
Supplementary Material: Deep learning enables fast
and accurate imputation of gene expression across
tissues

Authors: Ramon Viñas 1,∗, Tiago Azevedo 1, Eric R. Gamazon 2,3,4,∗, and Pietro Liò 1,∗

1Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
2Vanderbilt Genetics Institute and Data Science Institute, VUMC, Nashville, TN, USA
3MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
4Clare Hall, University of Cambridge, Cambridge, UK
∗ Correspondence to: rv340@cam.ac.uk, ericgamazon@gmail.com, pl219@cam.ac.uk

1 OBSERVATIONS ABOUT GAIN’S ADVERSARIAL LOSS
We have implemented the adversarial loss of Generative Adversarial Imputation Networks (GAIN) as
described in the GAIN paper (Yoon et al., 2018). Our implementation can be found at: https://
github.com/rvinas/GAIN-GTEx.

Our results show that the effects of the adversarial loss on theR2 imputation scores are small or negligible.
We have investigated this issue in great detail and our observations are the following:

• One hypothesis is that the dimensionality of the gene expression data might be too high for GAIN. This
was also discussed in a Github issue1. For the Alzheimer’s disease pathway case study (273 genes) and
the in-place scenario, including the adversarial term seems to yield a small improvement in the R2

scores. Nonetheless, the scores are fairly similar for the other scenarios.
• The weights for the adversarial and mean squared error (MSE) terms might not be properly adjusted.

However, when we set the MSE weight to 0, the model failed to converge and the R2 results were
very poor. Without the MSE loss, the training was unstable in all our experiments. Additionally, as
described in a Github issue2, decreasing the weight of the MSE term (e.g., from 1 to 0.1) leads to
slower convergence.

• The adversarial loss might be incompatible with certain features of the model or hyperparameter
configurations. However, different hyperparameters (including batch normalisation, dropout, and
number of hidden units per layer) led to a similar performance with and without adversarial loss.

• The discriminator and generator might need to be well balanced, that is, the discriminator might require
more gradient updates to learn useful representations of the data. This idea was also discussed in a
Github issue3, where it is also argued that the model is very sensitive to different hyperparameter
configurations. However, after several experiments (e.g., we trained the discriminator more often than
the generator), we did not observe significant improvements relative to using the MSE loss exclusively.

For the purpose of reproducibility, as the gains of the adversarial loss appear to be small or negligible
given our observations, we recommend training GAIN-GTEx without the adversarial term.

1 https://github.com/jsyoon0823/GAIN/issues/9
2 https://github.com/jsyoon0823/GAIN/issues/8
3 https://github.com/jsyoon0823/GAIN/issues/17

1

https://github.com/rvinas/GAIN-GTEx
https://github.com/rvinas/GAIN-GTEx
https://github.com/jsyoon0823/GAIN/issues/9
https://github.com/jsyoon0823/GAIN/issues/8
https://github.com/jsyoon0823/GAIN/issues/17

Supplementary Material: Deep learning enables fast and accurate imputation of gene expression across tissues

2 SCALABILITY ANALYSIS FOR MISSFOREST
Figures S1 and S2 show the runtime of a single iteration of the MissForest algorithm (Stekhoven and
Bühlmann, 2012) as we vary the number of genes and samples. We fix the number of trees to 3 and the
maximum depth per tree to 3.

Figure S3 shows the runtime of MissForest for a subset as we vary the number of estimators (trees).
Importantly, we selected a subset of 273 genes from the Alzheimer’s disease pathway and kept all samples.

We kept all the non-specified hyperparameters to their default values. Our implementation is based on
Python 3.7.6 and the library missingpy. We ran the algorithm with 10 concurrent jobs.

0 2000 4000 6000 8000 10000 12000
genes

0

5000

10000

15000

20000

25000

tim
e

(s
ec

on
ds

)

MissForest. # trees: 3. # max_iter: 1. # max_depth: 3
samples: 50
samples: 200
samples: 1000
samples: 2000

Figure S1: Runtime of a single iteration of the MissForest algorithm (Stekhoven and Bühlmann, 2012) as
we vary the number of genes.

2

missingpy

Supplementary Material: Deep learning enables fast and accurate imputation of gene expression across tissues

0 250 500 750 1000 1250 1500 1750 2000
samples

0

5000

10000

15000

20000

25000

tim
e

(s
ec

on
ds

)

MissForest. # trees: 3. # max_iter: 1. # max_depth: 3
genes: 10
genes: 20
genes: 50
genes: 100
genes: 200
genes: 1000
genes: 2000
genes: 4000
genes: 8000
genes: 12557

Figure S2: Runtime of a single iteration of the MissForest algorithm (Stekhoven and Bühlmann, 2012) as
we vary the number of samples.

0 20 40 60 80 100
trees

0

20000

40000

60000

80000

tim
e

(s
ec

on
ds

)

MissForest. # genes: 273. # max_iter: 10. # max_depth: 3

Figure S3: Runtime of MissForest algorithm (Stekhoven and Bühlmann, 2012) as we vary the number of
trees. We ran the algorithm using all the samples on a subset of 273 trees from the Alzheimer’s disease
pathway.

Frontiers 3

Supplementary Material: Deep learning enables fast and accurate imputation of gene expression across tissues

3 SCALABILITY ANALYSIS FOR MICE
Figures S4 and S5 show the runtime of a single iteration of the MICE algorithm (Buuren and Groothuis-
Oudshoorn, 2010) as we vary the number of genes and samples.

We kept all the non-specified hyperparameters to their default values. Our implementation is based
on Python 3.7.6 and the library sklearn (Pedregosa et al., 2011), in particular sklearn.impute.
IterativeImputer.

0 250 500 750 1000 1250 1500 1750 2000
genes

0

20000

40000

60000

80000

100000

tim
e

(s
ec

on
ds

)

MICE. # max_iter: 1.
samples: 50
samples: 200
samples: 1000
samples: 2000

Figure S4: Runtime of a single iteration of the MICE algorithm (Buuren and Groothuis-Oudshoorn, 2010)
as we vary the number of genes.

4

sklearn
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
sklearn.impute.IterativeImputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
sklearn.impute.IterativeImputer

Supplementary Material: Deep learning enables fast and accurate imputation of gene expression across tissues

0 250 500 750 1000 1250 1500 1750 2000
samples

0

20000

40000

60000

80000

100000

tim
e

(s
ec

on
ds

)

MICE. # max_iter: 1.
genes: 10
genes: 20
genes: 50
genes: 100
genes: 200
genes: 1000
genes: 2000

Figure S5: Runtime of a single iteration of the MICE algorithm (Buuren and Groothuis-Oudshoorn, 2010)
as we vary the number of samples.

Frontiers 5

Supplementary Material: Deep learning enables fast and accurate imputation of gene expression across tissues

4 PMI HYPERPARAMETERS

Figure S6: Exploration of the hyperparameter space for PIM on the subset of genes from the Alzheimer’s
disease pathway (in-place mode). The score axis shows the mean squared error on an independent validation
set.

Figure S6 shows the validation MSE for different configurations of hyperparameters of PMI. We optimise
the model using wandb (Biewald, 2020). We report the selected hyperparameters for each scenario in the
following table:

All genes Alzheimer

PMI In-place Inductive In-place Inductive

Alpha α 0.5 0.5 0.6 0.5
Beta β 0.9 0.5 0.9 0.5
Learning rate 0.0001 0.0001 0.001 0.001
Dropout probability 0 0.2 0 0.2
Number of layers 2 1 3 2
Hidden dimensionality per-layer 1366 3072 1383 1531

6

wandb

Supplementary Material: Deep learning enables fast and accurate imputation of gene expression across tissues

5 GAIN HYPERPARAMETERS

Figure S7: Exploration of the hyperparameter space for GTEx-GAIN on the subset of genes from the
Alzheimer’s disease pathway (inductive mode). The score axis shows the mean squared error on an
independent validation set. In our experimentation we note that the model is fairly sensitive to the
dimensionality of the hidden layers. On one hand, a small value leads to underfitting. On the other hand, a
large value allows the model to trivially copy-paste the expression of the observed components.

Figure S7 shows the validation MSE for different configurations of hyperparameters of GAIN-GTEx.
We optimise the model using wandb (Biewald, 2020). We report the selected hyperparameters for each
scenario in the following table:

All genes Alzheimer

GAIN-GTEx In-place Inductive In-place Inductive

Learning rate 0.001 0.001 0.001 0.001
Dropout probability 0 0.2 0.4 0.4
Number of layers 1 4 3 3
Hidden dimensionality per-layer 2403 1902 296 296

Regarding the output activation of GAIN, we leverage a linear and a sigmoid activation functions for
the generator and discriminator, respectively. The linear activation ensures that the range of the output
expression is unrestricted. We model both the generator and discriminator as MLPs with 4 hidden layers
(2403 units each). In terms of the hyperparameter λ to trade off the adversarial and reconstruction losses of
the generator (see Equation 13), we find that setting λ = 1 yields good results in all settings.

Mask and hint generation. At training time, for each training example, we sample the mask vector m
from a Bernoulli distribution B(1, p) parameterised by a random probability p = 0.5. To generate the hint
vector h (see Equation 11), we sample b from B(1, p), where p = 0.5.

Frontiers 7

wandb

Supplementary Material: Deep learning enables fast and accurate imputation of gene expression across tissues

6 ADDITIONAL FIGURES

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

GTEx

Whole Blood
Breast Mammary Tissue
Lung

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.1

0.2

0.3

0.4

0.5

TCGA

LAML
BRCA
LUAD

1 - missing rate 1 - missing rate

R
2

Figure S8: PMI R2 imputation scores per tissue across missing rate for 3 TCGA cancer types and their
healthy counterpart in GTEx. The shaded area represents one standard deviation of the per-gene R2 scores
in the corresponding tissue. The greater the rate of missingness, the lower the performance.

8

Supplementary Material: Deep learning enables fast and accurate imputation of gene expression across tissues

RP
L1

9

CC
T5

RP
L3

2

RP
L2

4

AT
P5

B

RP
L1

8

RP
L3

5

RP
L1

3A

XR
CC

6

RP
L1

1

CL
TC

AU
RK

AI
P1

RA
N

RP
L3

5A

CC
T6

A

AT
P5

J2

RP
S1

5

RP
L2

7

CF
L1

RP
L3

0

RP
L2

7A

AC
TR

2

RP
S1

5A FA
U

UQ
CR

C1

AT
P5

A1

DD
X2

1

RP
S8

RP
S2

7

RP
L2

6

0.7

0.8

0.9

R
2

Top 30 genes

Non-brain
Brain

GT
F2

H2

RP
11

-1
66

B2
.1

GS
TM

1

C2
1o

rf3
3

AR
L1

7B

LD
HC

PW
P2

EI
F2

S3
L

U2
AF

1

RP
11

-6
32

K2
0.

1

PO
LR

2J
2

RP
11

-8
2O

18
.1

FA
M

10
6A ZP

3

SI
K1

PO
M

ZP
3

RH
D

FA
M

22
A

CC
Z1

SM
N2

NP
IP

L2

PD
PR

DD
X1

1

PA
X8

PM
20

D1

XR
RA

1

TH
NS

L2

ER
AP

2

RP
11

-1
21

2A
22

.4

RP
S2

6

0.5

0.0

0.5

R
2

Last 30 genes
Non-brain
Brain

Figure S9: Per-gene imputation R2 scores. We rank all the genes according to the average R2 imputation
scores across tissue types. We select the top 30 and last 30 genes. Interestingly, most of the best imputed
genes are RPLs (L ribosomal proteins), which are known to be well conserved both evolutionarily and
across tissue types.

Frontiers 9

Supplementary Material: Deep learning enables fast and accurate imputation of gene expression across tissues

Non−alcoholic fatty liver disease

Oxidative phosphorylation

Alzheimer disease

Huntington disease

Prion disease

Parkinson disease

Pathways of neurodegeneration − multiple diseases

Amyotrophic lateral sclerosis

Coronavirus disease − COVID−19

Ribosome

0.2 0.3 0.4 0.5
GeneRatio

Count

20

30

40

7.5e−07

5.0e−07

2.5e−07

p.adjust

Enriched Pathways

Figure S10: Top enriched KEGG pathways for overrepresentation analysis of the top 100 best imputed
genes. Interestingly, we note that most of the best imputed genes are RPLs (L ribosomal proteins), which
are generally well conserved evolutionarily and across tissue types.

10

Supplementary Material: Deep learning enables fast and accurate imputation of gene expression across tissues

Alzheimer disease

Amyotrophic lateral sclerosis

Cardiac muscle contraction

Coronavirus disease − COVID−19

Diabetic cardiomyopathy

Huntington disease

Non−alcoholic fatty liver disease

Oxidative phosphorylation

Parkinson disease

Pathways of neurodegeneration − multiple diseases

Prion disease

Proteasome

Ribosome

Spinocerebellar ataxia

Thermogenesis

AT
P6

V1
E1

C
LT

C
C

O
X5

A
C

O
X7

B
C

O
X8

A
EI

F2
S1 FA
U

N
D

U
FA

1
N

D
U

FA
13

N
D

U
FA

B1
N

D
U

FB
7

N
D

U
FS

6
PO

M
P

PS
M

A1
PS

M
A5

PS
M

A7
PS

M
B6

PS
M

D
1

PS
M

D
7

R
PL

11
R

PL
13

A
R

PL
18

R
PL

18
A

R
PL

19
R

PL
21

R
PL

22
R

PL
23

R
PL

24
R

PL
26

R
PL

27
R

PL
27

A
R

PL
29

R
PL

30
R

PL
31

R
PL

32
R

PL
35

R
PL

35
A

R
PL

36
R

PL
36

A
R

PL
37

A
R

PL
38

R
PL

4
R

PL
5

R
PL

6
R

PL
7

R
PS

10
R

PS
11

R
PS

12
R

PS
13

R
PS

15
R

PS
15

A
R

PS
19

R
PS

25
R

PS
27

R
PS

27
A

R
PS

29
R

PS
3

R
PS

5
R

PS
6

R
PS

8
U

BQ
LN

1
U

Q
C

R
10

U
Q

C
R

C
1

VC
P

Figure S11: Heatmap of the gene-pathway associations for the top 100 imputed genes and the enriched
KEGG pathways. Interestingly, we note that most of the best imputed genes are RPLs (L ribosomal
proteins), which are generally well conserved evolutionarily and across tissue types.

Frontiers 11

Supplementary Material: Deep learning enables fast and accurate imputation of gene expression across tissues

Figure S12: Network generated from the per-tissue R2 scores (PMI; Alzheimer Pathway). For each pair
of tissue types, we compute the Pearson’s correlation coefficient between the tissue-specific vectors of
per-gene R2 scores. We then filter out the edges whose correlation is lower than an arbitrary threshold. This
plot shows that the R2 scores carry information about the tissue type and that the same genes in similar
tissue types have similar R2 scores.

12

Supplementary Material: Deep learning enables fast and accurate imputation of gene expression across tissues

REFERENCES

[Dataset] Biewald, L. (2020). Experiment tracking with weights and biases. Software available from
wandb.com

Buuren, S. v. and Groothuis-Oudshoorn, K. (2010). mice: Multivariate imputation by chained equations in
r. Journal of statistical software , 1–68

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830

Stekhoven, D. J. and Bühlmann, P. (2012). Missforest—non-parametric missing value imputation for
mixed-type data. Bioinformatics 28, 112–118

Yoon, J., Jordon, J., and Van Der Schaar, M. (2018). GAIN: Missing data imputation using generative
adversarial nets. arXiv preprint arXiv:1806.02920

Frontiers 13

	Observations about GAIN's adversarial loss
	Scalability analysis for MissForest
	Scalability analysis for MICE
	PMI hyperparameters
	GAIN hyperparameters
	Additional figures

