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Abstract

This thesis is divided into three sections.

In the first section, we discuss Singular Inflation, in which a scalar field exhibits
a weak singularity, originally illustrated by the non-integer powerlaw potentials. We
expand the class of potentials that result in this phenomenon, by providing constraints
on the derivatives of the functions.

In the second section, we study the cosmological effects of adding terms of the
form f(TµνT µν) = η(TµνT µν)n to the matter Lagrangian of general relativity. The
resulting cosmological theories give rise to field equations of similar form to several
particular theories with different fundamental bases, including bulk viscous cosmology,
loop quantum gravity, k-essence, and brane-world cosmologies. We find a range of
exact solutions for isotropic universes, discuss their behaviours with reference to the
early- and late-time evolution, accelerated expansion, and the occurrence or avoidance
of singularities. We briefly discuss extensions to anisotropic cosmologies and delineate
the situations where the higher-order matter terms will dominate over anisotropies on
approach to cosmological singularities.

Finally, in the third section, we study a related model, called Energy-Momentum Log
Gravity (EMLG), constructed by the addition of the term f(TµνT µν) = α ln(λ TµνT µν)
to the Einstein-Hilbert action with cosmological constant Λ. This choice of model
results in constant effective inertial mass density and has an explicit exact solution of the
matter energy density in terms of redshift. We look for viable cosmologies, in particular,
an extension of the standard ΛCDM model. EMLG provides an effective dynamical
dark energy passing below zero at large redshifts, accommodating a mechanism for
screening Λ in this region, in line with suggestions for alleviating some of the tensions
that arise between observational data sets within the standard ΛCDM model. We
present a detailed theoretical investigation of the model and then constrain the free



x

parameter α′, a normalisation of α, using the latest observational data. The data do
not rule out the ΛCDM limit of our model (α′ = 0), but prefers slightly negative values
of the EMLG model parameter (α′ = −0.032 ± 0.043), which leads to the screening
of Λ. We also discuss how EMLG relaxes the persistent tension that appears in the
measurements of H0 within the standard ΛCDM model.
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Chapter 1

Introduction

The field of Cosmology is the study of the history and evolution of the universe, a
subject that has provoked thought and investigation throughout the ages. Since the
earliest days of human history, mankind has looked up to the stars and attempted
to craft descriptions of the universe. At first these descriptions took the form of
stories and myths, particularly creation myths in which the behaviours and actions of
various divinities and forces which shaped the universe, whether that be the Babylonian
‘Enûma Eliš’ in which Tiamat and Apsu are the primordial water-gods from which all
else springs, or the Greek tale of Gaia stepping forth from chaos to create Ouranos
and then the other titans.

As the tools of science and mathematics became more developed, it started to become
possible to describe models precisely and to conduct calculations and experiments to
test them. By the third century BCE, several attempts to calculate the size of the
universe had occurred, including Archimedes in his work ‘The Sand Reckoner’, [2] in
which he calculated the diameter of the universe as 1014 stadia, or 1 − 2 light years in
modern units. This was done in order to estimate the number of grains of sand that
would fill the universe, and required a combination of experiments, new mathematical
concepts and previous heliocentric models, in order to create what may be one of the
earliest scientific research papers.

Over subsequent millenia, many advances were made in both mathematics and
astronomy, and in 1687 Isaac Newton published ‘Philosophiæ Naturalis Principia
Mathematica’ [3], in which he laid out a series of fundamental ideas in modern physics
and mathematics. This included the theory of calculus, of mechanics, and of significant
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cosmological relevance, the theory of gravitation that still bears his name. These
tools and theories allowed him to calculate the motion of celestial objects, including
providing mathematical proofs of laws discovered observationally by Kepler. In later
work, he considered the cosmological question of the extent of the universe, concluding
that the universe must necessarily be of infinite extent and filled uniformly with stars,
lest it collapse under the gravitational force [4], a hypothesis that bears resemblance
to the assumptions of homogeneity and isotropy in modern cosmology. In the years
after this, attention and analysis began to turn to some cosmological problems, not
least Olbers’ paradox - the question of why, if there are infinitely many stars such that
every line of sight should reach one, the night sky is not as bright as day. This sort
of consideration marked a further step forward in the development of cosmology, but
it was not until the early twentieth century that the modern study of cosmology can
truly be said to have begun.

In 1915, Albert Einstein published his theory of General Relativity, providing for
the first time a unified description of gravitation arising from a geometric description
of space and time. This coherent mathematical framework for gravitation allowed
the development of a truly mathematical theory of cosmology, and in 1917 Einstein
produced a paper in which he argued for a static cosmological model in which a precise
positive cosmological constant allowed a universe without end or beginning. Following
this, other solutions were found, including de Sitter’s discovery of a solution for an
exponentially expanding universe later the same year. In 1922 the expanding spacetime
which forms the basis for the standard model of cosmology, ΛCDM was first discovered,
by Alexander Friedmann [5, 6]. The spacetime was rediscovered, independently, by
Georges Lemaître [7], and during the 1930s Howard Robertson and Arthur Walker
further developed the model, proving that this was the most general description of
an expanding, isotropic and homogeneous universe. Today the spacetime is known
by various combinations of the names of these four, but typically is referred to as the
Friedmann-Lemaître-Robertson-Walker metric, or FLRW for short. The development
of this model built on the work of Edwin Hubble, who measured the distance and
redshift of various galaxies, and determined the famous relationship, now known as
Hubble’s law, that more distant galaxies are receding faster than nearer ones, thus
providing evidence for an expanding universe. The initial calculations had very large
errors, and the Hubble constant which codified the relationship was calculated as orders
of magnitude larger than modern measurements suggest.
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During the late 1940s and 1950s, there were two major paradigms in Cosmology.
The first, proposed by Bondi, Gold and Hoyle was the Steady State model [8, 9], which
proposed that the universe was an eternal de Sitter, expanding forever with neither
beginning nor end. This was in accordance with the so-called ‘perfect cosmological
principle’, which asserted that a universe would be homogeneous in both space and
time. This would then require that matter be continuously created in order to prevent
the energy content of the universe from being diluted by the expansion. The alternative
to this model was the Big Bang theory, initially proposed by Lemaître [10], and refined
by George Gamow, in which the universe began from an initial point singularity at
some finite past time, before expanding and cooling into its current state. This was
initially disfavoured by most cosmologists who preferred the steady state universe, but
gradually evidence grew in support of the big bang, culminating in the detection in
1965 of the Cosmic Microwave Background by Penzias and Wilson [11]. The CMB is
relic radiation which was produced in the early universe, and is still detectable in the
present era. The CMB was predicted by the big bang model, but not by the steady
state, thus cementing the big bang as the favoured description of our universe, a status
it enjoys to the present day.

After many theoretical and observational refinements, the current formulation of
the big bang model as the standard model of cosmology is known as ΛCDM. This
consists of an FLRW universe with no curvature, and with the addition of two ‘dark
sector’ components. The first of these is dark matter, which is a form of matter
hypothesised to make up the large majority of the matter component of the universe,
implied by various observation which are inconsistent with the only matter being the
readily visible baryonic matter, such as the galaxy rotation curves, and many others.
The second is the reintroduction of the cosmological constant, Λ, originally proposed
and then later withdrawn by Einstein. A non-zero cosmological constant is used to
explain the modern evidence, drawn from observations of the CMB, Baryon acoustic
oscillation measurements, and galaxy lensing effects, that the universe is not simply
expanding, but is undergoing an accelerated expansion. The history of the universe
then consists of an initial singularity, now believed to have occurred approximately 13.7
billion years ago, followed by an era in which radiation dominated the energy content
of the universe. The radiation era was followed by an era in which non-relativistic
matter, ‘dust’, dominated, before entering a phase of accelerated expansion dominated
by a positive cosmological constant. Over all this time, the ΛCDM model has remained
in very good accordance with observational data, from a wide array of land based and
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space based experiments. Even the most recent measurements of the CMB from the
Planck satellite have been extremely well fit by the standard ΛCDM model [12].

However, ΛCDM is not without its problems. An example of these is the horizon
problem, which suggests that although the CMB is very uniform now, the universe
is not old enough for us to expect it to be so uniform. One proposed resolution to
this has been the theory of inflation [13], which suggests a period of early acceleration,
and this has been a popular area of study since its first introduction in the 1980s.
Other serious problems include explanations of both dark sector components. Although
the existence dark matter has been hypothesised for a long time, there is still no
satisfactory explanation for its exact form, and although the idea that it is some sort
of weakly interacting massive particle, known as WIMPs, is popular there is still no
direct detection of such a particle. The cosmological constant also has theoretical
issues, despite accurate observational measurements, the predictions of its size from
quantum calculations are many tens of orders of magnitude larger. This suggests a
requirement for some mechanism to protect Λ from being washed out by quantum
fluctuations, or more radically, a modification to the theory of General Relativity itself
in order to cause the observed value to arise naturally.

1.1 Outline

In this thesis we consider three different models of cosmology which arise due to unusual
behaviour of matter. These unusual contributions result in new cosmological features,
which may help explain some of the seemingly problematic aspects of the standard
cosmological model.

This thesis is structured as follows. In the remainder of this chapter we provide
a brief summary of General Relativity in order to establish the fundamental theory
underlying modern cosmology. After that, we discuss the modern theory of cosmology,
particularly focussing on aspects that will be of importance to the rest of the thesis.

In the second chapter we discuss Singular Inflation, in which a scalar field exhibits
a particular kind of weak singularity in a finite amount of future time. This has been
originally discussed in the context of a scalar field acting in a power-law potential,
where the exponent was not an integer. We expand the class of potentials that result in
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this phenomenon, by providing sufficient conditions on the derivatives of the function
to ensure that a finite-time singularity of the appropriate time occurs.

In the third chapter, we consider a particular theory of modified gravity in which
the energy-momentum tensor contributes directly to the action. This is an extension
of the F (R) theory of modified gravity to allow the action to further depend upon
the square of the energy-momentum tensor, known as F (R, T µνTµν) gravity. We study
the cosmological effects of this model when the modification takes the form of adding
f(TµνT µν) = η(TµνT µν)n to the matter Lagrangian of general relativity. The resulting
cosmological theories give rise to field equations of similar form to several particular
theories with different fundamental bases, including bulk viscous cosmology, loop
quantum gravity, k-essence, and brane-world cosmologies. We find a range of exact
solutions for isotropic universes, discuss their behaviours with reference to the early-
and late-time evolution, accelerated expansion, and the occurrence or avoidance of
singularities. We briefly discuss extensions to anisotropic cosmologies and delineate
the situations where the higher-order matter terms will dominate over anisotropies on
approach to cosmological singularities.

Finally, in the fourth chapter, we study another model of f(R, T µνTµν) gravity,
which we call Energy-Momentum Log Gravity (EMLG), constructed by the addition of
the term f(TµνT µν) = α ln(λ TµνT µν) to the Einstein-Hilbert action with cosmological
constant Λ. This choice of model results in constant effective inertial mass density
and has an explicit exact solution of the matter energy density in terms of redshift.
We look for viable cosmologies, in particular, an extension of the standard ΛCDM
model. EMLG provides an effective dynamical dark energy passing below zero at large
redshifts, accommodating a mechanism for screening Λ in this region, in line with
suggestions for alleviating some of the tensions that arise between observational data
sets within the standard ΛCDM model. We present a detailed theoretical investigation
of the model and then constrain the free parameter α′, a normalisation of α, using
the latest observational data. The data do not rule out the ΛCDM limit of our
model (α′ = 0), but prefers slightly negative values of the EMLG model parameter
(α′ = −0.032 ± 0.043), which leads to the screening of Λ. We also discuss how EMLG
relaxes the persistent tension that appears in the measurements of H0 within the
standard ΛCDM model.
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1.2 General Relativity

In this section we now provide a brief summary of the basic theory of General Relativity,
in order to establish the background required for the study of modern Cosmology.
What follows is only a brief overview of the field, and for a more detailed treatment of
the subject, there are many thorough textbooks, for example [14–17]

The theory of General Relativity is a metric theory of gravitation, in which we
define a space-time as a pair (M, g), where M is a Lorentzian manifold and g is a
metric. We then provide some description of the matter content of the universe, and
link the two through appropriate field equations. This provides us with a geometric
description of our universe, in which gravitational forces arise due to curvature of
space-time.

1.2.1 Notations and convention

We use the sign convention (−, +, +, +) for our metric throughout this thesis.

We use Latin indices a, b, c, ... to denote spacetime indices, whilst i, j, k... indicate
spatial indices only.

We use the Einstein summation convention throughout, in which paired indices in
an expression should be summed over all values of the index, but the explicit summation
symbols are ommitted, e.g.

T abSbc ≡
d−1∑
b=0

T abSbc , (1.1)

where d is the number of dimenstions. Throughout this thesis we will work in d = 4
dimensions.

We use , a to denote partial differentiation with respect to the coordinate a

Xb
,a ≡ ∂Xb

∂xa
≡ ∂aXb . (1.2)

We use ; a to denote covariant differentiation with respect to the coordinate a

Xb
;a ≡ ∇aXb . (1.3)
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1.2.2 Definitions of Differential Geometry

We begin by discussing some basic concepts of differential geometry, which are funda-
mental to understanding General Relativity.

A Manifold is a space which looks locally like Euclidean (flat) space. Importantly,
however, it need not be globally flat.

A Tensor is an object defined on a manifold. An (n, m) tensor is a multi-linear
map from the product of n copies of the cotangent space and m copies of the tangent
space to the real numbers. In General Relativity we typically consider tensor fields
in which the components are functions of the points on the manifold, but still refer
to these simply as tensors. An (n,m) tensor can be written as T a1...an

b1...bm
where the n

superscript indices are known as the contravariant components, and the m subscript
indices are the covariant components.

Tensors transform in a particularly simple way under change of variables. The
tensor transformation law for a transformation from coordinates (xµ) to (x̃α) is given
by

T̃ α1...αn
β1...βm

= ∂x̃α1

∂xµ1
...

∂x̃αn

∂xµn

∂x̃ν1

∂xβ1
...

∂x̃νm

∂xβm
T µ1...µn

ν1...νm
. (1.4)

Because of this, equations consisting solely of tensorial expressions will hold regardless
of the choice of co-ordinate system. This allows us to perform calculations without
reference to a specific set of co-ordinates.

A metric tensor is a symmetric (0, 2) tensor, gab, defined on the manifold. The
metric tensor, commonly referred to simply as the ‘metric’, can be understood as the
distance measure on a manifold.

A convenient way of writing down a metric in a particular coordinate system is the
line element, ds2, which is the length of an infinitesimal displacement and is related
to the metric by

ds2 = gabdxadxbz, (1.5)

where xa are our chosen coordinates. ds2 is an important invariant quantity, and it is
worth noting that although it is not strictly the same as the metric, one can be uniquely
recovered from the other and they are often referred to somewhat interchangeably.
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A Lorentzian metric of dimension 4 a metric with signature ±2, that is that the
elements after diagonalisation have either (−, +, +, +) or (+, −, −, −), which are the
same up to choice of sign. This can be seen as a generalisation of the nature of the
Minkowski metric used in special relativity taking the form ±diag(−1, 1, 1, 1), and
as identifying a time coordinate which, although part of our manifold, has somehow
different behaviour to the spacelike ones.

In order to perform tensorial calculations, we wish to be able to differentiate tensors
on our manifold. However, the partial derivative is not itself tensorial, and so we define
the covariant derivative of an (n, m) tensor as

∇aT b1...bn
c1...cn

= ∂aT b1...bn
c1...cn

+Γb1
adT d...bn

c1...cn
+...+Γbn

adT b1...d
c1...cn

−Γd
ab1T b1...bn

d...cn
−...−Γd

abn
T b1...bn

c1...d , (1.6)

where Γa
bc are the connection components. The connection components, in principle,

are not fixed by our choice of manifold and metric. However, in general relativity, we
typically choose our connection to have two properties which together uniquely define a
specific choice of connection, known as the Levi-Civita connection. Firstly, we ask
that the connection be ‘Torsion-free’, Γa

bc = Γa
cb. Secondly, we ask that the connection

be ‘metric-compatible’, such that ∇agbc = 0. The connection components are then
determined by the metric as:

Γa
bc = 1

2gad(gdc,b + gbd,c − gbc,d) . (1.7)

This means that, in general relativity, the geometric structure on the manifold is
defined solely by the metric.

1.2.3 Postulates of General Relativity

General Relativity begins with four postulates.

1. There exists a spacetime, which consists of a four-dimensional manifold, M,
equipped with a Lorentzian metric, gab.

2. Free particles travel on timelike, or null, geodesics.

3. Energy, momentum and stress are described by a symmetric tensor, Tab, such
that ∇aT ab = 0.
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4. The metric satisfies the Einstein field equations.

The first of these postulates is explained using the definitions in 1.2.2, and we will
discuss the remaining postulates in the following subsections. We should also note
that, strictly speaking, these postulates are not all independent.

1.2.4 Geodesics in General Relativity

A geodesic is a curve between two points in spacetime which extremises the proper
time, τ along that curve. This means extremising

τ =
∫ √

−gabẋaẋbdλ , (1.8)

where ẋa represents differentiation with respect to some affine parameter λ, and is the
4-velocity, which we may also write as ua ≡ ẋa.

By varying this action, we can calculate the Euler-Lagrange equations for these
curves

ẍa + Γa
bcẋ

bẋc = 0 , (1.9)

where Γa
bc are the Christoffel Symbols. In the case of the Levi-Civita connection,

they conveniently coincide with the connection components, although for a general
connection they would be different. This equation is also known as the geodesic
equation. The geodesic equation may alternatively be written in the compact form

ua∇aub = 0 . (1.10)

Geodesics may then be classified into three types, by considering the value of
gabẋ

aẋb, which must take a constant value for a specified curve (implied by the geodesic
equation)

A geodesic is


timelike

null

spacelike

if gabẋ
aẋb


< 0

= 0

> 0

. (1.11)
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Massive and massless particles moving freely then travel on timelike and null geodesics
respectively, in accordance with postulate 2. Often it will be convenient to rescale the
lagrangian so that timelike curves have gabẋ

aẋb = −1 and spacelike have gabẋ
aẋb = 1.

1.2.5 Forms of matter

In general relativity, the matter content of the universe is described by the Energy-
momentum tensor, Tab, which is a symmetric (0, 2) tensor. This means that all
information about the matter source under consideration is encoded by the tensor’s ten
independent components. From the third postulate above, we know that the energy-
momentum tensor must also satisfy T ab

;b = 0, which is to say that it is conserved

In this thesis we consider primarily three different forms of matter. The first, and
simplest, form is vacuum, given by T ab = 0. This is the case in which there is no
matter content in the universe and so the evolution of the universe is determined
entirely by the metric. This results in significantly simplified equations of motion.

A relativistic perfect fluid is a type of fluid, which has no viscosity and does not
conduct heat. This results in the energy-momentum tensor depending only on two
functions, ρ, the energy density, and p, the pressure in the comoving frame of the fluid.
The form of the energy-momentum tensor is then given by

Tab = (ρ + p)uaub + pgab . (1.12)

We can see from this that in the comoving frame of the fluid, the energy-momentum
tensor will be diagonal. The equations of motion for a relativistic fluid then follow
from considering parts of the conservation of the energy momentum tensor contracted
with the comoving velocity ua. We find that

ua∇aρ + (ρ + p)∇aua = 0 , (1.13)

(ρ + p)ub∇bu
a + (gab + uaub)∇bp = 0 , (1.14)

which are the relativistic forms of the conservation and Euler equations from standard
fluid dynamics. We could recover the standard equations by taking the Newtonian
limit. If we wish to now solve these equations, it would be necessary to further specify
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an equation of state, a relationship P = P (ρ) relating the pressure and the density for
the fluid.

Finally, in 2, we consider the real scalar field, which is a spin zero particle acting in
a potential V (ϕ). This is some scalar function of position ϕ, which we note is a zeroth
rank tensor. This can be described by the lagrangian

L = 1
2∇aϕ∇aϕ − V (ϕ) , (1.15)

and has energy-momentum tensor

Tab = ∇aϕ∇bϕ − gab(
1
2∇aϕ∇aϕ + V (ϕ)) , (1.16)

where we may also note that the covariant derivative of a scalar field is simply the
partial derivative.

1.2.6 Einstein Field Equations

In order to describe the overall dynamics of the universe in general relativity, we must
find the field equations which link the matter content to the spacetime curvature.

The spacetime curvature is described by the Riemman tensor, Ra
bcd defined as

∇a∇bv
c − ∇b∇avc = Rc

dabv
d , (1.17)

where vc is an arbitrary vector. This is equivalent to saying that the Riemann tensor
is the commutator of the second covariant derivative. From the expression above the
Riemann tensor could then further be written purely in terms of the Christoffel symbols
and their derivatives.

The Riemann tensor has various symmetries, including Ra
(bcd) = 0, Rabcd = Rcdab

and Ra
b[cd] = 0. These symmetries reduce the number of independent components to

20, which capture all of the information about the curvature of the spacetime. If the
spacetime has no curvature it is flat, and this is equivalent to Ra

bcd = 0.

We may then define the Ricci tensor as the contraction over the first and third
indices of the Riemann tensor

Rab = Rd
adb , (1.18)
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which is a symmetric (0, 2) tensor. Further, we define the Ricci scalar as the
contraction of the Ricci tensor

R = Ra
a . (1.19)

Finally, we can define the Einstein tensor in terms of the Ricci tensor and scalar,
as

Gab = Rab − 1
2Rgab . (1.20)

Having defined the Einstein tensor and the energy-momentum tensor, we can now
write down the Einstein field equations. These are a set of ten coupled partial
differential equations which describe the dynamics and gravitation of our universe by
relating the curvature and the matter content. They are

Gab + Λgab = κTab . (1.21)

This includes a new term, Λ, which is known as the cosmological constant. κ is a
constant equal to

κ ≡ 8πG

c4 , (1.22)

which we will often find convenient to set equal to 1 by suitable choice of units. Λ was
originally introduced by Einstein to permit a static model of the universe, but later
removed once observational and mathematical evidence ruled out the static model.
However, more recent considerations have led to its reintroduction into the Einstein
equations. If we consider the maximally symmetric solutions to the Einstein equations,
we find that Λ corresponds to the space-time curvature, with Λ = 0 giving us Minkowski,
flat, space which is the limit of GR in which we recover special relativity and then
Newtonian dynamics. If we have Λ > 0 then the maximally symmetric solution is a
closed universe with constant curvature, called de Sitter space, whilst if we have Λ < 0
we have instead an open universe with constant curvature, known as anti-de Sitter
space.

These equations are in fact the most general field equations possible in four dimen-
sions, if we require that the field equations are derivable from an action, and depend
only on the metric and its first two derivatives. This is known as Lovelock’s theorem.
Therefore, as we will see, in order to modify the behaviour of gravity we would need to
relax one of these requirements. The Einstein field equations can then be derived from
an action principle, by varying the following action with respect to the metric
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S = 1
2κ

∫ √
−g(R − 2Λ)d4x +

∫ √
−gLmd4x , (1.23)

where the first term is the gravitational part of the action, known as the Einstein-Hilbert
action, and the second is the action of the matter lagrangian. g is the determinant of
the metric. We would then define the energy-momentum tensor as

Tab = −2√
−g

δSm

δgab
, (1.24)

where Sm is the matter action.

1.3 Cosmology

The discovery of the theory of general relativity has been a powerful tool for under-
standing cosmology. In this section we will give a summary of some aspects of modern
cosmology. There are many thorough textbooks on the subject available for further
detail, including [18–21].

1.3.1 The Friedmann-Lemaître-Robertson-Walker metric

The Einstein equations in full generality are a set of ten coupled partial differential
equations. In order to make meaningful progress in the study cosmology, we need to
enforce certain features of the metric which will simplify the equations and allow us to
find solutions.

The standard assumptions that we will make are that on large scales the universe is
isotropic and homogeneous. This is known as the cosmological principle, and underpins
much of modern cosmology. The statement that the universe is isotropic means that
the universe looks the same in every direction. Whilst this is not true on small scales,
observations of the cosmic microwave background [22] are consistent with statistical
isotropy on large scales, to a high degree. Homogeneity on the other hand means
that the universe should look the same at every point. This is not possible to test
directly, but if we assert that we should not live at a special point in the universe
(the Copernican Principle), then the observations of isotropy from Earth allow us to
conclude isotropy from every point, which is sufficient to then conclude homogeneity.
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Once we have enforced homogeneity and isotropy in our universe, we are left with
only possibility for the metric, the Friedmann-Lemaître-Robertson-Walker or FLRW
metric, which has the line element

ds2 = −dt2 + a2(t)
(

dr2

1 − kr2 + r2
(
dθ2 + sin2 θdϕ2

))
, (1.25)

where k is the parameter describing the curvature of the spatial 3-spaces. When k < 0,
it is hyperbolic (often referred to as open), when k > 0 they are spherical (closed), and
when k = 0 we have a spatially flat universe. We note that this is distinct from the
overall space-time curvature, which is controlled by Λ, and ultimately describes whether
the universe will expand forever (open) or recollapse (closed). Current observational
evidence suggests that the universe has at most very small deviations from flatness,
and we will work in the case k = 0 in much of what follows, in which case the metric
takes the simple form

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) . (1.26)

The function a(t) ≥ 0 is known as the scale factor, and describes the size of the universe.
From knowledge of this function, we are able to determine the past, present and future
of our universe. Thus the primary goal of much of Cosmology is to determine the
evolution of the scale factor, by solving the Einstein equations. The scale factor is
itself not directly measurable, but we can instead measure ratios - for example a(t)

a(t0) ,
where a(t0) is the scale factor today. Since the metric can be rescaled, we will often
conveniently set a(t0) = 1. If we have a(t) = 0, then we have a singularity - the
universe has zero size. This occurs in many models at t = 0 as an initial singularity or
‘big bang’, but may also occur at other times, for example as a ‘big crunch’, where the
universe recollapses in a finite time.

There are other important observables related to the scale factor. The Hubble
parameter, H(t), provides a measure of the rate of expansion,

H(t) = ȧ(t)
a(t) , (1.27)

and the value today, H0 is commonly known as the Hubble parameter. There are many
different methods used to estimate the value of the Hubble parameter, and although
the original methods used produced extremely imprecise values, modern measurements
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have produced increasingly precise measurements of H0 [23, 12, 24] resulting in values
in the region of

H0 ≈ 70 km s−1 Mpc−1 . (1.28)

However, there is an important tension in the available data. The recent precise
calculation of H0 from the Planck collaboration [12] provides a value of H0 = 67.4 ± 0.5
and the SHoES programme [24] also provides a precise calculation, finding H0 =
74.03 ± 1.42. These calculations, based on different methods and observations, are not
consistent. A third calculation using data from the Hubble space telescope, [23] finds
H0 = 69.8 ± 0.8 ± 1.7, which is consistent with both other calculations, but does not
resolve the tension between them.

Related to the Hubble parameter, we also have the deceleration parameter

q(t) = −aä

ȧ2 = −
(

Ḣ

H2 + 1
)

, (1.29)

which indicates the universe is decelerating if q > 0, although current observations
suggest the universe is instead accelerating, and therefore q < 0. A higher order term
still is the jerk, defined as

j(t) = ...
a aH3 . (1.30)

and we note that H, q and j can be viewed as the first coefficients in the Taylor
expansion of the scale factor.

In general relativity, we find that if a source emits radiation at time to, with
wavelength λe, the wavelength received by an observer, λo, at time te is different,
depending on the relative motion of the source and observer. This difference is
quantified by the redshift, z,

1 + z = λo

λe

= a(to)
a(te)

, (1.31)

where we will normally set to as the present time, so a(to) = 1.

1.3.2 Friedmann Equations

Now that we have established the FLRW metric, we can use it to solve our general
relativistic equations of motion. The first step is to consider the form of Tµν that we
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require. It turns out that the properties of homogeneity and isotropy require that
matter must take the form of a perfect fluid, as discussed in 1.2.5. We can prove this by
considering first Tab(t, x, y, z) as an arbitrary symmetric tensor, where we can view each
component as some function of the coordinates. The condition of spatial homogeneity,
i.e. that the universe must look the same at every point, then forces that the Energy-
Momentum tensor must in fact be a function of t only, i.e. Tab(t). We now consider
the condition of spatial isotropy. We can consider T0i and Ti0 as spatial 3-vectors -
by isotropy they must be invariant under spatial transformations. However, there are
no non-zero isotropic 3-vectors, and therefore T0i = Ti0 ≡ 0. We can also consider Tij

as a spatial 3-tensor, which, again must be isotropic. Since the only isotropic spatial
3-tensors are proportional to δij, we have Tij ∝ p(t)δij ∝ p(t)gij for some function
p. Finally, we call the remaining component T00 = ρ(t), which leaves us with the
perfect fluid form of the Energy-momentum tensor, T a

b = diag(−ρ(t), p(t), p(t), p(t)),
as required.

Returning to the Einstein Field Equations

Rµν − 1
2Rgµν + Λgµν = κTµν , (1.32)

and inserting this form of matter, together with the FLRW metric we find our cosmo-
logical equations of motion

(
ȧ

a

)2
+ k

a2 = Λ
3 + κ

3ρ , (1.33)

which is the 00 component of the Einstein equations, known as the Friedmann equation,
and

ä

a
= −κ

6 (ρ + 3p) + Λ
3 , (1.34)

from the ii component, which is known as the acceleration equation. Together these
are sometimes known as the Friedmann equations, and they describe the evolution of
the scale factor, and the perfect fluid described by the energy density ρ and pressure, p.
These are the only independent components of the Einstein equations, and represent a
significant reduction in complexity, from ten coupled, non-linear PDES, to just two
ordinary differential equations.
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We have a further equation, arising from the conservation of the energy-momentum
tensor for a perfect fluid, which is known as the continuity equation

ρ̇ = −3 ȧ

a
(ρ + p) . (1.35)

However, the continuity equation is in fact not independent of the Friedmann equations,
and could be derived by differentiating (1.33) and combining appropriately with (1.34).
Although only two of the three equations are independent, and so only two are needed
to completely solve any situation, depending on the setup, it is helpful to use different
combinations of the three.

We now have two independent equations, but with three variables, a(t), ρ, p.
Therefore, in order to solve the system, we need to specify a relationship between
the energy density and the pressure. Typically this is done by specifying a specific
equation of state, in which we express p = p(ρ), for some specific form. The Friedmann
equations can then be solved for a and ρ. The most commonly used cosmological
equation of state is a simple linear one

p = wρ , (1.36)

where w is a constant which controls the behaviour of our perfect fluid. Choosing this
equation of state, we then find that the continuity equation becomes

ρ̇ = −3 ȧ

a
(1 + w)ρ , (1.37)

which can be integrated as
ρ = ρ0a

−3(1+w) . (1.38)

At this point it is useful to consider the meaning of different values of w. The first
step is to observe that if we take w = −1, then we have ρ = ρ0, a constant. This is
the same behaviour as the cosmological constant term in the Friedmann equations,
meaning that we can view the cosmological constant as arising instead from the matter
distribution, as a w = −1 perfect fluid. Similarly, w = −1/3 provides a term behaving
as ρ ∝ a−2, which is the same behaviour as the curvature terms in (1.33) and (1.34)
(the latter non-existent), and so we can instead view curvature as arising from the
matter distribution. We may also consider some values of w which describe particular
types of matter of importance. w = 0 results in p = 0, which describes ‘dust’, or
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non-relativistic, pressureless matter, whilst w = 1/3 describe relativistic particles and
radiation, and w = 1 describes a stiff fluid, such as a scalar field. Values of w < −1
are often known as ‘phantoms’, but have negative kinetic energy, and are generally
regarded as unphysical. Values of w > 1 are known as ‘ultrastiff’, and are used in
certain models. It is also worth noting at this point that since the Friedmann equations
are linear in ρ, there is no difference between interpreting the cosmological constant
and spatial curvature as arising from matter or from space-time curvature.

There is a commonly used alternative way of writing the Friedmann equations, by
defining what are known as the (fractional) density parameters

Ωm = ρ

3H2 , Ωk = − k

a2H2 , ΩΛ = Λ
3H2 , (1.39)

in which case we can rewrite the Friedmann equation as a constraint equation

Ωm + Ωk + ΩΛ = 1 , (1.40)

and we see that each term describes the fractional contribution of each term to the
energy content of the universe. It has been possible to measure the value of the density
parameters today, and the most recent measurements [12] show that Ωm,0 ≈ 0.31,
ΩΛ,0 ≈ 0.69, and Ωk,0 < 0.001. This means that we believe that the significant majority
of the universe’s current energy content arises from the cosmological constant, also
known as dark energy. We also have strong evidence that the universe is extremely
spatially flat.

Once we have found the energy density as a function of the scale factor as in (1.38),
the next step is to attempt to integrate a second time and solve for the scale factor as
a pure function of time, which it is possible to do in a range of scenarios. Historically,
the dominant belief was in a static universe with neither beginning nor end, that is
with a(t) ≡ a0, a constant. This is the Einstein static universe [25], which lead to the
original introduction of the cosmological constant, as it requires k > 0 and Λ > 0,
constant matter density to which the value of Λ is tuned. The static universe is then
given by

a =
√

k

Λ , Λ = 4πGρm . (1.41)

However, it was subsequently noticed that this universe would be unstable to perturba-
tions - a slight disturbance would be enough to destroy its static nature. Another simple
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solution is the de Sitter universe. This is an exponentially expanding vacuum universe
with non-zero cosmological constant, where the scale factor (in the case k = 0)is given
by

a(t) = e
√

Λ
3 t . (1.42)

The de Sitter universe is the late time attractor of the ΛCDM model, since as the
universe expands all other cosmological components will be diluted away until we have
a vacuum universe. If instead we had taken the negative square root, we would have
an infinitely collapsing solution, but it is unstable. There is also a vacuum solution
with no cosmological constant, provided we have negative curvature. This is the Milne
solution, and has

a(t) ∝ t . (1.43)

If we consider a flat universe with no cosmological constant, we can use (1.38) and
(1.33) to find

a(t) =
(

3(1 + w)
2 H0t

) 2
3(1+w)

, (1.44)

and where H0 =
√

κρ0
3 is the value of the Hubble parameter today.

The standard model of cosmology, known as ΛCDM, describes a universal history
consisting largely of periods where the energy content of the universe is dominated by
a particular form, first radiation, then matter, and now dark energy, or Λ. Since the
matter content, apart from near the change of eras, is dominated by one form, we can
consider the universe as containing only a single form of matter. The earliest phase
is radiation domination, which occurred at very early times and lasted until redshifts
of z ∼ 3300, which is the time known as matter-radiation domination. This era is
approximately described by the Tolman solution, which has

a(t) = (2H0t)
1
2 , (1.45)

which is (1.44) with the equation of state for radiation, w = 1/3.

The second major era is that of matter domination, in which the dominant energy
contribution arises from w = 0 dust. The period of matter domination is believed
to have lasted from the matter-radiation crossover at z ∼ 3300 until the onset of Λ
domination at z ∼ 2/3, at which point the current phase of accelerated expansion
began. An approximate solution for this era during the time when Λ can be neglected
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is the Einstein-de Sitter solution,

a(t) =
(3

2H0t
) 2

3
. (1.46)

This was favoured as a model for the universe when it was believed that Λ = 0.
However, more recent evidence suggests that Λ > 0, in which case the Friedmann
equations can still be solved explicity if k = 0. In the case of dust we then find

a(t) =
(

Ωm,0

1 − Ωm,0

) 1
3

sinh
2
3

(3
2H0

√
1 − Ωm,0t

)
, (1.47)

which is especially important for describing the universal history during the time when
matter and Λ are both non-negligible. This has as it’s limits the expected Einstein-de
Sitter solution when t is small, i.e. matter domination, and the accelerating de Sitter
universe at large times, i.e. during Λ domination.

To make further progress, for example in the case k ̸= 0 we make a change of
parameter, from coordinate time, t, to conformal time, η, defined by

η =
∫ dt

a(t) . (1.48)

We can then find parametric solutions in certain cases, for example in the case of dust
and a closed universe, k > 0 we have

a(η) = Ωm,0

2(Ωm,0 − 1)(1 − cos(
√

kη)) , (1.49)

t(η) = Ωm,0

2H0(Ωm,0 − 1) 3
2
(
√

kη − sin(
√

kη)) , (1.50)

which reaches a maximum value of a at η = 2π√
k

before recollapsing as expected for a
closed universe, whilst for an open universe k < 0, we have a continuously expanding
solution

a(η) = Ωm,0

2(1 − Ωm,0)
(cos(

√
|k|η) − 1) , (1.51)

t(η) = Ωm,0

2H0(1 − Ωm,0)
3
2
(sin(

√
|k|η) −

√
|k|η) . (1.52)
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A final parametric solution of interest is the two-fluid solution, for example to describe
the period of radiation-matter equality at z ∼ 3300, which takes the form

a(η) = 1
4H2

0 Ωm,0η
2 + H0

√
1 − Ωm,0η , (1.53)

t(η) = 1
12H2

0 Ωm,0η
3 + 1

2H0

√
1 − Ωm,0η

2 . (1.54)

1.3.3 Other solutions in Cosmology

If we relax the assumptions of homogeneity and isotropy, it is still possible to find
cosmological solutions in some cases, provided we still impose sufficiently ‘nice’ re-
quirements on our spacetime. If we relax the requirement of isotropy, then there are
a wide range of anisotropic universes, known as the Bianchi spacetimes. There are
eleven types of Bianchi universe, labelled from I to IX (type VI and VII each have
two subtypes), with the different types being defined by certain intrinsic properties of
their isometry groups. The reduced symmetry of the Bianchi universes allows new and
interesting behaviours to arise, particularly in the early universe, whilst a result due to
Wald [26] showed that the existence of Λ > 0 is sufficient to cause these anisotropic
universe to isotropise at late times. Specifically, Wald showed that all Bianchi models
with Λ > 0, except for Type IX where Λ is small relative to the space-time curvature,
evolve exponentially to the isotropic de Sitter solution.

The simplest type is the Bianchi type I spacetimes, which represent a generalisation
of flat FLRW to having separate scale factors in each spatial direction, the line element
for which is

ds2 = −dt2 + a2(t)dx2 + b2(t)dy2 + c2(t)dz2 , (1.55)

and we recover isotropy (and hence k = 0 FLRW) by setting a = b = c. Although we
do not go into further details in this thesis, it is worth noting that the k > 0 FLRW is
recovered as a special case of Bianchi IX, and k < 0 FLRW similarly as a special case
of Bianchi VIIa.

Of course, the Bianchi universes do not represent the only cosmological solutions.
Even in the class of homogeneous spacetimes, there is an exceptional family known as
the Kantowski-Sachs universes which fall outside of the Bianchi classification, by virtue
of the spatial components having topology R×S2. If we further relax the requirement of
homogeneity, then we may encounter the Lemaître-Tolman-Bondi spacetimes which is
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a spherically symmetric solution to the Einstein equations in the presence of dust. This
solution has been used in various ways, including to measure the effect of overdense
regions and voids in an expanding universe, or to investigate the behaviour of an
inhomogeneous big bang. Similarly, the so-called ‘Swiss-cheese’ model is constructed
by removing spherical sections from FLRW, and filling them with another spherically
symmetric solution with suitable boundary behaviour. Even further, the Szekeres-
Szafron family of solutions [27] has no specific symmetries, but retains some helpful
algebraic properties and takes the general form

ds2 = −dt2 + e2αdz2 + e2β(dx2 + dy2), (1.56)

where α and β are functions of all four coordinates. Many of the other solutions
discussed, including FLRW itself, arise as special cases of the Szekeres-Szafron family.

1.3.4 Problems in Cosmology

The standard model of Cosmology, ΛCDM, is in very good agreement with most obser-
vational data. However, there remain problems with it which yet to meet satisfactory
resolution, and we summarise a couple of them below.

As we discussed earlier, observations of the Cosmic Microwave Background strongly
support the idea that the universe is isotropic. However, if we attempt to ask why
the universe appears so isotropic, we encounter the Horizon problem. The CMB is an
observable remnant of the early universe, formed when photons decoupled from the
primordial plasma approximately 380,000 years after the big bang. In order to consider
how particles may have interacted in the past, we define the particle horizon as

ηph =
∫ ln a

ln ai

(aH)−1d ln a , (1.57)

where ai ≡ 0 is the initial big bang singularity. We also call (aH)−1 the Hubble radius.
This is equivalent to the amount of conformal time, η =

∫ t2
t1

1
a
dt, which has passed

since the initial singularity until today. The particle horizon is the maximum comoving
distance travelled by light since the beginning of the universe, and thus tells us whether
two photons could have interacted at any point in the past. If their particle horizons
do not intersect, then they cannot have been in causal contact at any point in the
past. If we do this calculation in the standard model of cosmology, with an increasing
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Hubble radius and perfect fluid matter component with w > −1/3 (which is necessary
physically in order to obey the strong energy condition) then we encounter a serious
problem. We find that the big-bang singularity occurred at conformal time 0, (1.57)
is dominated by its upper limit, and therefore that ηph ∼ (aH)−1, i.e. that there has
been a finite amount of conformal time since t = 0, and as a consequence that most
points on the sky have non-overlapping particle horizons. In fact, this affects any points
separated by more than about 1 deg of sky, resulting in 104 patches of the CMB with
non-overlapping horizons. But if these patches have non-overlapping particle horizons,
then they were never in causal contact, so why does the universe appear so isotropic?
This is the horizon problem.

The cosmological constant was originally introduced by Einstein in order to permit
the existence of a static universe, the evidence built against such a model, and he
eventually discarded the cosmological constant entirely, preferring instead an expanding
universe without Λ. However more recent cosmological evidence has reintroduced the
cosmological constant in order to explain the observed accelerating expansion of the
Universe. Λ appears in the Einstein equations, and can be interpreted equivalently as
either a ‘bare’ geometric term, or as a perfect fluid with energy density

ρΛ = Λ
8πG

. (1.58)

This cosmological interpretation of Λ has no theoretical determination of the size,
rather from observations we can determine that

ρ
1/4
Λ ∼ 10−3eV , (1.59)

which does not lead to any problem on the classical level. However, if we consider
the quantum field theory contributions to the vacuum energy, we find that there are
zero-point energy contributions that are many orders of magnitude larger. If we fix an
energy cutoff, E, for our quantum theory, then an effective cosmological constant arises

ρvac = 1
2

∫ E

0

d3k
(2π)3

√
k2 + m2 ∼ E4 . (1.60)

Depending on the level at which we set the cutoff energy, we now find that

ρ1/4
vac ∼ 1011eV up to ρ1/4

vac ∼ 1027eV , (1.61)
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so that the value of the cosmological constant from these quantum calculations is 60-120
orders of magnitude larger than the observed value. Further, even if the cosmological
constant could be fixed at an appropriately small value, it would still be vulnerable
to quantum fluctuations of large size compared to the value of Λ. This, then, is the
cosmological constant problem, finding a way to reconcile the observed value of Λ with
the size of the quantum contributions to the vacuum energy.

1.3.5 Inflation

In order to resolve some of the cosmological issues, such as the horizon problem, which
arise in the early universe of the standard model of cosmology, on proposed solution is
inflation. This is a hypothetical period of accelerated expansion, occurring after the
big bang but before the onset of radiation domination. Inflation was first proposed by
Guth in 1981 [28], as a solution to these cosmological problems, followed swiftly by
many further models which corrected certain problems with the early formulations,
particularly regarding the mechanisms for exiting the inflationary phase [13, 29].
Nowadays, there are many different models of inflation, ranging from simple models
of single field inflation, in which inflation is driven by a single scalar field, known
as the inflaton, acting in some appropriate potential, to far more complex models
involving multiple fields, through to eternal inflation in which the inflationary phase of
the universe occurs forever in most of the universe, with only pockets of the universe
ever exiting inflation resulting in a multiverse outcome [30].

If there is a period of accelerated expansion in the early universe, then by definition
ä > 0, which is equivalent to the statement that

d

dt
(aH)−1 < 0 , (1.62)

that is that the Hubble radius is shrinking during the accelerating phase. If we also take
the energy content of the universe to be provided by a strong energy condition violating
perfect fluid, so that w < −1/3, then we find that (1.57) is instead dominated by its
lower limit, and that the initial big bang singularity occured at −∞ conformal time.
This means that instead of a finite particle horizon, we instead have infinite conformal
time between the big bang and now, so there is enough “time" for all particles to have
been in causal contact, thus resolving the Horizon problem.
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The simplest way to perform inflation, is via a single scalar field acting in an
appropriate potential. The equations of motion for a single scalar field ϕ in a potential
V (ϕ) in flat FLRW space are:

H2 = 1
2 ϕ̇2 + V (ϕ) , (1.63)

which is the Friedmann equation with units chosen such that 8πG
3 ≡ 1, and

ϕ̈ + 3Hϕ̇ + V ′(ϕ) = 0 , (1.64)

from the continuity equation. These are obtained straightforwardly, because a scalar
field can be viewed as a perfect fluid with ρϕ = 1

2 ϕ̇2 + V (ϕ) and pϕ = 1
2 ϕ̇2 − V (ϕ). The

inflaton begins far away from the minimum, at which point its behaviour is dominated
by the potential, driving exponential-like expansion of the universe in a way similar to
a cosmological constant. For this phase, the potential undergoes slow-roll behaviour,
and we can make the slow-roll approximations

1
2 ϕ̇2 << V (ϕ) and ϕ̈ << |3Hϕ̇| , (1.65)

meaning that the equations of motion reduce to

3H2 ≈ v(ϕ) and 3Hϕ̇ ≈ −V ′(ϕ) , (1.66)

which are readily soluble with a specific choice of V (ϕ). Inflation ends once the inflaton
reaches the bottom of the potential, and the behaviour instead becomes dominated by
the kinetic terms. At this point it is expected that a period of reheating occurs, the
inflaton decays, and standard physics takes over [31]. There are many different classes
of potential that can drive inflation, but the simplest is power-law inflation, in which
the inflationary potential takes the form

V (ϕ) = V0ϕ
n n > 0 , (1.67)

that is, a simple monomial. Typical choices might be n = 2 or n = 4, the latter of
which was Linde’s original model of chaotic inflation [32]. As an example of how the
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system can then be solved, if we choose n = 2, we find

ϕ(t) = ϕ0 −
√

V0

12t , (1.68)

a(t) = a0 exp{4(ϕ2
0 − ϕ2(t))} . (1.69)

There are many other models of inflation, for example, the alpha-attractor models
[33, 34] which are families of potentials originally motivated by string theory and
supergravity considerations in accordance with cosmological observations. The α

in question is a parameter corresponding to the cutoff from the underlying super-
gravitational theory, whilst they are called attractors because some of the fundamental
observational predictions of these models remain stable even as the choice of potential
may vary significantly. Of particular importance is the predictions of the primordial
scalar spectral index, ns and the tensor-to-scalar ratio, r. The predictions of both of
these parameters from the alpha-attractor models lie directly within the observationally
favoured region of the phase-space from the WMAP [35] and Planck [12] observations
of the Cosmic Microwave Background. The basic families of single field alpha attractors
include the T-model

V (ϕ) = V0 tanh2n

(
ϕ√
6α

)
, (1.70)

and the E-model
V (ϕ) = V0(1 − e−

√
2

3α
ϕ)2n , (1.71)

whilst many other common choices of inflationary potential emerge as specific cases of
these.

1.3.6 Modified Gravity

Although we can attempt to resolve some of the problems in ΛCDM through adding
a new physical process, such as inflation, active at some point during the history of
the universe, many proposed solutions arise instead from attempting to modify the
theory of general relativity itself. It can already be seen that GR is not a complete
theory of gravitation, as it breaks down at extreme curvatures, resulting in singularities
in the theory. In addition, it is not compatible with quantum theory, and no unified
description is known. Therefore we might expect to be able to resolve some of these
problems by modifying GR itself. Typically this is done by using a more complicated
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action than the simple Einstein-Hilbert, which may include the introduction of new
fields. This will then result in higher order terms appearing in the equations of motion,
leading to new behaviour in certain scenarios, whilst not deviating significantly from
GR in local tests.

Modifications to gravity can take many forms, but one of the earliest modifications
of GR arose from allowing the gravitational ‘constant’, G, to vary. This is the Brans-
Dicke theory [36], in which G−1 is replaced by a new scalar field ϕ, and a corresponding
kinetic term introduced into the action, which becomes:

S = 1
16π

∫ √
−g(ϕR − ω

ϕ
∂aϕ∂aϕ)d4x +

∫ √
−gLmd4x . (1.72)

Varying this action then produces a generalisation of the Einstein Field equations, as
well as an additional equation of motion relating ϕ to the energy-momentum tensor,
and the entire theory recovers general relativity in the limit ω → ∞. This, however, is
not the most general theory in the class of ‘scalar-tensor’ theories. ω can be permitted
to vary as a function of ϕ, and a potential for the scalar field can be introduced, which
then acts as a dynamical generalisation for the cosmological constant. A more general
scalar tensor action is then

SST ,J = 1
16π

∫ √
−g

{(
ϕR − ω(ϕ)

ϕ
∂aϕ∂aϕ + Λ(ϕ)

)
+ αmLm

}
d4x , (1.73)

where αm is a coupling constant for the matter lagrangian. Generalising further still,
the most general four-dimensional scalar-tensor theory with second-order equations of
motion is known as Horndeski gravity. Horndeski generalises (1.73) by replacing the
coefficient of R by a function of ϕ and X = ∂aϕ∂aϕ, and the introduction of several
new terms. Collectively, the modifications then depend upon four functions, known as
Gn(ϕ, X) for 2 ≤ n ≤ 5, and the total action takes the form

L = G2(ϕ, X) + G3(ϕ, X)□ϕ + G4(ϕ, X)R + G4,X(ϕ, X)
[
(□ϕ)2 − ϕ;abϕ

;ab
]

(1.74)

+ G5(ϕ, X)Gabϕ
;ab − 1

6G5,X(ϕ, X)
[
(□ϕ)3 + 2ϕ ;b

;a ϕ ;c
;b ϕ ;a

;c − 3ϕ;abϕ
;ab□ϕ

]
,

where □ is the d’Alembertian operator. We can see that we recover the simpler
theories as specific cases, with the scalar-tensor action in (1.73) coming from G3 =
G5 = 0, G2 = −ω(ϕ)

ϕ
X, G4 = ϕ. The Horndeski action has a rich variety of possible

behaviours, however recent observational tests have placed strong bounds on several of
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the parameters. Chief amongst these was the detection, by the LIGO collaboration,
of gravitational waves from the neutron star binary collision GW170817 [37] and the
electromagnetic counterpart GW170817A [38]. The combination of these observations
allows strong bounds to be placed on the deviation of the speed of propagation of
gravitational waves, cT , from the speed of light c = 1. Writing c2

T = 1 + αT , a an
extremely tight bound of |αT | ≲ 1 × 10−15 [39] has been placed, fixing the deviation at
essentially zero. This has serious implications for Horndeski models and, absent any
finely tuned cross-cancellation of specific terms, the final three terms in (1.74) must
vanish identically, leaving a much reduced form of the action as viable

L = G2(ϕ, X) + G3(ϕ, X)□ϕ + G4(ϕ)R, (1.75)

although this form of the action leaves viable several common modifications, including
the Brans-Dicke scalar-tensor theory and its generalisation (1.73).

An intriguing aspect of scalar-tensor theories is that there exist conformal transfor-
mations from (1.73), known as the Jordan frame action, to another frame known as
the Einstein frame, in which the action of the transformed fields takes the standard
form of the Einstein-Hilbert action together with a minimally coupled canonical scalar
field, but with a non-constant coupling to the matter lagrangian.

SST ,E = 1
16π

∫ √
−g̃

{(
R̃

G
− 1

2 ∂̃aϕ̃∂̃aϕ̃ + V (ϕ̃)
)

+ α̃m(ϕ))Lm

}
d4x . (1.76)

This conformal equivalence is very useful for analysis of scalar-tensor theories, since
known solutions in GR can be conformally transformed into solutions of the scalar-
tensor theory. It is important to note however, that the non-constancy of αm in (1.76)
results in deviation from general relativity in the behaviour of matter fields. The
matter energy momentum tensor is not conserved, and the equivalence principle is
broken. This, as we shall see, is a feature of many modified gravitational theories.

An alternative modification, although in some ways related to scalar-tensor theories,
is F (R) gravity [40], in which the Ricci scalar in the Einstein-Hilbert action is replaced
by some function of the Ricci scalar, F (R)

S = 1
2κ

∫ √
−g(F (R) − 2Λ)d4x +

∫ √
−gLmd4x . (1.77)
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This results in higher-order equations of motion, in which the left-hand side of the
Einstein equations are altered, whilst maintaining the covariance and Lorenz invariance
of the Einstein-Hilbert action. Varying this results in the equations of motion

F ′(R)Rµν − 1
2F (R)gµν − ∇µ∇νF ′(R) + gµν∇ζ∇ζF ′(R) = κTµν , (1.78)

which are in general fourth order equations of motion, but can be seen to reduce
to general relativity in the case F (R) = R. As mentioned above, these models are
closely related to scalar tensor models, as there exists a conformal transformation
which maps F (R) theories to GR with minimally coupled scalar fields, and legendre
transformations which result in theories like Brans-Dicke with ω = 0 [41]. This makes
models of this kind of extreme interest in cosmology, as they provide a geometric origin
for behaviours such as inflation. Many F (R) models exhibit interesting features, but a
specific example of great interest is

F (R) = R + αR2 , (1.79)

which produces inflationary behaviour known as Starobinsky inflation [42] in the early
universe, which is in very good agreement with current observational data [43]. By the
conformal transformation mentioned above, this model is equivalent to a minimally
coupled scalar field acting in the potential

V (ϕ) = V0

(
1 − e−

√
2

3α
ϕ
)2

, (1.80)

which we note is the case of the α-attractor E-model with n = 1 given in (1.71).

However, although F (R) gravity is a natural extension of the Einstein-Hilbert
action, the Ricci scalar is not the only term that we could add to the action. Indeed,
R is not even the only scalar formed from the Riemann tensor that we might consider.
We could also consider the “squared” scalars RabR

ab and RabcdRabcd, which allow us to
then consider the action

S = 1
2κ

∫ √
−gF (R, RabR

ab, RabcdRabcd)d4x +
∫ √

−gLmd4x . (1.81)

Many solutions have been found in these extended theories, including homogeneous
and isotropic solutions familiar from GR, as well as solutions in both the isotropic
and anisotropic cases in which the scale factors take the form of power laws [44], and
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many others. As an example of deviations from GR, it has been found that in theories
of the form f(R, RabRab) = R + α(RabRab)n initial isotropic singularities are stable
under various types of perturbation, whilst in GR they would be unstable [45]. Further
progress can be made in some situations by consideration of the Gauss-Bonnet term
[40] which is given by

G = R2 − 4RabRab + RabcdRabcd. (1.82)

G is a purely topological surface term, and therefore does not contribute to the action
if it appears linearly. Therefore if one of the three arguments of F appears as a simple
linear term added to some function of the other two, then we can eliminate that
argument in favour of the other two and G, and integrate out the linear G contribution
to leave just two arguments. Unfortunately this is not possible for the most general
form of F , as arbitrary functions of G are not themselves total derivatives.

The above answers the question of how to generalise GR by adding additional
curvature terms to the action. However, the Einstein equations contain two parts, the
Ricci tensor and scalar on the left, and the energy-momentum tensor on the right-hand
side. We could therefore consider the addition of terms dependent on Tab to the
Einstein Hilbert action, and there are two natural types to consider, based on either
the trace of the energy-momentum tensor, T = T a

a [46] or the scalar square, T abTab

[47, 48]. This type of modification introduces new higher-order matter contributions to
the Einstein equations, and hence impact the cosmology by introducing new non-linear
behaviour of matter in the Friedmann equations. It is worth confirming that these
types of modification do indeed have different behaviour, as can be seen by considering
a perfect fluid with equation of state w = −1/3. In this case the trace of the energy
momentum tensor vanishes, T = 0 and so we would expect no modification to the
underlying cosmology, but the square, T abTab does not vanish. If we consider the case
of F (R, T µνTµν) gravity, known as “Energy-momentum squared gravity”, we have the
action

S = 1
2κ

∫ √
−g(F (R, T µνTµν) − 2Λ) d4x +

∫
Lm

√
−g d4x , (1.83)

and varying this we find the modified Einstein Field equations

FRRµν − 1
2Fgµν + Λgµν + (gµν∇α∇α − ∇µ∇ν)FR = κ(Tµν − 1

κ
FT2θµν) , (1.84)
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where subscripts of R and T2 represent differentiation of F with respect to the relevant
argument, and θ is a tensor dependent on the energy momentum tensor as

θµν ≡ δ(TαβT αβ)
δgµν

. (1.85)

Theories of this kind have now been studied in several contexts, often using forms such as
F (R, T2) = R+ηT2n. In this context [47] investigated solutions for charged black holes
in the theory, and [49] considered similar models as arising from quantum fluctuations
of the metric tensor. The cosmology of these models is particularly interesting, as,
for example, the case with n = 1 results in quadratic modifications to the Friedmann
equations, bearing resemblance to those corrections arising in Braneworld or Loop
Quantum Cosmology models. In the third and fourth chapters of this thesis, we
investigate the cosmology of certain models in F (R, T µνTµν) gravity.





Chapter 2

Singular inflation with more
general potentials

2.1 Introduction

2.1.1 Singularities

Singularities, whereby some quantity becomes ill-defined, often by taking some infinite
value, are a feature of great interest in the study of general relativity and cosmology.
There exist many different kinds of behaviour referred to as singularities, ranging from
simple co-ordinate singularities which arise only as a result of our choice of co-ordinate
system, such as in the case of the famous Schwarzschild solution for a spherically
symmetric, non-rotating, uncharged black-hole which has metric

ds2 = −
(

1 − rs

r

)
dt2 +

(
1 − rs

r

)−1
dr2 + r2dΩ2 , (2.1)

which appears to become singular at r = rs. However, this singularity turns out not to
be a physical singularity, and can be removed by a suitable change of variable. This
stands in contrast to the case at r = 0 which is not a simple co-ordinate singularity,
but a spacetime curvature singularity at which various co-ordinate independent quan-
tities diverge. A typical scalar quantity that one might consider in this case is the
Kretschmann scalar, K = RabcdRabcd, which becomes infinite at r = 0 in Schwarzschild.
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In a cosmological context, the most natural singularity to consider is the Big Bang.
In ΛCDM, the universe began at some finite point in the past from an initial singularity
of infinite density, where a = 0 [18]. Given, then, that the history of the universe
began with a singularity, the natural question to ask is whether there may be a further
singularity in the future, and if so what form it might take. A natural mirror of the
Big Bang singularity is the Big Crunch, a future density singularity, an example of
which occurs in a closed universe described by the FLRW metric with k > 0 and the
energy content described by a perfect fluid with w > −1/3, for example dust w = 0.
In this the universal expansion reaches a maximum value before recollapsing in finite
time to a singularity of infinite density and zero size.

However, these density singularities are not the only cosmological singularities. The
Big Rip is a type of future singularity in which the scale factor and its derivatives
become infinite in a finite amount of time [50]. It occurs when the energy content of
the universe is made up of a phantom, w < −1 perfect fluid, and could be viewed as
the opposite of a Big Crunch - the universe becomes infinite in extent but has zero
density.

Both classes of future singularity mentioned above might be regarded as ‘strong’
singularities, representing a cosmological event which is a fundamental end to the
universe, we can consider weaker future singularities. The “sudden singularities” of
[51], in which both a(t) and ȧ(t) remain finite, but ä(t) becomes infinite in some finite
time. In this case, the density, ρ, remains finite, but the pressure, p, becomes infinite.
Futhermore ρ + 3P > 0 at this point, so the strong energy condition is not violated.
We can observe this behaviour if we consider the solution for the scale factor given in
[52]

a(t) =
(

t

ts

)q

(a(ts) − 1) + 1 −
(

1 − t

ts

)n

, (2.2)

where ts is the time at which the sudden singularity occurs, and 0 < q ≤ 1, 1 < n < 2.
From this we can then see by substituting this solution into the friedmann equations,
that at time ts, a(ts) remains finite, as does ρ(ts), but ä(ts) → ∞, p(ts) → ∞. Weaker
singularities still can be constructed, in which the divergence occurs in an arbitrarily
high derivative of the scale factor [53], as indeed occurs if we allow 2 < n < 3 in this
example.

These sudden singularities are weaker than the Big Rip and Big Crunch type
singularities in several ways:
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1. Geodesics are extendible through sudden singularities [54]. This can be seen as
the geodesic equations depend only on the first derivative of the scale factor,
which remains finite - it is only higher derivatives which diverge.

2. They obey most of the classical energy conditions. The exception is the dominant
energy condition, but even this is satisfied by the generalised sudden singularities.
[55]

3. The singularities are not “crushing” - objects approaching the singularity are
not crushed to zero volume, and the Ricci scalar remains finite, although higher
derivatives may not.

Finally, we might wish to consider a method of classifying cosmological singularities.
In [56], future cosmological singularities occuring at some finite time ts, are sorted into
four types.

Type I - as t → ts, a → ∞ ρ, p → ∞

Type II - as t → ts, a → as ρ → ρs, p → ∞

Type III - as t → ts, a → as ρ → ∞, p → ∞

Type IV - as t → ts, a → as, ρ → 0, p → 0, higher derivatives of H diverge

Sudden singularities are classified as Type II, whilst the generalised sudden sin-
gularities are Type IV. Type I singularities would include the Big Rip, and Type III
would include singularities such as the Big Freeze [57], which arises in certain models
of Cosmology where the matter takes the form of a Chaplygin gas.

2.1.2 Singular inflation

One solution to problems, such as the horizon problem, which arise in the early universe
of the standard ΛCDM mode of cosmology is inflation. This involves the addition of
fields that will, in the early universe, have caused very rapid expansion. This allows
for greater conformal time to have passed than otherwise thought, meaning that the
disparate regions in fact were in causal contact in the early universe. The simplest
way to model inflation is by the addition of a single canonical and minimally coupled
scalar field acting in some potential to General Relativity. The resulting equations of
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motion are as given above. Perhaps the most straightforward example of an inflationary
potential is the powerlaw V (ϕ) = ϕn, which is simple to write down and has been
highly studied. Even in this case, however, complexities can arise.

[58] showed that sudden singularities arise for a simple scalar field in a power-law
potential V (ϕ) = Aϕn for n non-integer. The singularities occur in the ⌊n⌋ + 2 th
derivative of ϕ, and can be observed by taking ⌊n⌋ derivatives of the scalar field
equation of motion (2.10). The non-integer power means that the differentiated
equation contains a negative power of ϕ which will diverge if it can be shown that ϕ = 0
in finite time. This was shown to occur. Potentials of this form can be used to describe
large-field inflationary theories, which would subsequently result in evolution to a
sudden singularity. Inflation with fractional power law potentials has been discussed
before, eg [59]. This suggests that it is worthwhile investigating the range of potentials
that result in sudden singularities in order to determine which inflationary models may
exhibit this behaviour, and in 2.2 we investigate which properties of the potential will
result in a sudden singularity.

2.1.3 Minimally Coupled Scalar Fields

We consider a simple cosmological model, consisting of a flat, homogeneous and isotropic
universe with the matter content described by a single minimally coupled scalar field.
The metric is then given by the k = 0 FLRW metric

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
. (2.3)

The matter content is described by the scalar field Lagrangian,

Lϕ = 1
2 ϕ̇2 − V (ϕ) , (2.4)

where V (ϕ) is a chosen potential. The pressure and density of our scalar field are then

ρ = 1
2 ϕ̇2 + V (ϕ) , (2.5)

p = 1
2 ϕ̇2 − V (ϕ) . (2.6)

(2.7)
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By inserting these into the Friedmann equations and the continuity equation, we find
the scalar field equations of motion.

3H2 = 1
2 ϕ̇2 + V (ϕ) , (2.8)

Ḣ = − 1
2 ϕ̇2 , (2.9)

ϕ̈ = − 3Hϕ̇ − V ′(ϕ) . (2.10)

2.2 Finite time singularities in more general poten-
tials

In [58] it was shown that singular inflation occurs for a scalar field with potential
V (ϕ) = ϕn for non-integer n and generic initial conditions. They showed that for
ϕ0 > 0 and ϕ̇0 > 0 first ϕ̇ must become negative in finite time and that in finite
time beyond this ϕ itself must reach zero. By the nature of the potential, as ϕ −→ 0
then V (ϕ) remains finite, but V ′(ϕ) diverges, resulting in the singular behaviour in ϕ̈.
We have worked to generalise these results in order to increase the known family of
potentials which will result in singular inflationary behaviour. In the following work
we determine sufficient conditions on V (ϕ) to ensure firstly that ϕ̇ reaches 0 in finite
time, before finding further conditions which suffice to ensure that ϕ itself reaches 0 in
finite time, resulting in a sudden singularity in the future.

2.2.1 Showing ϕ̇ → 0 in finite time

It can be shown that ϕ̇ must become negative in finite time when the potential is such
that V (ϕ) > 0, V (ϕ) is increasing, and V ′(ϕ) has finitely many stationary points, all
for ϕ > 0. Consider initial conditions ϕ0 > 0 and ϕ̇0 > 0.

In the case that the number of stationary points of V ′(ϕ) is non-zero, since the
initial conditions were generic, we can simply evolve forwards a finite time until the
system passes the final stationary point and consider the system again with a new ϕ0

and ϕ̇0 and a potential that is either increasing or decreasing.
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Consider the case with V ′(ϕ) decreasing. Then the scalar field equation of motion
is

ϕ̈ = −3Hϕ̇ − V ′(ϕ) < 0 , (2.11)

where the inequality arises as both terms are negative for this region. Integrating twice
gives

ϕ(t) < ϕ0 + ϕ̇0t , (2.12)

and as V ′(ϕ) is decreasing,

ϕ̈ < −V ′(ϕ) < −V ′(ϕ0 + ϕ̇0t) . (2.13)

Integrating again gives that

ϕ̇ ≤ ϕ̇0 + V (ϕ0)
ϕ̇0

− V (ϕ0 + ϕ̇0t)
ϕ̇0

. (2.14)

Since V (ϕ) is increasing in ϕ, the final term must eventually pass the constant
term and at this point ϕ̇ = 0. Note that in fact in this case the requirement that the
potential be increasing is actually stronger than is necessary - all that is really required
is that at some point it reaches the (fixed) constant value. This could happen if it
tended to some limit above this value or in various other situations.

If V ′(ϕ) is increasing then we can provide the following bound, as with ϕ̇ > 0, ϕ

must be increasing in this region:

ϕ̈ < −V ′(ϕ0) . (2.15)

Integrating, we find
ϕ̇ ≤ ϕ̇0 − V ′(ϕ0)t , (2.16)

which must go to zero in finite time.

2.2.2 Showing ϕ −→ 0 in finite time

To show that ϕ itself becomes zero in finite time is more complicated. In the case of
sudden singularities we can show that one must arise in the case above when V ′(ϕ) is



2.2 Finite time singularities in more general potentials 39

decreasing beyond some finite time. For the generalised sudden singularities it is less
straightforward.

Consider first the case that after finite time V ′(ϕ) is decreasing. This corresponds
to the case in [58] where 0 < n < 1, and proceeds in similar fashion. We show that
there is a finite time T beyond which ϕ̇(t) < ϕ̇(T ) < 0 for all t > T . Since at ϕ̇ = 0,
ϕ̈ = −V ′(ϕ) < 0 it is clear that we can find a T such that ϕ̇(T ) < 0 and after this
remains negative. In addition T can be chosen such that ϕ̈(T ) < 0.

Since by equation (2.9) we have that H(t) must be decreasing we can consider (2.10),
supposing for contradiction that there is t1 such that t1 > T and that ϕ̇(t1) = ϕ̇(T ).
For this to occur we must then have ϕ̈ > 0:

ϕ̈(t1) = − 3H(t1)ϕ̇(t1) − V ′(ϕ(t1)) (2.17)

< − 3H(T )ϕ̇(T ) − V ′(ϕ(T )) = ϕ̈(T ) < 0 , (2.18)

and so this cannot occur. This then places a lower bound on the rate of decrease
of ϕ, which is sufficient to ensure that it must reach 0 in finite time, and causes a
sudden singularity to occur. There are several families of potential which satisfy these
conditions and thus exhibit a sudden singularity. One example of these is the family
V (ϕ) = tanh(A(ϕ)n) for 0 < n < 1, where A is a suitable constant with mass dimension
−n, which renders the argument of tanh dimensionless, and for which ϕ −→ 0 as shown
below (figure 2.1). It is also worth noting that numerical simulations suggest these
potentials also exhibit ϕ −→ 0 for n > 1, although these do not quite fulfil the conditions
on V (ϕ) given above. A further possibility is the similar potentials (tanh(Aϕ))n for
0 < n < 1, where A is an appropriate constant with mass dimension −1, which are of
the form considered in the α-attractor model [60].

For higher order singularities (corresponding to the case n > 1 in the power law
potentials discussed in [58]) the situation is less clear. One can show that

F (ϕ) ≡
∫ 1

V ′(ϕ)dϕ < C − t , (2.19)

where C is a constant. This is done by assuming that at some time t1 after ϕ̇ has
become negative we have ϕ̈ > 0 for all t > t1. If this is not the case then ϕ must
decrease even faster, so it is sufficient to consider this case. Rearranging (2.10) we can
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Fig. 2.1 Numerical simulation for a universe containing a scalar field with V (ϕ) =
tanh(( ϕ

ϕ0
)1/3). The y-axis gives the values of the field and its derivative, both normalised

by their initial values. The upper, blue line is the value of ϕ
ϕ0

whilst the lower, orange
line is that of ϕ̇

ϕ̇0
. As can be seen, ϕ = 0 is reached in finite time.

write
ϕ̇ ≤ −V ′(ϕ)

3H
, (2.20)

and integrating again gives the result.

This bound is not terribly intuitive, but allows us to at least see that if F (ϕ) has
its only root at ϕ = 0 and F (ϕ0) > 0 then in finite time the sign of F must change
and so it must pass through the root at ϕ = 0. More broadly, if it has multiple roots,
at least one of which is less than or equal to 0 and below which F is decreasing, then
again, ϕ must take the corresponding non-positive value in finite time and hence have
passed through 0.

As a final point, we note that the singularity need not occur at ϕ = 0. Since we
have shown that after some t, ϕ must reach 0, it must also necessarily pass through
all values less than ϕ0. This means that we can allow the sudden singularity to be
translated to any value of ϕ < ϕ0. This means that for suitable ϕsing, potentials such as
V (ϕ) = A(ϕ − ϕsing)n for n non-integer and A a positive constant, would also exhibit
sudden singularities.
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2.3 Conclusion

In this chapter we investigated a type of weak future singularity known as sudden, or
generalised sudden, singularities. We have studied them in the context of inflationary
models driven by a single scalar field minimally coupled to the Einstein-Hilbert action
in k = 0 FLRW spacetime. These singularities provide a mechanism by which a single
scalar field undergoes a significant transition and change in behaviour, without the
cosmology itself necessarily undergoing the destruction that results from stronger types
of singularity. Indeed, it is known that there are even examples of sudden singularities
which need not disrupt bound systems [61]. As such, these potentials can provide a
possible mechanism for an exit from inflation.

We have found that for an inflationary potential V (ϕ), then ϕ̇ will become negative
in finite time if for ϕ > 0, V (ϕ) > 0, V ′(ϕ) > 0 and V ′(ϕ) has at most finitely many
stationary points. Furthermore, we have found that if additionally V ′′(ϕ) < 0 after
some finite time, then this is sufficient to ensure that ϕ itself reaches 0 in some finite
time, and that if V ′(ϕ) exhibits a singularity at ϕ = 0, this singularity is reached in
finite time. This extends the power law example of singular inflation [58] to further
classes of potential, including those connected to popular α-attractor models of inflation,
and providing a possible mechanism for inflation under these models to come to an
end.





Chapter 3

Cosmological Models in F (TµνT µν)
Gravity

The work presented in this chapter was published as [62], in collaboration with John
D. Barrow.

3.1 Introduction

The twin challenges of naturally explaining two periods of accelerated expansion during
the history of the universe engage the attentions of many contemporary cosmologists.
The first period may have had a beginning and necessarily came to an end when the
universe was young and hot: it is called a period of ‘inflation’ and it leaves observable
traces in the cosmic microwave background radiation that are believed to have been
detected. The second period of acceleration began only a few billion years ago and is
observed in the Hubble flow traced by type IA supernovae; it is not known if it will ever
come to an end or is changing in any way. There are separate non-unique mathematical
descriptions of each of these periods of acceleration but there is no single explanation
of both of them, nor any insight into whether or not they are related, or even random,
occurrences. For these reasons, there is continuing interest in all the different ways
in which expanding universes can undergo periods of accelerated expansion. In the
case of late-time acceleration the simplest description of an effectively anti-gravitating
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stress, known as ‘dark energy’, is provided by introducing a cosmological constant (Λ)
into general relativity with a value arbitrarily chosen to match observations.

The best-fit theory of this sort is dubbed ΛCDM and in its simplest form is defined
by six constants (which determine Λ) that can be fixed by observation. One of those
parameters is Λ and its required value is difficult to explain: it requires a theory that
contributes an effective vacuum stress of magnitude Λ ∼ (tpl/t0)2 ∼ 10−120 at a time of
observation t0 ∼ 1017s, where tpl ∼ 10−43s is the Planck time [63]. Other descriptions
that lead to slowly evolving scalar fields in place of a constant Λ have also been explored,
together with a range of modified gravity theories that contribute anti-gravitating
stresses. There are many such modifications and extensions of Einstein’s general
relativity and they can be tuned to provide acceleration at early or late times. So far,
almost all of these modifications to general relativity have focussed on generalising the
gravitational Lagrangian away from the linear function of the spacetime curvature, R,
responsible for the Einstein tensor in Einstein’s equations. A much-studied family of
theories of this sort are those deriving from a Lagrangian of the form F (R), where
F is some analytic function. By contrast, in this chapter we will explore some of the
consequences of generalising the form of the matter Lagrangian in a nonlinear way,
to some analytic function of TµνT µν , where Tµν is the energy-momentum tensor of
the matter stresses. This is more radical than simply introducing new forms of fluid
stress, like bulk viscosity or scalar fields, into the Einstein equations in order to drive
acceleration in Friedmann-Lemaître-Robertson-Walker (FLRW) universes.

In 3.2 we discuss and motivate higher order contributions to gravity from matter
terms. In 3.3 we derive the equations of motion for a generic F (R, TµνT µν) modifi-
cation of the action with bare cosmological constant, before specialising to the case
F (R, TµνT µν) = R + η(TµνT µν)n. We then investigate several features of the isotropic
cosmology in this theory in 3.4 and, finally, move to the anisotropic Bianchi type I
setting in 3.5.
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3.2 Background

3.2.1 Field equations

Einstein’s theory of general relativity (GR) with cosmological constant Λ can be derived
from the variation of the action,

S = 1
2κ

∫ √
−g(R − 2Λ)d4x +

∫ √
−gLmd4x, (3.1)

where κ = 8πG and Lm is the matter Lagrangian, which we will take to describe a
perfect fluid; R ≡ Ra

a, where Ra
b is the Ricci tensor, and g is the determinant of the

metric itself. Here, and in all that follows, we use units in which c = 1.

An isotropic and homogeneous universe may be described by the FLRW metric:

ds2 = −dt2 + a2(t)
(

dr2

1 − kr2 + r2
(
dθ2 + sin2 θdϕ2

))
, (3.2)

where k, the curvature parameter, takes the values {−1, 0, +1} corresponding to open,
flat and closed 3-spaces, respectively; t is the comoving proper time and a(t) is the
expansion scale factor.

There are many proposals to modify or extend the ΛCDM cosmological picture.
These fall broadly into two categories, depending on which side of the Einstein field
equations is modified. We can modify the right-hand side of the Einstein equations
by adding new forms of matter that will drive expansion either at early times, as in
the theory of inflation, or at late times, such as in quintessence or k-essence scenarios
[64]. Alternatively, we can modify the left-hand side of the Einstein equations in order
to modify the effect of gravity itself. There are several ways to do this, including
F (R) theories [65] in which the Ricci scalar in (3.1) is replaced by some function
f(R), so-called F (T ) theories in which we modify the teleparallel equivalent of general
relativity [66], or scalar-tensor theories in which a scalar field is coupled to the Ricci
scalar.
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3.2.2 Higher-order matter contributions

The type of generalisation of general relativity we will explore in this chapter looks
to include higher-order contributions to the right-hand side of the Einstein equations,
where the material stresses appear. This results in field equations that include new
terms that enter at high densities and pressures, which may be anti-gravitational in
their effects. Typically, they affect the cosmological model at high densities and may
alter the conclusions regarding the appearance of spacetime singularities in the finite
cosmological past. Conversely, we might expect their effects at late times and low
cosmological densities to be very small. Even within general relativity, there is scope
to include high-order matter contributions, as the Einstein equations have almost no
content unless some prescription or constraint is given on the forms of matter stress.
Thus, in the general-relativistic Friedmann models, we can introduce non-linear stresses
defined by relations between pressure, p, and density, ρ, of the form ρ + p = γρn, [67],
or f(ρ), [68], where γ ≥ 0 and n are constants, or include a bulk viscous stress into the
equation of state of the standard form p = (γ − 1)ρ − 3Hς(ρ),where H is the Hubble
expansion rate and ς ≥ 0 is the bulk viscosity coefficient [69]. The so-called Chaplygin
and generalised Chaplygin gases are just special cases of these bulk viscous models,
and choices of n or ς ∝ ρm introduce higher-order matter corrections. Similarly, the
choice of self-interaction potential V (ϕ) for a scalar field can also introduce higher-order
matter effects into cosmology. Analogously, in scalar-tensor theories like Brans-Dicke
(BD) which are defined by a constant BD coupling constant, ω, generalisations are
possible to the cases where ω becomes a function of the BD scalar field.

In all these extensions of the standard relativistic perfect fluid cosmology there
will be several critical observational tests which will constrain them. In particular, in
higher-order matter theories the inevitable deviations that can occur from the standard
thermal history in the early radiation era will change the predicted abundances of
helium-4 and deuterium and alter the detailed structure of the microwave background
power spectrum. Also, as studied for Brans-Dicke theory [70, 71], changes in the cold
dark matter dominated era evolution can shift the time when matter and radiation
densities are equal. This is the epoch when matter perturbations begin to grow and
sensitively determines the peak of the matter power spectrum. At a later nonlinear stage
of the evolution, higher-order gravity theories will effect the formation of galactic halos.
This has been investigated for bulk viscous cosmologies [72]. A further observational
constraint on the modifications arises from the fact that if we expect these modifications
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to give rise to high-energy density effects, we would expect to see modifications to
behaviour of the interior stars and other compact objects. This will place further
constraints on the permitted magnitude of such modifications, or the requirement
of some screening mechanism to otherwise evade the constraints. The effect of one
of the models we will study on stellar behaviour has been investigated [73], where
they concluded that the model can recover appropriate solutions for stellar objects,
without introducing overly problematic behaviour. However, further discussion of these
observational constraints will form the subject of future work and will not be discussed
in detail here.

If we depart from general relativity, then various simple quantum gravitational
corrections are possible, and have been explored. The most well known are the
loop quantum gravity (LQG) [74] and brane-world [75] scenarios that contribute new
quadratic terms to the Friedmann equation for isotropic cosmologies by replacing ρ

by ρ(1 ± O(ρ2)) in the Friedmann equation, where the − contribution is from LQG
and the + is from brane-world scenarios. The impact on anisotropic cosmological
models is more complicated and not straightforward to calculate [76, 77]. In particular,
we find that simple forms of anisotropic stress are no longer equivalent to a p = ρ

fluid as we are used to finding in general relativity. Our study will be of a type of
higher-order matter corrections which modify the Friedmann equations in ways that
include both of the aforementioned types of phenomenological modification to the
form of the Friedmann equations, although the underlying physical theory does not
incorporate the LQC or brane-world models or reduce to them in a limiting case.

Standard F (R) theories of gravity [65] can be generalised to include a dependence
of the form

S = 1
2κ

∫ √
−gF (R, Lm)d4x. (3.3)

This is in some sense an extremal extension of the Einstein-Hilbert action, as discussed
in [78]. If the coupling between matter and gravity is non-minimal, then there will be
an extra force exerted on matter, resulting in non-geodesic motion and a violation of
the equivalence principle. This type of modification has been investigated in several
contexts, particularly when the additional dependence on the matter Lagrangian arises
from F taking the form F (R, T ) where T is the trace of the energy-momentum tensor
[46].
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A theory, closely related to F (R, T ) gravity, that allows the gravitational Lagrangian
to depend on a more complicated scalar formed from the energy-momentum tensor is
provided by F (R, T2), where T2 ≡ TµνT µν is the scalar formed from the square of the
energy-momentum tensor. This was first discussed in [48], and the special case with

F (R, T2) = R + ηT2, (3.4)

where η is a constant, was also discussed in [47], where the authors investigated the
possibility of a bounce at early times when η < 0 (although in that paper they used
the opposite sign convention to us for η), and also found an exact solution for charged
black holes in the extended theory. In [49] a similar form, with additional cross
terms between the Ricci and Energy-momentum tensors, was discussed as arising from
quantum fluctuations of the metric tensor. Recently the authors of [79] investigated
the late time acceleration of universes described by this model in the dust-only case,
and used observations of the Hubble parameter to constrain the parameters of the
theory.

We would expect the theory derived from (3.4) to provide different physics to the
F (R, T ) case. Indeed, one example of this is the case of a perfect fluid with equation
of state p = −1

3ρ. The additional terms in F (R, T ) will vanish as T = 0, but in the
F (R, T2) theory the extra terms in T2 will not vanish and we will find new cosmological
behaviour. In 3.3, we will investigate the cosmological solutions in a more general
setting, where the T2 term may be raised to an arbitrary power.

3.3 Field Equations for F (R, TµνT µν) Gravity with
Cosmological Constant

In [80] the Friedmann equations were derived in the case where F is given by (3.4),
for a flat FLRW cosmology. A ‘bare’ cosmological constant was also included on the
left-hand side of the field equations (rather than as an effective energy-momentum
tensor for the vacuum). In [81], the field equations were derived without a cosmological
constant and specialised to two particular models. We first derive the equations of
motion with a cosmological constant for general F , before specialising to theories
where the additional term takes the form (T2)n, and determining the FLRW equations
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with general curvature. In GR, the cosmological constant can be considered to be,
equivalently, either a ‘bare’ constant on the left-hand side of the Einstein equations, or
part of the matter Lagrangian. As discussed in [80], the two are no longer equivalent
in this theory, due to the non-minimal nature of the curvature-matter couplings. A
similar inequivalence also occurs in other models that introduce non-linear matter
terms, including loop quantum cosmology. We will assume that the cosmological
constant arises in its bare form as part of the gravitational action. This gives the
modified action

S = 1
2κ

∫ √
−g(F (R, T µνTµν) − 2Λ) d4x +

∫
Lm

√
−g d4x, (3.5)

where Lm is taken to be the same as the matter component contributed by Tµν . Since
the gravitational Lagrangian now depends on T2, we note that the new terms in the
variation of the action will arise from the variation of this square, via δ(TµνT µν). To
calculate this, we define Tµν by

Tµν = − 2√
−g

δ(√−gLm)
δgµν

. (3.6)

We enforce the condition that Lm depends only on the metric components, and not on
their derivatives, to find

Tµν = gµνLm − 2∂Lm

∂gµν
. (3.7)

Varying with respect to the inverse metric, we define

θµν ≡ δ(TαβT αβ)
δgµν

= −2Lm(Tµν − 1
2gµνT ) − TTµν + 2T α

µ Tνα − 4T αβ ∂2Lm

∂gµν∂gαβ
, (3.8)

where T is the trace of the energy-momentum tensor. Varying the action in this way,
we find

δS = 1
2κ

∫ [
FRδR + FT 2δ(TµνT µν) − 1

2gµνFδgµν + Λ + 1√
−g

δ(
√

−gLm)
]

d4x, (3.9)

where subscripts denote differentiation with respect to R and T2, respectively.

From this variation we obtain the field equations:

FRRµν − 1
2Fgµν + Λgµν + (gµν∇α∇α − ∇µ∇ν)FR = κ(Tµν − 1

κ
FT2θµν). (3.10)
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These reduce, as expected, to the field equations for F (R) gravity in the special case
where F (R, T2) = F (R) [65] and to the Einstein equations with a cosmological constant
when F (R, T2) = R.

We will assume that the matter component can be described by a perfect fluid,

Tµν = (ρ + p)uµuν + pgµν , (3.11)

where ρ is the energy density and p the pressure; hence

TµνT µν = ρ2 + 3p2. (3.12)

Furthermore, we take the Lagrangian Lm = p. This means that the final term in
the definition of θµν vanishes and allows us to calculate the form of θµν independently
of the function F . Substituting (3.11) into (3.8), we find

θµν = −(ρ2 + 4pρ + 3p2)uµuν . (3.13)

We now proceed to specify a particular form for F (R, T2) which includes and
generalises the models used in [81] and for energy-momentum-squared gravity in [80]
(EMSG). This form is

F (R, TµνT µν) = R + η(TµνT µν)n, (3.14)

where n need not be an integer. This corresponds to EMSG in the case n = 1, and to
Models A and B of [81] when n = 1/2 and n = 1/4, respectively; it reduces the field
equations to

Rµν − 1
2Rgµν + Λgµν = κ(Tµν + η

κ
(TαβT αβ)n−1

[1
2(TαβT αβ)gµν − nθµν

]
), (3.15)

which we rewrite as
Gµν + Λgµν = κT eff

µν , (3.16)

where Gµν is the Einstein tensor, to show the relationship to general relativity. Con-
tinuing with the perfect fluid form of the energy-momentum tensor, this expands to
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give:

Gµν + Λgµν = κ((ρ + p)uµuν + pgµν)

+ η(ρ2 + 3p2)n−1
[1
2(ρ2 + 3p2)gµν + n(ρ + p)(ρ + 3p)uµuν

]
.

(3.17)

3.4 Isotropic Cosmology

If we assume a FLRW universe with curvature parameter k, we find the generalised
Friedmann equation,

(
ȧ

a

)2
+ k

a2 = Λ
3 + κ

ρ

3 + η

3(ρ2 + 3p2)n−1
[
(n − 1

2)(ρ2 + 3p2) + 4nρp
]

, (3.18)

and acceleration equation

ä

a
= −κ

ρ + 3p

6 + Λ
3 − η

3(ρ2 + 3p2)n−1
[
n + 1

2 (ρ2 + 3p2) + 2nρp
]

. (3.19)

If the matter field obeys a barotropic equation of state, p = wρ with w constant,
then the non-GR terms are all of the form ρ2n multiplied by a constant. Thus, the
generalised Friedmann equation becomes

(
ȧ

a

)2
+ k

a2 = Λ
3 + κ

ρ

3 + ηρ2n

3 A(n, w), (3.20)

where A is a constant depending on the choice of n and w, given by

A(n, w) ≡ (1 + 3w2)n−1
[
(n − 1

2)(1 + 3w2) + 4nw
]

, (3.21)

and the acceleration equation becomes

ä

a
= −κ

1 + 3w

6 ρ + Λ
3 − ηρ2n

3 B(n, w), (3.22)

where B a constant given by

B(n, w) ≡ (1 + 3w2)n−1
[
n + 1

2 (1 + 3w2) + 2nw
]

. (3.23)
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Finally, we determine the generalised continuity equation, by differentiating the
generalised Friedmann equation,

ρ̇ = −3 ȧ

a
ρ(1 + w)

[
κ + ηρ2n−1n(1 + 3w)(1 + 3w2)n−1

κ + 2ηρ2n−1nA(n, w)

]
, (3.24)

where we have written it in a form that makes clear the generalisation of the GR case.

We can see immediately that there is an interesting difference between the FLRW
equations in GR and in EMSG. When η = 0 there are solutions with finite a, ȧ,and ρ

but infinite values of p and ä. These are called sudden singularities [82, 51, 83] and
can be constructed explicitly. In EMSG, where η ̸= 0, the appearance of the pressure,
p, explicitly in the Friedmann equation changes the structure of the equations and the
same type of sudden singularity is no longer possible at this order in derivatives of a.

3.4.1 Integrating the continuity equation

We now attempt to determine the cosmological behaviour of some cases where the
modified continuity equation can be integrated exactly. We find four simply integrable
cases: two of these are for fixed w independent of the value of n, the other two occur
for specific values of w dependent on the choice of n, although we note that some
of these integrable cases may coincide, depending on our choice of the exponent, n.
Several of these analytic cases will turn out to be of physical relevance, whilst we note
that in other cases one could solve numerically.

The first case that can be integrated is for the equation of state corresponding
to dark energy, w = −1, where the entire right-hand side of (3.24) vanishes, and so
ρ ≡ ρ0, a constant. In this case we expect to find a solution to the modified Friedmann
equation that is the same as the solution in GR except with altered constants, which
results in a de Sitter solution where H ≡ ȧ

a
= constant, and the universe expands

exponentially.

Next, we consider the case w = −1
3 , which corresponds to an effective perfect fluid

representing a negative curvature, so the numerator in the modified continuity equation
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becomes simply κ, and we can integrate (3.24) since

ρ̇

(
1
ρ

+
2ηnA(n, −1

3 )
κ

ρ2n−2
)

= − 2 ȧ

a
, (3.25)

d

dt

(
ln(ρ) −

ηn(4
3)n

(2n − 1)κρ2n−1
)

= d

dt
(ln(a−2)), (3.26)

ρ exp
(

−
ηn(4

3)n

(2n − 1)κρ2n−1
)

=Ca−2, (3.27)

with C > 0 a constant of integration.

We can also integrate the continuity equation when the correction factor in (3.24)
is equal to 1, which occurs when

(1 + 3w)(1 + 3w2)n−1 = 2A(n, w). (3.28)

The continuity equation then reduces to the standard GR form for these special values,
w = w∗, and so we have

ρ = Ca−3(1+w∗). (3.29)

The final possibility that we consider is when

n(1 + 3w)(1 + 3w2)n−1 = A(n, w), (3.30)

in which case we can write (3.24) as

d

dt

(
ln(κρ + nηρ2n(1 + 3w∗)(1 + 3w2

∗)n−1)
)

= d

dt
(ln(a−3(1+w∗))), (3.31)

which integrates to

κρ + nηρ2n(1 + 3w∗)(1 + 3w2
∗)n−1 = Ca−3(1+w∗). (3.32)

We note that, depending on the choice of exponent n, some of the second pair of
solutions may exist for multiple choices of w, or may coincide with each other, or with
the w = −1, w = −1

3 cases. Also, for some choices of n, there may be no solutions at
all.
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Finally, note that only one of these solutions allows easy integration of the modified
Friedmann equation (3.20). This is the case when w = −1 and so ρ = ρ0. In this case
the Friedmann-like equation becomes

(
ȧ

a

)2
+ k

a2 = λ(Λ, n), (3.33)

where λ is a constant given by

λ(Λ, n) ≡ Λ
3 + κ

ρ0

3 − ηρ2n
0

6 4n. (3.34)

The solution to the modified Friedmann equation is then given by

a(t) = 1
2
√

λ
(C

√
λ + k

C
√

λ
) cosh(

√
λt) ± (C

√
λ − k

C
√

λ
) sinh(

√
λt) , (3.35)

where C is a new constant of integration. Equivalently, we can write this solution in
terms of exponentials as

a(t) = 1
2
√

λ

(
C

√
λe

√
λt + k

C
√

λ
e−

√
λt

)
, (3.36)

as well as its time reversal, t → −t. Assuming λ > 0, we can see that this reduces to
the expected de Sitter solution from general relativity in the case k = 0, as we would
expect. If λ < 0 then, writing instead λ → −λ, there is a real solution only for negative
curvature, where we must choose k = −C2λ, giving the anti-de Sitter solution

a(t) = C cos(
√

λt). (3.37)

It is important to note that because of the form of λ, unlike in the unmodified case,
we do not necessarily require a negative cosmological constant to find this solution.
We would expect this anti-de Sitter analogue to appear whenever η > 0, for suitable
choices of ρ0 and n.

This solution is very similar to the case of w = −1 in GR, where we can rewrite the
cosmological constant as a perfect fluid with this equation of state. This is possible
in GR because the continuity equations for non-interacting multi-component fluids
decouple, allowing us to treat them independently. Unfortunately, because of the
additional non-linear terms arising in these F (R, T2) models (except in the special
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case n = 1/2), we cannot decouple different fluids in this way and then subsequently
superpose them in our Friedmann-like equations. This means that we cannot replace
the curvature or cosmological constant terms with perfect fluids with w = −1/3 and
−1 as in classical GR. However, for some choices of n and η, the correction terms
can themselves provide an additional late-time or early inflationary repulsive force,
removing the need for an explicit cosmological constant.

3.4.2 Energy-momentum-squared gravity: the case n = 1

If we fix our choice of n, then we can say more about the behaviour of the specific
solutions that arise. In what follows we consider primarily the case n = 1 which was
originally discussed in [80], under the name ‘energy-momentum squared gravity’. After
specialising to n = 1, we can say more about the solutions to the continuity equation
found in the previous section, and investigate the modified Friedmann equations. The
form of the Friedmann equations, after setting n = 1 in (3.20), (3.22) and (3.24), is:

(
ȧ

a

)2
+ k

a2 =Λ
3 + κ

ρ

3 + ηρ2

6 (3w2 + 8w + 1) , (3.38)

ä

a
=Λ

3 − κ
1 + 3w

6 ρ − ηρ2

3 (3w2 + 2w + 1) , (3.39)

ρ̇ = − 3 ȧ

a
ρ(1 + w) κ + ηρ(1 + 3w)

κ + ηρ(3w2 + 8w + 1) . (3.40)

The new terms in the Friedmann equations are quadratic in the energy density,
which we would expect to dominate in the very early universe as ρ → ∞. Additionally,
if we choose η < 0, then the modified Friedmann equations in this model are similar to
the effective Friedmann equations arising in loop quantum cosmology, [74], where

(
ȧ

a

)
= κ

3ρ

(
1 − ρ

ρcrit

)
, (3.41)

which may warrant further investigation. An analogous higher-order effect occurs in
brane world cosmologies, where there is an effective equation of state with [84–87]

peff = 1
2Λ(ρ2 + 2pρ); Λ > 0 constant. (3.42)
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We briefly summarise the values of w for which the results of the previous section
allow us to integrate the Friedmann equation and find the values of w that satisfy
(3.28) and (3.30). If we set n = 1 then (3.28) reduces to

3w2 + 5w = 0, (3.43)

which has solutions w = −5
3 and w = 0. The w = 0 solution describes ‘dust’ matter.

The case w = −5/3 corresponds to some form of phantom energy, which will result in
a Big Rip singularity, [88], at finite future time.

Alternatively, solving (3.30) for n = 1 gives

3w2 + 2w − 1 = 0, (3.44)

which has solutions w = −1 and w = 1
3 . The first of these has already been found

for all n as the first case above, whilst the second gives a solution corresponding to
blackbody radiation. Hence, we have exact solutions to the continuity equation for the
cases w = {−5

3 , −1, −1
3 , 0, 1

3} which include the physically important cases of dust and
radiation.

The equation of state p = 0 corresponds to pressureless dust or non-relativistic
cold dark matter, and as shown above, we recover the same dependence of the energy
density on the scale factor as in the GR case,

ρ = Ca−3. (3.45)

If we combine this with the modified acceleration and Friedmann equations for
w = 0 we find

aä + 2ȧ2 + k = Λ
2 a2 + κ

4C
a−1. (3.46)

If we consider only flat space (k = 0) then we find

a(t) = (4Λ)− 1
3 ((C2+D+1) cosh

√3Λ
2 t

+(C2+D−1) sinh
√3Λ

2 t

−2C) 1
3 , (3.47)

where D is a constant of integration, and we have eliminated a further constant by
a covariant translation of the time coordinate. We can then find ρ explicitly, using
(3.45). We can see, however, that this form of the solution does not capture the case



3.4 Isotropic Cosmology 57

Λ = 0. In this case, instead we find the solution

a(t) =
( 3

8C

) 1
3

(C2t2 − 16D) 1
3 , (3.48)

which gives the GR dust behaviour of a ∼ t
2
3 at large t.

In the case of w = −1
3 , we can write

ρ exp
(

−4η

3κ
ρ
)

= Ca−2. (3.49)

After differentiation and multiplication by a2, we can write

ȧ

a
= ρ̇

ρ
(1 − 4η

3κ
ρ) , (3.50)

and so in the case k = 0 we can write the Friedmann equation in terms of ρ without
any exponentials, as

(
ρ̇

ρ

)2 (
1 − 4η

3κ
ρ
)2 1

4C2 = Λ
3 + κ

3ρ − 2η

9 ρ2. (3.51)

Finally, in the case of w = 1
3 , which corresponds to radiation, [80] gave a solution in

the case of flat space, a(t) ∝
√

cosh(λt) where now λ ≡
√

4Λ
3 . We see that in this case

we can write the continuity equation as

κρ + 2ηρ2 = Ca−4, (3.52)

and that in the Friedmann and acceleration equations, the density terms are of equal
magnitude but opposite sign. We can then sum the two to find our equation for a(t)

(
ȧ

a

)2
+ ä

a
+ k

a2 = 2Λ
3 , (3.53)

which we solve by use of the substitution y = a2 to find

a2(t) = 1
4Λ((1 + 9k2 − 12ΛD) cosh(λt) + (1 − 9k2 + 12ΛD) sinh(λt) + 6k) , (3.54)
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for all Λ, k non-zero, with λ ≡
√

4Λ
3 , as above. In the Λ = 0 subcase, we find the

solutions

a2(t) =


Dt − kt2 k ̸= 0

Dt k = 0 . (3.55)

3.4.3 de Sitter-like solutions

de Sitter solutions arise in EMSG theory. They have constant density and Hubble
parameter, which includes the case w = −1. In ΛCDM we expect this to arise in two
situations. The first is when we have ρ ≡ 0, that is an empty universe whose expansion
is controlled solely by Λ, and the second is the similar dark-energy equation of state
w = −1 for which the perfect fluid behaves as a cosmological constant. In EMSG we
find that there is an extra family of de Sitter solutions. We describe them first for
general n, then specialise to EMSG.

Since we are searching for solutions with H ≡ H0 and ρ ≡ ρ0, from (3.20) we must
have k = 0, and the Friedmann equation then reduces to an algebraic one for H2 in
terms of ρ0. Similarly, since Ḣ = 0, (3.22) reduces to another relation for H2. Equating
the two to remove H2 and simplifying, we find that ρ0 must satisfy

ρ0(1 + w)(κ + nη(1 + 3w2)n−1(1 + 3w)ρ2n−1
0 ) = 0. (3.56)

There are the two standard solutions, w = −1 and ρ0 = 0, but the additional factor
gives us another family of solutions, with

ρ2n−1
0 = − κ

nη(1 + 3w2)n−1(1 + 3w) . (3.57)

In the case of EMSG, when we choose n = 1, this condition reduces to

ρ0 = − κ

η(1 + 3w) , (3.58)

which gives us a constant density, exponentially expanding solution for every equation
of state, w, excluding w = −1

3 , for an appropriate sign of η. The existence of this
extra de Sitter solution is reminiscent of its appearance in GR cosmologies with bulk
viscosity [69]
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This unusual situation suggests that we investigate the stability of these n = 1
solutions. We consider a homogeneous linear perturbation about the constant density
solution by writing

ρ =ρ0(1 + δ(t)), (3.59)

H =H0(1 + ϵ(t)), (3.60)

The perturbed continuity equation is then given by

ρ0δ̇ = −3(1 + w)H0(1 + ϵ)ρ0(1 + δ) κ + ηρ0(1 + δ)(1 + 3w)
κ + ηρ0(1 + δ)(3w2 + 8w + 1) . (3.61)

If we use the expression for ρ0 given in (3.58), we can reduce this to

δ̇ = −3(1 + w)(1 + 3w)H0(1 + ϵ)(1 + δ)δ 1
(3w2 + 5w)(1 + 3w2+8w+1

3w2+5w
δ)

. (3.62)

From the perturbation of the modified Friedmann equation we find that ϵ ∼ δ

which means that after expanding to first order in δ, we have

δ̇ = −3H0δ
(1 + w)(1 + 3w)

(3w + 5)w , (3.63)

so small perturbations evolve as

δ(t) ∝ exp
(

−3H0
(1 + w)(1 + 3w)

(3w + 5)w t

)
. (3.64)

The exponent coefficient in (3.64) is plotted in Figure 3.1, where we can see that
these de Sitter-like solutions are indeed stable for a wide range of w values. This gives
us an exponentially expanding universe for (almost) any equation of state as long as
we set the density to the correct constant value. In particular, these solutions will
be stable for w < −5

3 , −1 < w < −1
3 and w > 0, and unstable for −5

3 < w < −1
and −1

3 < w < 0. It is also the case that, depending on the sign of the parameter η,
some of these solutions will be unphysical, as they require negative energy density. For
η < 0, there will be no physical solutions for w < −1

3 , whilst for η > 0 there will be no
solutions for w > −1

3 .
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Fig. 3.1 The plot shows the value of the exponent, and hence the stability of the
solutions, in (3.64) (where we have divided by 3H0t). The asymptotes are found at
w = −5

3 and w = 0, whilst the zeroes are at w = −1 and w = −1
3 . The solutions will

be stable for values of w where the graph is negative, and unstable otherwise.

3.4.4 Early times: the bounce and high-density limits

Examining the modified Friedmann equation (3.38) in the case k ≥ 0, we can see that
as the left-hand side of the equation is a sum of positive terms, we must have

Λ + κρ + ηρ2A(1, w) ≥ 0, (3.65)

which can be split into two cases, for ηA(1, w) < 0 and ηA(1, w) > 0, respectively. The
first case occurs for

η < 0 and {w < α− or w > α+}, (3.66)

η > 0 and {α− < w < α+}, (3.67)
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where
α± = −4 ±

√
13

3 , (3.68)

are the roots of
A(1, w) ≡ 3w2 + 8w + 1 = 0. (3.69)

In this case we have a maximum possible density given by

ρmax = κ

2A(1, w)η

−1 +
√

1 − 4ηΛA(1, w)
κ2

 , (3.70)

indicating that a bounce occurs in this case, avoiding an initial singularity. In the
second case, where ηA(1, w) > 0, there is no bounce and no maximum energy density.

We now consider the solutions when k = 0 in the high-density limit, where we
assume the correction terms dominate over the ρ and Λ terms. We consider the case of
general n, and find an analytic solution. The Friedmann and acceleration equations
reduce to (

ȧ

a

)2
=η

3ρ2nA(n, w), (3.71)
ä

a
= − η

3ρ2nB(n, w). (3.72)

From these, we can eliminate ρ to find

(
ȧ

a

)2
+ A(n, w)

B(n, w)
ä

a
= 0. (3.73)

which has the solution
a(t) = D[(A + B)t − C]

A
A+B , (3.74)

where C and D are new constants of integration. We can then solve for the density:

ρ(t) =
(

3A

η

) 1
2n

((A + B)t − C))− 1
n . (3.75)

This solution is real (and thus not unphysical) only if A(n, w)/η is positive. In the case
of EMSG, this condition reduces to the requirement that η and 3w2 + 8w + 1 must
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have the same sign. So, the two regions where this solution exists are,

η > 0 and {w < α− or w > α+}, (3.76)

η < 0 and {α− < w < α+}, (3.77)

where
α± = −4 ±

√
13

3 , (3.78)

are the roots of 3w2 +8w+1. These are complementary to the conditions for the bounce
to occur, as previously discussed. This is as we would expect, with the high-density
approximation failing at a maximum density, as in the case of a bounce.

3.5 Anisotropic Cosmology

There are several ways of introducing anisotropy into our cosmological models. We
will consider the simplest generalisation of FLRW, in which we have a flat, spatially
homogeneous universe, with anisotropic scale factors. This is the Bianchi type I

universe, with metric given by [89]

ds2 = −dt2 + a2(t)dx2 + b2(t)dy2 + c2(t)dz2, (3.79)

where a(t), b(t) and c(t) are the expansion scale factors in the x, y and z directions,
respectively.

Assuming that the energy-momentum tensor takes the form of a perfect fluid with
principal pressures, p1, p2 and p3, so Lm = 1

3(p1 + p2 + p3), we can derive the field
equations for Bianchi I universes in our higher-order matter theories:

ȧḃ

ab
+ ḃċ

bc
+ ċȧ

ca
= κρ+ η

6(ρ2 +
3∑

i=1
p2

i )n−1
[
(6n − 3)ρ2 + 8nρ

3∑
i=1

pi + 2n(
3∑

i=1
pi)2 − 3

3∑
i=1

p2
i

]
,

(3.80)
ḃċ

bc
+ b̈

b
+ c̈

c
= −κp1 + η

6(ρ2 +
3∑

i=1
p2

i )n−1
[
2n(ρ + p1 − p2 − p3)(2p1 − p2 − p3) − 3

3∑
i=1

p2
i

]
,

(3.81)
ċȧ

ca
+ c̈

c
+ ä

a
= −κp2 + η

6(ρ2 +
3∑

i=1
p2

i )n−1
[
2n(ρ + p2 − p3 − p1)(2p2 − p3 − p1) − 3

3∑
i=1

p2
i

]
,

(3.82)
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ȧḃ

ab
+ ä

a
+ b̈

b
= −κp3 + η

6(ρ2 +
3∑

i=1
p2

i )n−1
[
2n(ρ + p3 − p1 − p2)(2p3 − p1 − p2) − 3

3∑
i=1

p2
i

]
.

(3.83)

In the case of an isotropic pressure fluid (p1 = p2 = p3 = p):

ȧḃ

ab
+ ḃċ

bc
+ ċȧ

ca
= κρ + η

2(ρ2 + 3p2)n−1((2n − 1)ρ2 + 8nρp + (6n − 3)p2), (3.84)

ḃċ

bc
+ b̈

b
+ c̈

c
= −κp − η

2(ρ2 + 3p2)n−13p2, (3.85)

ċȧ

ca
+ c̈

c
+ ä

a
= −κp − η

2(ρ2 + 3p2)n−13p2, (3.86)

ȧḃ

ab
+ ä

a
+ b̈

b
= −κp − η

2(ρ2 + 3p2)n−13p2. (3.87)

The first of these is the generalised Friedmann equation.

Qualitatively, we expect that the higher-order density and pressure terms will
dominate at early times to modify or remove (depending on the sign of η) the initial
singularity when n > 1/2, but will have negligible effects at late times, when the
dynamics will approach the flat isotropic FLRW model. At early times, we know that
in GR the singularity will be anisotropic and dominated by shear anisotropy whenever
−ρ/3 < p < ρ. In order to determine the dominant effects as t → 0 we will simplify to
the case of isotropic perfect fluid pressures (p1 = p2 = p3 = wρ). Now, we determine
the dependence of the highest-order matter terms on the scale factors, a, b and c from
the generalisation of the conservation equation (3.24) with an anisotropic metric (3.79).
For the case with general n, this is

ρ̇ = −
(

ȧ

a
+ ḃ

b
+ ċ

c

)
ρ(1 + w)

[
κ + ηρ2n−1n(1 + 3w)
κ + 2ηρ2n−1A(n, w)

]
, (3.88)

and so the behaviour of the density is just

ρ ∝ (abc)−Γ, (3.89)

where
Γ(n, w) = (1 + w)

[
κ + ηρ2n−1n(1 + 3w)
κ + 2ηρ2n−1A(n, w)

]
. (3.90)
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The higher-order density terms will dominate the evolution at early times when n > 1/2
and we see that, in these cases, Γ is independent of ρ and η as ρ → ∞,since in this
limit,

Γ(n, w) → n(1 + 3w)(1 + w)
2A(n, w) . (3.91)

In the cosmology obtained by setting n = 1 in (3.80)-(3.83) we will have domination
by the nonlinear matter terms, which will drive the expansion towards isotropy as
t → 0 if ρ2 diverges faster than (abc)−2 as abc → 0. Thus, the condition for an isotropic
initial singularity in n = 1 theories is that Γ(1, w) > 2, or

(1 + 3w)(1 + w)
2A(1, w) > 2 . (3.92)

When this condition holds as t → 0, the dynamics will approach the flat FLRW metric
with

a(t) ∝ b(t) ∝ c(t) ∝ t2/Γ(1,w). (3.93)

When Γ(1, w) < 2, the dynamics will approach the vacuum Kasner metric with

(a, b, c) = (tq1 , tq2 , tq3), (3.94)
3∑

i=1
qi =

3∑
i=1

q2
i = 1. (3.95)

This condition simplifies to four cases:

w > 0 anisotropic singularity
α+ < w < 0 isotropic singularity

α− < w < α+ anisotropic singularity
w < α− isotropic singularity

Here, the constants α+ and α− take the values determined earlier in (3.78).

In general, for arbitrary n, the higher-order correction terms on the right-hand
side of the field equations (3.17) are proportional to ηρ2n when p = wρ, and so the
condition for an isotropic singularity as t → 0 becomes

Γ(n, w) > 2n, (3.96)
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and the dynamics approach

a(t) ∝ b(t) ∝ c(t) ∝ t2/Γ(n,w). (3.97)

The case for general n and w is problematic to simplify succinctly due to the
exponential dependence on n. However, we can consider specific physically relevant
equations of state individually.

For dark energy (w = −1) and curvature (w = −1
3) ‘fluids’, we find that Γ(n) = 0,

for all n, and so the condition for an isotropic initial singularity will depend only on
whether n itself is positive or negative.

For w = 0, dust, we find
Γ(n, 0) = n

2n − 1 , (3.98)

for n ̸= 1
2 . which leads to isotropy only when 1

2 < n < 3
4 .

For radiation, w = 1
3 , an isotropic singularity will occur if

n

(4
3)n−1(2n − 1

2) > 2n, (3.99)

whilst for w = 1 we find that the condition for isotropy is

n

4n−1(2n − 1
2) > 2n. (3.100)

In both of the latter cases, we require n ̸= 1
4 .

A similar effect will occur in more general anisotropic universes, like those of
Bianchi type VIIh or IX, which are the most general containing open and closed
FLRW models, respectively. In type IX, the higher-order matter terms will prevent
the occurrence of chaotic behaviour with w < 1 fluids on approach to an initial or final
singularity in a T2n theory when n > 1. Thus we see that in these theories the general
cosmological behaviour on approach to an initial and (in type IX universes) final
singularity is expected to be isotropic in the wide range of cases we have determined,
when Γ(n, w) > 2n. This simplifying effect of adding higher-order effects can also be
found in the study of other modifications to GR, for example those produced by the
addition of quadratic RabR

ab terms to the gravitational Lagrangian, [90, 91]. These



66 Cosmological Models in F (TµνT µν) Gravity

also render isotropic singularities stable for normal matter (unlike in GR). If Tab is not
a perfect fluid but has anisotropic terms (for example, because of a magnetic field or
free streaming gravitons [92]) they will add higher-order anisotropic stresses.

3.6 Conclusions

We have considered a class of theories which generalise general relativity by adding
higher-order terms of the form (T µνTµν)n to the matter Lagrangian, in contrast to
theories which add higher-order curvature terms to the Einstein-Hilbert Lagrangians,
as in f(R) gravity theories. The family of theories which lead phenomenologically to
higher-order matter contributions to the classical gravitation field equations of the
sort studied here includes loop quantum gravity, and bulk viscous fluids, k-essence, or
brane-world cosmologies in GR. This generalisation of the matter stresses is expected to
create changes in the evolution of simple cosmological models at times when the density
or pressure is high but to recover the predictions of general relativistic cosmology at
late times in ever-expanding universes where the density is small. However, we find that
there is a richer structure of behaviour if we generalise GR by adding arbitrary powers
of the scalar square of the energy-momentum tensor to the action. In particular, we find
a range of exact solutions for isotropic universes, discuss their behaviours with reference
to the early- and late-time evolution, accelerated expansion, and the occurrence or
avoidance of singularities. Finally, we discuss extensions to the simplest anisotropic
cosmologies and delineated the situations where the higher-order matter terms will
dominate over the anisotropic stresses on approach to cosmological singularities. This
leads to a situation where the general cosmological solutions of the field equations for
our higher-order matter theories are seen to contain isotropically expanding universes,
in complete contrast to the situation in general relativistic cosmologies. In future work
we will discuss the observational consequences of higher-order stresses for astrophysics.



Chapter 4

Screening Λ in a new modified
gravity model

The work presented in this chapter was published as [93], in collaboration with Özgür
Akarsu, John D. Barrow, N. Merve Uzun and J. Alberto Vasquez.

4.1 Introduction

The standard Lambda cold dark matter (ΛCDM) model is the most successful and
economical cosmological model that accounts for the dynamics and the large-scale
structure of the observable universe. Furthermore, it is in good agreement with the most
of the currently available data [94–96]. Nevertheless, it suffers from profound theoretical
issues relating to the cosmological constant Λ [97–99] and, on the observational side,
from tensions of various degrees of significance between some existing data sets [100–
109]. Firstly, the value of H0 measured from the cosmic microwave background (CMB)
data by the Planck Collaboration [95] in the basic ΛCDM model is 3.4 σ lower than
the model-independent local value reported from supernovae by Riess et al. [110];
secondly, the Lyman-α forest measurements of the baryon acoustic oscillations (BAO)
by the Baryon Oscillation Spectroscopic Survey (BOSS) prefer a smaller value of
the pressureless matter density parameter than is preferred by the CMB data within
ΛCDM [111]. Such tensions are of great importance since detection of even small
deviations from ΛCDM could imply profound modifications to the fundamental theories
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underpinning this model. We do, however, acknowledge that there are concerns about
the possibility of systematic errors in the Lyman-α results, including those arising in
the flux calibration due to Balmer lines, and sensitivity to the choice of spectrographic
template used to estimate the continuum [111]. For instance, the BOSS collaboration
reported a clear detection of dark energy (DE) in [106], consistent with positive Λ
for z < 1, but with a preference for a DE yielding negative energy density values for
z > 1.6. They then argued that the Lyman-α data from z ∼ 2.3 can be accommodated
by a non-monotonic evolution of H(z), and thus of ρtot(z) within general relativity
(GR), which is difficult to realise in any model with non-negative DE density. However,
a physical DE with negative energy density would be physically problematic, which
suggests that DE might instead be an effective source arising from a modified theory
of gravity (see [64, 112, 41, 40, 113–115] for reviews on DE and modified theories of
gravity). In line with this, [1] argues that the Lyman-α data can be addressed using
a physically motivated modified gravity model that alters the Friedmann equation
for H(z) itself, and that a further tension, also relevant to the Lyman-α data, can
be alleviated in models in which Λ is dynamically screened, implying an effective DE
passing below zero and concurrently exhibiting a pole in its equation of state (EOS) at
large redshift. The possible modifications to the H(z) of ΛCDM can be represented
by 3H2(z) = ρm,0(1 + z)3[1 − u(z)] + Λ − v(z), involving functions u(z) and v(z) that
represent two principal modifications. Interpreting all the terms other than ρm,0(1 + z)3

as arising from DE, i.e. writing 3H2(z) = ρm,0(1 + z)3 + ρDE, would lead to an effective
DE of the form ρDE = Λ − ρm,0u(z)(1 + z)3 − v(z). Accordingly, u(z) > 0 and v(z) > 0
would drive ρDE towards negative values, and so Λ could be screened and ρDE < 0 when
we have ρm,0u(z)(1 + z)3 + v(z) > Λ. Dynamical u(z) and v(z) functions are familiar
from scalar-tensor theories, in which u(z) stands for a varying effective gravitational
coupling strength in the Jordan frame (or non-conservation, say, of the pressureless
matter in the Einstein frame [116]), while v(z) stands for the new terms due to the
scalar field associated with varying gravitational ‘constant’, G. In such models, when
the effective gravitational coupling strength gets weaker with increasing redshift, ρDE

(as defined above) becomes negative at large redshifts [116–119]. A range of other
examples of ρDE crossing below zero exist, including theories in which Λ relaxes from a
large initial value via an adjustment mechanism [120, 121], cosmological models based
on Gauss-Bonnet gravity [122], braneworld models [123, 75], loop quantum cosmology
[124, 125], and higher dimensional cosmologies that accommodate dynamical reduction
of the internal space [126–130]. In this chapter, as a new example of such zero-crossing
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models, we study a particular theory of modified gravity: Energy-Momentum Squared
Gravity (EMSG) [48, 47, 79, 62, 131, 73, 132], which generalises the form of the matter
Lagrangian in a non-linear way and ensures that both u(z) and v(z) are dynamical.
We will make a specific choice of model within the theory, in order to establish whether
it is a good candidate for such behaviour.

From the Einstein-Hilbert action of GR, it is possible to consider a generalisation
involving non-linear matter terms, by adding some analytic function of a new scalar
T 2 = TµνT µν formed from the energy-momentum tensor (EMT), Tµν , of the matter
stresses [48]. Such generalisations of GR result in new contributions by the usual
material stresses to the right-hand side of the generalised Einstein field equations, v(z),
and lead in general to non-conservation of the material stresses, u(z), without the
need to invoke new forms of matter (for other similar types of theories, [78, 46]). A
particular example of EMSG is when f(T 2) = αT 2, which has been studied in various
contexts in [47, 62, 131, 73]. EMSG of this form in the presence of dust leads to
u(z) = 0 and v(z) = −αρ2

m = −αρ2
m,0(1 + z)6 > 0 for α < 0, as in loop quantum

cosmology [124, 125], which would lead to negative DE in the past, whilst the case
α > 0 corresponds to the braneworld scenarios [75]. However, if the quadratic energy
density term is large enough to be effective today, then it would be the dominant
term after just a few redshift units from today (z = 0) and hence spoil the successful
description of the early universe.

A generalisation of the above model with f(T 2) = αT 2, is Energy-Momentum
Powered Gravity (EMPG), where f(T 2) = α(T 2)η, as studied in [79, 62]. This
modification becomes effective at high energy densities, as in the early universe [62, 131],
for the cases with η > 1/2, and at low energy densities, as in the late universe, when
η < 1/2 [79]. For instance, η = 0 leads mathematically to exactly the same background
dynamics as ΛCDM and η ≃ 0 to a wCDM-type cosmological model, despite the
only physical source in the model being dust [79]. A recent study constraining the
model from the low-redshift cosmological data can be found in [133] and a dynamical
systems analysis in [134]. EMPG results in both u(z) and v(z) arising dynamically and
could be investigated for producing effective DE passage below zero at large redshifts.
Nevertheless, it is generally not possible to obtain explicit exact solutions for ρm(z), and
hence of ρde(z), which renders EMPG inconvenient for the present study [79, 62]. The
particular case η = 1/2, dubbed, ‘Scale Independent EMSG’, is one of the exceptions,
along with the case η = 1 (EMSG with f(T 2) = αT 2), which provides explicit exact
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solutions for H(z) required for a detailed observational test. In this model, the new
terms in the field equations enter with the same power as the usual terms in GR,
yet the standard energy is not conserved, and this leads to u(z) = (1 + z)3α − 1 and
v(z) = ρm,0(1 + z)3+3α, which could provide the desired features in the α < 0 case.
Nevertheless, this model is studied in detail in [132] (though in somewhat different
context) and α is well constrained observationally to be so close to zero that Scale
Independent EMSG is unable to resolve the issues noted above.

In what follows we consider a new type of EMSG, called Energy-Momentum Log
Gravity, EMLG, constructed by the choice of f(TµνT µν) = α ln(λ TµνT µν), where λ > 0
and α are real constants, to the Einstein-Hilbert action with cosmological constant Λ.
1 This form, which determines u(z) and v(z) in a specific way depending on α, has
appealing features. It gives rise to new contributions that appear similar to those of
a perfect fluid with constant equation of state parameter on the right-hand side of
the Friedmann equations, reminiscent of a source with constant inertial mass density,
and furthermore it allows us to obtain an explicit exact solution of the pressureless
matter energy density in terms of redshift, so that we can conduct an exact theoretical
investigation of the model using the observational data without further simplifications.
We look for observationally viable cosmologies, in particular, for an extension of the
standard ΛCDM model. We find that the observational data does not exclude the
ΛCDM limit of our model but slightly prefers u(z) > 0 (related to the non-conservation
of pressureless matter) and v(z) < 0 (related to the new terms of the pressureless
matter in the field equations), where u(z) > 0 arises with the appropriate sign to
produce an effective dynamical DE passing below zero (a screening of Λ) at high
redshifts, as desired to address the tension with the Lyman-α measurements within
the standard ΛCDM model. We also discuss the fact that the EMLG model relaxes, at
some level, the persistent tension that appears between different measurements of H0

within the standard ΛCDM model.
1A related logarithmic modification is considered in the context of f(R, T ) gravity [46] (where

T = gµνTµν) in a recent paper [135] after our work. They extend the Starobinsky action [42]
by including the logarithmic trace of the energy-momentum tensor, f(T ) ∝ ln(T ), and study the
cosmological dynamics.
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4.2 Energy-Momentum Log Gravity

We begin with the action constructed by the addition of the term f(TµνT µν) to the
Einstein-Hilbert (EH) action with a cosmological constant, Λ, as follows

S =
∫ [ 1

2κ
(R − 2Λ) + f(TµνT µν) + Lm

]√
−g d4x, (4.1)

where κ is Newton’s constant scaled by a factor of 8π (and we henceforth set κ = 1),
R is the Ricci scalar, g is the determinant of the metric gµν , Lm is the Lagrangian
density corresponding to the matter source described by the energy-momentum tensor
Tµν , and we have used units such that c = 1. We retain the cosmological constant, Λ,
in the model since according to Lovelock’s theorem it arises as a constant of nature. 2

We take the variation of the action with respect to the inverse metric gµν as

δS =
∫

d4x
√

−g

[
1
2δR + ∂f

∂(TµνT µν)
δ(TσϵT

σϵ)
δgµν

δgµν

−1
2gµν (R − Λ + f(TσϵT

σϵ)) δgµν + 1√
−g

δ(√−gLm)
δgµν

]
,

(4.2)

and, as usual, we define the EMT in terms of the matter Lagrangian Lm as follows

Tµν = − 2√
−g

δ(√−gLm)
δgµν

= gµνLm − 2∂Lm

∂gµν
. (4.3)

Accordingly, the modified Einstein field equations read

Gµν + Λgµν = Tµν + fgµν − 2 ∂f

∂(TµνT µν)θµν , (4.4)

2Lovelock’s theorem [136, 137] states that the only possible second-order Euler-Lagrange expression
obtainable in a four-dimensional space from a scalar density of the form L = L(gµν) is Eµν =√

−g (λ1Gµν + λ2gµν), where λ1 and λ2 are constants, leading to Newton’s gravitational constant
G ≡ κ/8π and cosmological constant Λ in Einstein’s field equations Gµν + Λgµν = κTµν (see
[138, 41, 139] for further reading).
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where Gµν = Rµν − 1
2Rgµν is the Einstein tensor and θµν is a new tensor defined as

θµν = T σϵ δTσϵ

δgµν
+ Tσϵ

δT σϵ

δgµν

= −2Lm

(
Tµν − 1

2gµνT
)

− T Tµν

+ 2T γ
µ Tνγ − 4T σϵ ∂2Lm

∂gµν∂gσϵ
,

(4.5)

with T being the trace of the EMT, Tµν . We note that the EMT given in (4.3) does
not include the second variation of Lm, and hence the last term of (4.5) vanishes. As
the definition of the matter Lagrangian that gives rise to the perfect-fluid EMT is not
unique, one could choose either Lm = p or Lm = −ρ, which result in the same EMT.
In the present study, we consider Lm = p.

We proceed with a specific form of the model,

f(TµνT µν) = α ln(λ TµνT µν), (4.6)

where λ has the dimension inverse energy density squared so that λ TµνT µν is di-
mensionless. This choice comes with some particular advantageous features. In the
cosmological application of the model, this is the only functional choice of f(TµνT µν)
that gives rise to new contributions of a perfect fluid on the right hand side of the
Einstein field equations yielding constant effective inertial mass density (See Section
4.3.1 for details). Also, it has an explicit exact solution, including the form of ρ(z)
which is important for analytical investigations. This contrasts with many EMSG-type
models, in which this is usually not possible due to the non-linear coupling of the
matter sources to gravity. For instance, in [79] cosmic acceleration in a dust only
EMPG model was investigated, where the exact solution of z(ρm) was obtained, but
the corresponding explicit solution of ρm(z) could usually only be obtained through an
approximation procedure, except for a few particular cases ([62, 132]).

Consequently, the action we use is

S =
∫ [1

2(R − 2Λ) + α ln(λ TµνT µν) + Lm

]√
−g d4x, (4.7)

where α is a constant that determines the gravitational coupling strength of the EMLG
modification of GR. Accordingly, the modified Einstein equations (4.4) for this action
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now read,
Gµν + Λgµν = Tµν + αgµν ln(λ TσϵT

σϵ) − 2α
θµν

(TσϵT σϵ) . (4.8)

From (4.8), the covariant divergence of the EMT becomes

∇µTµν = −αgµν∇µ ln(λ TσϵT
σϵ) + 2α∇µ

(
θµν

TσϵT σϵ

)
. (4.9)

We note that, unless α = 0, the right-hand side of this equation does not vanish in
general, and thus the EMT is not conserved, i.e. ∇µTµν = 0 is not satisfied.

4.3 Cosmology in EMLG

In this chapter, we investigate the cosmological behaviour of this gravitational model.
We proceed by considering the spatially maximally symmetric spacetime metric, given
by the Friedmann metric,

ds2 = −dt2 + a2
[

dr2

1 − kr2 + r2(dθ2 + sin2 θdϕ2)
]

, (4.10)

where the spatial curvature parameter k takes values in {−1, 0, 1} corresponding to
open, flat and closed 3-spaces respectively, and the scale factor a = a(t) is a function of
cosmic time t only. For cosmological matter sources describing the physical component
of the universe, we consider the perfect fluid form of the EMT given by

Tµν = (ρ + p)uµuν + pgµν , (4.11)

where ρ > 0 is the energy density and p is the thermodynamic pressure satisfying the
barotropic equation of state (EoS) as

p

ρ
= w = constant, (4.12)

and uµ is the four-velocity satisfying the conditions uµuµ = −1, and ∇νuµuµ = 0.
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Using (4.11) and (4.12), we calculate θµν defined in (4.5) and the self-contraction
of the EMT for the perfect fluid with barotropic EoS (4.12) as follows

θµν = −ρ2(3w + 1)(w + 1)uµuν , (4.13)

TµνT µν = ρ2(3w2 + 1). (4.14)

Next, using (4.13) and (4.14) along with the metric (4.10) in the modified Einstein
field equations (4.8) we obtain the following pair of linearly independent modified
Friedmann equations, for a single fluid cosmology,

3H2 + 3k

a2 = ρ + Λ + α′ρ0 + α′ρ0
2
γ

ln (ρ/ρ0) , (4.15)

−2Ḣ − 3H2 − k

a2 =wρ − Λ

− α′ρ0
2
γ

ln
[√

3w2 + 1 (ρ/ρ0)
]

,
(4.16)

where we set λ = ρ−2
0 without loss of generality.3 Here H = ȧ/a is the Hubble parameter

and the subscript 0 denotes the present-day values of the parameters. γ = γ(w) is a
parameter defined by

γ = ln(3w2 + 1) − 2(3w + 1)(w + 1)
(3w2 + 1) , (4.17)

which is negative for −0.27 < w < 2.52 and positive otherwise. We also define the
dimensionless constant

α′ = −α γρ−1
0 . (4.18)

Note that in the action (4.7), the terms α ln(λ TµνT µν) and Lm are both related to
the material content of the universe and that the EMT included in the modification
term α ln(λ TµνT µν) is the same as the one obtained from the variation of Lm, so the
model contains only a single matter source. However, the terms arising due to the
EMLG modification couple to gravity with a different strength, α′, to the normalised
gravitational coupling strength (i.e. κ = 1) of the standard GR terms. Furthermore,

3Defining λ = ηρ−2
0 , where η > 0 is a coefficient, we can write ln(λ TµνT µν) = α ln(η) +

ln(TµνT µν/ρ2
0). The term α ln(η) then acts like a cosmological constant, and so simply rescales

Λ in the action (4.7) and field equations (4.8). Additionally, λ has no contribution to the continuity
equation (4.9) since ∇µ ln(λ TσϵT

σϵ) = ∇µ ln(TσϵT
σϵ). Therefore, choosing a particular value for η,

i.e. η = 1 as we have done, does not lead to any loss of generality as our model already includes Λ in
the action.
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we note that α′ is a function not only of the true constant of the EMLG modification,
α, but also the current energy density, ρ0, and the EoS parameter, w, describing the
type of the matter source, so α′ = α′(α, ρ0, w). The latter two dependencies imply
a violation of the equivalence principle, which means our modification must obey
constraints from solar system tests of this principle. It would also have implications in
fundamental physics. For example, the violation of equivalence principle is intimately
connected with some of the basic aspects of the unification of gravity with particle
physics such as string theories [140] and theories of varying constants [141–143]. The
consequences of this property of the model are beyond the scope of the current study,
which focuses on the dynamics of a mono-fluid universe, where the only material source
is dust (pressureless fluid) with the purpose of modifying ΛCDM by considering the
new terms arising from EMLG as a correction.

The corresponding local energy-momentum conservation equation (4.9) is

ρ̇ + 3H(1 + w)ρ
[

γρ(3w2 + 1) − 2α′ρ0(3w + 1)
γρ(3w2 + 1) + 2α′ρ0(3w2 + 1)

]
= 0. (4.19)

The expression in square brackets is the modification arising from EMLG and is equal
to unity in the case α′ = 0, corresponding to GR. We can see that the covariant
energy-momentum conservation ∇µTµν = 0, which in GR would lead to ρ ∝ a−3(1+w),
does not hold for any w ≠ −1 when α′ ̸= 0, whilst the case w = −1, corresponding to
conventional dark energy, i.e., vacuum energy, is unmodified by EMLG.

4.3.1 Constant effective inertial mass density

It is worth noting here that, for a perfect fluid with barotropic equation of state,
both θµν and TµνT µν are proportional to ρ2 and therefore the last term in (4.8) is
independent of the energy density scale, instead depending only on the four-velocity of
the fluid and type of the fluid (i.e., the EoS of the matter source). Furthermore, for
usual cosmological applications, when a comoving (i.e. uµuµ = −1 and ∇νuµuµ = 0)
fluid with a constant EoS parameter w is considered, this term becomes a constant
determined by the model parameter α and the equation of state under consideration. On
the other hand, the second term on the right-hand side of (4.8) will always contribute
equally but with opposite signs to the time and space components of the equation in
Lorentzian spacetimes, that is to the energy density and pressure equations arising
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from the metric given in (4.10), and therefore the addition of these equations results
in the modifications from the second term on the right-hand side of (4.8) cancelling
each other. Consequently, this produces a characteristic feature of the model: if we
define the new terms that arise due to the EMLG modification in the energy density
equation (4.15) as an effective energy density

ρ′ = α′ρ0 + α′ρ0
2
γ

ln (ρ/ρ0) , (4.20)

and those in the pressure equation (4.16) as an effective pressure

p′ = −α′ρ0
1
γ

ln(3w2 + 1) − α′ρ0
2
γ

ln (ρ/ρ0) , (4.21)

then the effective inertial mass density defined as ρ′ + p′ is always constant; specifically,

ρ′ + p′ = α′ρ0[1 − γ−1 ln(3w2 + 1)], (4.22)

for p/ρ = w = constant. This feature of the model leads to ρ′ = α′ρ0[1 − γ−1 ln(3w2 +
1)] − p′ meaning that ρ′ changes sign when p′ = α′ρ0[1 − γ−1 ln(3w2 + 1)], showing our
model’s relevance to the studies [1, 106] suggesting that a DE model achieving negative
energy density values for redshifts larger than a certain value (e.g., z ≳ 2 as suggested
by [1, 103, 106]) might improve the fit to observational data. It might be mentioned
that the sign change of ρ′ does not signal any pathologies since it is an effective energy
density, not the physical energy density. For example, in the case of dust, w = 0, we
have

ρ′ = α′ρm,0 − p′, (4.23)

and accordingly ρ′ < 0 when p′ > α′ρm,0.

4.3.2 Preliminary constraints on α

We now determine some preliminary constraints on α by considering separately two
standard cosmological matter sources: radiation and dust. We begin by writing (4.19)
in terms of α:

ρ̇ = −3(1 + w)Hρ

[
ρ(3w2 + 1) + 2α(3w + 1)
ρ(3w2 + 1) − 2α(3w2 + 1)

]
. (4.24)
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A viable cosmological model should satisfy H > 0, Ḣ < 0, ρ > 0 and ρ̇ < 0. Here
H > 0 and Ḣ < 0 together lead to an expanding universe in line with observations.
ρ̇ < 0 means that the energy density is decreasing with time, and therefore H > 0 and
ρ̇ < 0 together guarantee that the density is larger at early times and decreases as the
universe expands. As seen from (4.24), taking H > 0, ρ̇ < 0 implies

(1 + w)ρ
[

ρ(3w2 + 1) + 2α(3w + 1)
ρ(3w2 + 1) − 2α(3w2 + 1)

]
> 0. (4.25)

Substituting w = 1/3 into (4.25), we obtain the interval

− ρr

3 < α <
ρr

2 , (4.26)

over which it is guaranteed that the energy density of radiation, ρr, increases as we go
to earlier times. Next, we also substitute w = 0 into (4.25) and obtain the interval

− ρm

2 < α <
ρm

2 , (4.27)

over which it is guaranteed that ρm (energy density of dust) decreases as the universe
expands. From (4.15) and (4.16), one can see that the energy density corresponding to
the spatial curvature evolves as ρk = 3k

a2 . We note that this is equivalent to a matter
source with an EoS parameter w = −1/3 via ∇µTµν = 0 in GR, but it is not the case
in our model since, unless α′ = 0, ∇µTµν ̸= 0 for a matter source with w = −1/3 (see
(4.33) in Sec. 4.3.3 for the solution). Finally, in order to align with standard cosmology,
we wish to avoid spatial curvature domination over dust in the early universe. This
means that, using the continuity equation (4.24) for dust and the fact that ρk ∝ a−2,
we must have

3
[

ρm + 2α

ρm − 2α

]
> 2 , (4.28)

leading to the following permitted interval

−ρm

10 < α <
ρm

2 , (4.29)

which is a tighter bound than the one given in (4.27).
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4.3.3 Solving the continuity equation explicitly for ρ(z)

As mentioned in Sec. 4.2, one of the difficulties in studying EMSG type models is that
it is usually not possible to obtain the explicit exact solution of ρ in terms of scale
factor a (or redshift z). For instance, in [79] which investigated cosmic acceleration in
a dust only universe via EMPG, the explicit solution of ρm(z) could only be obtained
through an approximation procedure. In this section, we investigate the cases providing
explicit solutions of ρ(z) and show that EMLG model (4.6) provides an exact solution
for the dust only universe.

Defining
β(w) = 3w + 1

3w2 + 1 , (4.30)

we rewrite (4.19) as

ρ̇

ρ

[
ρ − 2α

ρ + 2αβ

]
= −3(1 + w) ȧ

a
, (4.31)

which can be solved implicitly as

ρ

(
1 + 2α

ρ
β

) 1
β

+1

∝ a−3(1+w). (4.32)

We can then proceed by examining the behaviour of β(w).

We notice first that β attains a maximum value of 3/2 at w = 1/3, and a minimum
of −1/2 at w = −1; however, β is not injective, and so there exist two values of w that
provide the same right-hand side of (4.32). However, as the left hand side also has a w

dependence, the behaviour of our perfect fluid for the two equations of state will not
coincide.

At w = −1/3, we must note that β = 0. At this point we consider the limiting
behaviour of (4.32), which takes exponential form:

ρe
2α
ρ ∝ a−2. (4.33)

We could also recover this by integrating (4.19) directly with w = −1/3. This equation
of state no longer corresponds to the behaviour of curvature terms as in GR, but
describes the evolution of cosmic strings. We also note the similarities between the
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Fig. 4.1 The behaviour of the parameter β (y-axis) for different equation of state parameters w
(x-axis), i.e., β(w). The region of most interest has −1 ≤ w ≤ 1.

behaviour for w = −1/3 in this model and that in EMPG, as discussed in [62]. However,
we cannot solve the radiation dominated Universe explicitly.

This implicit solution (4.32) depends on the behaviour of the parameter β, and in
general we would not expect to find explicit solutions for the energy density in terms of
the scale factor. In fact, we will be able to find explicit closed form solutions in certain
physically relevant cases when (4.32) reduces to a polynomial in ρ of degree at most
four. If we write the exponent as A

B
= 1

β
+ 1 as a fraction in its lowest terms (A, B ∈ Z,

B ̸= 0) we can determine the conditions on A and B such that the resulting equation
is an appropriate polynomial. Once this is done, we can further constrain the exponent
by considering the values which β may take. It emerges that the only appropriate
values that the exponent can take are integers in the list {−3, −2, −1, 2, 3, 4}. Two of
these cases are of specific interest. The −1 case corresponds to w = −1, the equation
of state for the conventional vacuum energy, in which case the exponent on the right
hand side vanishes and we find that the energy density in this case, ρ−1 is a constant,
equal to its value today ρ−1,0, that is:

ρ−1 ≡ ρ−1,0 , (4.34)

as in the GR case.
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The second case of interest is β = 1, in which case (4.32) reduces to a quadratic.
This arises for the physically relevant cases of dust, w = 0 and stiff fluid, w = 1. This
allows us to find an exact solution for the energy density in these cases, the specific
form of which is discussed in the subsequent section.

The remaining cases each result from a pair of values of w, but these values are
irrational and thus unlikely to be of physical importance. Typically, one of the two
values lies within the −1 < w < 1 range, and the other outside.

It is also important to note that although we have explicit solutions for these cases,
and can examine features of (4.32) for others, we are not able to compare the behaviour
of a single cosmological model using these solutions since they are each valid only for a
single fluid Universe. In this study, we will investigate the late-time acceleration of
the universe, accordingly, neglect the radiation and assume that there is only dust as
the material source, for which, fortunately, EMLG provides us with explicit solution
for ρ(a). In Section 4.4.5, we will also briefly discuss possible analytical solutions of a
Universe including radiation.

4.3.4 Dust-filled Universe

Since we will concentrate our discussions on the late-time acceleration of the universe,
we assume that the radiation density is negligible, and the universe is spatially flat
and filled only with dust. Accordingly, substituting w = 0 and k = 0 into the modified
Friedmann equations (4.15) and (4.16), they reduce to the following

3H2 = ρm + Λ + α′ρm,0 − α′ρm,0 ln (ρm/ρm,0) , (4.35)

− 2Ḣ − 3H2 = −Λ + α′ρm,0 ln (ρm/ρm,0) . (4.36)

And for w = 0, the continuity equation (4.19) is satisfied as

ρ̇m + 3Hρm

(
ρm + α′ρm,0

ρm − α′ρm,0

)
= 0, (4.37)
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and hence as discussed above, we obtain the explicit solution

ρm =1
2ρm,0(1 + α′)2(1 + z)3 − α′ρm,0

+ 1
2ρm,0

√
−4α′2 + [(1 + α′)2(1 + z)3 − 2α′]2 ,

(4.38)

provided that −1 < α′ ≤ 1, and using that a = (1 + z)−1. We note that as α′ → 0, in
our solution ρm → ρm,0(1 + z)3, the usual pressureless matter evolution, so we recover
the standard ΛCDM model along with GR. We also note that (4.35) with Λ = 0 at the
present time reads 3H2

0 = ρm,0 + α′ρm,0 and consequently Ωm,0(1 + α′) = 1. Here we
define the present day density parameters of dust and Λ as Ωm,0 = ρm,0

3H2
0

and ΩΛ,0 = Λ
3H2

0
.

From the most recent observational results Ωm,0 ≈ 0.3 and therefore we estimate that
α′ ≈ 2.3. However, our solution (4.38) is not valid for this α′ value. Thus, to be able
to use the solution (4.38), we must include Λ in our model, so that (4.35) implies that
Ωm,0(1 + α′) + ΩΛ,0 = 1. We note that the intervals we deduced in Section 4.3.2 for a
viable cosmology are a subset of the interval needed for the validity of solution (4.38)
today. Namely, curvature domination discussion in (4.29) with the definition (4.18)
leads to a narrower interval for α′. Considering that interval of α′, −0.20 < α′ < 1, we
find 1 − 2 Ωm,0 < ΩΛ,0 < 1 − 0.8 Ωm,0. Consequently, we estimate that the solution
given in (4.38) is valid for 0.40 ≲ ΩΛ,0 ≲ 0.76. Furthermore, as z → −1, the energy
density ρ → −α′ρm,0 = ρmin. This means that if the universe were to expand forever,
the energy density would never reach to zero. Instead there would be a minimum
energy density limit as ρmin = −α′ρm,0, which in turn implies that α′ must be negative
in an eternally expanding universe. Finally we note that the solution for equation of
state w = 1 is the same as the solution for dust, with a → a2.

4.4 Improved Om diagnostic of EMLG

Cosmological models with late time acceleration, via DE in GR or modified gravity,
can be examined with the use of null-diagnostics. One diagnostic is the jerk parameter
j =

...
a

aH3 , first introduced by Harrison [144] (who denoted it by Q), which is simply
equal to unity in ΛCDM (omitting radiation), jΛCDM = 1, [145–147]. Hence, any
observational evidence which predicts a deviation from unity implies that late time
acceleration is not due to the cosmological constant in GR. The second diagnostic is
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Om(z) which is defined via an improved version in a recent study [1] as follows:

Omh2(zi; zj) = h2(zi) − h2(zj)
(1 + zi)3 − (1 + zj)3 , (4.39)

where h(z) = H(z)/100 km s−1Mpc−1 is the dimensionless reduced Hubble parameter.
We note that Om depends only on H(z), and is therefore easier to determine from
observations than j. Consequently, knowing the Hubble parameter at two or more
redshifts, one can obtain the value of Omh2 and conclude whether or not a dark energy
modification to GR is the cosmological constant. In ΛCDM, omitting radiation (which
is negligible in the late universe) we have

h2 = h2
0

[
Ωm,0(1 + z)3 + 1 − Ωm,0

]
, (4.40)

which simply gives a constant as

Omh2(zi; zj) = h2
0Ωm,0. (4.41)

The estimates given in [1] for the Omh2 diagnostic consider H(z1 = 0) = 70.6 ±
3.3km s−1Mpc−1 [148] based on the NGC 4258 maser distance, H(z2 = 0.57) = 92.4 ±
4.5km s−1Mpc−1 [149] based on the clustering of galaxies in the SDSS-III BOSS DR9,
and H(z3 = 2.34) = 222 ± 7km s−1Mpc−1 [111] based on the BAO in the Lyman-α
forest of SDSS DR11 data and read

Omh2(z1; z2) = 0.124 ± 0.045,

Omh2(z1; z3) = 0.122 ± 0.010,

Omh2(z2; z3) = 0.122 ± 0.012.

(4.42)

Note that these model-independent values of Omh2 for any two redshifts are stable
at about 0.12 which is in tension with, the value Omh2 = Ωm,0h

2
0 = 0.1430 ± 0.0011

determined for the base ΛCDM model from the Planck 2018 release [96]. Note that
Omh2 is not affected significantly by H(z = 0) (the accurate value of which is subject to
a great debate in the contemporary cosmology) owing to the high-precision measurement
of H(z = 2.34) [1].

It is argued in [1] that this tension can be alleviated in models in which Λ was
dynamically screened in the past. In line with this, until Section 4.5, we investigate
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Fig. 4.2 H(z)/(1 + z) vs. z graph of the EMLG and ΛCDM. Plotted by using Ωm,0 = 0.28,
H0 = 70 km s−1Mpc−1 and α′ = −0.04. For the three observational H(z) values with errors we
consider those in [1]. This is the standard, one redshift, Om parameter, which we plot here to
straightforwardly illustrate the comparison between the two models, and the current tension between
ΛCDM and some measurements of H(z).

the features of the EMLG model (parametrised by α′) in comparison with the ΛCDM
model mostly by referring to [1]. Therefore, we intentionally make use of these three
H(z) data (rather than the latest data, which would not change our arguments in
what follows) as well as the Ωm,0 and H0 values considered in [1]. This allows us to
demonstrate the effect of the EMLG model on Omh2 diagnostics, with a properly
chosen value for α′, by a straightforward comparison with [1]. We shall investigate the
observational analyses of the EMLG model and compare with the ΛCDM model using
the latest cosmological data in Section 4.5.
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4.4.1 EMLG cosmology in the light of null-diagnostics

We now consider the Om diagnostic expression defined in (4.39) for our model. Substi-
tuting the solution (4.38) into (4.35), we obtain

h2 =h2
0

{
1 − Ωm,0

{
1 − 1

2
[
(1 + α′)2(1 + z)3 − 2α′

+
√

−4α′2 + [(1 + α′)2(1 + z)3 − 2α′]2
]

+α′ ln
{1

2
[
(1 + α′)2(1 + z)3 − 2α′

+
√

−4α′2 + [(1 + α′)2(1 + z)3 − 2α′]2
]}}}

,

(4.43)

where we use also the fact that ΩΛ,0 = 1 − (1 + α′)Ωm,0. This leads to

Omh2(zi;zj) = h2
0Ωm,0

{
(α′ + 1)2 (zi + 1) 3

+
√(

(α′ + 1)2 (zi + 1) 3 − 2α′
)

2 − 4 (α′)2

−2α′ ln
[1
2
(
−2α′ + (α′ + 1)2 (zi + 1) 3

+
√(

(α′ + 1)2 (zi + 1) 3 − 2α′
)

2 − 4 (α′)2
)]

− (α′ + 1)2 (zj + 1) 3

−
√(

(α′ + 1)2 (zj + 1) 3 − 2α′
)

2 − 4 (α′)2

+2α′ ln
[1
2
(
−2α′ + (α′ + 1)2 (zj + 1) 3

+
√(

(α′ + 1)2 (zj + 1) 3 − 2α′
)

2 − 4 (α′)2
)]}

/

2
[
(zi + 1) 3 − (zj + 1) 3

]
.

(4.44)

Following the three H(z) data given in [1], in Fig. 4.2, we plot H(z)/(1+z) with respect
to redshift using Ωm,0 = 0.28 and H0 = 70km s−1Mpc−1 for both the ΛCDM model
(green) and the EMLG model with α′ = −0.04 (red), which provides us H(z)/(1 + z)
in agreement with all data points whereas the one for ΛCDM does not fit to the
data point from z = 2.34. The true constant of the model in the action (4.7) is,
accordingly, α = −0.02ρm,0. The model-independent value of the Om diagnostic
estimated in [1] is quite stable at Omh2 ≃ 0.12 and is in tension with the ΛCDM-
based value Omh2(ΛCDM) ≃ 0.14. On the other hand, for the EMLG model with
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Ωm,0 = 0.28, H0 = 70km s−1Mpc−1 and α′ = −0.04, we find Omh2(z1; z2) = 0.129,
Omh2(z1; z3) = 0.127 and Omh2(z2; z3) = 0.127 where z1 = 0, z2 = 0.57 and z3 = 2.34.
Note that these are in good agreement with the estimates given in [1].

4.4.2 A comparison via general relativistic interpretation

In [1], it is suggested that lower values for Omh2 can be obtained in models in which
the cosmological constant was screened by a dynamically evolving counter-term f(z)
in the past. Accordingly, H2(z) is modified, with respect to the ΛCDM model, as

H2(z) = 1
3ρm,0(1 + z)3 + Λ

3 − f(z). (4.45)

and at a redshift z∗, Λ/3 is balanced by f(z) (i.e. f(z∗) = Λ/3). Comparing (4.45)
and (4.35), along with our solution given in (4.38), it emerges that in our model

f(z) = 1
6ρm,0

[(
2 − (1 + α′)2

)
(1 + z)3

]
− 1

6ρm,0

√
−4α′2 + [(1 + α′)2(1 + z)3 − 2α′]2

+ 1
3ρm,0α

′ ln
{1

2
[
(1 + α′)2(1 + z)3 − 2α′

+
√

−4α′2 + [(1 + α′)2(1 + z)3 − 2α′]2
]}

.

(4.46)

It is not possible to calculate the redshift, z∗, exactly from (4.46). However, for
Ωm,0 = 0.28 and α′ = −0.04, we can numerically calculate that z∗ = 2.29 for our model
(similar to the value z∗ ≃ 2.4 given in [1]).

Furthermore, [1] suggests that evolving DE models in which Λ, as part of the dark
energy, was screened in the past provide a better fit for the BAO data than the ΛCDM
model, as well as alleviating the tension discussed in the preceding two sections. It is
also noted that in such evolving DE models, the effective EoS of the DE displays a pole
at high redshifts. A pole in wDE implies that the energy density of the DE changes
sign at that redshift value. This behavior of the DE is also discussed in another study
[106] by the BOSS collaboration using the BBAO, SN and Planck data sets. In the
next section, we will investigate the EMLG model from this perspective.
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4.4.3 Effective dynamical dark energy

In order to test our model in light of the above discussion, we reconstruct the model
by defining an effective DE by rewriting (4.35) and (4.36) in the following form:

3H2 = ρm,0(1 + z)3 + ρDE, (4.47)

−2Ḣ − 3H2 = pDE. (4.48)

Thus, the energy density and pressure of the effective DE are given by

ρDE =ρm + α′ρm,0 [1 − ln (ρm/ρm,0)]

− ρm,0(1 + z)3 + Λ,
(4.49)

pDE = α′ρm,0 ln (ρm/ρm,0) − Λ. (4.50)

Next, using (4.38) in these equations we obtain ρDE and pDE as follows;

ρDE =1
2ρm,0

{[
(1 + α′)2 − 2

]
(1 + z)3

+
√

−4α′2 + [(1 + α′)2(1 + z)3 − 2α′]2
}

− α′ρm,0 ln
{1

2
[
(1 + α′)2(1 + z)3 − 2α′

+
√

−4α′2 + [(1 + α′)2(1 + z)3 − 2α′]2
]}

+ Λ, (4.51)

pDE =α′ρm,0 ln
{1

2
[
(1 + α′)2(1 + z)3 − 2α′

+
√

−4α′2 + [(1 + α′)2(1 + z)3 − 2α′]2
]}

− Λ. (4.52)

The corresponding EoS parameter wDE = pDE
ρDE

is

wDE = − 1 +
{
ρm − ρm,0(1 + z)3 + α′ρm,0

}
/{

ρm − ρm,0(1 + z)3

+ α′ρm,0 [1 − ln (ρm/ρm,0)] + Λ
}
. (4.53)
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Defining the density parameter of the effective dark energy for today as ΩDE,0 = ρDE,0
3H2

0
,

(4.53) together with (4.38) and (4.49) gives

wDE = − 1 + (1 − ΩDE,0)
[ (

(1 + α′)2 − 2
)

(1 + z)3

+
√

−4α′2 + [(1 + α′)2(1 + z)3 − 2α′]2
]/

{
(1 − ΩDE,0)

{ [
(1 + α′)2 − 2

]
(1 + z)3 − 2α′

+
√

−4α′2 + [(1 + α′)2(1 + z)3 − 2α′]2

− 2α′ ln
(

1
2

[
(1 + α′)2(1 + z)3 − 2α′

+
√

−4α′2 + [(1 + α′)2(1 + z)3 − 2α′]2
])}

+ 2ΩDE,0

}
,

(4.54)

where we have used the fact that Ωm,0 + ΩDE,0 = 1. The present-day value of the EoS
parameter of the effective DE is

wDE,0 = −1 + α′ 1 − ΩDE,0

ΩDE,0
. (4.55)

We note that it lies in the ‘phantom’ region (w < −1) for α′ < 0. Specifically,
wDE,0 = −1.0156 for α′ = −0.04 and ΩDE,0 = 0.72. This is consistent with the
current bounds on wDE,0 from the Planck collaboration observations, which has found
wDE,0 = −1.028 ± 0.032 [12].

As may be seen from (4.54), the model reduces to ΛCDM for α′ = 0 giving
wDE = wDE,0 = −1. We now plot illustrative figures by using Ωm,0 = 0.28 and
α′ = −0.04. With these values, we see from (4.51) that ρDE = 0 at z = 2.29. In
accordance with the arguments in [1], within the effective DE source interpretation
of our model, Λ is screened at the redshift z∗ = 2.29 and the effective EoS of the DE
exhibits a pole at the same redshift (which is very similar to the estimate z∗ ≃ 2.4
made in [1]). We depict the pole of wDE at z = 2.29 in Fig.4.3, which is due to ρDE

changing sign at that redshift, as can be seen from Fig.4.4. Note that Fig.4.4 shows
clearly that the sign change at z = 2.29 is in agreement with Fig.11 of [106] revealing
that ρDE passes below zero at a redshift in the interval 1.6 ≤ z ≤ 3.0. We also display,
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Fig. 4.3 wDE versus z graphs of the EMLG and ΛCDM. Plotted by using Ωm,0 = 0.28 and
α′ = −0.04. |wDE| → ∞ at z = 2.29 in EMLG.
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Fig. 4.4 ρDE/ρcrit,0 versus z graphs of the EMLG and ΛCDM. Plotted by using Ωm,0 = 0.28 and
α′ = −0.04.
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Fig. 4.5 Density parameters (shown as ρ̃/ρcrit) vs. z graphs of the EMLG and ΛCDM for dust and
effective dark energy. Here ρ̃ = ρm,0(1 + z)3 for matter and ρ̃ = ρDE for effective dark energy. Plotted
by using Ωm,0 = 0.28 and α′ = −0.04.

both for the EMLG and ΛCDM models, the density parameters of dust, Ωm = ρm/3H2,
and the effective DE, ΩDE = ρDE/3H2, (ΩΛ = ρΛ/3H2 for the ΛCDM model) up to
z = 1100 in Fig. 4.5. Note that the density parameters are the same for z = 0 and do
not differ much for low redshifts. For large redshifts, in contrast, the unusual behavior
of the EMLG model emerges, so that Ωm becomes equal to unity at z = z∗ = 2.29
(at z → ∞ for the ΛCDM model) and then settles in a plateau larger than unity for
z > z∗ = 2.29, which results from ρDE becoming negative at z = z∗ = 2.29.

Next we calculate two important kinematical parameters that are of interest in
cosmology in order to compare different models. Firstly, we calculate the deceleration
parameter, q = −1 − Ḣ

H2 , as

q = −1 + 3
2

Ωm,0 [(ρm/ρm,0) + α′]
1 − Ωm,0 [1 − (ρm/ρm,0) + α′ ln(ρm/ρm,0)]

, (4.56)
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which can be written in terms of redshift, by using (4.38), as

q = − 1 + 3
4Ωm,0

[
(1 + α′)2(1 + z)3

+
√

−4α′2 + [(1 + α′)2(1 + z)3 − 2α′]2
]/

{
1 − Ωm,0

{
1 − 1

2
[
(1 + α′)2(1 + z)3 − 2α′

+
√

−4α′2 + [(1 + α′)2(1 + z)3 − 2α′]2
]}

+ α′ ln
{

1
2
[
(1 + α′)2(1 + z)3 − 2α′

+
√

−4α′2 + [(1 + α′)2(1 + z)3 − 2α′]2
]}}

.

(4.57)

Setting α′ = 0 recovers the expression for these parameters in ΛCDM. We note that
q → −1 as z → −1, implying that our model asymptotically approaches ΛCDM in
the far future. For large redshifts, z ≫ 1, in (4.56) the deceleration parameter of the
dust dominated era in ΛCDM, q = 1/2, is recovered. Calculating the current value of
the deceleration parameter, we find q0 = −1 + 3

2Ωm,0(1 + α′). As can be seen in the
top panel of Fig.4.6, the accelerated expansion begins at ztr ≈ 0.79 and the present
time value of the deceleration parameter is q0 = −0.60, whereas these are ztr ≈ 0.73
and q0 = −0.58 for ΛCDM model. Secondly, we calculate the jerk parameter j =

...
a

aH3 ,
which was discussed in Sec. 4.4 and, as mentioned, is simply equal to unity for ΛCDM
(ommiting radiation). In contrast, for EMLG j is dynamical and is given by

j =
{

α′ρ0Ω0(1 + z)2ρ2
z − α′ρ0Ω0(1 + z)ρ

[
(1 + z)ρzz

− 2ρz

]
+ ρ2

[
Ω0(1 + z)

(
(1 + z)ρzz − 2ρz

)
− 2ρ0

(
α′Ω0 ln (ρ/ρ0) + Ω0 − 1

)]
+ 2Ω0ρ

3
}/

{
2ρ2

[
Ω0ρ − ρ0

(
α′Ω0 ln (ρ/ρ0) + Ω0 − 1

)]}
,

(4.58)

where we have written ρ = ρm(z), Ω0 = Ωm,0, and a subscript of z denotes differentiation
with respect to redshift. The explicit expression in terms of redshift can be obtained by
substituting ρm(z) from (4.38), which we do not provide explicitly for reasons of brevity.
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j(z) is then depicted in the lower panel of Fig.4.6 which illustrates the dynamical
nature of the jerk parameter in EMLG. It deviates from unity at z ∼ 0 but we have
j → 1 in both limits as either z → ∞ or z → −1, hence EMLG recovers the kinematics
of ΛCDM both at early times, and in the far future.
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Fig. 4.6 q(z) vs. z (upper panel) and j(z) vs. z (lower panel) graphs of the EMLG and ΛCDM.
Plotted by using Ωm,0 = 0.28, H0 = 70 km s−1Mpc−1 and α′ = −0.04.
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4.4.4 Screening of Λ by the non-conservation of dust

In Section 4.4.3, we rearranged the original field equations of the EMLG model,
(4.35) and (4.36), in order to compare with the model first described in [1]. For
this comparison, we assumed that the energy density of the dust behaves as in GR,
ρm ∝ (1 + z)3, and then compensated it as a part of the effective DE (4.47). In other
words, we assume that all of the terms with α′, including those coming from the true
matter energy density (4.38) of EMLG, contribute to the energy density of the effective
DE. Through this comparison, we have determined the parameter of our model, α′,
with which EMLG relaxes the issues of the ΛCDM model stated in [1].

We now examine the actual behavior of dust in EMLG. The energy density of
dust in EMLG is given by (4.38) and includes terms with the EMLG modification
parameter α′. Furthermore, we have new terms with α′ in the original field equations,
(4.35) and (4.36), arising due to the EMLG modification to GR. As a result, both the
energy density of dust and the forms of the energy density and pressure equations of
our model differ from those of GR. Consequently, we find it useful to depict, in Fig. 4.7,
the redshift dependency of the density parameters corresponding to the components
of the energy density equation (4.35). To do so, we define Ωm = ρm/3H2 (red) for
dust, ΩΛ = Λ/3H2 (yellow) for Λ and ΩX = [α′ρm,0 − α′ρm,0 ln (ρm/ρm,0)]/3H2 (green)
for the new terms which arise due to the EMLG modification. We use Ωm,0 = 0.28,
H0 = 70 km s−1Mpc−1 and α′ = −0.04, the same values used in previous sections. We
note the small and non-monotonic contribution from ΩX in (4.35).

For a better view, we depict ΩX(z) separately in Fig. 4.8. This figure is of particular
interest since it reveals an important point about the model under consideration; that
the contribution from ΩX is negative at low redshifts, positive at z ∼ 1 and then, whilst
remaining positive, asymptotically approaches zero at larger redshifts. This means that
ΩX, due to the EMLG modification, screens Λ only at low redshifts in contrast to the
arguments given in [1]. On the other hand, within the effective DE source interpretation
of our model in line with [1, 106], we have already shown that ρDE is positive at low
redshifts and passes below zero at z = 2.29 exactly as suggested in [1, 106]. This
implies that the feature of screening Λ in the EMLG model does not arise from the
new type of contributions of dust on the right-hand side of (4.35) which appear as an
effective source with constant inertial mass density as ρ′ + p′ = α′ρm,0 (see 4.3.1), but
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instead from the altered redshift dependency of ρm due to the non-conservation of the
EMT in the EMLG model.

Wm

Wx

WL

Wm+Wx

0.01 0.1 1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

z

de
ns
ity
pa
ra
m
et
er

Fig. 4.7 Ω vs. z graphs of the EMLG for matter (Ωm), modification terms (Ωx), cosmological
constant (ΩΛ) and matter+modification (Ωm + Ωx). Plotted by using Ωm,0 = 0.28,
H0 = 70 km s−1Mpc−1 and α′ = −0.04.
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Fig. 4.8 The density parameter of modification terms (Ωx) vs. z graph of the EMLG. Plotted by
using Ωm,0 = 0.28, H0 = 70 km s−1Mpc−1 and α′ = −0.04.



94 Screening Λ in a new modified gravity model

4.4.5 Inclusion of radiation

In order to investigate the implications of our model for the early universe while
preserving its agreement with the current data for the late universe, we need to look
for solutions in the case that radiation is the second source besides dust. Including
both fluids as sources in our model results in complicated field equations including the
cross terms of ρr and ρm which make exact solutions impossible. On the other hand, if
we use the same α′ = −0.04 value which corresponds to α = −0.02ρm,0 for radiation,
it remains outside today’s viability interval (4.26) as we know from observations that
ρm,0/ρr,0 ∼ 103. This arises from the fact that the interval (4.26) is valid only for a
mono-fluid universe. We would need to decrease the absolute value |α| to find viable
cosmological solutions when our model contains radiation as well. However, this would
result in compromising the goodness of fit of our model with the latest data compared
to that of ΛCDM for the late-time accelerated expansion of the universe. Thus, we
conclude that it does not seem possible to expand our model by both adding radiation
and preserving the features we have been discussing so far when there is only one α

parameter involving in both sources.

A recent study [132] shows that different sources can couple to gravity in different
ways for a particular example of f(TµνT µν) modification. One can follow the same
idea in EMLG. Namely, the model can be constructed using different α parameters for
different types of sources which means that different gravitational couplings occur for
each source. To do so, one can start with a modification term as follows

f(TµνT µν) =
∑

i

αi ln(λi T (i)
µν T µν

(i) ), (4.59)

where αi (the coupling parameter) and λi are the constants for ith fluid. Note that the
sum over i in (4.59) evades the issue of cross terms occurring in the case of more than
one fluid. However, the number of free parameters is increased. To relax this issue,
fluids can be separated as conventional sources, such as radiation (γ, ν) or baryons
(b), and dark sector/unknown sources like cold dark matter. Then, one can assume
that known sources couple to gravity according to GR, that is the corresponding αi’s
are zero, whilst dark sector/unknown sources couple in accordance with the modified
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theory [132]. With this idea, the field equations in EMLG read

3H2 =Λ + ργ + ρb + ρcdm

+ α′ρcdm,0

[
1 − ln

(
ρcdm

ρcdm,0

)]
,

(4.60)

− 2Ḣ − 3H2 = −Λ + ργ

3 + α′ρcdm,0 ln
(

ρcdm

ρcdm,0

)
. (4.61)

Here ργ ∝ (1 + z)4, ρb ∝ (1 + z)3 as in GR and ρcdm obeys the modified continuity
equation (4.24) when w = 0, which gives the energy density solution in (4.38). We
reserve such an investigation to our future works.

4.5 Constraints from latest cosmological data

In the preceding sections we have investigated theoretically the EMLG model, particu-
larly in comparison with the studies [1, 106]. For convenience, we assumed the values
of the Hubble constant and dust density parameter as used in [1] and took a value of
the coupling parameter of the EMLG modification so as to produce results similar to
those discussed in [1]. In this section we analyse the constraints on the parameters of
the EMLG model from the latest observational data and discuss the model further. In
order to explore the parameter space, we make use of a modified version of a simple
and fast Markov Chain Monte Carlo (MCMC) code, named SimpleMC [150, 106], that
computes expansion rates and distances using the Friedmann equation. The code
uses a compressed version of a recent reanalysis of Type Ia supernova (SN) data, and
high-precision Baryon Acoustic Oscillation measurements (BAO) at different redshifts
with z < 2.36 [106]. We also include a collection of currently available H(z) measure-
ments (CC), see [151] and references therein. For an extended review of cosmological
parameter inference see [152]. Table 4.1 displays the parameters used throughout this
chapter along with the corresponding flat priors. Note that we do not consider CMB
data in our analysis, because the current EMLG model does not contain radiation (see
Section 4.4.5 for the relevant discussion) and therefore we avoid radiation in the ΛCDM
model in order to be able to compare these two models under the same conditions.

We use the dimensionless Hubble parameter h = H/100 km s−1Mpc−1 [153], the
physical baryon density Ωbh

2 and the pressureless matter density (including CDM) Ωm.
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Table 4.1 Constraints on the EMLG parameters using the combined datasets BAO+SN+CC. For
one-tailed distributions the upper limit 95% CL is given. For two-tailed the 68% is shown. Parameters
and ranges of the uniform priors assumed in our analysis. Derived parameters are labeled with ∗.

Parameter EMLG ΛCDM Priors

Ωm,0 0.2983 ± 0.0185 0.2861 ± 0.0102 [0.05,1.5]
Ωb,0h2

0 0.02196 ± 0.00045 0.02205 ± 0.00045 [0.02, 0.025]
h0 0.682 ± 0.021 0.668 ± 0.009 [0.4, 1.0]
α′ −0.032 ± 0.043 [0] [-1, 1]

∗wDE,0 −1.015 ± 0.019 [-1]
∗z∗ 2.23 ± 0.81 -

− ln Lmax 34.22 34.49 –
AIC 76.44 74.98 –

Throughout the analysis we assume flat priors over our sampling parameters: Ωm,0 =
[0.05, 1.5] for the pressureless matter density parameter today, Ωb,0h

2
0 = [0.02, 0.025]

for the baryon density parameter today and h0 = [0.4, 1.0] for the reduced Hubble
constant. For the EMLG parameter we assume α′ = [−1, 1], which is also the validity
interval of our solution, see (4.38).

For simplicity, and noticing the near-gaussianity of the posterior distributions (Fig.
4.9), to perform a model selection we include the Akaike Information Criterion (AIC)
[154], defined as:

AIC = −2 ln Lmax + 2k, (4.62)

where the first term incorporates the goodness-of-fit through the likelihood L, and the
second term is interpreted as the penalisation factor given by two times the number of
parameters (k) of the model. The preferred model is then the one that minimises AIC.
A rule of thumb used in the literature is that if the AIC value of a model relative to
that of the preferred model ∆AIC ≤ 2, it has substantial support; if 4 ≤ ∆AIC ≤ 7, it
has considerably less support, with respect to the preferred model. A Bayesian model
selection applied to the dark-energy equation of state is performed by [100, 104, 103].

Table 4.1 summarizes the observational constraints on the free parameters (as well
as the derived parameters, labelled by ∗) of the EMLG model using the combined
dataset BAO+SN+CC. For comparison, we also include parameters describing the
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Fig. 4.9 1D and 2D marginalized posterior distributions of the parameters used to describe the
EMLG model (blue) and the ΛCDM model (red). Scatter points indicate values of α′ labelled by the
colour bar, and the vertical line corresponds to the ΛCDM case (α′ = 0).

ΛCDM model. We notice the EMLG model fits the data slightly better, however
EMLG is penalized by the inclusion of the extra parameter α, viz., with ∆AIC = 1.46,
and hence it has evidence to be a good model w.r.t. the ΛCDM model, but the ΛCDM
model is slightly preferred over it. Figure 4.9 displays the 1D and 2D marginalized
posterior distributions of the parameters used to describe the EMLG model (blue) and
the ΛCDM model (red). The inner ellipses show the 68% confidence region, and the
outer edges the 95% region. Scatter points indicate values of α′ labelled by the colour
bar, and the vertical line corresponds to the ΛCDM case (α′ = 0).
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The data constrains the parameter of the EMLG model as α′ = −0.032 ± 0.043
at 68 % C.L., which well covers α′ = 0 (ΛCDM), but prefers slightly negative values.
In comparison with the ΛCDM model (α′ = 0), the preference of the EMLG model
for slightly negative values of α′ leads to a widening of the 1D posterior distributions
of Ωm,0 and h0 towards larger values, which in turn shifts the peak values of both
parameters to larger values as well. Indeed, we see in Table 4.1 that, in comparison
with ΛCDM, the EMLG model predicts larger Ωm,0 and h0 values along with larger
errors against the data. The strong anti-correlations on the parameters Ωm,0 and α′ and
also on the h0 and α′ observed in 2D marginalised posterior distributions for the EMLG
are an interesting point to note. These two anti-correlations lead to a correlation on
the parameters Ωm,0 and h0, so that the larger negative values of α′ lead to larger
values of both of them. In contrast, in ΛCDM there is no noticeable correlation on
the parameters Ωm,0 and h0. These can be observed directly in the {Ωm,0, h0} panel of
the 3D scatter colour Fig.4.9. For the EMLG model, 2D {Ωm,0, h0} contours exhibit a
tilt of about 45 degrees and the more reddish (implying larger negative values of α′)
corresponds to larger Ωm,0 and h0 values.

We study the constraints on the Omh2(zi; zj) diagnostic values of the EMLG model
using (4.44) for {z1, z2, z3} = {0, 0.57, 2.34}, where the latter two redshift values are
chosen in accordance with the BOSS CMASS and Lyman-α forest measurements of
H(z), and obtain

Omh2(z1; z2) = 0.132 ± 0.008,

Omh2(z1; z3) = 0.130 ± 0.006, (EMLG)

Omh2(z2; z3) = 0.130 ± 0.006.

(4.63)

Using the Ωm,0 and h0 obtained for the EMLG model in Omh2(zi; zj) = Ωm,0h
2
0 of the

ΛCDM model (assuming α′ = 0) we find a larger value as Omh2(zi; zj) = 0.139 ± 0.012,
which clearly shows the reducing effect of α′ < 0 on the Omh2(zi; zj). On the other
hand, for the ΛCDM model, in our analysis the data predict a slightly lower value,
with respect to those in the EMLG model, as

Omh2(zi; zj) = 0.128 ± 0.006, (ΛCDM) (4.64)

which results from h0 = 0.668 ± 0.009 and Ωm,0 = 0.2861 ± 0.0102. Note that this low
value for the ΛCDM model is very much consistent with Omh2 ≈ 0.122 ± 0.010 from
BOSS CMASS and Lyman-α forest measurements of H(z), which is obtained since we
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Fig. 4.10 Blue lines and 3D scatter colour plots described the EMLG model marginalised posterior
distributions for EMLG parameter α′ in the {α′, Omh2(zi; zj), h0} subspace for {z1, z2}, {z1, z3} and
{z2, z3}. The colour code indicates the value of α′ labeled by the colour bar. Red lines display 2D
marginalised posterior distributions for the ΛCDM model.

do not consider CMB data in our analysis. Indeed, the Planck 2018 [96] release gives
Ωm,0h

2
0 = 0.1430 ± 0.0011 from h0 = 0.674 ± 0.005 and Ωm,0 = 0.315 ± 0.007. This

shows that reducing the value of Omh2 in ΛCDM comes at the cost of reducing Ωm,0 to
values in tension with the Planck result, and also of reducing h0 to values which, whilst
consistent with Planck results, exacerbate the persistent tension in the measurement
of H0 between the Planck ΛCDM model and direct measurements from astrophysical
data.
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In Figure 4.10 we depict 3D scatter colour plots describing the EMLG model
marginalised posterior distributions for the EMLG parameter, α′, in the
{α′, Omh2(zi; zj), h0} subspace for {z1, z2}, {z1, z3} and {z2, z3}. In this figure, we see
that the 2D marginalised posterior distributions of {Omh2(zi; zj), h0} for the EMLG
model (blue contours) are more tilted than the ones for the ΛCDM model (red contours),
implying that a certain increment in h0 would lead to a lesser increment in Omh2(zi; zj)
in the EMLG model compared to in the ΛCDM model, and that larger h0 values
are allowed for a given Omh2 value provided that α′ takes a correspondingly larger
negative value, as can be seen from the colour gradient indicating α′. This implies
that the EMLG model compensates for the larger values of h0 by lowering the value of
α′ and keeps Omh2(zi; zj) at lower values. Whereas, in the ΛCDM model, lowering
the value of Omh2 would lead to low h0 values (see Table 4.1) which would exacerbate
the tension between the Planck ΛCDM model and direct H0 measurements. Similarly,
increasing the value of h0 would lead to higher Omh2 values but with the difference
that a small increment in h0 would lead to relatively larger increments in Omh2 since
the red contours for the ΛCDM model are almost vertical. Indeed, for the ΛCDM
model, in this study we obtain Omh2 ≈ 0.128 along with h0 ≈ 0.668, whereas the
recent Planck release gives Omh2 ≈ 0.143 along with h0 ≈ 0.674. Note that the about
1% larger value of h0 is accompanied by a roughly 10% larger value of Omh2.

The data predict the following constraints on the Hubble constant along with their
errors at the 68% and 95% confidence levels for the EMLG and the ΛCDM models:

H0 = 68.20 ± 2.13 ± 4.15 km s−1 Mpc−1, (EMLG) (4.65)

H0 = 66.86 ± 0.90 ± 1.74 km s−1 Mpc−1. (ΛCDM) (4.66)

In comparison, the most recent distance-ladder estimates of H0 from the SHOES (SN,
H0, for the equation of state of dark energy) project give H0 = 73.24±1.74km s−1Mpc−1

[110], H0 = 73.48 ± 1.66km s−1Mpc−1 [155] and H0 = 73.52 ± 1.62km s−1Mpc−1, using
Gaia parallaxes [156]. We note that, at 68% C.L., H0 values both from the EMLG
model and the ΛCDM model are in tension with these, yet it is worse in the ΛCDM
model. Indeed we see that, at 95% C.L., the H0 of the EMLG model becomes consistent
with these results, while the H0 of the ΛCDM model remains in tension.

The upper panel of Figure 4.11 displays a subset of the BAO measurements (blue
bars) from z = 0, z = 0.57 and z = 2.34 (see [106]) with scalings that illustrate their
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Fig. 4.11 (Top panel) H(z)/(1 + z) vs. z graph of the EMLG. (Bottom panel) ρDE/ρcrit,0 vs. z
graph of the EMLG. For both panels, these show the posterior probability Pr(g|z): the probability of
g as normalised in each slice of constant z, with colour scale in confidence interval values. The 1σ and
2σ confidence intervals are plotted as black lines. Green lines display best-fit values (dotted line) and
1σ contour levels for the ΛCDM model.

physical content along with the distance-ladder estimate of H0, the direct observational
value (red bar) given in [155], and the plot of the posterior probability of H(z)/(1 + z),
which is the proper velocity between two objects with a constant comoving separation
of 1 Mpc, for the EMLG model. We note that the strip (yellow) of H(z)/(1 + z) for
the EMLG model is consistent with all three BAO data at 1σ C.L. (though, marginally
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with the data from z = 0.57), whereas it is in tension with the distance-ladder estimate
of H0 at 1σ but marginally consistent with it at 2σ C.L. These indeed are considerable
improvement with respect to the ΛCDM model (green lines displaying the best-fit
value (dotted line) and 1σ contour levels in the same figure) which is inconsistent with
both the BAO data from z = 0.57 and the the distance-ladder estimate of H0 even at
2σ C.L. 4

The lower panel of Figure 4.11 shows the probability distribution (yellow tones)
of the redshift dependency of the energy density of the effective DE scaled to the
critical energy density of the present time Universe, viz., ρDE/ρcrit,0, within 1σ and
2σ confidence levels for the EMLG model. Whereas the thin green strip in the panel
is for the ΛCDM model at 1σ C.L.. We see that the effective DE achieves negative
values after few redshifts, namely, we obtain ρDE = 0 at z∗ = 2.23 ± 0.81 at 1σ

C.L.. It is noteworthy that this value is in line with that in the BOSS collaboration
paper [106] estimating DE with a negative energy density for z > 1.6 and paper [1]
suggesting that cosmological models providing effective DE yielding signature change at
z ∼ 2.4 to obtain, from the model, Omh2 values consistent with the model-independent
estimations.

4.6 Conclusions

We have introduced a new model of Energy-Momentum Squared Gravity, which we
call Energy-Momentum Log Gravity (EMLG). It is constructed by the addition of
f(TµνT µν) = α ln(λ TµνT µν), envisaged as correction, to the standard Einstein-Hilbert
action with cosmological constant Λ. We have studied the cosmological solutions of
the Friedmann metric that arise from the field equations for this theory of gravitation.
Using these solutions we then conducted an investigation into the ways in which the
EMLG extension to ΛCDM addresses the tensions between existing data sets that
beset the standard ΛCDM model. Among the tensions of various degrees of significance
reported in the literature, we have focused on the ones discussed in [106, 1], which result
from the Lyman-α forest measurement of BAO at z ∼ 2.3 by the BOSS collaboration
[111]. It has been argued that this tension can be alleviated in a physically motivated

4Note that in our case ΛCDM is in tension with the BAO data from z = 0.57 whereas it is
consistent with the one from z = 2.34 in BOSS [106] and Planck [96]. The reason being that in our
analysis we didn’t consider the data from CMB since we omitted radiation in our models.
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way through a modified gravity theory, rather than as a pure physical DE source within
GR [1], since it requires a DE yielding negative energy density values at high redshifts
[106, 1].

EMLG allows us to find an explicit exact solution for the dust density, ρm(z), and
thus of H(z) and ρDE(z) (effective DE), which has allowed us to conduct a detailed
theoretical and observational investigation of the model without introducing further
simplifications. Following this, upon setting Ωm,0 = 0.28 and h0 = 0.70 for both
models, we demonstrate analytically that EMLG with α′ = −0.04 produces effective
DE behaving as suggested in [106, 1] and predicts Omh2 diagnostic values consistent
with the model-independent value from observations [1], whereas the value predicted
by ΛCDM exhibits a significant tension with the model-independent value. We have
constrained both models against the latest observational data from the combined dataset
BAO+SN+CC and then discussed the improvements due to the EMLG modification.
It emerges that the data does not rule out the ΛCDM limit of the model (α′ = 0), but
prefers slightly negative values of the EMLG model parameter (α′ = −0.032 ± 0.043),
which leads to an effective DE indistinguishable from positive Λ at low redshifts but
results in negative energy density values (i.e., screening of Λ) for redshift values larger
than z ∼ 2.2, in line with the arguments developed in [106, 1] for alleviating the
tensions relevant to Lyman-α data. We concluded that this feature of the effective DE
from the EMLG modification to ΛCDM arises from the altered redshift dependency of
ρm due to its non-conservation in this model, not from the new type of contributions
of it on the right-hand side of the Friedmann equation (4.35), which yields an effective
EoS of a source with constant inertial mass density. We observe further that the EMLG
model does this without lowering the values of Ωm,0 and H0 compared to the results
from Planck [95, 96], and moreover relieves, at some level, the persistent tension with
the measurements of H0 within the standard ΛCDM model. In the case of ΛCDM,
on the other hand, we observed that Omh2 reduces to values consistent with the
model independent value, since we did not consider CMB data in our observational
analyses, but it happens at the cost of reducing Ωm,0 to values in tension with the
Planck result, and also of reducing H0 to values which exacerbate the persistent tension
in the measurement of H0.

We see that although our findings are promising in favor of alleviating the tensions
considered in this study, they are not yet conclusive. The reason for this is that we have
studied only single fluid cosmology, that is we have considered only dust as the material
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source and excluded the presence of radiation in our model, and equally in ΛCDM
in order to conduct a fair comparison between the models. In order to confirm these
initial results, the current study must be extended by the inclusion of radiation together
with dust, and then can also be constrained by considering the CMB data along with
the other data sets. We have discussed the difficulties of introducing radiation, either
by itself or as the second source, in our model and noted a possible way of achieving
this, which we reserve for our future works. Finally, we conclude that the current
study demonstrates that, through our particular model, EMLG, Energy-Momentum
Squared Gravity type extensions to ΛCDM model are capable of addressing some of
the prominent tensions which beset ΛCDM and merit further investigation.

We would like to close the chapter with the following remarks. Our initial motivation
for considering f(TµνT µν) ∝ ln(λ TµνT µν) was phenomenological, as gives rise to new
contributions by dust on the right-hand side of the Einstein field equations which mimic
a source with constant inertial mass density. The corresponding energy density could
then change sign at high redshifts as has been suggested for addressing the tension
relevant the Lyman-α measurements within the standard ΛCDM model, although it
emerged that our model was able to do so because of the modified redshift dependency
of dust due to the non-conservation of energy-momentum tensor. Our model is also
expedient as it provides us with an explicit exact solution. On the other hand, one
may question the microphysical motivation for such a term; in particular, whether
there is a way of realising such a term in the action within a particular field theoretical
model that leads to the energy-momentum tensor. For example, naively substituting
Tµν with the energy momentum tensor of a scalar field would lead to a quite non-
standard (and probably non-analytic) action, which in turn would raise questions about
a consistent quantization procedure, the consistency of the corresponding effective
field theory, and so on. However, the current work’s primary aim is to highlight the
model’s cosmological signatures, and in that sense, the work presented here can be
understood as a phenomenological contribution to exploring the scope of possibilities.
It would be interesting to look for a potential origin of this modification in a theory
of fundamental physics and see whether some relationship as between the EMSG of
the form f(T 2) ∝ T 2 [47, 62, 131, 73] and loop quantum gravity [124, 125] as well
as braneworld scenarios [75], all of which add quadratic contributions of the matter
stresses’ energy density to the Friedmann equation, could be found.



Chapter 5

Conclusions

In this thesis we have investigated various matter models in a Cosmological setting,
which exhibit unusual behaviour compared to more standard models, in order to explore
ways in which they might be able to resolve outstanding problems in the standard
Cosmological model.

In Chapter 2 we considered a canonical scalar field acting in a potential, and
investigated the characteristics of potentials that exhibit a particular kind of very
weak singularity, known as a sudden singularity. Unlike stronger types of cosmological
singularity, sudden singularities are not characterised by the divergence of the scale
factor itself, but rather by the scale factor remaining finite whilst its second or higher
derivative diverges. This type of singularity had previously been found to occur in the
case of a canonical scalar field acting in the simple power-law potential V (ϕ) = ϕn for
n positive, but non-integer [58]. In this case the singularity arises because the first or
higher derivative of the potential contains a singularity at ϕ = 0, and it is possible to
show that necessarily ϕ → 0 in finite time.

We extended the range of potentials known to exhibit this behaviour by considering
which general properties are sufficient for the potential to manifest a sudden singularity.
In particular, we found that if V (ϕ) > 0 and V ′(ϕ) > 0 for ϕ > 0, whilst V ′(ϕ) also has
at most finitely many stationary points, then ϕ̇ must become, and remain, negative
after some finite time. If we place the further condition that V ′(ϕ) must in fact be
decreasing after some finite time, then this suffices to show that ϕ → 0 in finite time
and hence a sudden singularity occurs. One example of potentials that satisfy these
conditions are those of the form V (ϕ) = tanh ϕn for 0 < n < 1, which is an increasing
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function of ϕ with decreasing gradient. This is of relevance because this resembles
potentials in the popular α-attractor family of observationally-favoured inflationary
models. This provides models in this family with a potential mechanism for exiting
inflation in a finite time, without the need for a necessarily highly physically destructive
process. In future it would be of great interest to continue to investigate these models,
in at least two directions. Firstly, to continue to expand the range of potentials known
to feature sudden singularities - we have found some sufficient conditions, but these
potentials by no means exhaust the possibilities. Secondly, continuing to investigate the
physical behaviour encountered as the scalar field reaches the sudden singularity should
provide further insight into their relevance for providing an exit from the inflationary
regime.

In Chapter 3 we investigated a modification of General Relativity known as
F (R, T µνTµν), or energy-momentum squared, gravity, in which the Ricci Scalar in the
Einstein-Hilbert action is replaced by an arbitrary function of the Ricci Scalar and
the square of the energy momentum tensor. This modification is part of a class of
theories which modify general relativity by adding higher order matter contributions
to the gravitational field equations. In particular, we investigated the cosmological
phenomonology of a simple form of the modification F (R, T µνTµν) = R + η(T µνTµν)n,
which in the cosmological setting results in the addition of terms of order ρ2n to the
right-hand side of the Friedmann equations.

We found a range of exact solutions for the cosmology in an isotropic universe,
and in the n = 1 case, where the modifications become quadratic, we were able to
find exact solutions in the physically relevant cases w = −1, dark energy, w = −1

3

curvature, w = 0 dust, and w = 1
3 radiation. We also considered the case of constant

density, de Sitter-like solutions with exponential expansion, and found that, as well as
the standard w = −1 case, the modified theory exhibited another family of solutions,
depending on the equation of state parameter w. We investigated the stability of these
solutions under a homogeneous linear perturbation about the constant density solution,
and found that for some values of the equation of state, these solutions were stable.
By invetigating the high density behaviour of the n = 1 case we found that in some
situations for non-negative curvature the modifications result in a maximum possible
energy density depending on the values of η and w, meaning that the initial singularity
of the big bang model is replaced by a ‘bounce’ at which only finite energy density is
reached. Finally, we considered the anisotropic case of Bianchi I universes, and found
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conditions for the initial singularity to be either isotropic or anisotropic. In future, the
most important next steps in the study of Energy-Momentum Squared Gravity are
to investigate which regions of the parameter space are permitted by observational
considerations. The higher order matter terms will cause changes from the standard
thermal history which would alter elemental abundances from big bang nucleosynthesis,
as well as alterations to the CMB power spectrum. We’d also expect to see effects on
the behaviour of astrophysical objects, such as the formation of galactic halos and the
behaviour of compact objects such as stars. Using these observational tests it would
be possible to determine whether EMSG can provide useful behaviour whilst evading
the bounds set by observational tests. In this work we also restricted our investigation
to single-fluid scenarios, but it will be important to extend this to multi-fluid models
in order to perform numerical simulations of the universal evolution under the theory.

In Chapter 4 we continued to investigate F (R, T µνTµν) gravity, but this time in a
model called Energy-Momentum Log Gravity, in which the modification takes the form
F (R, T µνTµν) = R + α ln(λT µνTµν). We envisaged the new term as a correction term
to the Einstein-Hilbert action, and investigated the cosmological phenomonology of the
model. We focussed particularly on whether it would be possible for the model to explain
some of the existing tensions in the observational data for ΛCDM, particularly the
ones resulting from the Lyman-α forest measurement of Baryon Acoustic Oscillations
at z ≈ 2.3 from the BOSS collaboration. In the EMLG theory we were able to find
an explicit exact solution for the energy density of dust, ρm(z), which was sufficient
to allow us to investigate the behaviour of H(z) and the effective dark energy ρDE(z).
By choosing an appropriate value of the parameter α′, we were able to demonstrate
that the model exhibits effective dark energy which acts as Λ > 0 at low redshifts,
but which acts negatively, thus screening Λ at redshifts higher than z ≈ 2.2, enabling
the model to relieve the observational tension involving the Lyman-α forest, without
lowering Ωm,0 and H(z) compared to the Planck observations. However, by considering
the Akaike Information Criterion for model comparison, we see that although EMLG
fits the datasets we have considered better than ΛCDM, and has good support, the
introduction of the new parameter α penalises the model, so from this perspective
ΛCDM is still slightly preferred.

The future of work on EMLG must be to incorporate radiation into the model -
the current work considered only a single fluid dust cosmology, and excluded radiation
from the analysis of both EMLG and ΛCDM. By considering the dual-fluid cosmology
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it would be possible to not only further reconstruct the history of the EMLG cosmology,
but to constrain the model further using the CMB datasets. It would also be important
to continue to develop the theoretical framework behind the model. Although we have
conducted a phenomonological investigation to explore the effect of the modifications
on the cosmology and to highlight the cosmological signatures, an explanation of
the underlying microphysical behaviour is essential if the model is to have continued
application beyond providing a demonstration of mechanisms that can resolve tensions
in the observational data.
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