bottom two cylinders, and releasing the
bottom pod. Once the pod is released, the bottom cylinders close. The upper solenoid is then
activated, opening the top set of brackets to allow the Sensor Pods to shift down to the bottom
brackets. The upper solenoid is then deactivated, closing the top set of cylinders and brackets.
The planter travels x-number of meters, and the process begins again until every Sensor Pod is
installed. The Sensor Pods are released and buried with the seeds in order to ensure the pods will

be planted where the roots of the seeds will grow.

7.2 RETRIEVAL PROCESS LF, AW
A few different types of retrieval processes were analyzed but never implemented. The
first is to use the LoRa transceiver circuitry. On the instance the that the Sensor Pod voltage goes
below a certain threshold and it is determined that the pod will not last and entire growing
season, the Sensor pod will alert the farmer that the battery is low and give the farmer the option
to begin the Retrieval Process. The farmer would have a retrieval device that contains a second
LoRa transceiver that could be taken into the field. Once in the field, the farmer will start the

Retrieval Process and drive the LoRa receiving unit to the Sensor Pod that has the almost dead

battery. The module in the Sensor Pod would transmit a constant signal for 5 minutes so that the
farmer can locate and retrieve it. The only problem using this method is that it would be an extra
cost to the farmer since the average person does not have a LoRa receiving device laying around

their house.

A more cost-effective approach for the farmer would be to use the LoRa module with an
AM radio. LoRa communicates on the 615 MHz US frequency band. The AM radio frequency
range is between 550-1720 kHz. In order to reduce the LoRa frequency to the frequency that can
be received by an AM radio, a class AB power de-amplifier circuit would be added to the main
PCB. A power amplifier will alter the output voltage and current from the LoRa module to match
the desired input voltage and current to the AM radio. The power outputted from the module is
18mW. Once the desired receive frequency is determined, the power inputted to the radio can be
calculated. When this value is calculated, the power from the module can be divided by the

power from the radio to determine the circuit gain of the amplifier.

A disadvantage to the above two proposed processes is that LoRa transmission consumes
a significant amount of power, as explained in § 5.4.1.2. The retrieval process is activated
because the battery is almost depleted. Using the LoRa module for transmission, and allowing it
to transmit consistently for 5 minutes, will consume a lot of power. The farmer would have to
retrieve the pod while the pod had enough battery left for the transmission to be possible because

once the battery is depleted, the pod would no longer be able to transmit a signal to be retrieved.

The last, and most practical, process that was analyzed was to use a GPS tracker. The
manufactured tracking device can be placed on the bottom side of the main PCB and connected
to the farmer’s phone through an app. An example of a practical GPS tracker that can be used is

the Nano Hornet GPS Tracker seen in Figure 146.

'Lfi
SThA

oo

v ’f‘li & 7
Nano GPS click

T
]
&89

<
(0]

[
g

w
w
<

3

L -

Figure 146: MN5D10HS Nano Hornet GPS Tracker. Image retrieved from https://trackimo.com/micro-gps-tracking-chips/.

The OriginGPS tracking device has a low transmission power and high reading accuracy. It also
has dimensions of 10x10x3.8mm, which would easily fit onto the main PCB. The device would

be fully integrated into the circuit so that it can be activated when the battery retrieval process

begins.

8 DESIGN TEAM INFORMATION RK, AW

The Soil Sensor Network team consists of two electrical and two computer engineers.

Below is a list of the members on the team.
Aléxis Alves, Computer Engineering. ESI (Y)
Luke Farnsworth, Electrical Engineering. ESI (N)
Ross Klonowski, Computer Engineering. ESI (Y)

Andrea Wyder, Electrical Engineering. EST (N)

Ross Klonowski is the project manager, Luke Farnsworth is the hardware manager, Aléxis Alves

is the software manager, and Andrea Wyder is the archivist.

9 PARTS LIST AW

9.1 SCHEMATICS PARTS LIST

Once the compiled set of schematics was created in EagleCAD, a Bill of Materials (BOM)

was exported and formatted, as seen in Table 45.

Table 45: Design Schematics Parts List.

Refdes ‘ Part Num. ‘ Storage ‘ Description
Battery
BAT1 | 623360 | 3.7V, 2800mA-H | lithium-ion battery
Voltage Regulator

IC1 XC9140A331MR-G 3.3v step-down regulator

C1 UA stock 4.7uF capacitor

Cc2 UA stock 10uF capacitor

L1 UA stock 4.4uH inductor

Microcontroller

ceé- UA stock : e :

C13 0.1uF capacitor (ceramic if possible)
UA stock capaFitor (tantalum/ceramic if

C14 10uF possible)

R3 UA stock 10kQ resistor

R4 UA stock 100Q resistor

X1 UA stock RJ-11 PCB connector

Temperature Sensor

IC4 MAX6607I1XK+T 3.3V temperature sensor

C15 UA stock 1nF capacitor

Cil6 UA stock 0.2uF capacitor

Soil Moisture Sensor

R1 UA stock 150kQ resistor

R2 UA stock 3.3MQ resistor

C3 UA stock 10pF capacitor

C4 UA stock 10nF capacitor

C5 UA stock 10nF capacitor

- UA stock 20pF capacitor
Ul UA stock TLC555 timer

LoRa Module
IC2 RN2903 3.3V LoRa Module
ANT1 RSRA6982700SSM 3.3V Antenna
- 1825910-6 - Reset Switch

The parts were chosen based off the Engineering Analysis and Accepted Technical Design
sections. The RefDes column indicates the referenced part in the schematics section, Part Num.
indicates the manufacturer part number, Storage indicates the value of the component, and

Description indicates the type of device.

The next semester the Sensor Pods were reconfigured for the implementation stage, and

the new Parts List for the PCBs and their components is shown in Table 46.

Table 46: Implementation Schematics Parts List.

Refdes ‘ Frame Part Num. ‘ Description ‘ Case on PCB
SENSOR POD SHELL
#2-56 x 1/4 in. Phillips Machine
N/A Pod Shell 310889508 Screws N/A
N/A PCBs GO1K PCB Foot Mounts N/A
MAIN PCB COMPONENTS

c1 555 Timer TMK107BBJ106MA-T 10 uF capacitor 0603 (1608)
C2 555 Timer TMKO063B7103KP-F 0.01uF capacitor 0603 (1608)
c3 PI1C24 TMK107BJ104KAHT 0.1 uF capacitor 0603 (1608)
Ca PIC24 TMK107BJ104KAHT 0.1 uF capacitor 0603 (1608)
C6 PIC24 TMK107BJ104KAHT 0.1 uF capacitor 0603 (1608)
Cc7 PIC24 TMK107BJ104KAHT 0.1 uF capacitor 0603 (1608)
Cc8 PIC24 TMK107BJ104KAHT 0.1 uF capacitor 0603 (1608)
(6°] PIC24 TMK107BJ104KAHT 0.1 uF capacitor 0603 (1608)
C10 PIC24 TMK107BJ104KAHT 0.1 uF capacitor 0603 (1608)
C11 Reset TMK107BBJ106MA-T 10 uF capacitor 0603 (1608)
C12 PI1C24 TMK107BBJ106MA-T 10 uF capacitor 0603 (1608)
R3 PIC24 RMCF2010JT3M30 4.7k ohm resistor 2010
R4 555 Timer RMCF2010JT3M30 3.3M ohm resistor 2010
R5 555 Timer RMCFO805JT150KTR-ND | 150k ohm resistor 2010
R6 Reset RMCF0805JT10K0 10k ohm resistor 8050
R7 Reset RMCF0805JT470R 470 ohm resistor 8050
R9 LED RMCF0805JT1K00 1k ohm resistor 8050
R10 LED RMCF0805JT1K00 1k ohm resistor 8050
R11 LED RMCF0805JT1K00 1k ohm resistor 8050

R15 Battery Monitor | RMCF0805JT4K70 4.7k ohm resistor 8050

R16 Battery Monitor | RMCF0805JT4K70 4.7k ohm resistor 8050

D1 LED AP2012EC LED Lights Red CHIP-LEDO805

D2 LED 17-21SYGC/S530-E2/TR8 | LED Lights Green CHIP-LEDOS05

D3 LED APT2012NW LED Lights Orange CHIP-LEDO805

JP1 Jumpers N/A 3 PIN Header N/A

P2 Jumpers N/A 3 PIN Header N/A

JP3 Jumpers N/A 3 PIN Header N/A

1 Regulator BO2B-PASK(LF)(SN) 2 PIN Header N/A

12 555 Timer CONNO2SMLPCB/*FLPCB | 2-pin connector male/female N/A

3 Temp Sensor CONNO3SMLPCB/*FLPCB | 3-pin connector male/female N/A

IC2 RN2903 RN2903A-1/RM103-ND LoRa Module N/A

IC3 PIC24 PIC24F)256GB410-1/PT Microprocessor N/A

Ul 555 Timer TLC555QDRQ1 TLC555 timer N/A

SWi1 Reset 1825910-6 Reset switch N/A
VOLTAGE REGULATOR PCB COMPONENTS

C14 Regulator TMK107BBJ106MA-T 10 uF capacitor 0603 (1608)

C15 Regulator AMK107BBJ226MA-T 22 uF capacitor 0603 (1608)

R12 Regulator RMCF0805JT10K0 10k ohm resistor 8050

R13 Regulator RMCF0805JT560K 560k ohm resistor 8050

R14 Regulator RMCF0805JT100K 100k ohm resistor 8050

L1 Regulator VLCF4020T-2R2N1R7 2.2 uH shielded inductor N/A

IC1 Regulator STBBI-APUR fe.:(g)L\J/IatihrS V¢ buckcboost DFN;Om()-:’ *
TEMPERATURE SENSOR PCB COMPONENTS

C1 Temp Sensor TMK107BBJ106MA-T 10 uF capacitor 0603 (1608)

Cc2 Temp Sensor 0805B204K500CT 0.2uF capacitor 0603 (1608)

Ul Temp Sensor MAX6608IUK+T temperature sensor 0805 (2012)
BATTERY MONITORING PCB COMPONENTS

c5 Battery Monitor | EMF107B7105MAHT 1 uF capacitor 0603 (1608)

C13 Battery Monitor | EMF107B7224MAHT 0.22 uF capacitor 0603 (1608)

R1 Battery Monitor | RL1220T-R010-J 10m ohm resistor 8050

R2 Battery Monitor | RMCF0805JT200K 200k ohm resistor 8050

R3 Battery Monitor | RMCF0805JT1K00 1k ohm resistor 8050

Ul Battery Monitor | STC3100IST IC Battery Monitoring 8-TSSOP

CONNECTOR PCB COMPONENTS
Moisture
12 Sensor CONNO2SMLPCB/*FLPCB | 2-pin connector male/female N/A
3 Temp Sensor CONNO3SMLPCB/*FLPCB | 3-pin connector male/female N/A

The parts were chosen based off the Accepted Technical Design as well as the size constraints of

the PCB in order to have it fit into the Sensor Pod.

9.2 MATERIALS BUDGET LIST

AW

Once the schematics were created and a BOM was exported, a Materials Budget List was

created to keep track of what has been purchased. The information on the BOM was inserted in

columns 3, 4, and 5 of the Material Budget List, as seen in Table 47.

Table 47: Material Budget List Fall Semester.

Order Ref Suggested Vendor Total
Form | Qty des Part Num. Description Vendor Part Num. Cost Cost
RESEARCH & DEVELOPMENT
Soil Moisture
! ! - 101020614 Sensor Digikey 101020614 $6.07 $6.07
Development
! 2 (1c3) DM164139 Boards Digikey DM164139-ND $71.39 $142.78
Development
2 1 PIC24F1256GB410 | B0
Accessory: Plug-
- In Module (PIM) | Microchip MA240038 $25.00 $25.00
Development
Board
3 1 1110748
Accessory:
- Socket Adapter Digikey A800AR-ND $11.44 $11.44
POD INTERIOR
Temperature
! 8 IC4 MAXB607IXK+T sensor Digikey MAX6607IXK+T $1.70 $13.60
Battery (Out of
1 8 623360 Stock on
BAT1 Amazon) Amazon 623360 $7.47 $59.76
1 2 - ADA1904 Battery Charger | Amazon ADA1904 $9.33 $18.66
SOIL MOISTURE SENSOR
150K ohm S
3 4 - : -
R1 resistor UA stock - S -
3.3M ohm S
3 4 -) -
R2 resistor UA stock - S -
3 4 - i $
C3 10pF capacitor UA stock - S -
$
3 4 - . -
ca 10nF capacitor UA stock - S -
3 4 § i s
C5 10nF capacitor UA stock - S -
$
3 4 - . -
- 20pF capacitor UA stock - S -
$
3 4 - . -
U1l TLC555 timer UA stock - S -
VOLTAGE REGULATOR CIRCUIT
4 4 - $
C1 4.7 uF capacitor | UA stock - - S -
$
4 4 - .
Cc2 10 uF capacitor UA stock - - S -

$
4 4 L1) 4.4 uH inductor UA stock - - S -
4 4 XC9140A331MR- | Step-down 893-1180-1-ND -
IC1 G regulator Digikey Cut Tape (CT) $1.03 $4.12
POD EXTERIOR
1) RSRA6982700SS RSRA698/2700SS
ANT1 M Antenna Arcantenna | M $15.00 $30.00
PROGRAMMABLE DEVICES
LoRa MODULE
RN2903A-
! 2 1C2 RN2903 LoRa Module Digikey I/RM103-ND $12.80 $25.60
4 4 - 1825910-6 Reset switch Digikey 450-1650-ND $0.10 $0.40
MICROCONTROLLER
0.1 uF capacitor
C6- (ceramic if -
4 32 C13 - possible) UA stock S - S -
10 uF capacitor
(tantalum if -
4 4 C14 - possible) UA stock $ - $ -
10k ohm)
4 4 R3 - resistor UA stock S - S -
100 ohm i
4 4 R4 - resistor UA stock S- S -
) RJ-11 PCB)
4 4 X1 connector UA stock S- S -
Total Spent $337.43
Development
Costs $185.29
Budget Spent $152.14
Budget $600
Budget Remaining $447.86

Multiple Parts Request Forms (Order Forms) make up the Material Budget List. The first column
of Table 46 displays on which form each part was ordered, and column 2 displays how many

were ordered.

For the final design, five sensor pods were constructed. To avoid backordered parts, five
of every part was ordered in the design phase so that each pod would have all of its components
beginning the implementation phase. Once the difficulty of soldering microcircuitry was

experienced, extra micro components were ordered in case of damage during construction and

testing. A few components exist on the Material Budget List that do not exist on the BOM

because they are development components that were used this design phase but were not

implemented in the final design. The final design budget can be found in Table 48.

Table 48: Material Budget List Spring Semester.

Order Suggested Total
Form | Qty. Refdes Part Num. Description Vendor Vendor Part Num. Cost Cost
VOLTAGE REGULATOR PCB
Voltage
6 4 IC1 MIC59150YME Regulator Digikey MIC59150YME $1.88 $7.52
3.3V Step-
8 1 MAX763ACSA+ Down Voltage
IC1 Regulator Digikey MAX763ACSA+-ND $4.67 $4.67
BUCK-BOOST
20V-55VIC
8 7 STBB1-APUR buck boost
IC1 regulator Digikey 497-11971-2-ND $2.48 | $17.36
2.2 uH shielded 810-
8 10 L1 VLCFA020T-2R2N1RY inductor Mouser VLCF4020T2R2N1R7 $0.47 $4.70
963-
8 > C14 TMK107BBJ106MA-T 10 uF capacitor | Mouser TMK107BBJ106MA-T $0.47 $2.35
3 10 AMK107BBJ226MA- 963-
C15 T 22 uF capacitor | Mouser AMK107BBJ226MA-T $0.35 $3.50
3 10 10k ohm Digike RMCF0805JT10KOCT-
R12 RMCFO805JT10K0 resistor gikey ND $0.20 | $2.00
3 10 100k ohm RMCFO805JT100KTR-
R13 RMCF0805JT100K resistor Digikey ND $0.02 $0.20
3 560k ohm Digike RMCFO805JT560KTR-
10 R14 RMCF0805JT560K resistor gikey ND $2.00 $20.00
MAIN PCB
Sensor Pod
/ 2 - R2-56X1/4 Screws Mouser 608-R2-56X1/4 $0.57 $1.14
Sensor Pod
7 100 Screw 761-M20X100C
- M20X100C Connectors Mouser $0.18 $18.00
PCB foot
/ ! - GO1K mounts Amazon GO1K $9.99 $9.99
#2-56 x 1/4 in.
Phillips
10 ! Machine Home 9002676
- 310889508 Screws Depot $8.42 $8.42
MICROCONTROLLER
6 3 PIC24FJ256GB410- Microchi PIC24FJ256GB410-
IC3 I/PT Microprocessor P I/PT $5.83 $46.64
0.1 uF 963-
> >0 C3-C12 TWK107B7104MVHT capacitor Mouser TWK107B7104MVHT $0.31 $15.50
0.01 uF 963-
> 6 C2 TMKO6387103KP-F capacitor Mouser TMKO063B7103KP-F $0.10 $0.60
963-
> 6 C1l TMK107BBI106MA-T 10 uF capacitor | Mouser TMK107BBJ106MA-T $0.51 $3.06

https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926

3-pin -
> 10 12,13 | B3BZR(LFSN) connector Digikey 455-1658-ND $0.18 | $1.80
2-pin
> 6 1 BO2B-PASK(LF)(SN) connector Digikey 455-1817-ND $0.25 $1.50
5 6 X2 SMA CONNECTOR SMA connector | Mouser 471-SMACONNECTOR | $1.08 $6.48
0.1 uF
6 >0 C3-C12 TMKI07BJI04KART capacitor Digikey 587-3472-2-ND $0.04 $2.00
0.01 uF
6 10 - C0603C103J3GACTU capacitor Digikey 399-7838-2-ND $0.25 $2.50
6 10 c1 TMK107BBJ106MA-T | 10 uF capacitor | Digikey 587-6023-2-ND $0.30 $3.00
0.01 uF (10,000
10 10 Cc2 C0603C103J3GACTY pF) capacitor Mouser 80-C0603C103J3G $0.17 $1.70
963-
10 > C1 TMK107BBI106MA-T 10 uF capacitor | Mouser TMK107BBJ106MA-T $0.35 $1.75
10 5 PIC24FJ256GB410- Microchi PIC24FJ256GB410-
IC3 I/PT Microprocessor P I/PT $5.83 $11.66
10 5 U2 TLC555QDRQ1 TLC555 timer Digikey 296-22999-2-ND $0.35 $1.75
EXTERNAL SENSOR CONNECTORS
2-pin
6 8 Iy CONNO2SMLPCB connector male | A Stock \WM4200-ND - -
2-pin
6 8 CONNO2SFLPCB connector UA Stock WM2011-ND
12 female - -
6 8 3-pin UAStock | WM4201-ND
J3 CONNO3SMLPCB connector male - -
3-pin
6 8 CONNO3SFLPCB connector UA Stock WM2012-ND
13 female - -
LORA MODULE
RN2903A-1/RM103-
6 4 1C2 RN2903 LoRa Module Digikey ND $12.80 $51.20
INTERNAL MOISTURE SENSOR
0.1 uF
/ 8 C2 TMKI07BJI04KART capacitor Digikey 587-3472-2-ND $0.07 $0.56
7 8 Ul TLC555QDRQ1 TLC555 timer Digikey 296-22999-2-ND $0.83 $6.64
100 ohm CR2010-JW-
/ / R1 CR2010-JW-101ELF | cictor Digikey 101ELFTR-ND $0.14 $0.98
; ; RMCF2010JT10KOTR- | 10k ohm Dicike RMCF2010JT10KOCT-
R2 ND resistor gikey ND $0.20 | $1.40
4.7k ohm o RMCF2010JT4K70TR-
7 7 R3 RMCF2010JT4K70 esistor Digikey ND £0.20 $1.40
3.3M ohm . RMCF2010JT3M30TR-
7 7 . Digikey
R4 RMCF2010JT3M30 resistor ND $0.20 $1.40
RMCF2010JT150KTR- | 150k ohm .
7 7 RS ND resistor Digikey RMCF2010JT150K $0.20 $1.40
10 s 3.3M ohm Dicike RMCF2010JT3M30TR-
R4 RMCF2010JT3M30 | resistor gikey ND $0.02 | $0.10
RMCF2010JT150KTR- | 150k ohm .
10 10 RS ND esistor Digikey RMCF2010JT150K £0.20 £2.00
RMCFO805JT1KOOTR-
10 20 RI-R11 RMCF0805JT1K00 1k ohm resistor | Digikey ND $0.02 $0.40
10k ohm . RMCFO0805JT10KOCT-
10 10 R6 RMCF0805JT10K0 resistor Digikey ND $0.02 | $0.20
470 ohm . RMCFO805JT470RTR-
10 10 R7 RMCF0805JT470R resistor Digikey ND $0.02 | $0.20

https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926
https://www.digikey.com/product-detail/en/RMCF2010JT10K0/RMCF2010JT10K0CT-ND/1942907/?itemSeq=353729926

DEBUGGING

7 1 - 1825910-6 Reset switch Digikey 450-1650-ND $0.10 $0.10
10 10 D1 AP2012EC LED LightsRed Mouser 604-AP2012EC $0.13 $1.30
10 10 D2 17-21SYGC/S530- LED Lights 638-
E2/TR8 Green Mouser 1721SYGCS530E2 $0.16 $1.60
LED Lights
10 10 D3 APT2012NW Orange Mouser 604-APT2012NW $0.19 $1.90
ANTENNA
6 3 ANT1 RSRA6982700SSM Antenna Arcantenna RSRA698/2700SSM ‘ $15.00 ‘ $45.00
TEMPERATURE SENSOR PCB
5 6 temperature
Ul MAX6608IUK+T sensor Digikey MAX6608IUK+TR-ND $1.49 $8.94
5 6 963-TMK063BJ102KP-
C1 TMKO063BJ102KP-F 1 nF capacitor Mouser F $0.10 $0.60
0.1 uF 963-
> 6 C2 TWK107B7104MVHT capacitor Mouser TWK107B7104MVHT $0.31 $1.86
6 5 Ul temperature
MAX6608IUK+T sensor Digikey MAX6608IUK+TR-ND $1.49 $7.45
6 10 C1 C0603C102K3RACTU | 1 nF capacitor | Digikey 399-7834-2-ND $0.07 $0.70
0.1 uF
6 10 c2 TMKI07BIIO4KART capacitor Digikey 587-3472-2-ND $0.07 $0.70
791-
/ / Cc2 0805B8204K500CT 0.2uF capacitor | Mouser 0805B204K500CT $0.45 $3.15
TEMPERATURE SENSOR CONNECTOR PCB
3-pin
6 > 12 CONNO3SMLPCB connector male | A Stock WM4201-ND - -
3-pin
6 5 J2 CONNO3SFLPCB connector UA Stock WM2012-ND
female - -
MOISTURE SENSOR CONNECTOR PCB
2-pin
6 > 13 CONNO2SMLPCB connector male | A Stock \WM4200-ND - -
2-pin
6 5 CONNO2SFLPCB connector UA Stock WM2011-ND
13 female - -
BATTERY PACK PCB
3.7V 2800mA-
6 4) 623360 Hr Battery Amazon 623360 $10.99 $43.96
BATTERY MONITORING PCB
10 7 Ul IC Battery
STC3100IST Monitoring Newark 5573932 $2.19 $15.33
R1 (Rcg 10m ohm
10 10 . ..
Datasheet) | RL1220T-R010-J resistor Digikey RL12T.010JTR-ND $0.02 $0.20
4.7k ohm .. RMCF0805JT4K70TR-
10 10| Rris, g1 | RMCFOBOSITAKTO resistor Digikey ND $0.18 | $1.80
10 10 R2 (Rosc 200k ohm RMCF0O805JT200KTR-
Datasheet) | RMCF0805JT200K resistor Digikey ND $0.02 $0.20
10 10 c5(C1 963-
Datasheet) | EMF107B7105MAHT | 1 uF capacitor Mouser EMF107B7105MAHT $0.02 $0.20
10 10 Cc13(C2 0.22 uF 963-
Datasheet) | EMF107B7224MAHT | capacitor Mouser EMF107B7224MAHT $0.02 $0.20
10 10 R3 (R1 RMCF0805JT1KOO0TR-
Datasheet) | RMCF0805JT1K00 1k ohm resistor | Digikey ND $0.20 $2.00

keep track of the budget, the Total Cost column of the Materials Budget List was added up and

Each design team was given a $600 budget to be used for prototypes and final designs. To

PCB DESIGNS
Soil Moisture
6 1 setof 5 Capacitor JLCPCB - $2.00 $2.00
Capacitor to
6 1 setof 5 Main Board JLCPCB - $4.00 $4.00
Temperature
6 1 setof 5 Sensor JLCPCB - $4.00 $4.00
Temperature
6 1 setof 5 to Main Board JLCPCB - $4.00 $4.00
Main Board
6 1 setof 5 Rev 1 JLCPCB - $4.00 $4.00
Main Board
10 1 - PCB w/ stencil JLCPBC - $10.50 $10.50
Battery Pack
10 1 - PCB JLCPCB - $4.00 $4.00
Total Spent $440.70
Budget Spent $152.14
Budget $600.00
| Budget Remaining $7.16

subtracted from the total budget. The components in blue (development components) were

subtracted from the total cost. Since these components can be reused for future design teams, the

university absorbs the costs and it is not considered part of the $600 design team budget. The

components in red (experimental components) were used for testing but never implemented in
the final design. Two tables were created to separate design costs (Fall semester) and
implementation costs (Spring semester). At the end of Spring semester, the Soil Sensor Network

Design Team’s remaining budget is $7.16.

9.3 CoST COMPARISON ANALYSIS

AW

The Soil Sensor Network is geared towards family farms. Most likely commercial farms

can afford commercial-grade equipment to monitor soil properties, however, family farms cannot

afford this luxury. Table 49 contains a cost analysis of the Soil Sensor Network, including pod

costs and upfront costs.

Table 49: Sensor Pod Network Cost.

Upfront costs are defined as costs that farmers will only have to pay once. These include

iy | Refdes | Part Num. | Description | Vendor | Vendor Part Num. | Cost | Total Cost
UP-FRONT COSTS
1 [450-00107-KL [LAIRD Gateway [LoRaWAN) [igikey [776-450-00107-K1-ND [s375.16] 5375.15]
1 |ADA1504 |Battery Charger |Amazon [aDa1o04 EEE) 59.33
BATTERY MANAGEMENT
1 [s23360 [3.7v 2300 ma-Hr Battery [Amazon [E23380 [s7.47] 57.47
PROGRAMMABLE DEVICES
1 12 [RM2003 [LoRa Module [Digikey [~N2203A-IRM103-ND [s1za0] 512 80|
1 IC3 |PIC24FJ256GEBH0UFT |Misroprocessor [Microchip |PIc24F256GE410-UFT | ssa3] 5583
MAIN FCE DESIGN
7 C3-C8 | TMK107EJ104KAHT 0.1 uF Capacitor Digikey 587-3472-2-ND 50.04 50.25
1 c5 COB03C103J3GACTU 0.01 uF Capacitor Digikey 309-7838-2-ND 50.04 50.04
1 C14 __ |TMKID7EBJ106MA-T 10 uF Capaciter Digikey 537-5023-2-ND 50.30 50.30
1 Jz 22232021 2-pin Connector Male Digikey WAM4200-ND 50.16 50.16
1 Jz 22012027 2-pin Connector Female Digikey WMZ011-ND 50.11 50.11
1 J3 22232031 3-pin Connector Male Digikey WAI01-ND 50.24 50.24
1 iE] 22012037 3-pin Connector Female Digikey WMZ012-ND 50.17 50.17
1 2 SMA CONMECTOR SMA Connector Mauser 471-SMACONNECTOR 51.08 51.08
1 uz TLCS5EDR Timer Digikey 206-6501-2-ND - Tape & Reel (TR) 50.36 50.36
TEMPERATURE SENSOR PCE / CONNECTOR PCB
1 Ic4 MAXBA0BIUK=T Temperature Sensor Digikey MAXGEDEIUK+TR-ND 5143 5143
1 c15 |COBO3CID2K3IRACTU 10 uF Capacitor Digikey 353-78342-ND 50.07 50.07
1 Cl6 |0805B204KS00CT 0.2 uF Capacitor Digikey 537-3472-2-ND 50.07 50.07
1 iE] 22232031 3-pin Connactor Male Digikey WAH201-ND 50.24 50.24
1 J3 22012037 3-pin Connactor Female Digikey WMZ012-ND 50.17 50.17
SOIL MOISTURE SENSOR | CONNECTOR FPCB
1 J2 [22232021 [2-pin connector Male [Digikey [Wh4200-ND [s0.8] 50.16]
1 J2 [connp2sFLPCE |2-pin connector Female |Digikey [wazo11-ND [50.1] 50.11
BATTERY PACK PCB
4 JB-J0 [B2B-PHHK-S(LFISN) [2-pin Connactor Female [Digikey [455-1704-ND [50.8] 50.64
ANTENNA
1 ANT1 _ [RSRAG9E2700S5M [Antenna [Arcantenna [RsRAGOEZTO0SSM [s1s.00] 515.00]
PCE DESIGNS
1 - Soil Moisture Capacitor JLCPCB - 50.50 S0.50]
1 - Capacitor to Main Board JLCPCB - 51.00 51.00|
1 - Temperature Sensor ILCPCB - 51.00 51.00
1 - Temperature to Main Board ILCPCB - 51.00 51.00
1 - Main Board JLCPCE - 51.00 51.00
SENSOR POD DESIGN CONNECTORS
1 [R2-56K1/4 [Connector Screw Male [Mouser [s08-R2-5ex1/4 I 50.52
12 [mzox100C |Connector Screw Female [Mouser [761-m20x100C [s0.24] 52.88
TOTALS
5426.41
554.65
538.26

the gateway and battery charger. The gateway can support up to roughly 1000 pods because of

its low bandwidth. Given that the average size of a large family farm is 5.7 km? and that there is

Initial Setup

Price per pod

Industry price per pod

one Sensor Pod every tenth of a kilometer, a large family farm on average would need 57 pods to
monitor their field. This means one gateway is more than capable of managing the traffic of all

the Sensor Pods.

The price to build one pod is roughly $54. If this design were being sold in the market, it is
reasonable to make the assumption that buying supplies in bulk, and possibly working with
vendors, would decrease the cost of the material by at least 30 percent. The cost of the pod would
then become roughly $38 to manufacture. If manufacturing is done overseas, the cost of
manufacturing the pod would decrease significantly more. By manufacturing in bulk and selling

for $50 a pod, the company would make a substantial profit.

To gain a better understanding of how cost effective the proposed approach is to farmers,

the average cost of commercial-grade soil monitoring equipment currently on the market is

shown in Table 50.
Table 50: Market Costs for Sensor Networks.
Qty. | Part Num. Description | Vendor | Vendor Part Num. | Cost | Total Cost
EQUIPMENT COSTS
1 L200 Moisture, Humidity, Temperature |EarthScout (L200 $2,299.00| $2,299.00
1 TERRA 2x Sensor [Moisture, Temperature TERRA - $1,899.00| $1,899.00
1 KT006 Moisture, Temperature Semtek KT006 $1,250.00| $1,250.00

As seen above, equipment with the same sensor types of sensors costs over $1000. In addition to
this, companies that sell this equipment only give farmers the option to rent out the
communications system. Most wireless communications systems use licensed frequency bands,
which means the user has to pay data rates to be granted access to the band since frequency is a
limited resource. The proposed solution uses LoRa communication which operates on an
unlicensed frequency band and does not require monthly or annual payments, further reducing

operational costs.

10 PROJECT SCHEDULES AA, RK, AW

The workload for the Soil Sensor Network project was distributed in two different ways. A
Gantt Chart was used for a top-level work distribution to remind the team when sections were
due and which team (electrical or computer) was responsible for which section. Azure DevOps

was used on a daily basis and updated weekly to give a visual representation of current progress.

10.1 AZURE DEVOPS SPRINT BOARD

Azure DevOps is a project management board, broken into sprints, that displays the
progress a team is making per week. As seen in Figure 147, the work was first split up into main

categories.

3 Midterm Report Sprint 3 & Perso

Taskboard Backlog Capacity Analytics New Work lrem &* Column Options

2 Collapse all ToDo Doing Done

il 46 Midtzrm Report g Standards 45 Widterm Report

* [l Hardware Design (Block Diagram)

* [Software Flow Chart (Black Diagram) - Embedded

Figure 147: Azure DevOps Board Sprint 3.

For Sprint 3, a few of these categories included the Midterm Report, Project, and Engineering
Analysis. These were then broken down into subcategories and assigned to individual members.

For instance, the Engineering Analysis was further broken into Circuit Analysis, Computer

Network Analysis, Electronics Analysis, Communications Analysis, Antenna Design, and
Electrochemical Sensor Design. Each subcategory can be organized into three columns: To Do,
Doing, and Done. The goal for each sprint is to complete each subcategory and move it to the
Done column before the end of the week. Weekly sprints were chosen due to rapidly
approaching deadlines. As with Agile Development, any subcategory that does not get completed

by the end of the sprint can be reevaluated and carried over to the next sprint if needed.

It can be argued that DevOps is a better alternative than Microsoft Projects for multiple
reasons. The software is free and accessible for a small project team of up to five users. It also
offers an interactive user interface where teams can physically move tasks, issues, and
improvements from one state to another to visualize the progress of their project. The reports for
these sprints can then be exported to track progress over the duration of the project. Azure Dev-

Ops was not relied upon as heavily during the last semester of the project.

10.2 DESIGN GANTT CHART

A Gantt Chart is used to keep track of project milestones throughout the semester. The
chart is populated with every task to be completed. After each sprint, the Sprint Week and
Progress columns are updated; the sprint displays the week the task was worked on and the
Progress displays the status of the task. If the task was started but not completed, the Progress
column is assigned as “Doing” and a comment is made to tell what part of the task was

completed during that sprint. An example of the Design Gantt Chart can be seen in Figure 148.

1 Task Description Daysto Complete Date Started Date Due Sprint Week Progress Completed By Comments
2 Project Design 91 days Wed8/26/20 Wed11/25/20
T Midterm Report 40 days wed8/26/20 Mon10/5/20 1,2,3,4 Done ALL
T Caver page 40 days wWed 8/26/20 Mon10/5/20 i Done Ross
T Tof GLOFT, Lof F 40 days wed 8/26/20 Mon10/5/20 Done Andrea
"6 Problem Statement 10 days Wed8/26/20 Mon10/5/20 1,2 Done ALL
-7" Meed 40 days wed 8/26/20 Mon10/5/20 i} Done ALL Campleted previous semester
T Objective 40 days wed 8/26,/20 hon10/5/20 i} Done ALL Completed previous semester
= Background 40 days wed 8/26/20 hon10/5/20 T Doing ALL End of Sprirt 1; Determine pH/salinity sensors
Z Marketing Requirements 40 days wed 8/26/20 NMon10/5/20 1 Done Andrea
End of Sprint 1: MNeed Numerical Walues
11 Engineering Requirem ent s Specification 40 days Wed 8/26/20 Mon10/5/20 1,2 Dane ALL End of Sprint 3; Determine depth of transmission
beneath soil after testing
z Engineering Analysis 40 days Wed8/26/20 Mon10/5/20 1,2 Done ALL
End of Sprint 1; Determine voltage and amp-hrs
needed through component and transmission
13 Circuits (DG AG Power, ..} 40 days wed 8/26/20 Mon10/5/20 1,2,3 Done Luke/ Andrea calculations; size battery based off calculations
End of Sprint 2: Circuitry for
temperature/electrochemical sensor
B End of Sprint 1: Determine pH/salinity sensors
End of Sprint 3; Look inta
14 Electronics (analog and digital) 40 days wed 8/26/20 Mon10/5/20 T3 Done Luke/ Andrea temperature/electrochemical sensor
End of 8print 3: Electrochemical sensor is not
feasible; measure temperat ure instead
? Signal Processing 40 days Wed 8/26/20 WMon10/5/20 TBD Don't know if this analysis is necessary
TS,- Communications (analog and digital) 40 days Wed 8/26/20 Mon10/5/20 2 Done Ross / &lex
:{. Elockromaskanies IR aedBiaedin blaplidoian Ty Bl Try Does not pertain to project
TB’I Camputer Metwarks 40 days Wed 8/26/20 hon 10/5/20 2 Doing Ross / &lex End of Sprint 2: Create write-up in report
g Embedded Systems 40 days wed 8/26/20 Mon10/5/20 2 Doing Ross / Alex End of Sprint 2; Create write-up inreport
‘?DU. Accepted Technical Design 40 days Wed8/26/20 Mon10/5/20 Done ALL
Z Hardware Design: Phase1 40 days Wwed8/26/20 Mon10/5/20 2,3 Done Luke / Andrea
22 ;‘V:;‘i‘gi;ilaa‘)“k Dlagrsm s Love 20N 40 days wed 8/26/20 Mon 10/5/20 2,3 Dane Luke / Andrea / Alex End of Sprint 3: Add sensar circuitry to Level 2
E Software Design: Phase1 40 days Wed8/26/20 Mon10/5/20 1,2,3 Done Ross / Alex
B e e WY Monloyn 1,33 oone e gt et
35 Mechanical Sketch 40 days wed 8/26/20 Man 10/5/20 3,3 Done Andrea —P—;"r';gzz &';2;:5;?5:;::;2:;’:“’7 torsurface;
E‘ Team information 40 days Wed 8/26/20 hon 10/5/20 0 Done ALL Completed previous semester
;ﬁ Project Schedules 40 days Wed8/26/20 Mon10/5/20 ALL Doing ALL Bzure DevOps: Per week basis
:—3- it Dasian Gankt Chart Andays sdededaedin pdandgiclon LY ey oty Using Azure DevOps to track progress
-23‘ References 40 days wWed 8/26/20 Man 10/5/20 4 Done ALL
: Midterm Parts Request Form 47 days wed 8/26/20 Man 10412420
31 Midterm Design Presentations Day 1 0 days wed 9/23/20 Wed 3/23/20 [T Done ALL
Téf bAidt D.os i Day-2 oy swedafandn wragefansan LTy Pda, pATEY DTO7 Fresenting Day 1
T Project Poster 1adays wed 10/21/20 Wed 11/4/20
T | Final Design Report 50 days Tue 10/5,/20 wed 11/25/20
35 Abstract 48 days Tue 10/8/20 Maon 11/23/20
36 Hardware Design: Phase2 48 days Tue10/6/20 Mon 11 /2320 Luke / Andrea
? Modules1...n 48 days Tuel0f6/20 Mon11f23/20 Luke / Andrea
E‘_ Simulations 48 days Tue10/6/20 Mon11/23/20 Luke/ Andrea
?3‘7 Schematics 48 days Tue 10/8/20 Won11/23/20 Andrea
‘TD‘ Software Design: Phase2 48 days Tuel0/6/20 Mon 11 /23 /20
Tf- IModules1...n 48 days Tue 10/6/20 Mon11/23/20
'TZ:I Code (working subsystems) 48 days Tue 10/6/20 hMon11/23/20 Alex / Ross
.T;- System integration Behavior Models 48 days Tue 1076720 Mon11/23/20 Alex/ Ross
E" Parts Lists 48 days Tue 10/6/20 Mon11f23/20 ALL
Tﬁ- Parts list(s) for Schematics 48 days Tue 10/6/20 Mon11/23/20 1,2 Doing Andrea [Luke
B End of Sprint 1; Battery, timer, soil moisture
45 Materials Budget list 48 days Tue10/6/20 Man11/23/20 1 Doing Ancrea Zi:s;;d::‘& N
battery charger, voltage regulator added
= il ionGaatt-Chast Sodave FuedOdedan Maalliaain FNIZ B, FNTEY Using Azure DewOps to track progress
"W Conelustansand Recommendations 48 days Tue 10/5,/20 aon 11,2320
TFma\ Parts Request Form 13 days 5un10/11/20 Sat10/24/20 Everyone
S0 Subsystem s Demonstrations Day 1 0 days Tue11/10/20 Tuell/10/20 Everyone
?‘ Subsystem s Demonstrations Day 2 0 days Tue11/17/20 Tuell/17/20 Everyone

Figure 148: Design Gantt Chart.

10.3 IMPLEMENTATION GANTT CHART

The Implementation Gantt Chart followed the same format at the Design Gantt Chart,

which can be seen in Figures 149 and 150.

1 Task Description Days to Complete Date Started Date Due Sprint Week Progress Completed By

2 Project Design 91 days Wed 8/26/20 Wed 11/25/20
z Midterm Report 40 days Wed 8/26/20 Mon 10/5/20 1,2,3,4,5 Done ALL
| 4 Coverpage 40 days Wed 8/26/20 Mon 10/5/20 1 Done Ross
=R of C,Lof T,Lof F 40 days Wed 8/26/20 Mon 10/5/20 Done Andrea
| 6 Problem Statement 40 days Wed 8/26/20 Mon 10/5/20 1,2 Done ALL
L Need 40 days Wed 8/26/20 Mon 10/5/20 0 Done ALL
|8 Objective 40 days Wed 8/26/20 Mon 10/5/20 0 Done ALL
i Background 40 days Wed 8/26/20 Mon 10/5/20 1,2,11 Done ALL
|10 Marketing Requirements 40 days Wed 8/26/20 Mon 10/5/20 1 Done Andrea

11 Engineering Requirements Specification 40 days Wed 8/26/20 Mon 10/5/20 1,2 Done ALL
z Engineering Analysis 40 days Wed 8/26/20 Mon 10/5/20 1,2 Done ALL

13 Circuits (DC, AC, Power, ...) 40 days Wed 8/26/20 Mon 10/5/20 1,2,3 Done Luke / Andrea
E Voltage Regulator 40 days Wed 8/26/20 Wed 11/23/20 9 Luke
|15 Battery 40 days Wed 8/26/20 Wed 11/23/20 6,9 Luke / Andrea / Alex

16 Electronics (analog and digital) 40 days Wed 8/26/20 Mon 10/5/20 1,23 Done Luke / Andrea
Z Soil Moisture Sensor Analysis Wed 8/26/20 Mon 10/5/20 4 Done Andrea
|18 Soil Nutrient Analysis Wed 8/26/20 Mon 10/5/20 4 Done Andrea
1_9 Antenna Analysis Wed 8/26/20 Mon 10/5/20 4 Done Andrea / Alex
120 Signal Processing Wed 8/26/20 Mon 10/5/20 TBD
A Communications (LoRa) 40 days Wed 8/26/20 Mon 10/5/20 2 Done Ross / Alex / Andrea
|22 Electromechanies 40-days Wed-8/26/20 Mon-16/5/20 NEA NEA NEA
|23 Computer Networks 40 days Wed 8/26/20 Mon 10/5/20 2,5 Done Alex / Ross
A Embedded Systems 40 days Wed 8/26/20 Mon 10/5/20 2,5 Done Alex / Ross
125 Accepted Technical Design 40 days Wed 8/26/20 Mon 10/5/20 3 Done ALL
|26 Hardware Design: Phase 1 40 days Wed 8/26/20 Mon 10/5/20 2,3 Done Luke / Andrea

27 ::/"i‘;’at;e;e';’d‘ Diagrams Levels OthruN o . o Wed 8/26/20 Mon 10/5/20 2,3 Done Luke / Andrea / Alex
E Software Design: Phase 1 40 days Wed 8/26/20 Mon 10/5/20 1,2,3 Done Ross / Alex

29 Software Behavior Models Levels O thru N 40 days Wed 8/26/20 Mon 10/5/20 1,2,3 Done Alex / Ross

(w/FR table)

30 Mechanical Sketch 40 days Wed 8/26/20 Mon 10/5/20 2,3 Done Andrea
z Team information 40 days Wed 8/26/20 Mon 10/5/20 0 Done ALL
132 Project Schedules 40 days Wed 8/26/20 Mon 10/5/20 ALL Done ALL
133 MidtermbesignGanttChart 40-days Wed-8/26/20 Mon-10/5/20- NAA NIA NEA
|34 References 40 days Wed 8/26/20 Mon 10/5/20 4 Done ALL
3_5 Midterm Parts Request Form 47 days Wed 8/26/20 Mon 10/12/20 4 Done ALW
136 Midterm Design Presentations Day 1 0 days Wed 9/23/20 Wed 9/23/20 N/A Done ALL
|37 Mid Design ions-Day2 O-days Wed9/30/20 Wed9/30/20 NAA NAA NAA
ﬁ Project Poster 14 days Wed 10/21/20 Wed 12/4/20 13 Doing ALL
139 Final Design Report 50 days Tue 10/6/20 Wed 11/25/20 12 Done ALL

40 Abstract 48 days Tue 10/6/20 Mon 11/25/20 11 Done Andrea

Figure 149: Implementation Gantt Chart (1).

| 41 Hardware Design: Phase 2 48 days Tue 10/6/20 Mon 11/23/20 10 Done Luke / Andrea
142 Modules 1..n 48 days Tue 10/6/20 Mon 11/23/20 10 Done Luke / Andrea
143 Simulations 48 days Tue 10/6/20 Mon 11/23/20 10 Done Luke / Andrea
i Soil Moisture Sensor 48 days Tue 10/6/20 Mon 11/23/20 7 Done Andrea
146 Schematics 48 days Tue 10/6/20 Mon 11/23/20 8 Doing Andrea
i Soil Moisture Sensor 48 days Tue 10/6/20 Mon 11/23/20 7 Done Andrea
148 Voltage Regulator 48 days Tue 10/6/20 Mon 11/23/20 7 Done Andrea
149 Temperature Sensor 48 days Tue 10/6/20 Mon 11/23/20 8, 10 Done Andrea
150 Microcontroller 48 days Tue 10/6/20 Mon 11/23/20 8,9 Done Andrea / Alex
151 LoRa Module 48 days Tue 10/6/20 Mon 11/23/20 8,9 Done Andrea / Alex
152 Prototype 48 days Tue 10/6/20 Mon 11/23/20 11 Done Luke / Andrea
153 Soil Moisture Sensor 48 days Tue 10/6/20 Mon 11/23/20 7 Done Andrea
154 Voltage Regulator 48 days Tue 10/6/20 Mon 11/23/20 9, 10 Done Luke
155 Temperature Sensor 48 days Tue 10/6/20 Mon 11/23/20 6 Done Alex

| 56 Software Design: Phase 2 48 days Tue 10/6/20 Mon 11/23/20 11 Alex / Ross
|57 Modules1..n 48 days Tue 10/6/20 Mon 11/23/20 11 Alex / Ross
158 Code (working subsystems) 48 days Tue 10/6/20 Mon 11/23/20 11 Alex / Ross
159 LoRa Transceiver Communication 48 days Tue 10/6/20 Mon 11/23/20 11 Ross
|60 Gateway/Senet Setup 48 days Tue 10/6/20 Mon 11/23/20 11 Ross
|61 Database 48 days Tue 10/6/20 Mon 11/23/20 11 Alex
162 Front End/Back End Programming 48 days Tue 10/6/20 Mon 11/23/20 11 Alex
163 EWS API 48 days Tue 10/6/20 Mon 11/23/20 11 Alex
|64 Web Application 48 days Tue 10/6/20 Mon 11/23/20 11 Alex
|68 System Integration Behavior Models 48 days Tue 10/6/20 Mon 11/23/20 12 Alex/ Ross
169 Embedded (General) 48 days Tue 10/6/20 Mon 11/23/20 12 Alex
170 Trigger Sensor Readings 48 days Tue 10/6/20 Mon 11/23/20 12 Alex
171 Send Data to Gateway/Hub 48 days Tue 10/6/20 Mon 11/23/20 12 Alex
172 48 days Tue 10/6/20 Mon 11/23/20 12

173 48 days Tue 10/6/20 Mon 11/23/20 12

| 74 Parts Lists 48 days Tue 10/6/20 Mon 11/23/20 12 Done ALL
|75 Parts list(s) for Schematics 48 days Tue 10/6/20 Mon 11/23/20 1,2 Doing Andrea / Luke

r

76 Materials Budget list 48 days Tue 10/6/20 Mon 11/23/20 1,4,6 Done Andrea
|72 Proposedimp jon-GanttChart 48-day Tuel0/6/20 Mendi/23/20 N/A N/A N/A
ﬁFinaI Parts Request Form 13 days Sun 10/11/20 Sat 10/24/20 r 6,7,12 Done Everyone
ﬁc. h ys D i D v 1 Q.d.a.y.; ?I'-ue—]_—17’-1-Q7L29 :Fue—l-l-/-]:G;LZ-Q N*A N*A N7LA'
ﬂSubsystemS Demonstrations Day 2 0 days Tue 11/17/20 Tue 11/17/20 11 Done Everyone
181 Voltage Regulator 0 days Tue 11/10/20 Tue 11/17/20 11 Done Luke
182 Soil Moisture Sensor 0 days Tue 11/10/20 Tue 11/17/20 11 Done Andrea
183 Enbedded 0 days Tue 11/10/20 Tue 11/17/20 11 Done Alex / Ross
184 Communications 0 days Tue 11/10/20 Tue 11/17/20 11 Done Alex / Ross
185 Display 0 days Tue 11/10/20 Tue 11/17/20 11 Done Alex / Ross

Figure 150: Implementation Gantt Chart (2).

10.4ACTUAL GANT CHART
The Actual Gantt Chart for the final semester implementation followed the same format as
the previous two Gantt Charts. This Gantt Chart provided a more detailed description of how and

when each subsystem would be designed and integrated, as seen in Figures 151 and 152.

m Tk Yloade | Tak “arss Cerason £ Pirdaly [1] BET R
r
[i]
T T —r—rrT W3 e Friaznai PRI AL
- Wsvise Canti Cheari Hdaga Sun 12421 T T Andrcs Wyds
- Tmplesmacnt Prajoct Design 9 daya Fridazi P AL
- Hisrdewars Inpmsntution 4T daya St 227120 P ALL
L Layot and Conerats PTBis) 1 daga Sun 12421 e ALL
! Seil Micitars: Besmer = Wim 1711721 Sim LA 13072071 | Alcin Al vea s Wiydks
& - Vemperatrs Sesr ey Mim 1711721 Sim LA]] Alcia AlvealL sk Farrosorth
& - Miin FOE ey Wim 1711721 Sim LA Tl g
& - Commtor Doarda ey Mim 1711721 Sim LA T3] % Allocin Alvea o Wyds
& - Blaticey Pack & Moritirisn = Wim 1711721 Sim LA 1240071 b Alvea
- ‘Amesmble Hardware i dapa Mo 11021 Sun X772 BB .
& - Serx Pod T deye Wim 1711721 Sim 27121 TTR0E] aALL
[Ty p— TTEOE
Comactor b TTR0E
Create hords for § pods e
& - Sces Pod Cosexxiions T dara Wiim 12521 Sim 27121 2R0E] R Aandics Wipde
[e———" | —— 200
[p—————— TR00]
N | Test Hardweare Tdays Nien LRI Sun H14721 BRI .
T A - Hassdare Dicatrucion Teatng 7 days Mim VRIT] Sim 24T e ¥ Amire Wirder
Darshility of pod sheif HiA
Darshility of PCBs TROE
" - il Wicimtars: Bosmcr T s Wim R Sim AT] | Auniren Wydkaiilcais A
[y J—————]
whe placed] in the s
Crate et thea s repectable TABOE
- Tomperstuee: S 7 days Wim VRT] Sim 2141 RN " Adres Wipder
e ————y— RN
wher placed] in the s
Crecte et thea s repeatable PR ETe]
A - Fower Misnagrasce Oysices T s Wim R Sim AT RN ¥ Aanires Wipdaiilcais A
Motor ffe of batary with 1A Andres WydtAlia Alves
Vergfr vollage regadaior T s Wim R Sim AT (Tl ¥ Lske Farmswerth/Alcxia AhvealAsies
Commmicalion ey Wim VRT] Sim 24T] * Ardirea Wpdkatlaia Abveaiems Kozl
Ta FICH Wim R Sim AT]
T ANZO0E Wim VRT] Sim 24T T
e = e ise Hardware 7 dayn Men 2115721 Sun 221721 P =
= |8 - Power Misnagrasces Oysices 7 days Mim 71521 Sim 2L] ¥ Arndrea Wyds
o & = FOR Desiges 7 days Wim 271521 Sim 2L el) Alein AlvealAndros Wdks
Lt Bocrd s
Voligee Regulator el
= |4 - Sere Pid T s Wiim 11521 i AL 10T ¥ Arndrea Wyds
T 4 = MIETERM: Demomsirse Hardwre Sduys Mhen 121 Vel 1E42E Pt * aLL
[T —— Sduys Mhen 12N Wl 1EAEE P Andres Wyds
- i— Sduys Mhen 12N Wl 1EAEE P Andrcs Wyds
Battery Monhurisg Sduys Mhon 2E2E Wed 2B42E Nk Andres Wydes
Valtngs Ragsl Sduys Mhen 1EVTE Wl 1E42E PR Lk Farnusweett
= - SBC & Fi Hardwars Appraval Ddays Set 22021 St 2EI1TL P v
= - Salbwars Inpleassntation 4T daya Bhen 11021 St 27120 P
= - Bevelap Sedtwars 5 days Mhen 11021 Sum X721 Py
= |4 - Catcwey/b 28 daya Wim 1711721 Sim 27121 138071 e Wmerwil
Senet Server | IRFEIT]
Coteway T Te]
N Vickaitc Frusiezl 8 daya Wim 1711721 Sim 27121 2001 ™ i KAt A
Jr—— 22001
Foarm Ovarvine 22001
Eensar Podl List Poge 22001
Abuut Pinge 20
N Wicknitc Badkenl E daya Wiim 1711721 Sim 7721 TR0E = Al Alvea
Jrr—— TA0E
Foarm Overvire 22001
Eerscr Pl List Poge TA0E
Abuout Fnge 22001
& - [— 28 daya Wim 1711721 Sum 2721 PR ™ R KhmwakiAlstia Alves
FBC to RN2903 Commmication]
[y m——— e]
Hexp Oy REROE]
Eenscr Dus Acqisition TER0E]
[y Se—]
s - Teat Gltmars 3 day Bhen 11021 Sun X772 P
iz & = Wickuite 28 daya Mim 1711721 Sim 2721 400 ™ R KA ltia Alves
[y Nt
Foarm Ovarvinse el
‘Eensar Podl List Page 40e
Abuout Finge 1]
_—
0 | [y — 25 daya Mo 171121 Sun 27021 30721 Rum Kikmewaki
FBC to RN2903 Commication TSRO0
[———]
‘Hexp Cieie BER0E]
Senscr Dota T

Figure 151: Actual Gantt Chart (1).

Starap Sequence
I [[— W daga Mhon 2821 ‘
El [Welnite Froslenl 14 dbryx M TR * Rion Klimowaki
Bl - Welnitc Backeral 14 dbryx M TR ® Al Alve
El Seroar Pod Firerware 14 by i HRAT] ’ * Runes Kiomcorwaki
El FIC o RN 14 dbryx M TR BA ® Al Alve
B - MIDTEEM: Denssmirais Softw sre Sulnysiem £ davs Mllen MENTI Wed 124720 Ll -
Welniie 5 dayn Pllen LENTI Wed 224720 Ll | Al Alven
Semur Pad Commuskcating 5 dayn Wed 224721 LTl “ Ruins Klimerwaki
&0 SR & FA Seftware Approval i dayn Sal IENTE Ll -
41 - Svsiem Inegratos 41 days Fri4dX1 AR
] - Amembsde Compleie Syviem Intepration 14 days Frl Wik'3 -
A — Weknile 14 dbryx 21 = Al Aldves
H - Serpaw Puod Farsnes 14 dbaryx * Ruoa Kimcwaki/fodbes Wyds
& - Test Compleic Sy wiem Inicgrates Tdan &
& Weknile 7 days *| Al Alven
&7 - Serpax Puod Farsnees 7 days *| Rins Klimorwaki
- ¥ Resine Complets Syatem Iategration i€ days -
- - Weknite 15 dhays * Al Alves
0 - Serpaw Puod Farsnes: 15 dharym ® Rus Klinowaki/ Aol Wyds
(e = [fivsn of Cumpletr S 5 daye RITTH
Sl Mubiwre Temperature Andren 'Wyderlos AlvedTom Elonssdki
DHstance Teasting ALL
HI¥ Felaadels Andres Wyder
Websiie iwi' Trends) Al Alves
Fuwer Manupemesi Sysiem Rurs Klimowaki
L Dvelop Final Reperi 3 v Andrea WydeAlexis AlvesTom Klommwski
3 = Wirile Fonal Rcpuet 103 daya Andrea WydeAlexis AlvesTom Klommwski
= - Subeel Fieal Fopor i} idayn = Andres Wyder
£ Sprng Roocas 7 daya
e ALL

Figure 152: Actual Gantt Chart (2).

11 CONCLUSIONS AND RECOMMENDATIONS

Monitoring water management for irrigation systems is an unresolved issue the farming
industry has struggled with for a long time. The proposed solution is to create an affordable
Sensor Pod WSN that consists of a unit that can be “planted” with the crops and wirelessly
transmit data through LoORaWAN communication. A capacitive soil moisture sensor was
designed by using a timer circuit and multi-parallel plate PCB capacitor. The data collected was
sent to the microprocessor through an analog input, which was then packaged by the LoRa
module and transmitted to the Gateway through a quarter wavelength monopole antenna. The
Gateway sends the information to the Database where it can be analyzed, trended, and stored,
and then be displayed visually through the web application so that farmers can have better water

management.

For the development phase, the group committed to the Engineering and Marketing
Requirements listed in this paper. Development was planned by using a Gantt Chart and Azure

DevOps platform to ensure the Wireless Sensor System is completed in a timely manner. The

overall design of the Sensor Pod was focused on power efficiency to increase battery life to
ensure the Sensor Pod would last the entire growing season. To verify that the pods could last the
required length of time, a power consumption analysis was performed. The results showed that
the pods would last longer than the expected duration taking sleep, active, and transmit modes

into consideration.

To complete the soil moisture sensor, capacitors were chosen to satisfy the required 80%
accuracy. For the mechanical design, a force calculation was completed to determine the
thickness of the walls of the Sensor Pod, and models of the Pods were 3D printed. To progress
the software development, a prototype subsystem for gathering sensor data from the two sensors
was constructed. Furthering the web application, an Alpha version for the backend web server
along with a DynamoDB Cloud database for the data storage was designed. An Alpha version of
the front end allowed farmers to interface with the data collected and view trend. The interface
also monitored soil and battery conditions to provide alerts when the conditions exceeded
threshold limits as well as Sensor Pod status. To support and verify the Communications
Analysis with regards to range, a distance test was performed to verify the stated range and

planting depth were possible within the conditions defined in the analysis.

Moving forward, a few design changes should be implemented if the Soil Senor Network
design is to be manufactured and sold. On the main PCB, the battery system discussed should be
incorporated so that accurate power dissipation readings can be monitored. Also on the main
PCB, a GPS circuit should be implemented for the retrieval process so that the farmer can easily
find the Sensor Pod before the battery depletes. Another electrical design change is to add a
power switch to the bottom of the Sensor Pod so the farmer can turn the pod off at the end of

each growing season without having to disconnect the battery. On the software side, a QR

detection code should be implemented so that when the farmer logs into his farm through the
mobile application, the Sensor Pod can be scanned and automatically listed as one of the pods on
the farm without a manual entry. The last design addition is to give the farmers the option to
purchase an “automatic planting” kit to decrease the time it takes the farmer to install the pods in

the field.

With well-defined engineering and marketing requirements that were created at the
beginning of the project, the Sensor Pod was continuously developed to be a low-cost and
accessible alternative to what farmers have available to them on the market today. Considering
all implemented and proposed designs for the Wireless Sensor Pod, the device becomes a

marketable product for irrigation management, regardless of the size of the farm.

12 ACKNOWLEDGEMENTS

The authors would like to thank Dr. Nathan Ida for technical assistance and expertise in
antenna communications, signal propagation, and sensor design, Dr. Kye-Shin Lee for technical
assistance in capacitive soil moisture sensor design, Dr. Hamid Bahrami for academic
advisement, Professor Gregory Lewis for project oversight and guidance, Mr. Erick Rinaldo for
parts orders, Mr. Max Fightmaster for PCB assembly guidance and 3D model construction, and

Jacob Lenart for 3D modeling assistance.

13 WORKS CITED

[1] Hrozencik, Aaron. “Irrigation & Water Use.” USDA ERS - Irrigation & Water Use, 23 Sept.
2019, www.ers.usda.gov/topics/farm-practices-management/irrigation-water-

use/#definitions.

[2] “Smart Agriculture Sensors: Helping Small Farmers and Positively Impacting Global Issues,
Too.” Mouser Electronics - Electronic Components Distributor,

www.mouser.com/applications/smart-agriculture-sensors/.

[3] Manimaran, P., and Yasar Arfath. An Intelligent Smart Irrigation System Using WSN and
GPRS Module. An Intelligent Smart Irrigation System Using WSN and GPRS

Module.

[4] Kumar, Yugal, and Divyansh Thakur. Applicability of Wireless Sensor Networks in Precision
Agriculture: A Review. Applicability of Wireless Sensor Networks in Precision

Agriculture: A Review.

[5] Tokitsu, Hiroshi, et al. Fertigation System, Fertigation Control Server, Salts Accumulation

Determination Method, and Soil EC Sensor. 18 Feb. 2020.

[6] Ersavas, Bulut F, et al. METHODS AND SYSTEMS FOR IRRIGATION CONTROL. 26 Jan.

2016.

[7] Masruroh, Siti Ummi, et al. Performance Evaluation of Instant Messenger in Android
Operating System and IPhone Operating System. Performance Evaluation of Instant

Messenger in Android Operating System and IPhone Operating System.

[8] Peters, Troy, and Kefyalew Desta. Practical Use of Soil Moisture Sensors and Their Data
for Irrigation Scheduling. 2013, Practical Use of Soil Moisture Sensors and Their Data

for Irrigation Scheduling.

[9] Sample, David J, and James S Owen. Understanding Soil Moisture Sensors: A Fact Sheet for
Irrigation Professionals in Virginia. Understanding Soil Moisture Sensors: A Fact Sheet

for Irrigation Professionals in Virginia.

[10] Kasalica, B., et al. “Effect of a High DC Electric Field on Plant Leaves Reflectivity.” Taylor
& Francis Online, 24 Feb. 2007,

www.tandfonline.com/doi/abs/10.1080/00207230108711337.

[11] Adla, Soham, et al. “Laboratory Calibration and Performance Evaluation of Low-Cost

Capacitive and Very Low-Cost Resistive Soil Moisture Sensors.” US National Library of

Medicine National Institutes of Health, 8 Jan. 2020,

www.ncbi.nlm.nih.gov/pmc/articles/PMC7014303/.

[12] Ida, Nathan. Engineering Electromagnetics. Springer, 2015.

[13] Mohan, Vivek. “10 Things About LoORaWAN & NB-IoT.” Inside Out,
blog.semtech.com/title-10-things-about-lorawan-nb-iot.

[14] “LoRaWAN What Is 1t?” LoRa Alliance, Nov. 2015.

[15] Valerio, Pablo. “Top Wireless Standards for IoT Devices.” loT Times, 14 Nov. 2019,

iot.eetimes.com/top-wireless-standards-for-iot-devices/.

[16] “PIC18F2525/2620/4525/4620 Data Sheet.” Microchip, May 2008,

ww 1.microchip.com/downloads/en/devicedoc/39626e.pdf.

[17] “16-Bit Flash Microcontrollers with Dual Partition Flash Memory, XLP, LCD,
Cryptographic Engine and USB On-The-Go.” Microchip, Nov. 2019,
ww 1.microchip.com/downloads/en/DeviceDoc/PIC24FJ256GA412-GB412-Family-Data-

Sheet-DS30010089E.pdf.

[18] Mary Dunckel, Michigan State University Extension. “Small, Medium, Large — Does Farm
Size Really Matter?”” MSU Extension, 2 Oct. 2018,

www.canr.msu.edu/news/small_medium large does farm size really matter.

[19] “Low-Power Long Range LoRa® Technology Transceiver Module.” Microchip, Jan. 2018,

ww .microchip.com/downloads/en/DeviceDoc/50002390E.pdf.

[20] “TLC555 LinCMOS™ Timer.” Texas Instruments,
www.ti.com/lit/ds/symlink/tlc555.pdf?HQS=TI-null-null-digikeymode-df-pf-null-

wwe&ts=1603553851426.

[21] “Linear and Switching Voltage Regulators — An Introduction.” PREDICTABLE DESIGNS,
23 Nov. 2020, predictabledesigns.com/linear-and-switching-voltage-regulators-

introduction/.

[22] “Ada, Lady. “Li-lon & LiPoly Batteries.” Adafruit Learning System, learn.adafruit.com/li-

ion-and-lipoly-batteries/voltages.

[23] “Acrylonitrile Butadiene Styrene (ABS) and Its Features.” Acrylonitrile Butadiene Styrene
(ABS Plastic): Uses, Properties & Structure, omnexus.specialchem.com/selection-

guide/acrylonitrile-butadiene-styrene-abs-plastic.

[24] Jim Patrico, Progressive Farmer Senior Editor. “Planter Speeds: How Fast Is Too Fast? -

DTN.” AgFax, 13 Mar. 2014, agfax.com/2014/03/13/planter-speeds-fast-fast-dtn/.

14 APPENDIX

14.1 FRONTEND MODELS
14.1.1 Farm Overview

14.1.1.1 Type Script Component:
import { HttpClient } from '@angular/common/http"';
import { Component, Input, OnInit } from '@angular/core’;

import { DataBaseCRUDInterfaceService } from '../services/DataBaseCRUDInterface.service';

@Component ({
selector: 'app-farmOverview',
templateUrl: './farmOverview.component.html’,

styleUrls: ['./farmOverview.component.scss']
FarmOverviewComponent OnInit {
@Input() farmId: string;

farmInformations: FarmInfo;
farmStatus: FarmStatus;
farmGraph: Graph;

options:any;
podList: any;

(_http: HttpClient, _Data: DataBaseCRUDInterfaceService) {
.getFarmInfo();
.getFarmStatus();
.getFarmGraphData();

.options = {
tooltip: {
trigger: ‘'axis’,
axisPointer: {
type: 'line',
label: {
backgroundColor: '#6a7985"

}

¥

legend: {
data: .farmGraph.top5Pods,
textStyle: {

}s

color: "#ffffff"
¥

grid: {

}s

left: '3%',
right: '4%',
bottom: '3%',

containLabel:

xAxis: [

1s

{
type: 'category',
boundaryGap: ’

data: ['Mon', 'Tue',

yAxis: [

1s

{
type: 'value',

show:

series: [

{

name: .farmGraph.

type: 'line',
stack: 'counts’,

areaStyle: { normal:

data: .farmGraph.

}s
{

name: .farmGraph.

type: 'line',

stack: 'counts’,

areaStyle: { normal:

data: .farmGraph.

}s
{

name: .farmGraph.

type: 'line',
stack: ‘'counts’,

areaStyle: { normal:

data: .farmGraph.

}s
{

'"Wed', 'Thu',

top5Pods[0@],

3
podsData[@]

top5Pods[1],

3
podsData[1]

top5Pods[2],

3
podsData[2]

"Fri',

'Sat’

>

'Sun']

name: .farmGraph.top5Pods[3],
type: 'line',
stack: ‘'counts’,
areaStyle: { normal: {} },
data: .farmGraph.podsData[3]
¥
{
name: .farmGraph.top5Pods[4],
type: 'line’,
stack: 'counts’,
areaStyle: { normal: {} },
data: .farmGraph.podsData[4]

ngOnInit() {
¥

getFarmInfo() {
._http.get('https://localhost:44385/DynamoDB/Farm?id="
+ .farmId +
'&hash=1").subscribe(
result {
data: any = result;

itemData = {} as FarmInfo;

for (element data) {

if (element.devEui != 1) {
.podList.push(element.name)

¥

else {
itemData.Name = element.name;
itemData.Location = element.location;
itemData.Owner = element.owner;
itemData.Size = element.size;

.farmInformations = itemData;

getFarmStatus() {

._http.get('https://localhost:44385/DynamoDB/Status/Farm?id="

result {
data: any = result;

itemData = {} as FarmStatus;

for (element data) {
if (element.devEui != 1) {
.podList.push(element.name)

}

else {
itemData.avgTemp = element.avgTemp;
itemData.avgMoisture = element.avgMoisture;
itemData.pods = element.pods;
itemData.tWarning = element.tWarning;
itemData.mWarning = element.mWarning;
itemData.bWarning = element.bWarning;

.farmStatus = itemData;

getFarmGraphData(){

._http.get('https://localhost:44385/DynamoDB/Status/Farm?id="

result {
data: any result;
graphData {} as Graph;
graphData.top5Pods = data.pods;
graphData.podsData = data.podData;

FarmInfo {
Name: string;
Location: string;
Owner: string;

Size: string;

+

.farmId + '&hash=1").subscribe

.farmId + '&hash=1").subscribe

FarmStatus {
avgTemp: number;
avgMoisture: number;
pods: number;
tWarning: number;
mWarning: number;

bWarning: number;

Graph {
top5Pods: string[];
podsData: any;

14.1.1.2 HTML Component

class="container-fluid"
class="row h-10"
class="col-md-8"
size="tiny"

Farm Information

Farm Name: {{ .farmInformations.Name}}
Owner: {{ .farmInformations.Owner}}
Location: {{ .farmInformations.Location}}

Size: {{ .farmInformations.Size}}

class="col-md-4"
size="tiny"

Farm Status

Avg Moisture: {{ .farmStatus.avgTemp}}
Avg Temp: {{ .farmStatus.avgMoisture}}
Pod Connected:{{ .farmStatus.pods}}
Warnings:

Temp: {{ .farmStatus.tWarning}}
Moisture: {{ .farmStatus.mWarning}}
Battery: {{ .farmStatus.bWarning}}

row flex-row"

class="col-md-8" height="17rms"
size="large"
Moisture

echarts [options]="options" theme="macarons" class="chart"

class="col-md-4"
size="large"

Podlist

*ngFor=" .podList"
{{ device }}

14.1.2 Pod List

14.1.2.1 Type Script Component

import { HttpClient } from '@angular/common/http"';

import { Component, OnInit } from '@angular/core’;

import { ActivatedRoute, Router } from '@angular/router’;

import { NbSortDirection, NbSortRequest, NbTreeGridDataSource, NbTreeGridDataSourceBuilder } from '@nebula
r/theme"';

import { DataBaseCRUDInterfaceService } from '../services/DataBaseCRUDInterface.service';

@Component ({
selector: 'app-sensorPodList',
templateUrl: './sensorPodList.component.html’,
styleUrls: ['./sensorPodList.component.scss']
})
export SensorPodListComponent OnInit {
customColumn = 'ReadTime’;
testing: string;
defaultColumns = ['Pod', 'Battery', 'Moisture', 'Temp', '"Warning’

allColumns = [.customColumn,defaultColumns];

dataSource: NbTreeGridDataSource<FSEntry>;

sortColumn: string = 'ReadTime’;

sortDirection: NbSortDirection = NbSortDirection.DESCENDING;

list: string[];
data: TreeNode<FSEntry>[];

distinctArray: any;

podStatusList: PodStatus[];

tmpMax = 100;
tmpMin = 0;
moistureMax

moistureMin

_dataSourceBuilder: NbTreeGridDataSourceBuilder<FSEntry>;

(router:Router, route:ActivatedRoute , dataSourceBuilder: NbTreeGridD
ataSourceBuilder<FSEntry>, _http: HttpClient, _Data: DataBaseCRUDInterfaceService) {
._dataSourceBuilder = dataSourceBuilder;

.getPodData();

ngOnInit() {

onReload(){
.getPodData();

¥
changeSort (sortRequest: NbSortRequest): void {

getDirection(column: string): NbSortDirection {

return NbSortDirection.DESCENDING;

}
getPodData()

{
._http.get('https://localhost:44385/DynamoDB/PodData’ + .farmId)

.subscribe(

result {
tempdata: any = result;
tempData: TreeNode<FSEntry>[] = [];

for (element tempdata) {

let itemData = {} as TreeNode<FSEntry>;
let item = {} as FSEntry;

Pod element.name;
Temp = element.temp_Sensor_Value + '%';
Eui = element.devEui + ' °F';
ReadTime = this.formatTime(element.time);
Moisture = element.moisture_Sensor_Value;
Battery = element.bat_Value
Warning = this.checkWarning(element.temp_Sensor_Value,
element.moisture_Sensor_Value,
element.bat_Value)
itemData.data = item;
tempData.push(itemData);
}
this.data = tempData;
this.dataSource = this.dataSourceBuilder.create(this.data);
1
this._http.get('https://localhost:44385/DynamoDB/Farm/AllPods").subscribe(
result => {
let data: any = result;

let itemData = {} as PodStatus;

for (let element of data) {
itemData.Name = element.name;
itemData.DeviceEui = element.devEui;
itemData.statusBattery = element.battery;
itemData.statusConnection = element.connection;

this.podStatusList.push(itemData);

formatTime(time: string)
{
var tmpDate: Date = new Date(time)
var localtime: string = "" + tmpDate.getHours() + ":" + tmpDate.getMinutes() + ":" + tmpDate.getSecond
s();

return localtime;

checkWarning(tmp: number,moisture: number,bat: string){
var warningmsg: string = '';

var list: string[]= [];

if(tmp > this.tmpMax || tmp < this.tmpMin)

list.push("Temp");

if(moisture > .moistureMax || moisture < .moistureMin)

list.push("Moisture");
if(bat == 'Low')
list.push("Battery");
if(list.length == 0)
{

warningmsg = "-"

list.forEach(element {
warningmsg += element;
if(element != list[list.length-1])
warningmsg += ',

1

warningmsg += " Warning";

}

return warningmsg;

TreeNode<T> {
data: T;
children?: TreeNode<T>[];

expanded?: boolean;

PodStatus {
Name: string;
DeviceEui: string;
statusBattery: string;

statusConnection: string;

FSEntry {
ReadTime: string;
Pod: string;

Eui: string;
Data: string;
Battery: string;
Moisture: string;
Temp: string;

Warning: String;

14.1.2.2 HTML Component:
size="tiny"

Pod Status List

*ngFor=" device .podStatusList"

" {{ device.Name }}: {{ device.DeviceEui }}

| Battery: {{ device.statusBattery }}

| Sstatus: {{ device.statusConnection }}"

size="giant"

Pod Data

(click)="onReload()" nbButton>Refresh

overflow-y=scroll

[nbTreeGrid]="data" nbSort (sort)="changeSort($event)" equalColumnsWidth

nbTreeGridHeaderRow *nbTreeGridHeaderRowDef="allColumns"

nbTreeGridRow *nbTreeGridRowDef=" row; columns: allColumns™
[nbTreeGridColumnDef]="customColumn"

nbTreeGridHeaderCell [nbSortHeader]="getDirection(customColumn)" *nbTreeGridHeaderCellDef
{{customColumn}}

nbTreeGridCell *nbTreeGridCellDef="

[expanded]="row.expanded" *ngIf="row.data.kind === 'dir"'"

{{row.data.ReadTime}}

*ngFor=" column defaultColumns” [nbTreeGridColumnDef]="column"

nbTreeGridHeaderCell [nbSortHeader]="getDirection(column)" *nbTreeGridHeaderCellDef
{{column}}

nbTreeGridCell *nbTreeGridCellDef="
{{row.data[column]}}

14.1.3 Home

14.1.3.1 Type Script Component

import { HttpClient } from '@angular/common/http"';
import { Component, Output } from '@angular/core’;
import { Router } from '@angular/router’;

import { delay } from 'rxjs/operators’';

import { DataBaseCRUDInterfaceService } from '../services/DataBaseCRUDInterface.service';

@Component ({
selector: 'app-home',
templateUrl: './home.component.html’,
styleUrls: ['./home.component.scss']
})
export HomeComponent {
@output() farmId: string;
@output() validFarmID: boolean;

status = "primary"
(_http: HttpClient, _Data: DataBaseCRUDInterfaceService, router: Router) {
¥
getFarmId() {
._http.get('https://localhost:44385/dynamodb/Farm?id="
+ .farmId +
'&hash=1").subscribe(
result {
data: any = result;
if (result
status = "
else {
status = "Success";

.farmId = result;

.validFarmID =
await delay(5);

.router.navigateByUrl('/farm-overview")

14.1.3.2 HTML Component

class="container"
status={{ .status}} size="tiny" display="flex" align-items="center" justify-
content="center"
text-align="center">Sign in
class="items-col"
class="align-content-center"

type="text" nbInput fullWidth shape="round" placeholder="Farm ID"

class="col text-center"

class="btn btn-primary" (click)="getFarmId()">Login

14.1.4 About

14.1.4.1 Type Script Component

import { Component, OnInit } from '@angular/core’;

@Component ({
selector: 'app-about',

templateUrl: './about.component.html',

styleUrls: ['./about.component.scss']

t AboutComponent OnInit {

O

ngOnInit() {
¥

14.1.4.2 HTML Component

Soil Sensor Monitoring (Design Team 7)

Built with:

href="https://get.asp.net/'>ASP.NET Core and
href="https://msdn.microsoft.com/en-us/library/67ef8sbd.aspx">C# for cross-platform server-
side code
href="https://angular.io/"'>Angular and href="http://www.typescriptlang.org/"'>TypeScript
for
client-side code
href="https://akveo.github.io/"'>Nebular for layout and styling
href="https://aws.amazon.com/DynamoDB/ ' >DynamoDB for the cloud Database
href="https://aws.amazon.com/api-

gateway/'>AWS API Gateway for a Fowarder Endpoint for Senet

href="https://aws.amazon.com/lambda/"'>Lamda for Processing and Modling AWS API data to Databa

href="https://xieziyu.github.io/ngx-echarts/#/basic/basic-usage'>ngx-echarts for Charts

14.2 BACKEND MODELS

14.2.1 Domain Models

14.2.1.1 Farm Table Data

SoilSensor.Models.DomainModels

[DynamoDBTable("Farm_Test_1")]

Farm

[DynamoDBProperty]

[DynamoDBHashKey]
FarmId {

[DynamoDBRangeKey]
DevEui {

[DynamoDBProperty]

Name {
[DynamoDBProperty]

Location {
[DynamoDBProperty]

Owner {
[DynamoDBProperty]

Size {

[DynamoDBProperty]
PodName {

[DynamoDBProperty]
Status {

14.2.2 Sensor Pod Data

SoilSensor.Models.DomainModels

[DynamoDBTable("Sensor_Data_Test")]
PodData

[DynamoDBProperty]
[DynamoDBHashKey]
DevEui { : 5 1
[DynamoDBProperty]
ReadTime { : 5k
[DynamoDBProperty]
Moisture_Sensor_Value {

[DynamoDBProperty]

Temp_Sensor_Value {
[DynamoDBProperty]

Bat_Value {
[DynamoDBProperty]

Data {

14.2.3 Controller

14.2.3.1 API Router

SoilSensorWeb.Controllers

[ApiController]
[Route("[controller]")]

DynamoDBController : ControllerBase

IDynamoDBContext<Farm> _farmContext;

IDynamoDBContext<PodData> _podDataContext;

DynamoDBController(IDynamoDBContext<Farm> farmContext, IDynamoDBContext<PodData> podDataCon

_farmContext = farmContext;

_podDataContext = podDataContext;

[HttpGet]
[Route("Farm")]

Task<Farm> GetUserAsync([FromQuery] id, [FromQuery]

return _farmContext.GetByIdAsync(id,hash);
}

catch (Exception ex)

{

Exception($"Amazon error in GetUser table operation! Error: {ex}");

[HttpGet]
[Route("Farm/Al11")]

Task<List<Farm>> All(i paginationToken = ""

return _farmContext.GetaAll(id);
}

catch (Exception ex)

{

throw Exception($"Amazon error in GetUser table operation! Error: {ex}");

[HttpGet]
[Route("Farm/AllPods")]

Task<List<Farm>> AllPods (paginationToken = ""

return _farmContext.GetaAllPods();
}

catch (Exception ex)

{

throw Exception($"Amazon error in GetUser table operation! Error: {ex}");

[HttpGet]

[Route("PodData")]

Task<List<PodData>> GetPodData([FromQuery] i paginationToken = ""

return _podDataContext.GetaAll(id);
}

catch (Exception ex)

{

throw Exception($"Amazon error in GetUser table operation! Error: {ex}");

14.2.3.2 API Controller Class

SoilSensor.Data.Controllers

DynamoDBContext<T> : DynamoDBContext, IDynamoDBContext<T>

DynamoDBOperationConfig _config;

_tableName;

DynamoDBContext(IAmazonDynamoDB client, tableName)
(client)

_tableName = tableName;

_config = DynamoDBOperationConfig()
{

OverrideTableName = tableName

3

Task<T> GetByIdAsync(id, devEui)

return .LoadAsync<T>(id, devEui, _config);

Task SaveAsync(T item)

.SaveAsync(item, _config);

Task DeleteByIdAsync(T item)

.DeleteAsync(item, _config);

GetTable()

return _tableName;

Task<List<T>> GetaAll(id)

scanConditions = List<ScanCondition>() {

ScanCondition("FarmId", ScanOperator.Equal,id)

searchResults = .ScanAsync<T>(scanConditions,);

return searchResults.GetNextSetAsync();

Task<List<T>> GetaAllPods()

scanConditions = List<ScanCondition>()

ScanCondition("DevEui", ScanOperator.NotEqual, "1"),

3

searchResults = .ScanAsync<T>(scanConditions,);

return searchResults.GetNextSetAsync();

SoilSensor.Data

DynamoDBOptions

Farm {

PodData {

SoilSensor.Data.Interface

IDynamoDBContext<T> : IDisposable

Task<T> GetByIdAsync(id , hash);

Task SaveAsync(T item);

Task DeleteByIdAsync(T item);
GetTable();

Task<List<T>> GetaAll(id);

Task<List<T>> GetaAllPods(id);

14.2.4 Startup Configuration

public class Startup
{

public Startup(IConfiguration configuration)
{

Configuration = new ConfigurationBuilder()
.SetBasePath(Directory.GetCurrentDirectory())
.AddJsonFile("appsettings.json")

.Build();

public IConfigurationRoot Configuration { get; set; }

public void ConfigureServices(IServiceCollection services)
{
services.AddControllersWithViews();
services.AddSpaStaticFiles(configuration =>

{
configuration.RootPath = "ClientApp/dist";

1)

Environment.SetEnvironmentVariable("AWS_ACCESS_KEY_ID", Configuration["AWS:AccessKey"]);

Environment.SetEnvironmentVariable("AWS_SECRET_ACCESS_KEY", Configuration["AWS:SecretKey"]);

Environment.SetEnvironmentVariable("AWS_REGION", Configuration["AWS:Region"]);

var awsOptions = Configuration.GetAWSOptions();

services.AddDefaultAWSOptions(awsOptions);

var client = awsOptions.CreateServiceClient<IAmazonDynamoDB>();

var DynamoDBOptions = new DynamoDBOptions();

ConfigurationBinder.Bind(Configuration.GetSection("DynamoDBTables"), DynamoDBOptions);

services.AddScoped<IDynamoDBContext<Farm>>(provider => new DynamoDBContext<Farm>(client, Dynam
oDBOptions.Farm));

services.AddScoped<IDynamoDBContext<PodData>>(provider => new DynamoDBContext<PodData>(client,

DynamoDBOptions.PodData));

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{
if (env.IsDevelopment())

{

app.UseDeveloperExceptionPage();

app.UseExceptionHandler("/Error");

app.UseHsts();

app.UseHttpsRedirection();
app.UseStaticFiles();

if (l!env.IsDevelopment())
{

app.UseSpaStaticFiles();

.UseRouting();

UseEndpoints(endpoints =>

endpoints.MapControllerRoute(

name: "default",

pattern: "{controller}/{action=Index}/{id?}");

.UseSpa(spa =>

spa.Options.SourcePath = "ClientApp";

spa.UseProxyToSpaDevelopmentServer("http://localhost:4200");

	Soil Sensor Network
	Recommended Citation

	List of Figures
	List of Tables
	Abstract AW
	1 Problem Statement
	1.1 Need AA, LF, RK, AW
	1.2 Objective AA, RK, AW
	1.3 Soil Sensor Network Background AA, RK, AW
	1.4 Marketing Requirements

	2 Engineering Analysis
	2.1 Electronics Analysis
	2.1.1 Soil Sensor Analysis AW
	2.1.2 Soil Nutrient Analysis AW
	2.1.3 Antenna Analysis AW

	2.2 Circuit Analysis
	2.2.1 Battery Analysis
	2.2.1.1 Battery Research AA, LF, AW
	2.2.1.2 Battery Testing LF

	2.2.2 Voltage Regulation Analysis LF, AW
	2.2.2.1 Voltage Regulator Research
	2.2.2.2 Voltage Regulator Testing

	2.2.3 555 Timers AW

	2.3 Communications Analysis
	2.3.1 LoRa Modulation AA
	2.3.2 LoRaWAN MAC Protocol AA, RK, AW
	2.3.3 Communication Range AA, AW

	2.4 Computer Networks Analysis RK
	2.5 Embedded Systems Analysis AA, RK

	3 Engineering Requirements AA, LF, RK, AW
	4 Engineering Standards
	4.1 Data Format AA
	4.2 Programming Language AA, RK
	4.3 Communications RK
	4.4 Connector Standards RK, AW

	5 Accepted Technical Design
	5.1 Hardware Design
	5.1.1 Block Diagrams
	5.1.1.1 Level 0 Block Diagram AA, RK, AW
	5.1.1.2 Level 1 Block Diagram AA, RK, AW
	5.1.1.3 Level 2 Block Diagram AA, LF, RK, AW
	5.1.1.4 Level 3 Block Diagram AA, AW

	5.1.2 Schematics
	5.1.2.1 Circuit Overview AW
	5.1.2.2 Battery Monitor AW
	5.1.2.3 Voltage Regulator
	5.1.2.3.1 Voltage Regulator Phase 1 LF, AW
	5.1.2.3.2 Voltage Regulator Phase 2 AW

	5.1.2.4 Microcontroller AA, RK, AW
	5.1.2.5 LoRa Module AA, RK, AW
	5.1.2.6 Soil Moisture Sensor AW
	5.1.2.6.1 Moisture Sensor Phase 1 AW
	5.1.2.6.2 Moisture Sensor Phase 2 AW
	5.1.2.6.3 Moisture Sensor Phase 3 AW

	5.1.2.7 Temperature Sensor AW
	5.1.2.8 Connectors AW
	5.1.2.9 Debugging Circuitry AA, AW

	5.1.3 Simulations AW
	5.1.3.1 Soil Moisture Sensor AW
	5.1.3.2 Temperature Sensor LF

	5.1.4 PCB Designs AA, AW
	5.1.4.1 Main Board PCB
	5.1.4.2 Power Management System
	5.1.4.3 External Sensors
	5.1.4.4 Connectors

	5.2 Software design
	5.2.1 Embedded Firmware AA, RK
	5.2.1.1 Trigger Sensor Reading AA, RK
	5.2.1.2 Gateway/Hub Data Communication AA, RK

	5.2.2 Software Block Diagrams AA
	5.2.2.1 Level 1 Block Diagram AA, RK, AW
	5.2.2.2 Level 2 Software Block Diagram

	5.2.3 LoRa Communication Setup RK
	5.2.4 Data Flow AA
	5.2.5 Gateway / Senet Server RK
	5.2.6 API & Lambda Function AA
	5.2.7 Database AA
	5.2.7.1 Farm Table AA
	5.2.7.2 Sensor Data Table AA
	5.2.7.3 Sensor Pod Table AA
	5.2.7.4 Interfacing AA

	5.2.8 Web Application AA
	5.2.8.1 Frontend Web Application AA
	5.2.8.1.1 Web Pages (View)
	5.2.8.1.2 Interaction (Controller)

	5.2.8.2 Backend Web Application AA

	5.3 Prototypes: Design Verification
	5.3.1 Voltage Regulator AA, LF, AW
	5.3.2 Soil Moisture Sensor AW
	5.3.2.1 Setup and Procedure
	5.3.2.2 Results

	5.3.3 Temperature Sensor LF
	5.3.4 Microcontroller Data Collection AA
	5.3.5 Lora Module Communication RK
	5.3.6 LoRaWAN Propagation Models AW
	5.3.6.1 Pathloss Over Distance
	5.3.6.2 Rain Attenuation

	5.3.7 Database AA

	5.4 Prototypes: Implementation
	5.4.1 Power Management RK
	5.4.1.1 Voltage Regulator
	5.4.1.2 Battery Testing

	5.4.2 Soil Moisture Sensor AA, RK, AW
	5.4.3 Temperature Sensor RK, AW
	5.4.4 Embedded Firmware RK
	5.4.4.1 Microcontroller Data Collection AA, RK
	5.4.4.2 Support Functions RK

	5.4.5 Communication
	5.4.5.1 LoRa Module Communication RK
	5.4.5.2 Distance Testing AA, RK, AW
	5.4.5.3 UA Propagation Model AW

	5.4.6 Web Application AA, RK
	5.4.6.1 Website Interface
	5.4.6.2 Frontend
	5.4.6.3 Backend

	6 Mechanical Sketch AW
	6.1 First Design Iteration
	6.2 Second Design Iteration
	6.3 Third Design Iteration
	6.4 Pod Shell and Force of Impact
	6.5 Sensor Pod Prototypes

	7 Future Implementation
	7.1 Automated Installation AW
	7.2 Retrieval Process LF, AW

	8 Design Team Information RK, AW
	9 Parts List AW
	9.1 Schematics Parts List
	9.2 Materials Budget List AW
	9.3 Cost Comparison Analysis AW

	10 Project Schedules AA, RK, AW
	10.1 Azure DevOps Sprint Board
	10.2 Design Gantt Chart
	10.3 Implementation Gantt Chart
	10.4 Actual Gant Chart

	11 Conclusions and Recommendations
	12 Acknowledgements
	13 Works Cited
	14 Appendix
	14.1 Frontend Models
	14.1.1 Farm Overview
	14.1.1.1 Type Script Component:
	14.1.1.2 HTML Component

	14.1.2 Pod List
	14.1.2.1 Type Script Component
	14.1.2.2 HTML Component:

	14.1.3 Home
	14.1.3.1 Type Script Component
	14.1.3.2 HTML Component

	14.1.4 About
	14.1.4.1 Type Script Component
	14.1.4.2 HTML Component

	14.2 Backend Models
	14.2.1 Domain Models
	14.2.1.1 Farm Table Data

	14.2.2 Sensor Pod Data
	14.2.3 Controller
	14.2.3.1 API Router
	14.2.3.2 API Controller Class
	14.2.3.3 API Controller Data Type
	14.2.3.4 API Controller Interface

	14.2.4 Startup Configuration

