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Chemical functionalization of graphene could pave the way for favorably modifying its already 

remarkable properties. Organic molecules have been utilized to this end as a way to alter 

graphene’s structural, chemical, electrical, optical and even magnetic properties. One such 

promising organic molecule is 7,7,8,8-tetracyano-quinodimethane (TCNQ), a strong electron 

acceptor which has been shown to be an effective p-dopant of graphene. This study explores 

the thermal evaporation of TCNQ onto graphene transferred onto SiO2/Si substrates. Using two 

different home-made thermal evaporators, a wide range of TCNQ growth regimes are explored, 

from thin films to bulk crystals. The resulting graphene/TCNQ structure is characterized via 

optical microscopy, Raman spectroscopy and atomic force microscopy (AFM). Films are found 

to be comprised of TCNQ and the oxidized product of TCNQ, α,α-dicyano-p-toluoylcyanide 

(DCTC), which confirms the electron charge transfer from graphene to the TCNQ films. AFM 

measurements of these films show that after forming a rather smooth layer covering the 

graphene surface, small clusters start to form. For higher TCNQ coverage, the clusters 

agglomerate, becoming quite large in size and forming ripples or wrinkles across the surface.   
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I. INTRODUCTION 

In the past decade extensive work has been carried out towards the goal of chemically 

functionalizing graphene to enhance and complement its remarkable properties1. Organic 

molecules have been used to chemically functionalize through both covalent2 and non-covalent 

means3. TCNQ is an organic molecule that has been successfully used to non-covalently 

functionalize graphene. A strong electron acceptor, TCNQ has been utilized to produce highly 

p-doped graphene, resulting in the opening of an electrical bandgap in bilayer graphene4, and 

for use as a conductive anode in graphene organic solar cells5. Recent studies carried out in 

ultra-high vacuum have found that TCNQ deposited onto graphene grown epitaxially on 

ruthenium is able to form extended spin-split electronic bands resulting in long range magnetic 

order3. X-ray photoemission spectroscopy (XPS) and scanning tunneling microscopy (STM) 

measurements confirmed that charge transfer from the ruthenium substrate to the TCNQ, 

modulated by the graphene layer in between, caused the molecules to develop a magnetic 

moment6,7.  

TCNQ and its salts have been studied extensively by Raman spectroscopy, confirming their 

strong electron accepting capabilities for both films and crystals synthesized by evaporation or 
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from solution8-13. Depending on the growth conditions and substrate, the oxidation product of 

TCNQ2-, α,α-dicyano-p-toluoylcyanide (DCTC) is often detected. For TCNQ films evaporated 

onto Ag, DCTC was detected for thin films, suggesting that the layers close to the Ag substrate 

were ionized and oxidized. As the TCNQ film thickness increased, DCTC was no longer 

detected, suggesting that the upper layers of the film were comprised of neutral TCNQ14. 

Similar behavior has been observed via XPS measurements for F4-TCNQ molecules deposited 

on epitaxial graphene on SiC. Electron transfer from the graphene to the first few layers of 

adsorbed F4-TCNQ was found to p-dope the graphene15. For CVD grown graphene transferred 

to an insulating substrate, DCTC was also detected for low coverage, whereas only TCNQ was 

detected for higher coverages, suggesting a similar mechanism of electron charge transfer from 

the graphene substrate to the first few TCNQ layers adjacent to it16. 

This study seeks to understand the growth process and morphology of TCNQ evaporated onto 

Chemical Vapor Deposition (CVD) grown graphene transferred onto SiO2/Si substrate, which 

is commonly used for device fabrication. Understanding the growth mechanism of TCNQ on 

graphene is necessary for the further development of devices based on graphene/TCNQ 

structures, with the hope of exploiting the unique properties of each material. TCNQ films have 

been shown to be effective graphene dopants as well as exhibiting magnetic properties3, 

whereas TCNQ crystals have been shown to have unique electrical17 and optoelectronic18 

properties when interfaced with adequate complementary organic crystals. Different growth 

regimes of TCNQ on graphene were explored by varying the sublimation temperature, 

substrate temperature and vapor concentration of the TCNQ. This resulted in various 

TCNQ/graphene structures, ranging from thin films to pure TCNQ crystals. Electron charge 

transfer from the graphene to the TCNQ and subsequent oxidation to DCTC, as previously seen 

by Qi et al16, was confirmed for thin films via Raman spectroscopy. Atomic force microscopy 

measurements (AFM) showed that at low coverage, the TCNQ films seems to have almost no 

effect on the graphene surface, whereas for increasing coverage, clusters form, growing in size 

to the point that they strain the graphene and form filament-like wrinkles.  

II. METHODS 

Graphene was grown on 25 µm thick polycrystalline copper foil via chemical vapor deposition 

in a CVD furnace. The foil was heated to 1000° C while flowing 100 standard cubic centimeters 

(sccm) hydrogen. The temperature was allowed to stabilize for 10 minutes, before increasing 

the hydrogen flow to 500 sccm and introducing 1 sccm methane for 25 minutes in order to 

induce graphene growth. The furnace was then rapidly cooled to room temperature while 

flowing 100 sccm hydrogen. The entire process was carried out at 10 mbar. Graphene was then 

transferred to a highly n-doped silicon substrate terminated with a 300 nm SiO2 layer. To 

achieve the transfer, a PMMA layer was spun on the copper foil (about 180 nm thickness), 

before etching the copper foil in an ammonium persulfate etchant (0.1 g/mL in deionized 

water). After rinsing the PMMA/graphene stack several times in deionized water, the stack was 

scooped out with the target Si/SiO2 wafer. The graphene was allowed to dry over night before 

removing the PMMA layer by rinsing in acetone. Thermal annealing was then carried out at 

300° C in Ar/H2 96/4% in order to remove remaining PMMA residues. Raman spectroscopy 

measurements were carried out using a 488 nm laser, with a spot size of about 1 μm using an 

x80 objective and collected in a cooled silicon CCD detector (Andor Newton), with a 0.5 m 

spectrometer length and a 300 l/mm grating.   
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Figure 1 Picture of large tube TCNQ evaporator with aluminum foil removed from exterior. 

Samples are placed at the tube mouth and inside the tube, 2 cm away from tube bottom. In the 

small tube evaporator, the sample is placed only on the mouth of the tube.    

TCNQ evaporation was carried out in a quartz tube placed inside a vacuum desiccator, at a 

pressure of 600 mbar. For each growth one of two quartz tubes were used, a small one (3.5 cm 

long, 1.8 cm diameter) or a large one (8 cm long, 2.3 cm diameter), shown in Figure 1. The 

lower region of both quartz tubes were heated resistively, by coiling tungsten wire around the 

exterior of the tubes. 100 mg TCNQ powder (Sigma Aldrich 157635) was placed inside the 

bottom of the tube. In order to achieve more homogeneous heating, aluminum foil was also 

wrapped around the bottom 2 cm of the tubes. An in situ thermocouple was used to calibrate 

the relation between the power dissipated in the resistive coil (usually between 2 and 10 W) 

and the temperature at the bottom of the tube, and subsequent evaporations were carried out 

without the thermocouple. The quartz tubes were sealed at their mouth openings with a glass 

slide, with the graphene/SiO2 samples mounted on the glass slide facing the TCNQ powder 

inside the tube. In the case of the large evaporator, apart from at the tube mouth, samples were 

also mounted inside the quartz tube 2 cm away from the tube bottom, facing the TCNQ powder, 

as shown in Figure 1.  

 

III. RESULTS AND DISCUSSION 

Figure 2 shows white light reflection optical images of TCNQ evaporated onto graphene/SiO2 

for different sublimation temperatures and growth times in the small tube evaporator. As seen 

in Figure 2(a), a growth temperature of 130° C for 75 minutes results in the formation of pellet-

like crystals on the surface of the graphene, with lateral dimensions on the order of 5 µm. These 

crystals are separated by a typical distance of a few dozen microns, indicating the high mobility 

of the individual TCNQ molecules on graphene. Increasing the growth temperature to 160° C 

and maintaining the same growth time clearly changes the growth regime, as shown in Figure 

2(b). The graphene substrate is no longer visible and seems to have been covered by a thick 

film. The morphology of the crystals on the surface has also changed, from pellets to needles 

with a typical length on the order of 10 µm. The needles are packed more closely together on 

the surface than the pellets, with many needles touching each other. It seems that the rise in the 

sublimation temperature substantially modifies the density of TCNQ molecules on the surface. 

Now the molecules are no longer able to reach the initial condensation points, on the contrary 

the TCNQ molecules self-assemble, probably via H-bonds3, forming a full layer that reduces 

the effective diffusion length of the incoming molecules and as consequence increases the 

density of 3D islands. From this temperature the growth mode remains unchanged and further 

increasing the growth temperature to 180° C completely saturates the graphene surface with 
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TCNQ needles, as shown in Figure 2(c), despite a reduction in the evaporation time from 75 to 

45 minutes. Evaporating at the highest temperature obtainable in the small tube evaporator, 

200° C, for 45 minutes, maintains the high crystal density on the surface but results in a change 

in the structure of the crystals, as seen in Figure 2(d). Apart from needles, many plaque-shaped 

crystals are seen on the surface, with a typical size of 5 to 10 µm. 

 

Figure 2 Optical images of TCNQ evaporated onto graphene/SiO2/Si substrate in small tube 

evaporator with the following conditions: (a) 75 minutes at 130° C, (b) 75 minutes at 160° C, 

(c) 45 minutes at 180° C and (d) 45 minutes at 200°. All scale bars 25 µm.   

The large tube evaporator (diameter 2.3 cm and length 8 cm) can accommodate two samples 

simultaneously, one at the extreme of the tube, where the sample remains close to room 

temperature, and another one inside the tube close to the resistive heating coils, where the 

sample is heated along with the TCNQ powder. This configuration allows for the comparison 

of the TCNQ film growth at different substrate temperatures for the same evaporation run. 

Figure 3 shows optical images of TCNQ evaporated onto graphene/SiO2 for different growth 

conditions in the large tube evaporator. Figure 3(a), (b) show the images corresponding to the 

substrate placed at the mouth of the tube, where it remains close to room temperature. 

Evaporating at 120° C for 60 minutes results in the formation of TCNQ crystal pellets, as seen 

in Figure 3(a). Figure 3(b) shows that increasing the growth temperature to 170° C favors the 

formation of short needles on the graphene surface, with a typical length of 2 to 3 µm, in a very 

dense configuration, with most needles touching another needle. The comparison with images 

shown in Figure 2(a), (b) reveals a similar morphology for both growth conditions. When the 

substrate remains close to room temperature, the main findings can summarized as follows: for 

lower sublimation temperatures the growth of pellet-like TCNQ crystals occurs, whereas for 
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higher sublimation temperatures, the growth regime changes, with the TCNQ molecules on the 

surface forming needles that are closer to each other than the pellets.  

 

 

Figure 3 Optical images of TCNQ evaporated onto graphene/SiO2/Si substrate in large tube 

evaporator with the conditions outlined on the margins of the images. Scale bar in (c) is 40 µm, 

(a), (b) and (d) are 15 µm. Inset: Same sample as in a, showing the boundary between graphene 

(left) and bare SiO2 (right). TCNQ crystals can be seen on both sides of the boundary. Scale bar 

250 µm. 

It is worth noting that the samples obtained for the evaporation done in the small tube and in 

the large tube with the substrate place at the mouth present differences in the crystal coverages 

obtained, despite similar growth conditions and substrate temperatures. The main difference is 

the higher crystal coverage obtained with the small tube compared to substrates on the mouth 

of the large tube. The reason for this behavior is not completely clear, since the vapor pressure 

and hence concentration of TCNQ molecules at the same evaporation temperature should be 

equal regardless of the tube size. One possible reason for the different crystal coverage is that 

the TCNQ molecules have more surface area upon which they can be deposited in the large 

tube. If a larger proportion of the TCNQ molecules are sticking to the tube walls in the large 

tube, then fewer TCNQ molecules will end up reaching the substrate at the mouth of the tube, 

despite the fact that the theoretical TCNQ vapor pressure is the same at a given temperature. 

In addition, the substrate in the small tube is fairly close to the heat source and may be heated 

slightly above ambient, whereas the substrate at the mouth of the large tube is far from the heat 

source and therefore remains at ambient temperature. This difference in substrate temperature 

could be an additional factor in explaining the differences in growth regime.  
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For samples placed on the inside of the large tube, where the substrate is heated during the 

evaporation, no TCNQ crystals were formed for any of the growth conditions, only TCNQ 

films. For low TCNQ coverage, like that shown in Figure 3(c), practically no changes are 

noticeable on the graphene surface when compared to pristine graphene. By increasing the 

evaporation temperature from 120° C to 170° C, a change is observed in the coloration of the 

graphene, which becomes slightly bluer as seen in Figure 3(d) (note that in all of these images, 

the white balance has been adjusted to make bare SiO2 background equal). More interestingly, 

blue patches and spots are visible amongst the purple background, covering almost half of the 

surface area and with a typical size of 15 to 20 µm. 

From these results it is clear that the growth mechanism on both the large and small tube 

evaporator is the same for the substrates held close to room temperature, and leads to the 

formation of TCNQ crystals. When the substrate is held at elevated temperatures during 

evaporation the TCNQ deposition produces a uniform thin molecular film on the graphene 

substrate. This change in the structure of the resulting sample may be due to two different 

mechanisms. Firstly, an elevated substrate temperature increases desorption, reducing the 

overall sticking coefficient of the TCNQ molecules present on the graphene surface. Secondly, 

TCNQ molecules on the elevated temperature substrate will have more thermal energy to 

diffuse about the surface, making it less likely they will remain stuck to previously formed 

TCNQ clusters they encounter, thereby limiting the formation of large crystals.  Desorption of 

the TCNQ molecules from the substrates held at high temperature during the growth can be 

checked by evaporating TCNQ molecules on bare SiO2 surface. On this surface, a shorter 

diffusion length is expected in comparison to graphene. For growths with the substrate at high 

temperatures, no TCNQ is detected on the SiO2 surface, either via optical inspection or Raman 

spectroscopy, indicating that the sticking coefficient for TCNQ on SiO2 at elevated 

temperatures drops to zero. At low substrate temperatures, however, TCNQ crystals form on 

the SiO2 surface in much the same way as they do on the graphene surface, as can be seen by 

the inset in Figure 3(a). For both graphene and SiO2 surfaces, the TCNQ sticking coefficient 

is high for low substrate temperatures and low for high substrate temperatures.   

Raman spectroscopy measurements were carried out of the TCNQ/graphene structures, with 

spectra from growths in the small tube shown in Figure 4(a), and spectra from the films grown 

on the inside of the large tube shown in Figure 4(b). A reference spectrum of pristine graphene 

on SiO2 is also shown in Figure 4(a), exhibiting the typical 2D peak near 2700 cm-1 and G peak 

near 1585 cm-1. The very low intensity of the D peak, located near 1350 cm-1 and associated 

with disorder in the graphene lattice, confirms the low density of defects in graphene, while 

the large ratio between the intensities of the 2D and G peaks confirms that the graphene is 

monolayer19. The red curve in Figure 4(a) was taken between the crystals on the surface of the 

sample from Figure 2(a). This spectrum continues to show the graphene 2D and G peaks, but 

with a diminished intensity in the ratio between the two peaks compared to the pristine 

graphene spectrum. The peaks observed at 1179, 1288 and 1621 cm-1 are associated with the 

presence of DCTC, the oxidation product of TCNQ, replicating the measurements made in Qi 

et al16. In addition to the DCTC, the presence of TCNQ on the graphene surface is confirmed 

from the peaks at 1204, 1446, and 2218 cm-1 8,12,9. The peak located at 1592 cm-1 results from 

a combination of the graphene G peak and a TCNQ peak at 1598 cm-1. An increase in the 

graphene D peak is also observed, suggesting that the graphene is more disordered after the 

TCNQ evaporation. The presence of both TCNQ and DCTC on the surface in between crystal 

pellets confirms that electron charge transfer between the graphene and the TCNQ molecules 

is occurring. The blue curve in Figure 4(a) also shows Raman spectra taken on top of the 
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crystals from Figure 2(a) (blue curve). Strong, pure TCNQ peaks are detected, with no sign of 

graphene or DCTC, with identical results obtained whenever Raman spectra were taken on top 

of needle or pellet-like crystals.  

 

Figure 4 Raman spectra of pristine graphene on SiO2, as well as TCNQ evaporated onto 

graphene with different conditions in (a) mouth of small tube evaporator and (b) inside of large 

tube evaporator. 

The information gathered from the optical image in Figure 2(a) and the corresponding Raman 

spectra between and on top of the crystals would suggest that as a TCNQ/DCTC film forms on 

the graphene surface, microscopic clusters of TCNQ crystals are created and grow to become 

ever larger TCNQ crystals. It is possible that defects, rips, tears or foreign impurities on the 

graphene surface act as heterogeneous nucleation sites for the formation of the TCNQ clusters. 

These TCNQ clusters grow into crystals by incorporating TCNQ molecules both directly from 

the atmosphere and from diffusing TCNQ molecules on the substrate surface, which become 

absorbed into the TCNQ crystals when they come into contact with it. As evaporation 

temperatures are increased, an increase in the nucleation density of the TCNQ crystals is 

observed, as well as a saturation of the graphene surface with a thick TCNQ film. Additionally, 

instead of forming pellets, the formation of needle-like TCNQ crystals is favored, as has been 

observed in the vapor growth of other organic crystals20,21.  

Raman spectra taken of samples grown on the inside of the large tube, where the substrate is 

heated during growth, shown in Figure 4b, detect the presence of TCNQ and DCTC covering 

the entire surface for evaporation temperatures as low as 85° C. At this low temperature (red 
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curve in Figure 4(b)), the graphene peaks are quite strong, and weak peaks corresponding 

mostly to DCTC are identifiable in the range between 1150 and 1300 cm-1, as well as a TCNQ 

peak at 2220 cm-1. A slight increase in the graphene D peak is also observed. Increasing the 

evaporation temperature to 120° C, corresponding to the sample shown in Figure 3(c), 

intensifies both TCNQ and DCTC peaks with respect to the graphene peaks, although an 

increase in the D peak is also appreciable. For the highest achievable evaporation temperature 

in the large tube evaporator, 170° C, corresponding to the sample shown in Figure 3(d), only 

TCNQ peaks are detectable, along with a weakened graphene 2D peak, with no sign of DCTC. 

It would seem that for these high coverages, the bulk TCNQ film is thick enough that it 

overwhelms any signal that may be coming from the oxidized layers of DCTC adjacent to the 

graphene, where charge transfer is occurring. The measured G peak frequency is seen to 

increase from around 1585 cm-1 in pristine graphene towards 1600 cm-1 for samples grown in 

both the large and small evaporator. This is another indication that there is charge transfer from 

the graphene to the TCNQ molecules, resulting in graphene p-doping22,23. Apart from the 

charge transfer, part of this apparent shift in the graphene G peak may also be due to its merging 

with the TCNQ peak situated at 1600 cm-1.  

In order to clarify the structure of the graphene/TCNQ films, and what might be causing the 

slight increase in the graphene D peak upon TCNQ evaporation, AFM measurements were 

carried out of the TCNQ films grown with the substrate at elevated temperatures. The resulting 

images are shown in Figure 5. A pristine graphene surface, after thermal annealing to remove 

PMMA residues, is shown in Figure 5(a). Some folds are visible along the graphene, with a 

typical height between 2 and 3 nm. A few much larger PMMA clusters remain on the film, 

with heights varying between 20 and 30 nm, although the surface is mostly clean. The RMS 

value of the region outlined by the blue 1.5 by 1.5 µm square shown in the figure is 0.73 nm. 

For evaporation at low temperatures (between 85° C and 110° C) up to 120 minutes, practically 

no change was discernible in the surface when compared to pristine graphene. Increasing the 

evaporation temperature to 120° C produces an obvious change on the graphene surface, as 

seen in Figure 5(b), with the appearance of small TCNQ/DCTC clusters. These clusters seem 

to be randomly dispersed about the graphene surface, aggregating in groups with a typical size 

of 50 to 200 nm, and heights between 2 and 3 nm. The RMS value of the blue square is 1.1 nm.  
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Figure 5 AFM images of (a) pristine graphene and TCNQ evaporated onto graphene/SiO2 

inside the large tube evaporator with the following conditions: (b) 60 minutes at 120° and (c) 

120 minutes at 170° C. 

 

Figure 5I shows an AFM image of a sample with a very high TCNQ coverage, with 120 minutes 

evaporation at 170° C. From this image it is evident that the surface morphology has changed 
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significantly. Firstly, there are rather large clusters which have agglomerated, with heights 

ranging between 10 to 20 nm and typical size of several hundred nm. The RMS of the blue 

square has increased to 2.0 nm. In addition, some sort of filament or string-like feature can be 

seen to extend from cluster to cluster, with a typical height of 1.5 to 2.5 nm. It is possible that 

these filaments are folds or wrinkles on the graphene surface caused by the TCNQ clusters, or 

even the intercalation of TCNQ below the graphene surface. Indeed, intercalation of various 

atomic elements has been observed to occur in ultra-high vacuum conditions for several 

graphene/metallic substrate systems24,25. Defect sites in the graphene lattice are speculated to 

serve as the points for the evaporated substance to intercalate between the graphene and the 

substrate. A similar mechanism could be at work in this case, with small defects or even larger 

rips and tears in the graphene serving as points of entry for the intercalation of TCNQ 

molecules. If the observed wrinkles are indeed occurring in the graphene as a result of the 

TCNQ evaporation, it would be creating stress on the graphene lattice and possibly increasing 

the defect density, explaining the D peak intensity increase observed in Raman measurements.  

IV. CONCLUSIONS 

TCNQ was thermally evaporated onto CVD grown graphene transferred to Si/SiO2substrates. 

High growth temperatures and long growth times readily resulted in the formation of TCNQ 

crystals on the graphene surface. For increasing temperatures, the crystals changed from having 

a pellet shape and being spaced widely apart on the surface, to densely packed TCNQ needles. 

Films were formed on the graphene for low evaporation temperatures, or when the graphene/ 

SiO2 substrate was heated. Raman spectroscopy confirmed that the graphene films were 

comprised of TCNQ and DCTC, the oxidation product of TCNQ, which requires an electron 

charge transfer from the substrate to the TCNQ for its formation. For higher TCNQ coverages, 

the films only exhibited TCNQ peaks, indicating that the signal from the bulk TCNQ film 

overwhelms the signal from first few oxidized layers of DCTC. For very low TCNQ coverage, 

AFM measurements barely detected any change in the graphene surface. As coverage 

increased, nanometer sized clusters began to form, eventually forming clusters with heights up 

to 20 nm and typical sizes of several hundred nanometers. Filament-like ripples were seen to 

form between the clusters, which we speculate may be wrinkles in the graphene lattice caused 

by stress from the clusters, or from TCNQ molecules intercalated beneath the graphene.  

ACKNOWLEDGEMENTS 

Financial support by the Ministerio de Economía y Competitividad (MINECO) through grants 

FIS2013-40667-P, FIS2015-67367-C2-1-P and SUPERMNAN (ESP2015-65597-C4-3-R) and 

Comunidad de Madrid through the program MAD2D P2013/MIT-3007 is gratefully 

acknowledged. D.G. acknowledges RYC-2012-09864, A.B. acknowledges FPI-UAM 

program.  

 

REFERENCES 

1. V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. 

Hobza, R. Zboril, K. S. Kim. Chemical Reviews 112, 6156-6214 (2012). 

2. J. J. Navarro, S. Leret, F. Calleja, D. Stradi, A. Black, R. Bernardo-Gavito, M. 

Garnica, D. Granados, A. L. Vázquez de Parga, E. M. Pérez and R. Miranda. Nano 

Letters 16, 355-361 (2016). 



11  

  

3. M. Garnica, D. Stradi, S. Barja, F. Calleja, C. Díaz, M. Alcamí, N. Martín, A. L. 

Vázquez de Parga, F. Martín and R. Miranda. Nature Physics 9, 368-374 (2013). 

4. W. Zhang, C.-T. Lin, K.-K. Liu, T. Tite, C.-Y. Su, C.-H. Chang, Y.-H. Lee, C.-W. 

Chu, K.-H. Wei, J.-L. Kuo and L.-J. Li. ACS Nano 5, 7517-7524 (2011). 

5. C.-L. Hsu, C.-T. Lin, J.-H. Huang, C.-W. Chu, K.-H. Wei and L.-J. Li. ACS Nano 6, 

5031-5039 (2012). 

6. M. Garnica, D. Stradi, S. Barja, C. Díaz, M. Alcamí, A. Arnau, A. L. Vázquez de 

Parga, F. Martín and R. Miranda. Nano Letters 14, 4560-4567 (2014). 

7. D. Maccariello, M. Garnica, M. A. Niño, C. Navío, P. Perna, S. Barja, A. L. Vázquez 

de Parga, and R. Miranda. Chemistry of Materials 26, 2883–2890 (2014). 

8. M. S. Khatale, J. P. Devlin. The Journal of Chemical Physics 70, 1851-1859 (1979). 

9. M. Harris, J. J. Hoaglang, U. Mazur and K. W. Hipps. Vibrational Spectroscopy 9, 

273-277 (1995). 

10. A. Pawlukojć, I. Naktaniec, G. Bator, L. Sobczyk and E. Grech. Chemical Physics 

Letters, 378, 665-672 (2003). 

11. X. Jiang, Z. Li, C. Sun and X. Zhang. Journal of the Physical Sciences 7, 901-905 

(2012). 

12. D. L. Jeanmarie and R. P. Van Duyne. Journal of the American Chemical Society 98, 

4029-4033 (1976). 

13. H.-H. Tseng, M. Serri, N. M. Harrison and S. Heutz. Journal of Materials Chemistry 

C 3, 8694 (2015). 

14. M. Yoshikawa, S. Nakashima and A. Mitsuishi. Journal of Raman Spectroscopy 17, 

369-371 (1986). 

15. W. Chen, S. Chen, D. C. Qi, X. Y. Gao and A. T. S. Wee. Journal American 

Chemical Society 129, 10418-10422 (2007). 

16. Y. Qi, U. Mazur and K. W. Hipps. RSC Advances 2, 10579-10584 (2012). 

17. H. Alves, A. S. Molinari, H. Xie and A. Mopurgo. Nature Materials 7, 574-580 

(2008). 

18. H. Alves, R. M. Pinto and E. S. Maçôas. Nature Communications 4, 1842 (2013). 

19. A. C. Ferrari. Solid State Communications 143, 47-57 (2007). 

20. D. J. Mascaro, M. E. Thompson, H. I. Smith and V. Bulović. Organic Electronics 6, 

211-220 (2005). 

21. F. Yang, M. Shtein, and S. R. Forrest. Journal of Applied Physics 98, 014906 (2005). 



12  

  

22. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. 

Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari and A.K. Sood. Nature 

Nanotechnology 3, 210-215 (2008).  

23. K. Sasaki, K. Kato, Y. Tokura, S. Suzuki, T. Sogawa. Physical Review B 86, 201403 

(2012).  

24. S. Vlaic, A. Kimouche, J. Coraux, B. Santos, A. Locatelli and N. Rougemaille. 

Applied Physics Letters 104, 101602 (2014). 

25. F. Calleja, H. Ochoa, M. Garnica, S. Barja, J. J. Navarro, A. Black, M. M. Otrokov, 

E.V. Chulkov, A. Arnau, A. L. Vázquez de Parga, F. Guinea and R. Miranda. Nature 

Physics 11, 43-47 (2015). 

 

 

 

 

 


