
The University of Akron The University of Akron

IdeaExchange@UAkron IdeaExchange@UAkron

Williams Honors College, Honors Research
Projects

The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2021

Electronic Locking Mechanism Electronic Locking Mechanism

Nicholas Tamburrino
njt26@uakron.edu

Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

 Part of the Electrical and Electronics Commons

Please take a moment to share how this work helps you through this survey. Your feedback will

be important as we plan further development of our repository.

Recommended Citation Recommended Citation
Tamburrino, Nicholas, "Electronic Locking Mechanism" (2021). Williams Honors College, Honors
Research Projects. 1291.
https://ideaexchange.uakron.edu/honors_research_projects/1291

This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela
S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University
of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College,
Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more
information, please contact mjon@uakron.edu, uapress@uakron.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Akron

https://core.ac.uk/display/424271783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ideaexchange.uakron.edu/
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1291&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1291&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/1291
https://ideaexchange.uakron.edu/honors_research_projects/1291?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1291&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Electronic Locking Mechanism

Senior Design Project Final Report

Nicholas Tamburrino

Electrical and Electronic Engineering Technology

April 12, 2021

Advisor: Dr. Andrew Milks

2

Table of Contents

Abstract ... 3

Introduction ... 4

Hardware Design .. 5

Circuit Design ... 5

PCB Design ... 7

Other Hardware ... 8

Software Design .. 10

Libraries and Set Up ... 10

The Setup Function ... 13

The Loop Function .. 14

The changeCode Function .. 18

The getCode Function ... 19

The changeTags Function ... 21

The getNumOfGoodTags Function .. 23

The getTag Function ... 25

The compareTags Function ... 27

The unlockDoor Function ... 28

The lockDoor Function ... 28

Budget and Parts List .. 30

Results ... 31

Conclusion .. 33

References ... 34

3

Abstract

 This report contains information regarding the development and design of an electronic

locking mechanism to be used for personnel access control. The lock provides a medium to low

level of security and can be opened by authorized users via a radio-frequency identification fob

or use of a numeric passcode. Many modern door locks similar to the one described above use

solenoids and/or electromagnetic relays to control the lock. However, using these components

can create vulnerabilities because they can be activated by unauthorized users using a

sufficiently strong magnet. The purpose of the lock designed for this project was to eliminate the

magnetic vulnerability by using an Arduino microcontroller to control a stepper motor to unlock

the door. Using a microcontroller and a motor as the main control circuitry for the lock will

provide greater security than using solenoids and relays because it will eliminate the possibility

of a magnetic attack.

4

Introduction

 The goal of this project was to design and create an electronic locking mechanism to

provide a medium to low level of security for personnel access control at a reasonable price. The

main parts of the project consisted of creating the user interface for the lock and the control

circuitry for the lock. The user interface consists of a 3x4 numeric keypad, an ID12LA radio-

frequency identification reader, and a 1602 liquid-crystal display with backlight. The control

circuitry consists of an Arduino Nano microcontroller and a NEMA-17 Stepper motor. The

separate Arduino control and user interface circuits were used with a stepper motor because they

can provide a higher level of security compared to the use of relays and solenoids, which can be

easily activated by unauthorized users using a magnet (LockPickingLawyer, n.d.). By separating

the control circuitry from the user interface, the Arduino can be placed on the inside of the door,

thus greatly reducing the vulnerability to a magnetic attack by using the walls of a building as

insulation. The stepper motor provides greater security than a solenoid activated lock because it

requires a very specifically controlled magnetic field to turn the rotor rather than simply the

presence of a magnetic field. The budget goal for the project was to remain under $200, which

would put the development of the lock in the same range as the commercial price of similar locks

(The Home Depot, n.d.).

5

Hardware Design

Circuit Design

 As the majority of the complexity of this project lies in the Arduino code, the hardware

design is relatively simple. The main part of the circuit is the Arduino Nano microcontroller. The

inputs to the Arduino are a 3x4 matrix keypad, an ID12LA RFID reader module, a pushbutton

switch which is used as an unlock button on the secure side of the door, and a limit switch that

would be mounted to the doorframe that is used to reset the lock when door is closed. The

outputs of the circuit are a 1602 liquid-crystal display used for prompting the user and displaying

the state of the lock and a BIQU A4988 stepper motor driver which drives a NEMA-17 stepper

motor. The circuit is powered by a 12VDC power supply with a 9VDC battery backup system.

Several resistors are used in the circuit for current and voltage limiting purposes for the LCD

contrast setting, the switch inputs, and the battery backup circuit.

 The battery backup circuit was adapted from a project found on the website All About

Circuits (Smith, 2016). In the event of a main power failure, the device will automatically switch

to the battery backup power. The battery being used for this project has a capacity of 600mAh,

so a 2kΩ resistor was chosen for the battery backup circuit, which creates a current charging the

battery of 1.5mA (12v-9v = 3v, 3v/2kΩ = 1.5mA). Based on the information found on All

About Circuits, this charge rate should be sufficiently small enough to safely use the 600mAh

battery as a backup. The project consumes approximately 3A of current while turning the motor,

meaning that using a fully charged 600mAh battery allows the project to run for just over 10

minutes. This time should be enough to allow anyone inside the secure area to make their way to

the door and press the unlock button to escape.

6

 The resistors in the voltage divider to set the contrast of the LCD were chosen by testing

various values between 220Ω and 10kΩ to see what worked best. An acceptable contrast was

reached with the values 3.6kΩ and 360Ω.The rest of the circuit design is simply connecting the

stepper motor to the driver and then connecting the proper inputs and outputs from the Arduino

to the matching pins on the switches, LCD, keypad, RFID reader, and stepper motor driver. The

schematic diagram for the project is shown in Figure 1 below.

Figure 1

7

PCB Design

 There were two separate PCBs created for this project which were manufactured as one

board with breakaway tabs to allow for easy separation after fabrication. One PCB design was

solely for the RFID reader, and was a simple rectangular board with mounting holes. The main

PCB design had the Arduino, resistors, diodes, and connectors soldered to the board, with pin

headers to connect to the other components via cables.

 Originally, the stepper motor driver was also going to be soldered to the main board, but

it was discovered during testing that the motor and driver pair that were originally going to be

used could not provide sufficient torque to turn the spindle of the doorlatch. Because of this, a

new motor (the NEMA-17) and driver (a BIQU A4988 driver board) were used, and the original

driver was replaced with pin headers which allowed for connection to the new driver. This

change also required that a jumper be added from the main power supply to the driver headers

because the Arduino could not supply sufficient current to drive the motor at the required torque.

Images of both PCBs before and after population can be found below.

Figure 2 Figure 3 Figure 4

8

Other Hardware

 The housing for the project was two project boxes purchased from Amazon.com. Two

separate housings were used to allow for the control circuitry to be located on the inside of the

door while the user interface was located on the outside of the door. This seperation of user

interface and control circuitry creates a more secure device because no unauthorized personnel

would be able to access the control circuitry.

 A custom spindle for the doorlatch had to be 3D printed to fit both the stepper motor

shaft and the latch mechanism. The spindle was printed in three parts. The first part slid onto the

motor shaft and was a 10mm x 10mm x 30mm piece with a hole the size of the motor shaft in the

center. The second part went inside the latch mechansim and was 7mm x 7mm x 100mm with a

hole slightly smaller than the hole in the first part. The third piece connected the two, and was

the same size and shape as the motor shaft; a 14mm long partial cylinder with a diameter of 5mm

with one flat side which made the width 4.5mm. This third piece was inserted into the first piece

halfway and the filed down to fit inside of the hole in the second piece. This three part design

was created because simply using a 7mm x 7mm rectangle did not provide enough clearance on

the edges to make a large enough hole for the motor shaft without severely compromising the

strength of the spindle. An image of the three spindle pieces is shown on the following page.

9

Figure 5

10

Software Design

Libraries and Set Up

 Several libraries were used in the Arduino code for this project, including some non-

standard open-source libraries created by GitHub users. The standard libraries used were the

LiquidCrystal.h, SoftwareSerial.h, and Stepper.h libraries. The open-source libraries used were

Keypad.h library for interfacing with the keypad and the EasyButton.h library for debouncing the

unlock and reset switches.

 1 /*

 2 Nicholas Tamburrino

 3 Senior Project Arduino Code

 4 Spring 2021

 5 Electronic Door Lock

 6 */

 7

 8 #include <LiquidCrystal.h>

 9 #include <SoftwareSerial.h>

 10 #include <Keypad.h>

 11 #include <EasyButton.h>

 12 #include <Stepper.h>

The next lines of code set up constants and create global variables and objects to use in

the main part of the code.

 15 const int RX = 0, TX = 20; //Pins 0 and 20 will be RX and TX

for SoftwareSerial.

 16 SoftwareSerial RFID(RX, TX);

 17

 18 const int RS = 12, EN = 11, D4 = 6, D5 = 5, D6 = 4, D7 = 3;

//Pins for LCD.

 19 LiquidCrystal lcd(RS, EN, D4, D5, D6, D7);

 20

11

 21 const int STEPS_PER_SLIDE = 200; //Number of motor

steps required to slide door latch.

 22 const int M1 = 9, M2 = 10; //Pins to control stepper motor.

 23 Stepper motor(STEPS_PER_SLIDE, M1, M2); //Set up stepper

motor.

 24

 25 const int ROW_NUM = 4; //Keypad rows.

 26 const int COLUMN_NUM = 3; //Keypad columns.

 27

 28 byte pin_rows[ROW_NUM] = {14, 19, 18, 16}; //Sets up row

pinouts of the keypad.

 29 byte pin_column[COLUMN_NUM] = {15, 2, 17}; //Sets up column

pinouts of the keypad.

 30

 31 char keys[ROW_NUM][COLUMN_NUM] = { //Keypad layout.

 32 {'1', '2', '3'},

 33 {'4', '5', '6'},

 34 {'7', '8', '9'},

 35 {'*', '0', '#'}

 36 };

 37

 38 Keypad keypad = Keypad(makeKeymap(keys), pin_rows,

pin_column, ROW_NUM, COLUMN_NUM); //Set up keypad.

 39

 40 const int UNLOCK_BUTTON = 13; //Pin number for unlock

pushbutton.

 41 const int RESET = 1; //Pin number reset limit

switch.

 42 const int DEBOUNCE = 100; //Argument for debounce

perameter of EasyButton.

 43

 44 EasyButton unlockButton(UNLOCK_BUTTON, DEBOUNCE); //Debounce

unlock pushbutton.

 45 EasyButton resetSwitch(RESET, DEBOUNCE); //Debounce

reset switch.

 46

 47 const byte UNLOCK[8] = { //Custom UNLOCK symbol.

 48 B00100,

 49 B01010,

 50 B01010,

 51 B00001,

 52 B00001,

 53 B11111,

 54 B11111,

12

 55 B11111

 56 };

 57

 58 const byte LOCK[8] = { //Custom LOCK symbol.

 59 B00100,

 60 B01010,

 61 B01010,

 62 B10001,

 63 B10001,

 64 B11111,

 65 B11111,

 66 B11111

 67 };

 68

 69 char passcode[4] = {'0', '0', '0', '0'}; //Array to store

passcode set by user.

 70

 71 char codeEntered[4]; //Variable to store the code that is

entered by user to unlock the door.

 72

 73 char readTag[10]; //Array of variables to hold data from

read tag.

 74

 75 char key = 00; //Variable to store state of keypad input.

 76

 77 int numOfGoodTags; //Integer variable to hold number of

authorized tags.

 78

 79 unsigned long unlockTime = 0; //Variable to store time door

was unlocked

 80

 81 bool unlock = false; //Variable to control state of locking

mechanism.

 82 bool motorDone = false; //Variable to store whether door

has been physically unlocked.

 83 bool setUp = true; //Variable to tell whether the

program is in setUp mode or not.

13

The Setup Function

Once the constants, variables, and objects are ready, the setup function executes. This

function executes once when the Arduino is powered on and will not be executed again until the

Arduino is reset or loses and regains power. The setup function for this project starts by

initializing communication between the Arduino and the RFID module. The switch objects are

initialized, and the speed of the motor is set as well. Next the LCD is initialized, a message is

printed to the screen indicating that the door will unlock, and the motor is activated to unlock the

door. Unlocking the door in the setup function is to ensure that the rest of the setup process will

take place without the possibility of locking the user out of the room permanently. The last line

of code in the setup function calls the changeCode function, which will allow the user to set the

desired passcode.

 87 void setup()

 88 {

 89 RFID.begin(9600); //Begin serial communication with RFID

reader.

 90

 91 unlockButton.begin(); //Initialize unlock pushbutton.

 92 resetSwitch.begin(); //Initialize reset switch.

 93

 94 motor.setSpeed(60); //Set speed of motor at 60 rpm.

 95

 96 lcd.begin(16, 2); //Set up 16x2 LCD.

 97

 98 lcd.createChar(0, UNLOCK); //Creates a custom char called

UNLOCK.

 99 lcd.createChar(1, LOCK); //Creates a custom char called

LOCK.

100

101 lcd.clear(); //Clear LCD screen and set cursor to top

left corner.

102 lcd.write((byte)0); //Print 'unlock' character to LCD

screen.

103 lcd.print(" Door unlocked."); //Print unlocked message to

14

LCD screen.

104 motor.step(STEPS_PER_SLIDE); //Activate motor to unlock

door.

105

106 changeCode(); //Call changeCode function to set passcode.

107 }

The Loop Function

After the setup function is executed, the code begins executing the loop function. This

function is a continuous loop and will be executed repeatedly until the Arduino is disconnected

from power. The loop function for this project begins by calling the getNumOfGoodTags

function, which will allow the user to enter how many RFID tags they wish to set up. Next, the

goodTags array is initialized with that number of pointers, and memory is allocated to each

pointer in the array to allow for the storage of the unique 10-character code of each RFID tag.

The next if statement will only execute when the Arduino is in setup mode, meaning that it will

only execute on the first iteration of the loop function. The code inside this if statement will lock

the door and end setup mode.

110 void loop()

111 {

112 getNumOfGoodTags(); //Call get getNumOfGoodTags function.

113

114 char *goodTags[numOfGoodTags]; //Set up an array of

pointers to store the value of authorized tags.

115 for (int i = 0; i < numOfGoodTags; i++)

116 {

117 goodTags[i] = (char *)malloc(10 * sizeof(char));

//Alloc memory to pointers in goodTags array.

118 }

119

120 changeTags(goodTags); //Call changeTags function.

121

122 delay(1000);

15

123

124 if (setUp) //If program is in setup mode...

125 {

126 motor.step(-STEPS_PER_SLIDE); //Activate motor to lock

door.

127

128 lcd.clear(); //Clear LCD screen and set cursor to top

left corner.

129 lcd.write((byte)1); //Print 'lock' character to LCD

screen.

130 lcd.print(" Door Locked"); //Print door locked message.

131

132 delay(1000);

133

134 setUp = false; //Exit setup mode.

135 }

 Once the set up is complete, the LCD is cleared and a custom character indicating that the

door is locked is printed to the screen as well as a prompt to scan an RFID fob or enter the

passcode. The Arduino the enters a while loop, which will run until an authorized user selects the

option to change the authorized RFID tags. The code in this while loop is the main part of the

code for this project. It checks the state of the unlockButton object and sets the unlock variable to

‘true’ when the button is pushed. If the unlock button is not pushed, the availability of serial data

from the RFID reader is checked. If there is data available, the getTag function is called which

will read the serial data and store it in an array, then the compareTags function is called which

will compare the array created by the getTag function to the goodTags array. If there was no

serial data available and the unlock button was not pressed, then the state of the keypad will be

read. If a key was pressed, two conditions will be checked. The first condition to be checked is

whether the door is unlocked. If the door is unlocked, then the value of the key that was pressed

will also be checked. If the value of the key that was pressed while the door was unlocked is ‘*’

the changeCode function will be called to allow the user to set a new passcode. If the value of the

key pressed while the door was unlocked is ‘#’ the while loop will be broken, causing the loop

16

function to end and execute again from the top which will force the goodTags array to be set up

again. If the door was not unlocked when a key was pressed, the getCode function will be called

to store the value of the key press in an array to later be compared to the passcode. After the

value of the key press is used in this block of code, the value of the key variable is reset to null.

137 lcd.clear(); //Clear LCD screen and set cursor to top

left corner.

138 lcd.write((byte)1); //Print 'lock' character to LCD

screen.

139 lcd.print(" Scan fob or"); //Print input prompt.

140 lcd.setCursor(0,1);

141 lcd.print("enter code: ");

142

143 while (1) //Loop continuously

144 {

145 if (!unlockButton.read()) //If unlock button is

pressed...

146 {

147 unlock = true; //Set unlock variable to true.

148 }

149

150 else if (RFID.available() > 0) //If unlock button was

not pressed and serial data is available...

151 {

152 getTag();

153

154 compareTags(goodTags);

155 }

156

157 else //If unlock button was not pressed and serial data

was not available...

158 {

159 key = keypad.getKey(); //Read state of keypad.

160

161 if (key) //If key was pressed...

162 {

163 if (unlock == true && key == '*') //If door is

unlocked and '*' key was pressed.

164 {

165 changeCode(); //Call changeCode function.

166 }

17

167 else if (unlock == true && key == '#') //If door is

unlocked and '#' key was pressed.

168 {

169 break; //End continuous while loop, causing tag

values to be reinitialized.

170 }

171 else getCode(); //Call getCode function.

172

173 key = 00; //Reset key variable.

174 }

175 }

The last part of the while loop checks whether the door should unlock and whether the

motor has been activated. If the door should unlock and the motor has not yet been activated, the

unlockDoor function is called, which will activate the motor, unlock the door, and record the

time at which the door was unlocked. If five seconds have passed since the door was unlocked,

the reset switch is pressed, and the motor has been activated, the lockDoor function will be called

which will lock the door.

177 if (unlock && !motorDone) //If door should unlock and

motor has not yet been activated...

178 {

179 unlockDoor(); //Call unlockDoor function.

180 }

181 else if ((millis() > (unlockTime + 5000)) &&

!resetSwitch.read() && motorDone) //If door is closed, 5

seconds have passed since door was unlocked, and motor was

actived...

182 {

183 lockDoor(); //Call lockDoor function.

184 }

185 } //End while loop

186 } //End loop function

18

The changeCode Function

The changeCode function allows authorized users to change the passcode for the door

lock. It begins by setting up a local Boolean variable to use as a flag in the following while loop.

The code inside the while loop first clears the LCD and then prints a prompt to enter a new

passcode. The keys that are pressed are printed to the screen and stored in the passcode array

until it is full. Once four digits have been entered, a confirmation prompt is printed to the screen.

The while loop will then either reset and set up the passcode array again or terminate and end the

function based on the user’s choice.

189 void changeCode() //Function to change passcode.

190 {

191 bool done = false; //Local variable to determine whether

or not to terminate function.

192

193 while (!done) //While done is false...

194 {

195 lcd.clear(); //Clear LCD screen and set cursor to top

left corner.

196 lcd.print("Enter new code:"); //Print new passcode

prompt to LCD screen.

197 lcd.setCursor(0,1); //Set position of LCD cursor to

first char of second line.

198

199 for (int i = 0; i < 4; i++)

200 {

201 do

202 {

203 key = keypad.getKey(); //Call getKey function.

204 } while (key == 00); //Loop until new key press is

detected.

205

206 passcode[i] = key; //Set each digit of passcode to

the value of the button that was pressed on keypad.

207

208 lcd.print(key); //Print value of key to LCD screen.

209

210 key = 00; //Reset key.

19

211 }

212

213 delay(1000);

214 lcd.clear(); //Clear LCD screen and set cursor to top

left corner.

215 lcd.print("Hit * to accept,"); //Pring confirmation

prompt.

216 lcd.setCursor(0,1);

217 lcd.print("# to reset.");

218

219 do

220 {

221 key = keypad.getKey(); //Call getKey function.

222

223 if (key == '*')

224 {

225 done = true; //Set done to true if key pressed is

'*'.

226 }

227 } while (key == 00); //Loop until new key press is

detected.

228

229 key = 00; //Reset key.

230 }

231 }

The getCode Function

The getCode function compares the set passcode to the code entered by someone trying

to unlock the door. The function sets up a static local integer variable to store the number of

digits entered so far by the user, and a local integer variable to store the number of digits entered

that match the set passcode. The value of the key pressed by the user is stored in the next

available index in the codeEntered array, and the count variable is incremented. Once four digits

have been entered, the codeEntered array is compared to the passcode array. If any digits do not

20

match, the comparison will stop, and the function will terminate. If all four digits match, the

unlock variable will be set to true before the function terminates.

234 void getCode()

235 {

236 static int count = 0; //Static local variable to store

number of keys pressed.

237

238 int goodDigits = 0; //Local variable to store number good

digits detected.

239

240 codeEntered[count] = key; //Store the value entered for

key in the proper index of codeEntered.

241

242 lcd.print('*');

243

244 count++; //Increment count.

245

246 if (count == 4)

247 {

248 delay(500);

249

250 count = 0; //Reset count once codeEntered has all 4

digits.

251

252 for (int i = 0; i < 4; i++) //Loop to compare

codeEntered to passcode.

253 {

254 if (codeEntered[i] == passcode[i]) //If codeEntered

matches...

255 {

256 goodDigits++; //count the number of matching digits.

257 }

258 else //If codeEntered does not match...

259 {

260 lcd.setCursor(11,1); //Clear *'s from LCD screen

and set cursor at 11,1.

261 lcd.print(" ");

262 lcd.setCursor(11,1);

263

264 break; //Stop comparing if a digit does not match.

265 }

21

266 }

267

268 if (goodDigits == 4) //If all 4 digits matched...

269 {

270 unlock = true; //Set unlock variable to true.

271 }

272 }

273 }

The changeTags Function

The changeTags function accepts an array of character pointers as an argument and sets

up the tags that will be for authorized users. The first while loop clears the serial buffer to ensure

that the data read is good. The subsequent for loop will iterate once for each good tag that is to

be set up. The loop will prompt the user to scan a tag and wait for them to do so. Once a tag is

scanned, the data is checked for the Start of Text character. If it is detected, data that was read

will be stored in the first row of the tagsToSetUp array. When the goodTags array is passed by

reference to this function, the goodTags array will also be updated with this data. Once the tag

data is successfully stored in the array, extra characters are removed from the serial buffer and a

confirmation message is printed to the screen.

276 void changeTags(char *tagsToSetUp[]) //Function to change

goodTag.

277 {

278 while (RFID.available() > 0)

279 {

280 RFID.read(); //Clear buffer to ensure a good read.

281 }

282

283 for (int j = 0; j < numOfGoodTags; j++)

284 {

285 lcd.clear(); //Clear LCD screen and set cursor to top

left corner.

286 lcd.print("Scan tag #"); //Print scan tag prompt to LCD

22

screen.

287 lcd.print(j+1);

288

289 while (RFID.available() == 0); //Wait for serial data

before continuing

290

291 delay(20); //Wait to ensure all data arrives in buffer

before reading.

292

293 if (RFID.peek() == 2) //If Start of Text char is

detected...

294 {

295 RFID.read(); //Clear Start of Text character from the

buffer.

296

297 for (int i = 0; i < 10; i++) //Read the ten

characters of tag data.

298 {

299 tagsToSetUp[j][i] = RFID.read();

300 }

301

302 RFID.read(); //Clear first checksum from buffer.

303 RFID.read(); //Clear second checksum from buffer.

304 RFID.read(); //Clear a carriage return from the

buffer.

305 RFID.read(); //Clear a line feed character form the

buffer.

306

307 while (RFID.available() > 0) //Wait for data to

become unavailable.

308 {

309 RFID.read();

310 }

311 }

312 else //Start of Text char was not detected.

313 {

314 while (RFID.available() > 0)

315 {

316 RFID.read(); //Clear buffer.

317 }

318 }

319

320 lcd.clear(); //Clear LCD screen and set cursor to top

left corner.

23

321 lcd.print("New tag accepted"); //Print scan tag prompt

to LCD screen.

322

323 delay(1000);

324 }

325 }

The getNumOfGoodTags Function

The getNumOfGoodTags function gets the number of desired authorized RFID tags from

the user. The maximum number of authorized tags is 99. A local array of characters is used to

store the keypad input from the user, a local integer variable is used to count the number of loop

iterations, and a local Boolean variable is used as a flag to determine whether a loop should

continue. A prompt for the user to enter the desired number of tags is printed to the LCD, and a

while loop begins. Inside the while loop, the state of the keypad is read, and if a number is

pressed, the value is stored in the least significant digit of the numberOfTags array. If a second

number is entered, the value is stored in the most significant digit of the numberOfTags array. If

the key pressed is ‘*’ or ‘#’, the loop will either terminate or the numberOfTags array and

counter variable will be reset to begin again. Once the loop is terminated, the characters in the

numberOfTags array are converted to a single string variable with the digits in their proper

places. This string variable is then converted to an integer and stored in the global

numOfGoodTags variable and a confirmation message is printed to the LCD screen.

328 void getNumOfGoodTags()

329 {

330 char numberOfTags[] = "xx"; //Array of char variables to

hold number of authorized tags.

331

332 int counter = 0; //Variable to count loop iterations.

333

24

334 bool setUp = true; //Flag variable to determine whether

set up loop should continue.

335

336 lcd.clear(); //Clear LCD screen and set cursor to top

left corner.

337 lcd.print("Enter desired #"); //Print input prompt to LCD

screen.

338 lcd.setCursor(0,1);

339 lcd.print("of allowed tags.");

340

341 while (setUp) //Set up loop.

342 {

343 key = keypad.getKey();

344

345 if ((key != '*') && (key != '#') && (key != 00))

346 {

347 numberOfTags[counter] = key; //Store key in the least

significant open digit in numberOfTags[].

348

349 counter++; //Decrement counter.

350

351 lcd.clear(); //Clear LCD screen and set cursor to top

left corner.

352 lcd.print("Hit * to accept"); //Pring confirmation

prompt.

353 lcd.setCursor(0,1);

354 lcd.print("# to reset.");

355

356 }

357 else if (key == '*')

358 {

359 setUp = false; //End set up loop.

360 }

361 else if (key == '#')

362 {

363 counter = 0; //Reset counter.

364 numberOfTags[0] = 'x';

365 numberOfTags[1] = 'x';

366 lcd.clear(); //Clear LCD screen and set cursor to top

left corner.

367 lcd.print("Enter desired #"); //Print input prompt to

LCD screen.

368 lcd.setCursor(0,1);

369 lcd.print("of allowed tags.");

25

370 }

371

372 key = 00; //Reset key.

373 }

374

375 String numOfTagString = ""; //Create empty string to store

number of tags.

376

377 if (numberOfTags[1] == 'x') //If a single digit number was

entered...

378 {

379 numOfTagString = numberOfTags[0]; //Store desired number

of tags in numOfTagString.

380 }

381 else

382 {

383 for (int i = 0; i < 2; i++)

384 {

385 numOfTagString = numOfTagString + numberOfTags[i];

//Store desired number of tags in numOfTagString.

386 }

387 }

388

389 numOfGoodTags = numOfTagString.toInt(); //Convert string

to integer and set number of authorized tags.

390

391 lcd.clear();

392 lcd.print(numOfGoodTags);

393 lcd.print(" tags will");

394 lcd.setCursor(0,1);

395 lcd.print("be set up.");

396

397 delay(1000);

398 }

The getTag Function

The getTag function reads data from the RFID reader and stores it in an array to be

compared to the goodTags array later. The reading process in this function is the same as the

26

process in the changeTags function, but only one 10-character tag is read, and its value is stored

in the readTag array.

401 void getTag() //Function to read RFID input.

402 {

403 delay(20); //Wait for 20ms to ensure all data arrives in

serial buffer before reading.

404

405 if (RFID.peek() == 2) //If Start of Text char is

detected...

406 {

407 RFID.read(); //Clear Start of Text character from the

buffer.

408

409 for (int i = 0; i < 10; i++) //Read the ten characters

of tag data.

410 {

411 readTag[i] = RFID.read();

412 }

413

414 RFID.read(); //Clear first checksum from buffer.

415 RFID.read(); //Clear second checksum from buffer.

416 RFID.read(); //Clear a carriage return from the buffer.

417 RFID.read(); //Clear a line feed character form the

buffer.

418

419 while (RFID.available() > 0)

420 {

421 RFID.read(); //Clear buffer.

422 }

423 }

424 else //Start of Text char was not detected.

425 {

426 while (RFID.available() > 0)

427 {

428 RFID.read(); //Clear buffer.

429 }

430 }

431 }

27

The compareTags Function

The compareTags function accepts an array of character pointers as an argument and

compares the value of the tags stored in the passed array to the value stored in the goodTag

array. The function uses a Boolean variable as a flag to determine whether the goodTag array

matches any of the tags stored in the tagsToCompareTo array. If any of the tags in the

tagsToCompareTo array match the tag in the goodTag array, the unlock variable is set to true.

Otherwise, the function terminates without changing anything.

434 void compareTags(char *tagsToCompareTo[])

435 {

436 bool tagsMatch; //Variable to store whether readTag

matches an authorized tag.

437

438 for (int j = 0; j < numOfGoodTags; j++) //Outer loop to

compare readTag to authorized tags.

439 {

440 tagsMatch = true; //Reset tagsMatch.

441

442 for (int i = 0; i < 10; i++) //Inner loop to compare

readTag to authorized tags.

443 {

444 if (readTag[i] != tagsToCompareTo[j][i]) //If chars

do not match...

445 {

446 tagsMatch = false; //Update match.

447 break; //End inner for loop.

448 }

449 }

450

451 if (tagsMatch) //If readTag matched an authorized

tag...

452 {

453 unlock = true; //Set unlock variable to true.

454 break; //End outer for loop.

455 }

456 }

457 }

28

The unlockDoor Function

The unlockDoor function prints a message to the LCD to indicate the door will unlock

and then activates the motor to unlock the door. The global motorDone variable is then set to

‘true’ and the value of the millis function, which counts the milliseconds since the program

began executing, is recorded in the global unlockTime variable.

460 void unlockDoor() //Function to control locking mechanism.

461 {

462 lcd.clear(); //Clear LCD screen and set cursor to top

left corner.

463 lcd.write((byte)0); //Print 'unlock' character to LCD

screen.

464 lcd.print(" Door unlocked."); //Print unlocked message to

LCD screen.

467

468 motor.step(STEPS_PER_SLIDE); //Activate motor to unlock

door.

469

470 motorDone = true; //Update motorDone.

471

472 unlockTime = millis(); //Set new value for unlockTime.

473 }

The lockDoor Function

The lockDoor function activates the motor to lock the door, resets the global unlock and

motorDone variables, and prints a prompt for the user to scan a fob or enter the code to the LCD.

476 void lockDoor() //Function to lock door.

477 {

478 motor.step(-STEPS_PER_SLIDE); //Activate motor to lock

door.

479

480 unlock = false; //Reset unlock condition.

481

482 motorDone = false; //Reset motorDone condition.

29

483

484 lcd.clear(); //Clear LCD screen and set cursor to top

left corner.

485 lcd.write((byte)1); //Print 'lock' character to LCD

screen.

486 lcd.print(" Scan fob or"); //Print input prompt.

487 lcd.setCursor(0,1);

488 lcd.print("enter code: ");

489 }

30

Budget and Parts List

 The goal for the project was to keep the total cost under $200. This goal was

accomplished with the total cost amounting to just under $130. This price puts the development

cost of the project in a very similar price range to the retail price of similar electronic locks. A

list of parts along with their estimated and actual costs can be found below.

ITEM Estimated Cost Actual Cost

ID12LA RFID Reader $30.00 $29.95

Arduino Nano $20.00 $18.63

16x2 LCD $10.00 $3.25

3x4 Matrix Keypad $3.00 $4.50

Stepper Motor and Driver $5.00 $16.19

PCBs $60.00 $5.74

Misc. Resistors (5 @ $0.008 each) $5.00 $0.04

Housing $30.00 $19.99

Locking Mechanism $20.00 $14.99

Pushbutton $2.00 $1.13

Battery $3.00 $4.50

Limit Switch $2.00 $0.50

Diodes $1.00 $0.60

Power Supply $6.00 $5.95

Barrel Jack Connector $2.00 $1.25

Total $199.00 $127.21

31

Results

 The result of following the methodology and implementing the software described above

was a fully functioning electronic door lock. The Arduino control circuit and user interface were

placed in the two separate housings to allow for their proper separation, and the stepper motor,

spindle, and door latch were assembled and tested. However, on the first test run of the circuit,

two problems were discovered. First, the stepper motor that was being used could not provide

sufficient torque to turn the spindle while in the door latch, and second, the LCD was not

displaying any characters.

The first issue was resolved by purchasing a more powerful stepper motor (a NEMA-17)

and driver (a BIQU A4988 driver board). In order to accommodate this change, the old driver

was removed from the PCB and a jumper wire was added, connecting the positive supply voltage

to the pin headers that were previously used to connect to the motor. These adjustments to the

PCB allowed for new pin headers to be soldered to the board which could be used to connect to

the new motor and driver.

 The second issue was resolved by removing the LCD from the project and testing it

independently. The independent test of the LCD yielded the same results as the project test, with

the LCD showing no characters. A second LCD was tested using the same circuit as the previous

independent test, and it resulted in the LCD working as expected. From this result, it was

determined that the first LCD was somehow damaged and was deemed inoperable. The second

LCD was then tested in the project, but again no characters were displayed on the screen.

Another independent test of the second LCD was conducted, this time with the same resistor

divider being used to set the contrast as is present in the project. This test confirmed that the

32

resistor divider in the circuit needed to be adjusted, and through trial and error, new values for

the resistor divider were selected.

 Once the two issues described above were resolved, the final circuit worked as intended,

with the user interface accepting input data and passing it to the Arduino, and the Arduino in turn

writing to the LCD and activating the motor when appropriate. Images of the control circuit and

user interface in their housings and of the motor and latch can be found below.

Figure 6

Figure 7

Figure 8

33

Conclusion

 Overall, the project was a success. The goal of designing and creating an electronic

locking mechanism which could be used for personnel access control was achieved, as well as

the goal of remaining in a budget under $200, with the total cost of development reaching just

under $130. While there were some minor issues in the development of the project, there were no

major delays or obstacles that degraded the quality of the final product. The results of this project

show that it is possible to create an electronic locking mechanism that has a greater level of

security than a relay or solenoid controlled mechanism without greatly increasing the price of

such devices.

34

References

LockPickingLawyer. (n.d.) Home [YouTube Channel].

 https://www.youtube.com/c/lockpickinglawyer/featured

The Home Depot. (n.d.). Retrieved April 12, 2021, from

https://www.homedepot.com/b/Hardware-Door-Hardware-Door-Locks-Keyless-

DoorLocks/N-5yc1vZc2bdZ12l3/Ntk-EnrichedProductInfo/Ntt-

electronic%2Bdoor%2Block?NCNI-

5&sortby=bestmatch&sortorder=none&storeSelection=

Smith, J. P. (2016, February 22). Create your own battery backup power supplies - projects.

Retrieved from https://www.allaboutcircuits.com/projects/battery-backup-power-

supplies/

https://www.youtube.com/c/lockpickinglawyer/featured
https://www.homedepot.com/b/Hardware-Door-Hardware-Door-Locks-Keyless-DoorLocks/N-5yc1vZc2bdZ12l3/Ntk-EnrichedProductInfo/Ntt-electronic%2Bdoor%2Block?NCNI-5&sortby=bestmatch&sortorder=none&storeSelection=
https://www.homedepot.com/b/Hardware-Door-Hardware-Door-Locks-Keyless-DoorLocks/N-5yc1vZc2bdZ12l3/Ntk-EnrichedProductInfo/Ntt-electronic%2Bdoor%2Block?NCNI-5&sortby=bestmatch&sortorder=none&storeSelection=
https://www.homedepot.com/b/Hardware-Door-Hardware-Door-Locks-Keyless-DoorLocks/N-5yc1vZc2bdZ12l3/Ntk-EnrichedProductInfo/Ntt-electronic%2Bdoor%2Block?NCNI-5&sortby=bestmatch&sortorder=none&storeSelection=
https://www.homedepot.com/b/Hardware-Door-Hardware-Door-Locks-Keyless-DoorLocks/N-5yc1vZc2bdZ12l3/Ntk-EnrichedProductInfo/Ntt-electronic%2Bdoor%2Block?NCNI-5&sortby=bestmatch&sortorder=none&storeSelection=

	Electronic Locking Mechanism
	Recommended Citation

	tmp.1619119008.pdf.5b3bP

