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Most existing multiview clustering methods require that graph matrices
in different views are computed beforehand and that each graph is ob-
tained independently. However, this requirement ignores the correlation
between multiple views. In this letter, we tackle the problem of multi-
view clustering by jointly optimizing the graph matrix to make full use of
the data correlation between views. With the interview correlation, a con-
cept factorization–based multiview clustering method is developed for
data integration, and the adaptive method correlates the affinity weights
of all views. This method differs from nonnegative matrix factorization–
based clustering methods in that it can be applicable to data sets con-
taining negative values. Experiments are conducted to demonstrate the
effectiveness of the proposed method in comparison with state-of-the-
art approaches in terms of accuracy, normalized mutual information, and
purity.

1 Introduction

In data analysis, instances are often represented in heterogeneous views.
For example, an image is represented by various feature extractors; a web
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page is described by the words on the page and the words in hyperlink
that point to the page; a user’s information is fused and analyzed from
different social networks (Jia et al., 2016); and a video includes dynamic
images, sound, and subtitles (Yang et al., 2012; Yang, Zhang, & Xu, 2015;
Yan et al., 2016) Multiview learning uses the correlations between views
to obtain higher performance than using any single-view features (Blum &
Mitchell, 1998; Bickel & Scheffer, 2004; Kakade & Foster, 2007; Zhan, Zhang,
Guan, & Wang, 2017).

Multiview clustering starts with a series of works on cotraining meth-
ods. Cotraining methods train models separately on each view and it-
eratively learn for each model through the exploitation of disagreement
between models (Blum & Mitchell, 1998); the reasons for the success of co-
training methods have been investigated by Balcan, Blum, and Yang (2004)
and Wang and Zhou (2010). Spectral clustering is one of the most popular
clustering approaches. Taking advantage of the well-defined mathematical
framework of spectral clustering (Shi & Malik, 2000; Ng, Jordan, & Weiss,
2002; Zelnik-Manor & Perona, 2004; Von Luxburg, 2007; Yang, Xu, Nie,
Yan, & Zhuang, 2010), many multiview clustering methods are proposed
(Blaschko & Lampert, 2008; Kumar & Daumé, 2011; Kumar, Rai, & Daume,
2011; Cai, Nie, Huang, & Kamangar, 2011; Xia, Pan, Du, & Yin, 2014; Li, Nie,
Huang, & Huang, 2015). However, the drawbacks of these spectral clus-
tering methods are that the performance of these methods highly depends
on the precomputed affinity graph matrix, involves time-consuming calcu-
lation of eigenvectors of high-dimensional matrices, and the eigenvectors
obtained have no direct relationship to the semantic structure of the data
sets. Nonnegative matrix factorization (NMF) methods have recently been
applied to multiview clustering with impressive results (Liu, Wang, Gao,
& Han, 2013; Zhang, Zhao, Zong, Liu, & Yu, 2014) because the results of
NMF-based clustering approaches have better semantic interpretation (Xu,
Liu, & Gong, 2003; Xu & Gong, 2004; Ding, He, & Simon, 2005) and these
NMF-based methods can be implemented by novel multiplicative update
rules. However, a limitation of these NMF-based methods is that they are
not applicable to data sets containing negative values.

Concept factorization (CF), a variant of NMF, can be used to process
arbitrary data sets even though they have negative values, and CF inher-
its the advantage of the multiplicative update rules of NMF. Using these
two advantages of CF, we apply an adaptive CF-based method to multi-
view clustering in this letter. We use an adaptive graph term to capture
the local intrinsic geometrical structure of the data space (Cai, He, & Han,
2011), and the similarity between the data points is measured based on
the new representations. We take all the data points in each view into
consideration to optimize elements of the graph matrix in a global view
by assuming that there is a larger probability that data points with a small
distance between them will be neighbors. Our algorithm uses novel update
rules to effectively find a solution to a well-designed optimization problem.
Aconvergence analysis is also provided. Extensive empirical results on nine
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data sets show that the proposed multiview clustering method achieves bet-
ter clustering results than state-of-the-art approaches.

This letter makes the following contributions. First, The proposed
method jointly optimizes the graph matrix to make full use of the data corre-
lation between views for multiview clustering. The novelty lies in learning
one affinity graph from multiview data to address the correlation between
views and avoid exploit construction of single graphs. Second, the proposed
method can process arbitrary data sets even though they contain negative
values, and the CF-based method has a better semantic interpretation (Xu
et al., 2003; Xu & Gong, 2004; Ding et al., 2005) than spectral clustering-
based methods. Finally, we propose a multiview clustering algorithm that
combines concept factorization and locality-preserving methods in a uni-
fied optimization problem and solves this hard optimization problem with
alternating optimization. The effectiveness of the algorithm is evaluated on
nine data sets for the multiview clustering problem.

The remainder of the letter is organized as follows. In section 2, we pro-
pose an adaptive graph-regularized multiview concept factorization algo-
rithm. We incorporate the correlation among multiple views to improve
the performance of existing concept factorization clustering algorithms by
jointly optimizing the graph matrix. In section 3, we propose a novel al-
gorithm to optimize the well-designed objective function in section 2. In
section 4, we present numerical experiments and comparison results. We
use nine data sets and compare them with seven state-of-the-art methods.
Section 5 concludes with some discussion.

2 Multiview Concept Factorization

Let X = [x1, x2, . . . , xn] ∈ R
d×n denote the data matrix. Each data point xi is

represented by a d-dimensional feature vector. NMF aims to find a d × k
nonnegative matrix U and a k × n nonnegative matrix H where the product
of the two factors is an approximation to X, represented as X ≈ UH (Lee
& Seung, 1999). Because of the two nonnegative factors U and H, only a
nonnegative data matrix can be factorized by NMF. CF is proposed to ad-
dress the problem. CF models each cluster as a linear combination of the
data points, and each data point is a linear combination of the cluster cen-
ter. CF can be used to process any data sets even if they contain negative
data points, and CF can be solved quickly by multiplicative update rules.
In CF, uc ∈ R

d×1, each column vector of U denotes the center of the cluster
c where c ∈ {1, 2, . . . , k}. These centers are represented by a linear combina-
tion of the data points U = XW where W ≥ 0 (Xu & Gong, 2004). Thus, the
basic form of CF tries to optimize the following problem:

min
W,H

‖X − XWH‖2
F

s.t. W ≥ 0, H ≥ 0 . (2.1)



Adaptive Structure Concept Factorization for Multiview Clustering 1083

It is straightforward to check that the objective function, equation 2.1,
suffers from scale ambiguity: if W and H are the solution, then WM and
M−1H are also a solution for any positive diagonal matrix M. To eliminate
this uncertainty, in practice, the Euclidean length of each column vector in
matrix U = XW is required to be 1 (i.e., w�

c X�Xwc = 1) (Xu et al., 2003; Xu
& Gong, 2004; Cai, He et al., 2011), and the matrix H is adjusted accordingly
so that XWH does not change, which can be achieved by

W ← W[diag(W�X�XW)]−
1
2 , (2.2)

H ← H[diag(W�X�XW)]
1
2 , (2.3)

where the function diag(·) sets all of the nondiagonal elements of a matrix
to zeros.

However, CF considers only the global Euclidean geometry. The local
geometric structure can be effectively modeled through a nearest-neighbor
graph on a scattering of data points (Chung, 1997; Belkin & Niyogi, 2001;
He & Niyogi, 2003). To preserve the local structure of the data set, following
previous work on adaptive neighbors (Nie, Wang, & Huang, 2014), we ex-
ploit the local geometry of the data distribution by optimizing elements of
the graph matrix in a global view. Given nv types of heterogeneous views,
v = 1, 2, . . . , nv , and instead of using precomputed graph matrices, a graph
matrix can be learned by solving the following problem,

min
si j

n∑
i, j=1

(
nv∑

v=1

αv‖hv
i − hv

j‖2
2

)
(si j )λ

s.t. ∀ j, s j ≥ 0, 1�s j = 1, (2.4)

where si j is an element of the affinity matrix and denotes the probability of
the two data points xi and x j connecting with each other. If xi and x j are
close to each other, si j is seen to be a relatively larger value, s j is the jth
column of S, parameter λ is used to control the distribution of si j, and αv

denotes the weight of vth view.
Let Xv ∈ R

dv×n denote the data matrix in the vth view. We incorporate
equation 2.4 as an additional term of CF:

min
Wv ,Hv ,si j

nv∑
v=1

αv

⎛
⎝‖Xv − XvWvHv‖2

F +
n∑

i, j=1

‖hv
i − hv

j‖2
2(si j )λ

⎞
⎠

s.t. ∀ v, Wv ≥ 0, Hv ≥ 0,∀ j, s j ≥ 0, 1�s j = 1. (2.5)

However, problem 2.5 has a trivial solution with respect to αv , since only
one view weight may be learned to 1 and others are 0. If we solve the
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following problem,

min
αv

nv∑
v=1

(αv )2

s.t. ∀ v, αv ≥ 0,

nv∑
v=1

αv = 1, (2.6)

the optimal solution is that all views can be obtained from the same view
weight 1

nv , which can be seen as a prior in the view weight assignment.
It is clearly difficult to specify the weights αv in equation 2.5 without

prior knowledge. By combining equations 2.5 and 2.6, the weight of each
view can be learned adaptively, which reflects the importance of the corre-
sponding views. We then propose the following overall objective function,

O = min
Wv ,Hv ,αv ,si j

nv∑
v=1

αv
(
‖Xv − XvWvHv‖2

F

+
n∑

i, j=1

‖hv
i − hv

j‖2
2(si j )λ

)
+ γ

nv∑
v=1

(αv )2

s.t. ∀ v, Wv ≥ 0, Hv ≥ 0, αv ≥ 0,

nv∑
v=1

αv = 1,

∀ j, s j ≥ 0, 1�s j = 1, (2.7)

where γ is the regularization parameter.
As opposed to precomputing the affinity graphs, the graph in equation

2.7 is learned by globally modeling all the features from multiple views,
making the multiview learning procedures mutually beneficial and recip-
rocal. In the following section, we describe a novel solution for obtaining the
local optima to solve the objective function in equation 2.7. In equation 2.7,
the first term is CF, the second term is the manifold regularization, and the
third term is �2-norm regularization. The first term is used to learn the low-
dimensional data representation Hv because most NMF-based methods are
applied to data clustering. The second term is used to add a manifold reg-
ularization so that the data structure of the original space is still perserved
in low-dimensional manifold. The third term is used to avoid the trivial
solution of the view-weight αv .

3 Optimization

3.1 Algorithm Derivation. We optimize equation 2.7 with the following
three steps.
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Step 1. First, we fix αv and si j for all v, i, and j, updating Wv and Hv for
each v independently. Then equation 2.7 becomes

O1 = min
Wv ,Hv

‖Xv − XvWvHv‖2
F +

n∑
i, j=1

‖hv
i − hv

j‖2
2(si j )λ

s.t. Wv ≥ 0, Hv ≥ 0. (3.1)

Defining Kv = (Xv )�Xv , we can rewrite the objective function, equation
3.1, as

‖Xv − XvWvHv‖2
F +

n∑
i, j=1

‖hv
i − hv

j‖2
2(si j )λ

= Tr
(
(Xv − XvWvHv )�(Xv − XvWvHv )

)

+ 2

⎛
⎝ n∑

i=1

hidiih
�
i −

n∑
i, j=1

hi(si j )λh�
j

⎞
⎠

= Tr
(
(I − WvHv )�Kv (I − WvHv )

) + 2
(
Tr(HvD(Hv )�)

− Tr(HvS(Hv )�)
)

= Tr
(
Kv − 2(Hv )�(Wv )�Kv + (Hv )�(Wv )�KvWvHv

)
+ 2Tr(HvL(Hv )�), (3.2)

where I ∈ R
n×n is an identity matrix, S = [(si j )λ] , D is a diagonal matrix and

its elements are column sums of S, dii = ∑
j(si j )λ, L = D − S is the graph

Laplacian (Chung, 1997), and Tr(·) denotes the trace operator.
The multiplicative update algorithm of equation 3.1 is based on the fol-

lowing theorem proposed by Sha, Lin, Saul, and Lee (2007).

Theorem 1. The minimization of the quadratic objective function f (y) = 1
2 y�Ay

+ b�y is

min
y

1
2

y�Ay + b�y

s.t. y ≥ 0, (3.3)

where A = [ai j] is an arbitrary n × n symmetric semipositive matrix and b = [bi]
is an arbitrary n × 1 vector. The iterative solution is expressed in terms of the
positive component A+ and negative component A− of the matrix A in equation
3.3:
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a+
i j =

{
ai j, if ai j > 0;
0, otherwise,

(3.4)

a−
i j =

{
|ai j|, if ai j < 0;
0, otherwise.

(3.5)

It is straightforward to find that A = A+ − A−. The solution yi that minimizes
equation 3.3 can be obtained by the following update rule:

yt+1
i ← yt

i

⎡
⎣−bi +

√
b2

i + 4(A+yt )i(A−yt )i

2(A+yt )i

⎤
⎦ . (3.6)

It can be seen from equation 3.2 that O1 is a quadratic form of Wv or Hv ,
so equation 3.6 can be applied to solve the objective function O1 and the
corresponding A and bi need to be identified. By fixing Hv , the part bw

i for
the quadratic form of O1(Wv ) can be obtained by performing its derivative
with respect to Wv at W = 0,

bw
i = ∂O1(Wv )

∂wic

∣∣∣∣
Wv=0

= −2
(
Kv (Hv )�

)
ic, (3.7)

and the part Aw for the quadratic form of O1(W) can be obtained by per-
forming the second-order derivative with respect to W:

Aw = ∂2O1(Wv )
∂wic∂w js

= 2kv
i j(H

v
(
Hv )�

)
cs. (3.8)

Substituting Aw and bw
i into equation 3.6, we obtain the update rule of

wic,

wt+1
ic ← wt

ic

bw
i +

√
(bw

i )2 + 4(Q+)ic(Q−)ic

2(Q+)ic
(3.9)

where Q+ = (Kv )+WvHv (Hv )�, Q− = (Kv )−WvHv (Hv )�, (Kv )+ and (Kv )−

denote the nonnegative matrices with elements,

(kv
i j )

+ =
{

kv
i j, if kv

i j > 0;
0, otherwise,

(3.10)
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(kv
i j )

− =
{

|kv
i j|, if kv

i j < 0;
0, otherwise.

(3.11)

It is straightforward to check that Kv = (Kv )+ − (Kv )−.
Similarly, we can obtain the update rule of hic,

ht+1
ic ← ht

ic

bh
i +

√
(bh

i )2 + 4(P+)ic(P−)ic

2(P+)ic
(3.12)

where bh
i = (KvWv )ic, P+ = (WvHv )�(Kv )+Wv + 2D(Hv )�, and P− =

(WvHv )�(Kv )−Wv + 2S(Hv )�.
To avoid the scale ambiguity of equation 3.1, we also adopt the normal-

ization strategy of equations 2.2 and 2.3.
Step 2. We next fix si j, Wv , and Hv for all v, i, and j, solving αv . Then

equation 2.7 becomes

O2 = min
αv

nv∑
v=1

αv

⎛
⎝‖Xv − XvWvHv‖2

F +
n∑

i, j=1

‖hv
i − hv

j‖2
2(si j )λ

⎞
⎠

+ γ

nv∑
v=1

(αv )2

s.t. ∀v, αv ≥ 0,

nv∑
v=1

αv = 1. (3.13)

Denoting f v = ‖Xv − XvWvHv‖2
F + ∑n

i, j=1 ‖hv
i − hv

j‖2
2(si j )λ, we can solve

the objective function, equation 3.13, as

min
α

∥∥∥∥α + 1
2γ

f
∥∥∥∥

2

2

s.t. α ≥ 0, 1�α = 1, (3.14)

where α = [α1, α2, . . . , αnv ]� and f = [ f 1, f 2, . . . , f nv ]�.
The Lagrangian function of equation 3.14 is

L (α, η,β) =
∥∥∥∥α + 1

2γ
f
∥∥∥∥

2

2
+ ρ

(
1 − 1�α

) + β�(−α), (3.15)

where ρ and β are the Lagrangian multipliers.
According to the Karush-Kuhn-Tucker condition (Boyd & Vanden-

berghe, 2004), it can be verified that the optimal solution α is
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α =
(

− 1
2γ

f + ρ1
)

+
. (3.16)

Step 3. Our last step is to fix αv , Wv , and Hv for all v , solving si j. Then
equation 2.7 becomes

O3 = min
si j

nv∑
v=1

αv
n∑

i, j=1

‖hv
i − hv

j‖2
2(si j )λ

s.t. ∀ j, s j ≥ 0, 1�s j = 1. (3.17)

Denoting pi j = ∑nv

v=1 αv ||hv
i − hv

j ||22, equation 3.14 becomes

min
si j

n∑
i, j=1

(si j )λ pi j

s.t. ∀ j, s j ≥ 0, 1�s j = 1. (3.18)

The Lagrange function of equation 3.18 is

L
(
si j, η

) =
n∑

i, j=1

(si j )λ pi j − η

⎛
⎝ n∑

j=1

si j − 1

⎞
⎠ , (3.19)

where η is the Lagrangian multiplier.
The optimum si j can be obtained by calculating the first-order derivative,

equation 3.19, with respect to si j. By setting the derivative of the function
with respect to ai j to zero, we have

λ(si j )λ−1 pi j − η = 0. (3.20)

Hence,

si j =
(

η

λpi j

) 1
λ−1

. (3.21)

Substituting equation 3.21 into the constraint
∑n

j=1 si j = 1, we obtain

si j =
(
λpi j

) 1
1−λ∑n

j=1

(
λpi j

) 1
1−λ

=
(
pi j

) 1
1−λ∑n

j=1

(
pi j

) 1
1−λ

. (3.22)
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The algorithm for solving the problem, equation 2.7, is summarized in
algorithm 1.

3.2 Convergence Analysis.

Theorem 2. If we set the parameter λ to a value of larger than 1, the objective func-
tion O in equation 2.7 is nonincreasing with respect to one variable while holding
the others.

To prove theorem 2 and because O2 is a convex optimization prob-
lem and O3 is a convex optimization problem when λ > 1, we first prove
theorem 3:
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Theorem 3. The objective function O1 in equation 3.1 is nonincreasing under
the update rules in equations 3.9 and 3.12.

We use an auxiliary function as used in the expectation-maximization
algorithm (Dempster, Laird, & Rubin, 1977; Lee & Seung, 2001) to prove
the convergence of O1. The definition of the auxiliary function is given by
definition 1.

Definition 1. g(h, h′) is an auxiliary function for f (h) if the conditions

g(h, h′) ≥ f (h), g(h, h) = f (h) (3.23)

are satisfied.

Theorem 4. If g(h, ht ) is an auxiliary function of f (h), then f (h) is nonincreasing
under the update

ht+1 = arg min
h

g(h, ht ), (3.24)

where t is the number of iterations.

Proof. f (ht+1) ≤ g(ht+1, ht ) ≤ g(ht, ht ) = f (ht ). �

Thus, by iterating the update in equation 3.24, we obtain a sequence of
estimates that converge to a local minimum hmin = arg minh f (h) of the ob-
jective function f (h).

Note that the minimum of the objective function O1 in equation 3.1 is our
update rules in equations 3.9 and 3.12 with theorem 4 and proper auxiliary
functions. As the two update rules are based on theorem 1, we need the
proof of theorem 1:

Proof. The function

g(yi, yt
i )=

1
2

∑
i

(A+yt )i

yt
i

y2
i − 1

2

∑
i j

(A−)i jyt
i y

t
j

(
1 + log

yiy j

yt
i y

t
j

)
+

∑
i

biyi

(3.25)

is an auxiliary function for f (yi).
f (yi) can be decomposed as the combination of three terms:

f (yi) = 1
2

∑
i j

yia+
i j y j − 1

2

∑
i j

yia−
i jy j +

∑
i

biyi. (3.26)

Clearly, g(yi, yi) = f (yi). According to definition 1, we need to prove
g(yi, yt

i ) ≥ f (yi). Comparing equation 3.26 to 3.25 is equivalent to proving
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the following inequalities:

1
2

∑
i j

yia+
i jy j ≤ 1

2

∑
i

(A+yt )i

yt
i

y2
i , (3.27)

−1
2

∑
i j

yia−
i jy j ≤ −1

2

∑
i j

a−
i j y

t
i y

t
j

(
1 + log

yiy j

yt
i y

t
j

)
(3.28)

As the left of equation 3.27 is the quadratic function y�A+y, we suppose
that the right of that equation has a similar form y�Ky. We only need to
prove y�(K − A+)y ≥ 0. Defining δi j as the Kronecker delta function, K de-

notes the diagonal matrix with elements ki j = δi j
(A+yt )i

yt
i

:

y�(K − A+)y =
∑

i j

yiyt
i (ki j − a+

i j )y
t
jy j

=
∑

i j

a+
i j y

t
i y

t
jy

2
i −

∑
i j

a+
i jy

t
i y

t
jyiy j

= 1
2

∑
i j

a+
i jy

t
i y

t
j(yi − y j )2 ≥ 0. (3.29)

To prove equation 3.28, we use a simple inequality: x ≥ 1 + log x. Substitut-
ing x = yiy j

yt
i y

t
j

into the inequality,

yiy j ≥ yt
i y

t
j

(
1 + log

yiy j

yt
i y

t
j

)
; (3.30)

thus, g(yi, yt
i ) ≥ f (yi) holds with equations 3.29 and 3.30.

The minimization of equation 3.25 is performed by setting its derivative
to zero with respect to yi, leading to the update rule in equation 3.6. �

As O1 is a quadratic form of Wv or Hv , we have proved theorem 3. Again,
since objective functions O2 and O3 are convex optimization problems, the-
orem 2 is also proved.

3.3 Computational Complexity Analysis. The overall computational
complexity of the proposed algorithm is O(n2), where n is the number of
data points. The complexity of the first step in the algorithm is O(t1kn2),
where t1 is the number of iterations and k is the number of clusters. The
second step is O(t2nv ), where t2 is the number of iterations and nv is the
number of views. The third step is O(kn2nv ). Since n >> t1, n >> k, n >>

nv , and n >> t2, the overall complexity is O(n2).



1092 K. Zhan et al.

4 Experimental Results

4.1 Data Sets. 3-Sources is constructed from three well-known online
news sources: BBC, Reuters, and the Guardian. In total there are 948 news
articles covering 416 distinct news stories from February 2009 to April 2009.
Of these stories, 169 were reported in all three sources. Each story was man-
ually annotated with one of the six topical labels: business, entertainment,
health, politics, sport, and technology.

WebKB contains four subsets (Cornell, Texas, Washington, and Wiscon-
sin) of documents and is described by two views (content and citations).
Cornell contains 195 documents over five labels (student, project, course,
staff, and faculty). The documents are described by 1703 words in the con-
tent view and by the 569 links between them in the citations view. Texas,
Washington, and Wisconsin have the same structure and contain 187, 230,
and 265 documents, respectively.

Animals with Attributes (AwA) is an animal data set. We use four pub-
lished features for 500 images belonging to five classes. The features are
SIFT, Local Self-Similarity, PyramidHOG, and SURF, respectively.

Caltech101 is an object recognition data set. We select seven widely
used classes: Faces, Motorbikes, Dolla-Bill, Garfield, Snoopy, Stop-Sign,
and Windsor-Chair. We sample 441 data points from the data set in our
experiment.

Handwritten Numerals (Numerals) consists of 2000 data points for 0 to
9 10-digit classes. We use the four published visual features extracted from
each image: Fourier coefficients of the character shapes, profile correlations,
pixel averages in 2 × 3 windows, and Zernike moment.

Outdoor Scene (Scene) is an outdoor scene data set. This data set contains
2150 data points corresponding to 2150 color images, which belong to eight
outdoor scene categories: coast, mountain, forest, open county, street, inside
city, tall buildings, and highways.

4.2 Experimental Setup. We evaluate the performance of the proposed
multiview concept factorization (MVCF) method on the nine data sets.
MVCF is compared with state-of-the-art multiview clustering methods,
including multimodal spectral clustering (MMSC) (Cai, Nie et al., 2011),
cotrained spectral clustering (CTSC) (Kumar & Daumé, 2011), coregular-
ized spectral clustering (CRSC) (Kumar et al., 2011), multiview NMF clus-
tering (MultiNMF) (Liu et al., 2013), robust multiview k-means clustering
(RMKMC) (Cai, Nie, & Huang, 2013), robust multiview spectral cluster-
ing (RMSC) (Xia et al., 2014), and large-scale multiview spectral clustering
(MVSC) (Li et al., 2015), to demonstrate its effectiveness.

We compare MVCF with the following methods:

1. Single-view CF. We apply the proposed concept factorization frame-
work into each single view of all data sets to obtain the clustering
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results. To achieve this, we solve the optimization problem,

min
W,H,si j

‖X − XWH‖2
F +

n∑
i, j=1

‖hi − h j‖2
2(si j )λ

s.t. W ≥ 0, H ≥ 0,∀ j, s j ≥ 0, 1�s j = 1, (4.1)

where X denotes the data of each single view and the optimal H is
used for clustering.

2. MMSC (Cai, Nie et al., 2011). In the MMSC algorithm, each type of
feature is considered as one modal. The MMSC algorithm aims to
learn a commonly shared graph Laplacian matrix by unifying dif-
ferent modals. In addition, a nonnegative relaxation is added in this
method to improve the robustness and efficiency of clustering.

3. CTSC (Kumar & Daumé, 2011). This is a multiview spectral cluster-
ing approach using the idea of cotraining. Under the assumption that
the true underlying clustering would assign a point to the same clus-
ter regardless of the view, it learns the clustering in one view and then
uses it to label the data in the other view so as to modify the graph
structure (similarity matrix).

4. CRSC (Kumar et al., 2011). This applies a centroid-based coregular-
ization scheme to multiview spectral clustering. To make the clus-
terings in different views agree with each other, CRSC enforces
view-specific eigenvectors to look similar by regularizing them to-
ward a common consensus and then optimizes individual cluster-
ings as well as the consensus by using a joint cost function.

5. MultiNMF (Liu et al., 2013). This aims to search for a factorization
that gives compatible clustering solutions across multiple views, re-
quiring coefficient matrices learned from factorizations of different
views to be regularized toward a common consensus.

6. RMKMC (Cai et al., 2013). This simultaneously performs clustering
using each view of features and unifies their results based on their
importance to the clustering task. �2,1-norm is also employed to im-
prove the robustness.

7. RMSC (Xia et al., 2014). For each view, this constructs a correspond-
ing transition probability matrix, which is then used for recovering
a low-rank transition probability matrix. Based on this, the standard
Markov chain method is utilized for processing, and then clustering
is conducted.

8. MVSC (Li et al., 2015). This large-scale multiview spectral clustering
approach is based on the bipartite graph. MVSC uses local manifold
fusion to integrate heterogeneous features and approximates the sim-
ilarity graphs using bipartite graphs to improve efficiency. Further-
more, this method can be easily extended to handle the out-of-sample
problem.
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The parameters of the eight baseline algorithms are tuned to obtain the
best results, as suggested by the respective authors. Our method has two
parameters: λ and γ . For all experiments, λ is empirically fixed as 10 for
all data sets. γ controls the weight distribution of different views, and we
obtain the best γ ∗ by searching log10 γ in the range of [−4.8, −2.6] with inter-
val 0.2. We obtain the optimal data representations by adding the product
of the data representation matrix Hv and its weight αv in each view together
(Wang et al., 2017). Because each learned Hv represents diverse information
of an intrinsic data structure, we can integrate them with the weighted sum
rule. Following Li et al. (2015), we obtain the clustering labels by running k-
means on the optimal data. Without loss of generality, we run each method
10 times and report the mean performance as well as the standard devi-
ation. In each experiment, we run k-means clustering processing 30 times
and obtain the best result to reduce the randomness of k-means.

4.3 Evaluation Metric. Three metrics—the clustering accuracy (ACC),
the normalized mutual information (NMI) (Strehl & Ghosh, 2002) and the
Purity (Ievgen & Younes, 2014)—are used to evaluate the performance in
this work. These measurements are widely used, and they can be calcu-
lated by comparing the obtained label of each sample with the ideal label
provided by the data set. For each metric, a larger value indicates better
clustering performance.

ACC is used to measure the clustering accuracy of the clustering result,
which is defined as

ACC =
∑N

i=1 δ(gi, map(ri))
N

, (4.2)

where N denotes the total number of samples, gi denotes the ground truth
label of the ith sample, ri denotes the corresponding obtained clustering
label, δ denotes the Dirac delta function,

δ(x, y) =
{

1, if x = y

0, otherwise
, (4.3)

and map(ri) is the optimal mapping function that permutes the obtained
labels to match the ground truth labels. The best mapping can be found by
using the Kuhn-Munkres algorithm (Lovász & Plummer, 2009).

NMI is used to measure the similarity between the preexisting input la-
bel G and the clustering assignment R, which is defined as

NMI(G, R) = I(G, R)√
E(G)E(R)

(4.4)
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Figure 1: ACC results of multiview and single-view clustering using concept
factorization.

where I(G, R) denotes the mutual information between G and R, and E(·)
returns the entropy.

Let nc be the number of objects in the cth cluster (1 ≤ c ≤ k) obtained by
using the clustering algorithm and ñs be the object number of the sth cluster
(1 ≤ s ≤ k) in the ground truth label. Then NMI is defined as

NMI =
∑k

c=1
∑k

s=1 nc,s log
(

N·nc,s
ncñs

)
√(∑k

c=1 nc log nc
N

) (∑k
s=1 ñs log ñs

N

) , (4.5)

where nc,s is the number of objects in the intersection of the cth cluster and
the sth cluster. NMI varies from zero for a totally wrong clustering result to
one for a perfect clustering result.

Purity gives the percentage of correct labels obtained. Assuming total N
data points belong to k clusters, the definition of purity is

Purity = 1
N

k∑
i=1

max
1≤ j≤k

|pi ∩ q j|, (4.6)

where pi represents the ith obtained cluster and qi implies the ith ground
truth cluster.

4.4 Performance Comparison. First, we apply the proposed concept
factorization framework into each single view of all data sets to obtain the
clustering results and then compare the results with MVCF’s results, which
are shown in Figures 1, 2, and 3. From the three bar graphs, it is obvious that
MVCF outperforms any single view’s result, which means that the multi-
view framework can learn and integrate all of the useful information from
complementary views, consequently obtaining better clustering results.



1096 K. Zhan et al.

Figure 2: NMI results of multiview and single-view clustering using concept
factorization.

Figure 3: Purity results of multiview and single-view clustering using concept
factorization.

After comparing the proposed method with other baseline algorithms,
we show the clustering results in terms of ACC, NMI, and Purity in Tables 1,
2, and 3, respectively. In each row of the tables, the best and second best
results are highlighted in bold. Note that AwA, Caltech101, Numerals, and
Scene contain negative data, so the MultiNMF method is not applicable to
these data sets.

Clearly, MVCF achieves the best performance in most cases; for the re-
maining ones, it surprisingly still produces competitive results. Compared
with the second-best performance on the 3-Sources data set, the proposed
MVCF method significantly improves the clustering performance signifi-
cantly by more than 10%. In addition, we calculate the mean performance
of the different methods on all data sets, shown in the last row of each table.
An interesting point is that CRSC is then demonstrated to be the second-best
method and the MVCF method performs the best. The quantitative result
fully demonstrates the superiority of the proposed method because MVCF
better captures the geometrical structure of the data space.
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5 Conclusion and Future Work

In this letter, we have proposed a multiview clustering model that can ad-
dress the negative data issue under nonnegativity constraints and the in-
terview correlation issue of most existing models. The first issue is tackled
by adopting concept factorization, and the second is addressed by learning
a single affinity graph from the multiple views. We have proposed a novel
CF-based algorithm that not only inherits the strengths of NMF, such as fast
multiplicative iteration and parts-based representation in accordance with
human brain intuition (Lee & Seung, 1999) but also is applicable to data
sets containing negative values. We have taken the great impact of local
manifold geometry structure into consideration and extended the proposed
algorithm to a multiview clustering to effectively use the complementary
information of the data. The experiments demonstrate the superiority of
our algorithm over other state-of-the-art methods.

MVCF exploits the data structure by using manifold regularization with-
out the requirement of eigenvalue decomposition, which renders MVCF ef-
fective. However, the time complexity is still high. In the future, we will use
the active Riemannian subspace search for maximum margin matrix factor-
ization (Yan et al., 2015) to reduce the complexity and obtain high accuracy
in large-scale data sets.
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