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Abstract: 1 
Polygenic risk scores have shown great promise in predicting complex disease 2 
risk, and will become more accurate as training sample sizes increase.  The 3 
standard approach for calculating risk scores involves LD-pruning markers 4 
and applying a P-value threshold to association statistics, but this discards 5 
information and may reduce predictive accuracy. We introduce a new method, 6 
LDpred, which infers the posterior mean effect size of each marker using a 7 
prior on effect sizes and LD information from an external reference panel. 8 
Theory and simulations show that LDpred outperforms the 9 
pruning/thresholding approach, particularly at large sample sizes. 10 
Accordingly, prediction R2 increased from 20.1% to 25.3% in a large 11 
schizophrenia data set and from 9.8% to 12.0% in a large multiple sclerosis 12 
data set. A similar relative improvement in accuracy was observed for three 13 
additional large disease data sets and when predicting in non-European 14 
schizophrenia samples. The advantage of LDpred over existing methods will 15 
grow as sample sizes increase.   16 
 17 

Introduction 18 
Polygenic risk scores (PRS) computed from genome-wide association study (GWAS) 19 
summary statistics have proven valuable for predicting disease risk and 20 
understanding the genetic architecture of complex traits. PRS were used to predict 21 
genetic risk in a schizophrenia GWAS for which there was only one genome-wide 22 
significant locus1 and have been widely used to predict genetic risk for many traits1-23 
15. PRS can also be used to draw inferences about genetic architectures within and 24 
across traits12,13,16-18.  As GWAS sample sizes grow the prediction accuracy of PRS 25 
will increase and may eventually yield clinically actionable predictions16,19-21. 26 
However, as noted in recent work19, current PRS methods do not account for effects 27 
of linkage disequilibrium (LD), which limits their predictive value, especially for 28 
large samples.  Indeed, our simulations show that, in the presence of LD, the 29 
prediction accuracy of the widely used approach of LD-pruning followed by P-value 30 
thresholding1,6,8,9,12,13,15,16,19,20 falls short of the heritability explained by the SNPs 31 
(Figure 1 and Supplementary Figure 1; see Materials and Methods).  32 
 33 
One possible solution to this problem is to use one of the many available prediction 34 
methods that require genotype data as input, including genomic BLUP—which 35 
assumes an infinitesimal distribution of effect sizes—and its extensions to non-36 
infinitesimal mixture priors22-29. However, these methods are not applicable to 37 
GWAS summary statistics when genotype data are unavailable due to privacy 38 
concerns or logistical constraints, as is often the case. In addition, many of these 39 
methods become computationally intractable at the very large sample sizes (>100K 40 
individuals) that would be required to achieve clinically relevant predictions for 41 
most common diseases16,19,20.  42 
  43 
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In this study we propose a Bayesian polygenic risk score, LDpred, which estimates 1 
posterior mean causal effect sizes from GWAS summary statistics assuming a prior 2 
for the genetic architecture and LD information from a reference panel. By using a 3 
point-normal mixture prior26,30 for the marker effects, LDpred can be applied to 4 
traits and diseases with a wide range of genetic architectures. Unlike LD-pruning 5 
followed by P-value thresholding, LDpred has the desirable property that its 6 
prediction accuracy converges to the heritability explained by the SNPs as sample 7 
size grows (see below). Using simulations based on real genotypes we compare the 8 
prediction accuracy of LDpred to the widely used approach of LD-pruning followed 9 
by P-value thresholding1,6,8,9,12,13,15,16,19,20,31, as well as other approaches that train on 10 
GWAS summary statistics. We apply LDpred to seven common diseases for which 11 
raw genotypes are available in small sample size, and to five common diseases for 12 
which only summary statistics are available in large sample size. 13 

Materials and Methods 14 

Overview of Methods  15 
LDpred calculates the posterior mean effects from GWAS summary statistics 16 
conditional on a genetic architecture prior and LD information from a reference 17 
panel. The inner product of these re-weighted effect sizes with test sample 18 
genotypes is the posterior mean phenotype and thus, under the model assumptions 19 
and available data, an optimal (minimum variance and unbiased) predictor32. The 20 
prior for the effect sizes is a point-normal mixture distribution, which allows for 21 
non-infinitesimal genetic architectures. The prior has two parameters, the 22 
heritability explained by the genotypes, and the fraction of causal markers (i.e. the 23 
fraction of markers with non-zero effects). The heritability parameter is estimated 24 
from GWAS summary statistics, accounting for sampling noise and LD33-35 (see 25 
details below). The fraction of causal markers is allowed to vary and can be 26 
optimized with respect to prediction accuracy in a validation data set, analogous to 27 
how LD-pruning followed by P-value thresholding (P+T) is applied in practice.  28 
Hence, similar to P+T, where P-value thresholds are varied and multiple PRS are 29 
calculated, multiple LDpred risk scores are calculated using priors with varying 30 
fractions of markers with non-zero effects.  The value optimizing prediction 31 
accuracy can then be determined in an independent validation data set. We 32 
approximate LD using data from a reference panel (e.g. independent validation 33 
data). The posterior mean effect sizes are estimated via Markov Chain Monte Carlo 34 
(MCMC), and applied to validation data to obtain polygenic risk scores. In the special 35 
case of no LD, posterior mean effect sizes with a point-normal prior can be viewed 36 
as a soft threshold, and can be computed analytically (Supplementary Figure 2; see 37 
details below). We have released open-source software implementing the method 38 
(see Web Resources). 39 
 40 
A key feature of LDpred is that it relies on GWAS summary statistics, which are often 41 
available even when raw genotypes are not. In our comparison of methods we 42 
therefore focus primarily on polygenic risk scores that rely on GWAS summary 43 
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statistics. The main approaches that we compare LDpred with are listed in 1 
Supplementary Table 1. These include Polygenic Risk Score using all markers 2 
(PRS-all), LD-pruning followed by P-value thresholding (P+T) and LDpred 3 
specialized to an infinitesimal prior (LDpred-inf) (see details below). We note that 4 
LDpred-inf is an analytic method, since posterior mean effects are closely 5 
approximated by: 6 

𝐸𝐸�𝛽𝛽�𝛽𝛽�,𝐷𝐷� ≈ �
𝑀𝑀
𝑁𝑁ℎ𝑔𝑔2

𝐼𝐼 + 𝐷𝐷�
−1

𝛽𝛽�,    (1) 

where 𝐷𝐷 denotes the LD matrix between the markers in the training data and 𝛽𝛽� 7 
denotes the marginally estimated marker effects (see details below). LDpred-inf 8 
(using GWAS summary statistics) is analogous to genomic BLUP (using raw 9 
genotypes), as it assumes the same prior.   10 

Phenotype model 11 
Let Y be a 𝑁𝑁 × 1 phenotype vector and X a 𝑁𝑁 × 𝑀𝑀 genotype matrix, where the N is 12 
the number of individuals and M is the number of genetic variants. For simplicity, 13 
we will assume throughout that the phenotype Y and individual genetic variants 𝑋𝑋𝑖𝑖 14 
have been mean-centered and standardized to have variance 1. We model the 15 
phenotype as a linear combination of M genetic effects and an independent 16 
environmental effect 𝜀𝜀 , i.e. 𝑌𝑌 = ∑ 𝑋𝑋𝑖𝑖𝛽𝛽𝑖𝑖𝑀𝑀

𝑖𝑖=1 + 𝜀𝜀 , where 𝑋𝑋𝑖𝑖  denotes the ith genetic 17 
variant, 𝛽𝛽𝑖𝑖 its true effect, and 𝜀𝜀 the environmental and noise contribution.  In this 18 
setting the (marginal) least square estimate of an individual marker effect is 19 
�̂�𝛽𝑖𝑖 = 𝑋𝑋𝑖𝑖′𝑌𝑌/𝑁𝑁. For clarity we implicitly assume that we have the standardized effect 20 
estimates available to us as summary statistics.  In practice, we usually have other 21 
summary statistics, including the P-value and direction of the effect estimates, from 22 
which we infer the standardized effect estimates.  First, we exclude all markers with 23 
ambiguous effect directions, i.e. A/T and G/C SNPs.  Second, from the P-values we 24 
obtain Z-scores, and multiply them by the sign of the effects (obtained from the 25 
effect estimates or effect direction). Finally we approximate the least square 26 
estimate for the effect by �̂�𝛽𝑖𝑖 =  𝑠𝑠𝑖𝑖

𝑧𝑧𝑖𝑖
√𝑁𝑁

 , where 𝑠𝑠𝑖𝑖 is the sign, and 𝑧𝑧𝑖𝑖 is the Z-score as 27 
obtained from the P-value.  If the trait is a case control trait, this transformation 28 
from the P-value to the effect size can be thought of as being an effect estimate for 29 
an underlying quantitative liability or risk trait36.   30 
 31 

Polygenic risk score using all markers (PRS-all) 32 
The polygenic risk score using all genotyped markers is simply the sum of all the 33 
estimated marker effects for each allele, i.e. the standard unadjusted polygenic score 34 
for the ith individual is S𝑖𝑖 = ∑ 𝑋𝑋𝑗𝑗𝑖𝑖𝑀𝑀

𝑗𝑗=1 �̂�𝛽𝑗𝑗.  35 
 36 

LD-pruning followed by thresholding (P+T) 37 
In practice, the prediction accuracy is improved if the markers are LD-pruned and P-38 
value pruned a priori. Informed LD-pruning (also known as LD-clumping), which 39 
preferentially prunes the less significant marker, often yields much more accurate 40 
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predictions than pruning random markers.  Applying a P-value threshold, i.e. only 1 
markers that achieve a given significance thresholds are used, also improves 2 
prediction accuracies for many traits and diseases.  In this paper the LD-pruning 3 
followed by thresholding approach refers to the strategy of first applying informed 4 
LD-pruning with r2 threshold of 0.2, and subsequently P-value thresholding where 5 
the P-value threshold is optimized over a grid with respect to prediction accuracy in 6 
the validation data.     7 
 8 

Bayesian approach in the special case of no LD (Bpred) 9 
Under a model, the optimal linear prediction given some statistic is the posterior 10 
mean prediction.  This prediction is optimal in the sense that it minimizes the 11 
prediction error variance37.  Under the linear model described above, the posterior 12 
mean phenotype given GWAS summary statistics and LD is 13 

E�𝑌𝑌�𝛽𝛽�,𝐷𝐷�� =  � 𝑋𝑋𝑖𝑖′E(𝛽𝛽𝑖𝑖|𝛽𝛽�,𝐷𝐷�)
𝑀𝑀

𝑖𝑖=1
. 

Here 𝛽𝛽� denotes a vector of marginally estimated least square estimates as obtained 14 
from the GWAS summary statistics, and 𝐷𝐷� refers to the observed genome-wide LD 15 
matrix in the training data, i.e. the samples for which the effect estimates are 16 
calculated. Hence the quantity of interest is the posterior mean marker effect given 17 
LD information from the GWAS sample and the GWAS summary statistics. In 18 
practice we may not have this information available to us and are forced to estimate 19 
the LD from a reference panel. In most of our analysis we estimated the local LD 20 
structure in the training data from the independent validation data. Although this 21 
choice of LD reference panel can lead to small bias when estimating individual 22 
prediction accuracy, this choice is valid whenever the aim is to calculate accurate 23 
polygenic risk scores for a cohort without knowing the case-control status a priori. 24 
In other words, it is an unbiased estimate for the polygenic risk score accuracy when 25 
using the validation data as an LD reference, which we recommend in practice.  26 
 27 
The variance of the trait can be partitioned into a heritable part and the noise, i.e. 28 
Var(𝑌𝑌) =  ℎ𝑔𝑔2Θ + (1 − ℎ𝑔𝑔2)I, where ℎ𝑔𝑔2  denotes the heritability explained by the 29 
genotyped variants, and Θ = 𝑋𝑋𝑋𝑋′

𝑀𝑀
 is the SNP-based genetic relationship matrix.  We 30 

can obtain a trait with the desired covariance structure if we sample the betas 31 
independently with mean 0 and variance ℎ𝑔𝑔

2

𝑀𝑀
. Note that if the effects are 32 

independently sampled then this also holds true for correlated genotypes, i.e. when 33 
there is LD.  However, LD will increase the variance of heritability explained by the 34 
genotypes as estimated from the data (due to fewer effective independent markers). 35 
 36 
If we assume that all samples are independent, and that all markers are unlinked 37 
and have effects drawn from a Gaussian distribution, i.e. 𝛽𝛽𝑖𝑖 ~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁 �0, ℎ𝑔𝑔

2

𝑀𝑀
�.  This is an 38 

infinitesimal model38 where all markers are causal and under it the posterior mean 39 
can be derived analytically, as shown by Dudbridge16: 40 
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E(𝛽𝛽𝑖𝑖|𝛽𝛽�) = E(𝛽𝛽𝑖𝑖|𝛽𝛽�𝑖𝑖) = �
ℎ𝑔𝑔2

ℎ𝑔𝑔2 + 𝑀𝑀
𝑁𝑁�
�𝛽𝛽�𝑖𝑖. 

Interestingly, with unlinked markers this infinitesimal shrink factor times the 1 
heritability, i.e. � ℎ𝑔𝑔2

ℎ𝑔𝑔2+𝑀𝑀 𝑁𝑁�
� ℎ𝑔𝑔2 , is the expected squared correlation between the 2 

polygenic risk score using all (unlinked) markers and the phenotype, regardless of 3 
the underlying genetic architecture39,40.   4 
 5 
An arguably more reasonable prior for the effect sizes is a non-infinitesimal model, 6 
where only a fraction of the markers are causal. For this consider the following 7 
Gaussian mixture prior 8 

𝛽𝛽𝑖𝑖 ~𝑖𝑖𝑖𝑖𝑖𝑖 �
𝑁𝑁 �0,

ℎ𝑔𝑔2

𝑀𝑀𝑀𝑀
�  w. prob.  𝑀𝑀

    0         w. prob.  1 − 𝑀𝑀 ,
   

where 𝑀𝑀 is the fraction of markers that is causal, is an unknown parameter. Under 9 
this model the posterior mean can be derived as (see Appendix A):  10 

E(𝛽𝛽𝑖𝑖|𝛽𝛽�𝑖𝑖) = � ℎ𝑔𝑔2

ℎ𝑔𝑔2+
𝑀𝑀�̅�𝑝𝑖𝑖

𝑁𝑁�
�𝛽𝛽�𝑖𝑖 , 11 

Where �̅�𝑀𝑖𝑖 is the posterior probability of an individual marker being causal and can 12 
be calculated analytically (see equation (A.1) in Appendix A).  In our simulations we 13 
refer to this Bayesian shrink without LD as Bpred.  14 
 15 

Bayesian approach in the presence of LD (LDpred) 16 
If we allow for loci to be linked, then we can derive posterior mean effects 17 
analytically under a Gaussian infinitesimal prior (described above). We call the 18 
resulting method LDpred-inf and it represents a computationally efficient special 19 
case of LDpred. If we assume that distant markers are unlinked, the posterior mean 20 
for the effect sizes within a small region l under an infinitesimal model, is well 21 
approximated by 22 

𝐸𝐸�𝛽𝛽𝑙𝑙�𝛽𝛽�𝑙𝑙,𝐷𝐷� ≈ � 𝑀𝑀
𝑁𝑁ℎ𝑔𝑔2

𝐼𝐼 + 𝐷𝐷𝑙𝑙�
−1
𝛽𝛽�𝑙𝑙,     (1).  23 

Here 𝐷𝐷𝑙𝑙  denotes the regional LD matrix within the region of LD and 𝛽𝛽�𝑙𝑙 denotes the 24 
least square estimated effects within that region. The approximation assumes that 25 
the heritability explained by the region is small and that LD with SNPs outside of the 26 
region is negligible. Interestingly, under these assumptions the resulting effects 27 
approximate the standard mixed model genomic BLUP effects. LDpred-inf is 28 
therefore a natural extension of the genomic BLUP to summary statistics.  The 29 
detailed derivation is given in the Appendix A. In practice we do not know the LD 30 
pattern in the training data, and we need to estimate it using LD in a reference panel.  31 
 32 
Deriving an analytical expression for the posterior mean under a non-infinitesimal 33 
Gaussian mixture prior is difficult, and thus LDpred approximates it numerically 34 
using an approximate MCMC Gibbs sampler.  This is similar the Gauss-Seidel 35 
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approach, except that instead of using the posterior mean to update the effect size, 1 
we sample the update from the posterior distribution. Compared to the Gauss-Seidel 2 
method this seems to lead to less serious convergence issues.  The approximate 3 
Gibbs sampler is described in detail in the Appendix A. To ensure convergence, we 4 
shrink the posterior probability of being causal by a fixed factor at each big iteration 5 
step 𝑖𝑖, where the shrinkage factor is defined as 𝑐𝑐 =  min(1, ℎ�𝑔𝑔2

(ℎ�𝑔𝑔2)𝑖𝑖
), where ℎ�𝑔𝑔2 is the 6 

estimated heritability using an aggregate approach (see below), and (ℎ�𝑔𝑔2)𝑖𝑖 is the 7 
estimated genome-wide heritability at each big iteration. To speed up convergence 8 
in the Gibbs-sampler we used Rao-Blackwellization and observed that good 9 
convergence was usually attained with less than 100 iterations in practice (see 10 
Appendix A).  11 
 12 
Estimation of heritability parameter  13 
In the absence of population structure and assuming i.i.d. mean-zero SNP effects, the 14 
following equation has been shown to hold 15 

𝐸𝐸�𝜒𝜒𝑗𝑗2� = 1 +
𝑁𝑁ℎ𝑔𝑔2

𝑀𝑀𝑙𝑙𝑗𝑗
 

where  𝑙𝑙𝑗𝑗 = ∑ �𝑟𝑟2(𝑗𝑗,𝑘𝑘) − 1−𝑟𝑟2(𝑗𝑗,𝑘𝑘)
𝑁𝑁−2

�𝑘𝑘 , is the LD score for the jth  SNP summing over k 16 
neighboring SNPs in LD.  Taking the average of both sides over SNPs and 17 
rearranging, we obtain a heritability estimate 18 

ℎ�𝑔𝑔2 =
�𝜒𝜒2��� − 1�𝑀𝑀

𝑙𝑙�̅�𝑁
 

where 𝜒𝜒2��� =  ∑
𝜒𝜒𝑗𝑗
2

𝑀𝑀𝑗𝑗
, and 𝑙𝑙 ̅ = ∑ 𝑙𝑙𝑗𝑗

𝑀𝑀𝑗𝑗
. We call this the aggregate estimator, and it is 19 

equivalent to LD score regression33-35 with intercept constrained to 1 and SNP j 20 
weighted by 1

𝑙𝑙𝑗𝑗
. Prediction accuracy is not predicated on the robustness of this 21 

estimator, which will be evaluated elsewhere. Following the conversion proposed 22 
by Lee et al.41, we also reported the heritability on the liability scale. 23 
 24 
Practical considerations  25 
When applying LDpred to real data there are two parameters that need to be 26 
specified beforehand.  The first parameter is the LD-radius, i.e.  the number of SNPs 27 
on each side of a given SNP that we adjust for.  There is a trade-off when deciding on 28 
the LD-radius.  If the LD-radius is too large, then errors in LD estimates can lead to 29 
apparent LD between unlinked loci, which can lead to worse effect estimates and 30 
poor convergence.  If the LD-radius is too small then we risk not accounting for LD 31 
between linked loci.  We found that a LD-radius of approximately M/3000 to work 32 
well in practice (this is the default value in LDpred), where M is the total number of 33 
SNPs; this corresponds to 2Mb LD-window on average in the genome. We also note 34 
that LDpred is implemented using a sliding window along the genome, whereas 35 
LDpred-inf is implemented using tiling LD windows, as this was computationally 36 
more efficient and does not affect accuracy. 37 
 38 
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The second parameter is the fraction p of non-zero effects in the prior. This 1 
parameter is analogous to the P-value threshold when conducting LD-pruning 2 
followed by P-value thresholding (P+T).  Our recommendation is to try a range of 3 
values for p, e.g. [1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 3E-4, 1E-4, 3E-5, 1E-5] (these are 4 
default values in LDpred).  This will generate 11 sets of SNP weights, which can be 5 
used to calculate polygenic scores.  One can then use independent validation data to 6 
optimize the parameter, analogous to how the P-value threshold is optimized in the 7 
P+T method. 8 
 9 
When using LDpred, we recommend that SNP weights (posterior mean effect sizes) 10 
are calculated for exactly the SNPs used in the validation data. This ensures that all 11 
SNPs with non-zero weights are in the validation dataset.  In practice we use the 12 
intersection of SNPs present in the summary statistics dataset, the LD reference 13 
genotypes, and the validation genotypes. If the validation cohort contains more than 14 
1000 individuals, with the same ancestry as the individuals used for the GWAS 15 
summary statistics, then we suggest using the validation cohort as the LD reference 16 
as well. These steps are implemented in the LDpred software package.   17 
 18 

Simulations 19 
We performed three types of simulations: (1) simulated traits and simulated 20 
genotypes; (2) simulated traits, simulated summary statistics and simulated 21 
validation genotypes; (3) simulated traits using real genotypes.  For most of the 22 
simulations we used the point-normal model for effect sizes as described above:  23 

𝛽𝛽𝑖𝑖 ~𝑖𝑖𝑖𝑖𝑖𝑖 �
𝑁𝑁 �0,

ℎ𝑔𝑔2

𝑀𝑀𝑀𝑀
�  w. prob.  𝑀𝑀

    0         w. prob.  1 − 𝑀𝑀 .
 

For some of our simulations (Supplementary Figure 5) we sampled the non-zero 24 
effects from a Laplace distribution instead of a Gaussian distribution.  For all of our 25 
simulations we used four different values for p (the fraction of causal loci).  For 26 
some of our simulations (Supplementary Figure 1) we sampled the fraction of 27 
causal markers within a region from a Beta(p,1- p) distribution.  This simulates a 28 
genetic architecture where causal variants cluster in certain regions of the genome. 29 
The simulated trait was then obtained by summing up the allelic effects for each 30 
individual, and adding a Gaussian distributed noise term to fix the heritability.  The 31 
simulated genotypes were sampled from a standard Gaussian distribution.  To 32 
emulate linkage disequilibrium (LD) we simulated one genotype or SNP at a time 33 
generating batches of 100 correlated SNPs.  Each SNP was defined as the sum of the 34 
preceding adjacent SNP and some noise, where they were scaled to correspond to a 35 
fixed squared correlation between two adjacent SNPs within a batch.  We simulated 36 
genotypes with the adjacent squared correlation between SNPs set to 0 (unlinked 37 
SNPs), and 0.9 when simulating LD. 38 
 39 
In order to compare the performance of our method at large sample sizes we 40 
simulated summary statistics that we used as training data for the polygenic risk 41 
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scores.  We also simulated two smaller samples (2000 individuals) representing an 1 
independent validation data and a LD reference panel. When there is no LD, the least 2 
square effect estimates (summary statistics) are sampled from a Gaussian 3 
distribution �̂�𝛽𝑖𝑖|𝛽𝛽𝑖𝑖 ~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁 �𝛽𝛽𝑖𝑖,

1
𝑁𝑁
�, where 𝛽𝛽𝑖𝑖 are the true effects. To simulate marginal 4 

effect estimates without genotypes in the presence of LD we first estimate the LD 5 
pattern empirically by simulating 100 SNPs for 1000 individuals for a given value 6 
(as described above) and average over 1000 simulations.  This matrix captures the 7 
LD pattern in the validation data since we simulate it using the same procedure 8 
(described earlier). Using this LD matrix 𝐷𝐷 we then sample the marginal least 9 
square estimates within a region of LD (SNP chunk) as �̂�𝛽|𝛽𝛽 ~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁 �𝐷𝐷𝛽𝛽, 𝐷𝐷

𝑁𝑁
�, where 𝐷𝐷 10 

is the LD matrix. 11 
 12 
For the simulations in Figure 1 b) and Supplementary Figures 1, 3, and 4, we 13 
simulated least square effect estimates for 200K variants in batches of LD regions 14 
with 100 variants each (as described above).  We then simulated genotypes for 2000 15 
validation individuals and averaged over 100-3000 simulated phenotypes to ensure 16 
smooth curves.  Depending on the simulation parameters, the actual number of 17 
repeats required to achieve a smooth curve varied.  For the simulations in Figure 1 18 
a) and Supplementary Figure 2, we simulated the least square estimates 19 
independently by adding an appropriately scaled Gaussian noise term to the true 20 
effects. 21 
 22 
When simulating traits using the WTCCC genotypes (Figure 2) we performed 23 
simulations under four different scenarios, representing different number of 24 
chromosomes: (1) all chromosomes; (2) chromosomes 1-4; (3) chromosomes 1-2; 25 
(4) chromosome 1. We used 16,179 individuals in the WTCCC data, and 376,901 26 
SNPs that passed quality control. In our simulations we used 3-fold cross validation, 27 
using 1/3 of the data as validation data and 2/3 as training data. 28 

WTCCC Genotype data 29 
We used the Wellcome Trust Case Control Consortium (WTCCC) genotypes42 for 30 
both simulations and analysis.  After quality control, pruning variants with missing 31 
rates above 1%, and removing individuals that had genetic relatedness coefficients 32 
above 0.05, we were left with 15,835 individuals genotyped for 376,901 SNPs, 33 
including 1,819 cases for bipolar disease (BD), 1,862 cases for coronary artery 34 
disease (CAD), 1,687 cases for Chron’s disease (CD, 1,907 cases for hypertension 35 
(HT), 1,831 cases for rheumatoid arthritis (RA), 1,953 cases for type-1 diabetes 36 
(T1D), and 1,909 cases for type-2 diabetes (T2D).  For each of the 7 diseases, we 37 
performed 5-fold cross-validation on disease cases and 2,867 controls. For each of 38 
these analyses we used the validation data as the LD reference data when using 39 
LDpred and when performing LD-pruning.   40 

Summary statistics and independent validation data sets 41 
Six large summary statistics data sets were analyzed in this paper.  The Psychiatric 42 
Genomics Consortium (PGC) 2 schizophrenia summary statistics15 consists of 43 
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34,241 cases and 45,604 controls.  For our purposes we calculated GWAS summary 1 
statistics while excluding the ISC (International Schizophrenia Consortium) cohorts 2 
and the MGS (Molecular Genetics of Schizophrenia) cohorts respectively. All subjects 3 
in these cohorts provided informed consent for this research, and procedures 4 
followed were in accordance with ethical standards. The summary statistics were 5 
calculated on a set of 1000 genomes imputed SNPs, resulting in 16.9M statistics.  6 
The two independent validation data sets, the ISC and the MGS data sets, both 7 
consist of multiple cohorts with individuals of European descent. For both of the 8 
validation data sets we used the chip genotypes and filtered individuals with more 9 
than 10% of genotype calls missing and filtered SNPs that had more than 1% 10 
missing rate and a minor allele frequency greater than 1%.  In addition we removed 11 
SNPs that had ambiguous nucleotides, i.e. A/T and G/C SNPs.  We matched the SNPs 12 
between the validation and the GWAS summary statistics data sets based on the SNP 13 
rs-ID and excluded triplets, SNPs where one nucleotide was unknown, and SNPs that 14 
had different nucleotides in different data sets. This was our quality control (QC) 15 
procedure for all large summary statistics data sets that we analyzed.  After QC, the 16 
ISC consisted of 1562 cases and 1994 controls genotyped on 518K SNPs that 17 
overlapped with the GWAS summary statistics. The MGS data set consisted of 2681 18 
cases and 2653 controls after QC and had 549K SNPs that overlapped with the 19 
GWAS summary statistics. 20 
 21 
For multiple sclerosis we used the International Multiple Sclerosis (MS) Genetics 22 
Consortium summary statistics43. These were calculated with 9,772 cases and 23 
17,376 controls (27,148 individuals in total) for 465K SNPs.  As an independent 24 
validation data set we used the BWH/MIGEN chip genotypes with 821 cases and 25 
2705 controls44.  All subjects provided informed consent for this research, and 26 
procedures followed were in accordance with ethical standards. After QC the 27 
overlap between the validation genotypes and the summary statistics only consisted 28 
of 114K SNPs, which we used for our analysis. 29 
 30 
For breast cancer we used the Genetic Associations and Mechanisms in Oncology 31 
(GAME-ON) breast cancer GWAS summary statistics, consisting of 16,003 cases and 32 
41,335 controls (both ER- and ER+ were included in this analysis)45-48. These 33 
summary statistics were calculated for 2.6M HapMap2 imputed SNPs.  As validation 34 
genotypes we combined genotypes from five different data sets, BPC3 ER- cases and 35 
controls45, BRCA NHS2 cases, NHS1 cases and controls from a mammographic 36 
density study, CGEMS NHS1 cases49, and Kidney Stone NHS2 controls. All subjects in 37 
each cohort provided informed consent for this research, and procedures followed 38 
were in accordance with ethical standards. None of these 307 cases and 560 39 
controls were included in the GWAS summary statistics analysis and thus represent 40 
an independent validation data set.  We used the chip genotypes that overlapped 41 
with the GWAS summary statistics, which resulted in 444K genotypes after QC.   42 
 43 
For coronary artery disease we used the transatlantic Coronary ARtery DIsease 44 
Genome wide Replication and Meta-analysis (CARDIoGRAM) consortium GWAS 45 
summary statistics.  These were calculated using 22,233 cases and 64,762 controls 46 
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(86,995 inviduals in total) for 2.4M SNPs10.  For the type-2 diabetes we used the 1 
DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium GWAS 2 
summary statistics.  These were calculated using 12,171 cases and 56,862 controls 3 
(69,033 individuals in total) for 2,5M SNPs50.  For both CAD and T2D we used the 4 
Womens Genomes Health Study (WGHS) data set as validation data51, where we 5 
randomly down-sampled the controls.  For CAD we validated in 923 cases CVD and 6 
1428 controls, and for T2D we used 1673 cases and 1434 controls.  We used the 7 
genotyped SNPs that overlapped with the GWAS summary statistics, which 8 
amounted to about 290K SNPs for both CAD and T2D after quality control. All WGHS 9 
subjects provided informed consent for this research, and procedures followed were 10 
in accordance with ethical standards. 11 
 12 
For height we used the GIANT (Genetic Investigation of ANthropometric Traits) 13 
GWAS summary statistics as published in the Lango Allen et al.6, which are 14 
calculated using 133,653 individuals and imputed to 2.8M HapMap2 SNPs.  As 15 
validation cohort we used the BioMe cohort from Mount Sinai Medical Center, 16 
consisting of 2013 individuals and genotyped at 646K SNPs. All subjects provided 17 
informed consent for this research, and procedures followed were in accordance 18 
with ethical standards. After QC, the remaining 539K SNPs that overlapped with the 19 
GWAS summary statistics were used for the analysis.  20 
 21 
For all six of these traits, we used the validation data set as the LD reference data 22 
when using LDpred and when performing LD-pruning. By using the validation as 23 
LD-reference data, we were only required to coordinate two different data sets, i.e. 24 
the GWAS summary statistics and the validation dataset. We calculated risk scores 25 
for different P-value thresholds using grid values [1E-8, 1E-6, 1E-5, 3E-5, 1E-4, 3E-4, 26 
1E-3, 3E-3, 0.01, 0.03,0.1,0.3,1] and for LDpred we used the mixture probability 27 
(fraction of causal markers) values [1E-4, 3E-4, 1E-3, 3E-3, 0.01, 0.03,0.1,0.3,1].  We 28 
then reported the optimal prediction value from a validation data for LDpred and 29 
P+T respectively.  30 

Schizophrenia validation data sets with non-European ancestry 31 
For the non-European validation data sets we used the MGS data set as an LD-32 
reference, as the summary statistics were obtained using individuals of European 33 
ancestry.  This required us to coordinate across three different data sets, the GWAS 34 
summary statistics, the LD reference genotypes and the validation genotypes. To 35 
ensure sufficient overlap of genetic variants across all three data sets we used 1000 36 
genomes imputed MGS genotypes and the 1000 genomes imputed validation 37 
genotypes for the three Asian validation data sets (JPN1, TCR1, and HOK2).  To limit 38 
the number of markers for these data sets we only considered markers that had 39 
MAF>0.1. After QC, and removing variants with MAF<0.1, we were left with 1.38 40 
million SNPs and 492 cases and 427 controls in the JPN1 data set, 1.88 million SNPs 41 
and 898 cases and 973 controls in the TCR1 data set, and 1.71 million SNPs and 476 42 
cases and 2018 controls in the HOK2 data set.  43 
 44 
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For the African American validation data set (AFAM) we used the reported GWAS 1 
summary statistics data set15 to train on. The AFAM data set consisted of 3361 2 
schizophrenia cases and 5076 controls. Since the AFAM data set was not included in 3 
that analysis this allowed us to leverage a larger sample size, but at the cost of 4 
having fewer SNPs.  The overlap between the 1000 genomes imputed MGS 5 
genotypes, the HapMap 3 imputed AFAM genotypes and the PGC2 reported 6 
summary statistics had 482K SNPs after QC (with a MAF>0.01). All subjects in the 7 
JPN1, TCR1, HOK2, and AFAM data sets provided informed consent for this research, 8 
and procedures followed were in accordance with ethical standards 9 
 10 

Prediction accuracy metrics 11 
For quantitative traits, we used squared correlation (R2).  For case-control traits, 12 
which include all of the disease data sets analyzed, we used four different metrics.  13 
We used Nagelkerke R2 as our primary figure of merit in order to be consistent with 14 
previous work1,9,13,15, but also report three other commonly used metrics in 15 
Supplementary Tables  2, 5, 7, and 10: observed scale R2, liability scale R2, and the 16 
area under the curve (AUC).  All of the reported prediction R2 values were adjusted 17 
for the top 5 principal components (PCs) in the validation sample (top 3 PCs for 18 
breast cancer).  The relationship between observed scale R2, liability scale R2, and 19 
AUC is described in Lee et al.52. We note that Nagelkerke R2 is similar to observed 20 
scale R2 (i.e. is also affected by case-control ascertainment), but generally has 21 
slightly larger values.  22 

Results 23 

Simulations 24 
We first considered simulations with simulated genotypes (see Materials and 25 
Methods).  Accuracy was assessed using squared correlation (prediction R2) 26 
between observed and predicted phenotype. The Bayesian shrink imposed by 27 
LDpred generally performed well in simulations without LD (Supplementary 28 
Figure 3); in this case, posterior mean effect sizes can be obtained analytically (see 29 
Materials and Methods).  However, LDpred performed particularly well in 30 
simulations with LD (Supplementary Figure 4); the larger improvement (e.g. vs. 31 
P+T) in this case indicates that the main advantage of LDpred is in its explicit 32 
modeling of LD.  Simulations under a Laplace mixture distribution prior gave similar 33 
results (see Supplementary Figure 5).  We also evaluated the prediction accuracy 34 
as a function of the LD reference panel sample size (Supplementary Figure 6). 35 
LDpred performs best with an LD reference panel of at least 1000 individuals. These 36 
results also highlight the importance of using an LD reference population with LD 37 
patterns similar to the training sample, as an inaccurate reference sample will have 38 
effects similar to a reference sample of small size. Below we focus on simulations 39 
with real Wellcome Trust Case Control Consortium genotypes, which have more 40 
realistic LD properties.  41 
 42 
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Using real Wellcome Trust Case Control Consortium (WTCCC) genotypes42 (15,835 1 
samples and 376,901 markers, after QC), we simulated infinitesimal traits with 2 
heritability set to 0.5 (see Materials and Methods).  We extrapolated results for 3 
larger sample sizes (Neff) by restricting the simulations to a subset of the genome 4 
(smaller M), leading to larger N/M.  Results are displayed in Figure 2a.  LDpred-inf 5 
and LDpred (which are expected to be equivalent in the infinitesimal case) 6 
performed well in these simulations—particularly at large values of Neff, consistent 7 
with the intuition from Equation (1) that the LD adjustment arising from the 8 
reference panel LD matrix (D) is more important when 𝑁𝑁ℎ𝑔𝑔

2

𝑀𝑀
 is large.  On the other 9 

hand, P+T performs less well, consistent with the intuition that pruning markers 10 
loses information.   11 
 12 
We next simulated non-infinitesimal traits using real WTCCC genotypes, varying the 13 
proportion p of causal markers (see Materials and Methods). Results are displayed 14 
in Figure 2b-d.   LDpred outperformed all other approaches including P+T, 15 
particularly at large values of N/M.  For p=0.01 and p=0.001, the methods that do 16 
not account for non-infinitesimal architectures (Unadjusted PRS and LDpred-inf) 17 
perform poorly, and P+T is second best among these methods.  Comparisons to 18 
additional methods are provided in Supplementary Figure 7; in particular, LDpred 19 
outperforms other recently proposed approaches that use LD from a reference 20 
panel14,53 (see Appendix B).  21 
 22 
Besides accuracy (prediction R2), another measure of interest is calibration.  A 23 
predictor is correctly calibrated if a regression of the true phenotype vs. the 24 
predictor yields a slope of 1, and mis-calibrated otherwise; calibration is 25 
particularly important for risk prediction in clinical settings. In general, unadjusted 26 
PRS and P+T yield poorly calibrated risk scores. On the other hand, the Bayesian 27 
approach provides correctly calibrated predictions (if the prior accurately models 28 
the true genetic architecture and the LD is appropriately accounted for), avoiding 29 
the need for re-calibration at the validation stage. The calibration slopes for the 30 
simulations using WTCCC genotypes are given in Supplementary Figure 8. As 31 
expected, LDpred provides much better calibration than other approaches. 32 

Application to WTCCC disease data sets 33 
We compared LDpred to other summary statistic based methods across the 7 34 
WTCCC disease data sets42, using 5-fold cross validation (see Materials and 35 
Methods).  Results are displayed in Figure 3.  (We used Nagelkerke R2 as our 36 
primary figure of merit in order to be consistent with previous work1,9,13,15, but we 37 
also provide results for observed-scale R2, liability-scale R2 [ref. 52] and AUC54 in 38 
Supplementary Table 2; the relationship between these metrics is discussed in 39 
Materials and Methods).  40 
 41 
LDpred attained significant improvement in prediction accuracy over P+T for T1D 42 
(P-value=4.4e-15), RA (P-value=1.2e-5), and CD (P-value=2.7e-8), similar to 43 
previous results on the same data using BSLMM27, BayesR29 and MultiBLUP28.  For 44 
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these three immune-related disorders the MHC region explains a large amount of 1 
the overall variance, representing an extreme special case of a non-infinitesimal 2 
genetic architecture. We note that LDpred, BSLMM and BayesR all explicitly model 3 
non-infinitesimal architectures; however, unlike LDpred, BSLMM and BayesR 4 
require full genotype data and cannot be applied to large summary statistic data 5 
sets (see below). MultiBLUP, which also requires full genotype data, assumes an 6 
infinitesimal prior that varies across regions, and thus benefits from a different 7 
modeling extension; the possibility of extending multiBLUP to work with summary 8 
statistics is a direction for future research. For the other diseases with more 9 
complex genetic architectures the prediction accuracy of LDpred was similar to P+T, 10 
potentially due to insufficient training sample size for modeling LD to have a large 11 
impact. The inferred heritability parameters and optimal p parameters for LDpred, 12 
as well as the optimal thresholding parameters for P+T, are provided in 13 
Supplementary Table 3. The calibration of the predictions for the different 14 
approaches is shown in Supplementary Table 4 Consistent with our simulations, 15 
LDpred provides much better calibration than other approaches. 16 

Application to six large summary statistic data sets 17 
We applied LDpred to five diseases—schizophrenia (SCZ), multiple sclerosis (MS), 18 
breast cancer (BC), type 2 diabetes (T2D), coronary artery disease (CAD)—for 19 
which we had GWAS summary statistics for large sample sizes (ranging from 27K to 20 
86K individuals) and raw genotypes for an independent validation data set (see 21 
Materials and Methods). Prediction accuracies for LDpred and other methods are 22 
reported in Figure 4 (Nagelkerke R2) and Supplementary Table 5 (other metrics).   23 
We also applied LDpred to height, a quantitative trait, for which we had GWAS 24 
summary statistics calculated using 134K individuals6, and an independent 25 
validation dataset. The height prediction accuracy for LDpred and other methods 26 
are reported in Supplementary Table 6. 27 
 28 
For all six traits, LDpred provided significantly better predictions than other 29 
approaches (for the improvement over P+T the P-values were 6.3e-47 for SCZ, 2.0e-30 
14 for MS, 0.020 for BC, 0.004 for T2D, 0.017 for CAD, and 1.5e-10 for height).  The 31 
relative increase in Nagelkerke R2 over other approaches ranged from 11% for T2D 32 
to 25% for SCZ, and we observed a 30% increase in prediction R2 for height. This is 33 
consistent with our simulations showing larger improvements when the trait is 34 
highly polygenic, as is known to be the case for SCZ15 and height55.  We note that for 35 
both CAD and T2D, the accuracy attained using >60K training samples from large 36 
meta-analyses (Figure 4) is actually lower than the accuracy attained using <5K 37 
training samples from WTCCC (Figure 3).   This result is independent of the 38 
prediction method applied, and demonstrates the challenges of potential 39 
heterogeneity in large meta-analyses (although prediction results based on cross-40 
validation in a single cohort should be viewed with caution20).  To examine this 41 
further, we trained CAD and T2D PRS on the WTCCC data and validated in the WGHS 42 
data, and determined that the prediction accuracy in external WGHS validation data 43 
is substantially smaller than within the WTCCC data set (Supplementary Table 7). 44 
Possible explanations for this discrepancy include differences in sample 45 
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ascertainment in the WGHS and WTCCC data sets, or unadjusted data artifacts in the 1 
WTCCC training/validation data. 2 

Parameters inferred by LDpred and other methods are provided in Supplementary 3 
Table 8, and calibration results are provided in Supplementary Table 9, with 4 
LDpred again attaining the best calibration.  Finally, we applied LDpred to predict 5 
SCZ risk in non-European validation samples of both African and Asian descent (see 6 
Materials and Methods).  Although prediction accuracies were lower in absolute 7 
terms, we observed similar relative improvements for LDpred vs. other methods 8 
(Supplementary Tables 10 and 11).        9 

Discussion 10 
Polygenic risk scores are likely to become clinically useful as GWAS sample sizes 11 
continue to grow16,19. However, unless LD is appropriately modeled, their predictive 12 
accuracy will fall short of their maximal potential. Our results show that LDpred is 13 
able to address this problem—even when only summary statistics are available—by 14 
estimating posterior mean effect sizes using a point-normal prior and LD 15 
information from a reference panel. Intuitively, there are two reasons for the 16 
relative gain in prediction accuracy of LDpred polygenic risk scores over LD-pruning 17 
followed by P-value thresholding (P+T). First, LD-pruning discards informative 18 
markers, and thereby limits the overall heritability explained by the markers. 19 
Second, LDpred accounts for the effects of linked markers, which can otherwise lead 20 
to biased estimates. These limitations hinder P+T regardless of the LD-pruning and 21 
P-value thresholds used.  22 
 23 
Although we focus here on methods that only require summary statistics, we note 24 
the parallel advances that have been made in methods that require raw 25 
genotypes23,25-30,56,57 as training data.  Some of those methods employ a Variational 26 
Bayes (Iterative Conditional Expectation) approach to reduce their running 27 
time25,26,30,56 (and report that results are similar to MCMC30), but we found that 28 
MCMC generally obtains more robust results than Variational Bayes when analyzing 29 
summary statistics, perhaps because the LD information is only approximate. Our 30 
use of a point-normal mixture prior is consistent with some of those studies26, 31 
although different priors were used by other studies, e.g. a mixture of normals24,27,29.  32 
One recent study proposed an elegant approach for handling case-control 33 
ascertainment while including genome-wide significant associations as fixed 34 
effects57; however, the correlations between distal causal SNPs induced by case-35 
control ascertainment do not impact summary statistics from marginal analyses, 36 
and explicit modeling of non-infinitesimal effect size distributions will appropriately 37 
avoid shrinking genome-wide significant associations (Supplementary Figure 2).  38 
 39 
While LDpred is a substantial improvement on existing methods for conducting 40 
polygenic prediction using summary statistics, it still has limitations.  First, the 41 
method’s reliance on LD information from a reference panel requires that the 42 
reference panel be a good match for the population from which summary statistics 43 
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were obtained; in the case of a mismatch, prediction accuracy may be compromised. 1 
One potential solution is the broad sharing of summary LD statistics, which has 2 
previously been advocated in other settings58.  If LDpred uses the true LD pattern 3 
from the training sample, and there is no unaccounted long-range LD, then we 4 
expect little or no gain in prediction accuracy with individual level genotype 5 
information. Second, the point-normal mixture prior distribution used by LDpred 6 
may not accurately model the true genetic architecture, and it is possible that other 7 
prior distributions may perform better in some settings. Third, in those instances 8 
where raw genotypes are available, fitting all markers simultaneously (if 9 
computationally tractable) may achieve higher accuracy than methods based on 10 
marginal summary statistics.  Fourth, as with other prediction methods, 11 
heterogeneity across cohorts may hinder prediction accuracy; our results suggest 12 
that this could be a major concern in some data sets. Fifth, we assume that summary 13 
statistics have been appropriately corrected for genetic ancestry, but if this is not 14 
the case then the prediction accuracy may be misinterpreted20, or may even 15 
decrease59. Sixth, our analyses have focused on common variants; LD reference 16 
panels are likely to be inadequate for rare variants, motivating future work on how 17 
to treat rare variants in polygenic risk scores. Despite these limitations, LDpred is 18 
likely to be broadly useful in leveraging summary statistic data sets for polygenic 19 
prediction of both quantitative and case-control traits.  20 
 21 
As sample sizes increase and polygenic predictions become more accurate, their 22 
value increases, both in clinical settings and for understanding genetics. LDpred 23 
represents substantial progress, but more work remains to be done. One future 24 
direction would be to develop methods that combine different sources of 25 
information.  For example, as demonstrated by Maier et al.60, joint analysis of 26 
multiple traits can increase prediction accuracy. In addition, using different prior 27 
distributions across genomic regions28 or functional annotation classes61, may 28 
further improve the prediction. Finally, although LDpred attains a similar relative 29 
improvement when predicting into non-European samples, the lower absolute 30 
accuracy than in European samples motivates further efforts to improve prediction 31 
in diverse populations. 32 
 33 

Web Resources 34 
• LDpred software: http://www.hsph.harvard.edu/alkes-price/software/ 35 
• LDpred code repository: https://bitbucket.org/bjarni_vilhjalmsson/ldpred 36 
• Genetic Associations and Mechanisms in Oncology (GAME-ON) breast cancer 37 

GWAS summary statistics: http://gameon.dfci.harvard.edu 38 
• Type-2 diabetes summary statistics50: www.diagram-consortium.org 39 
• Coronary artery disease summary statistics10: 40 

http://www.cardiogramplusc4d.org 41 
• Schizophrenia summary statistics15: 42 

http://www.med.unc.edu/pgc/downloads   43 

http://www.hsph.harvard.edu/alkes-price/software/
https://bitbucket.org/bjarni_vilhjalmsson/ldpred
http://gameon.dfci.harvard.edu/
http://www.diagram-consortium.org/
http://www.cardiogramplusc4d.org/
http://www.med.unc.edu/pgc/downloads
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Appendix A: Posterior mean phenotype estimation  15 
Under the assumption that the phenotype has an additive genetic architecture and is 16 
linear, then estimating the posterior mean phenotype boils down to estimating the 17 
posterior mean effects of each SNP and then summing their contribution up in a risk 18 
score.  19 

Posterior mean effects assuming unlinked markers and an infinitesimal model  20 
We will first consider the infinitesimal model, which represents a genetic 21 
architecture where all genetic variants are causal. The classical example is Fisher’s 22 
infinitesimal model38, which assumes genotypes are unlinked effect sizes have a 23 
Gaussian distribution (after normalizing by allele frequency).  24 
 25 
Gaussian prior (infinitesimal model): Assume that 𝛽𝛽𝑖𝑖 are independently drawn from a 26 
Gaussian distribution 𝛽𝛽𝑖𝑖 ∼ 𝑁𝑁 �0, ℎ2

𝑀𝑀
�, where M denotes the total number of causal 27 

effects (𝛽𝛽𝑖𝑖). Then we can derive a posterior mean given the ordinary least square 28 
estimate 𝛽𝛽𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑌𝑌

𝑁𝑁
.  The least square estimate is approximately distributed as   29 

�̂�𝛽𝑖𝑖 ∼ 𝑁𝑁 �𝛽𝛽𝑖𝑖,
1−ℎ2𝑀𝑀
𝑁𝑁
�,      30 

where N is the number of individuals.  The variance can be approximated further, 31 
𝑉𝑉𝑉𝑉𝑟𝑟(𝛽𝛽𝑖𝑖) ≈ 1, when M is large. With this variance the posterior distribution for 𝛽𝛽𝑖𝑖 is   32 

𝛽𝛽𝑖𝑖|�̂�𝛽𝑖𝑖 ∼ 𝑁𝑁 �� 1

1+ 𝑀𝑀
ℎ2𝑁𝑁

� �̂�𝛽𝑖𝑖,
1
𝑁𝑁
� 1

1+ 𝑀𝑀
ℎ2𝑁𝑁

��.   33 

This suggest that a uniform Bayesian shrink by a factor of 1

1+ 𝑀𝑀
ℎ2𝑁𝑁

 is appropriate under 34 

Fisher’s infinitesimal model. 35 
 36 

http://www.wtccc.org.uk/
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Laplace prior (infinitesimal model): Under the Fisher/Orr model, causal effects are 1 
approximately exponentially distributed62. Empirical evidence largely supports this 2 
for human diseases, but also points to a genetic architecture in which there are 3 
fewer large effects63. Regardless, a double Exponential or a Laplace distribution is 4 
arguably a reasonable prior distribution for the effect sizes, where the variance is ℎ

2

𝑀𝑀
 5 

(so that they sum up to the total heritability). Under this model, the probability 6 
density function for 𝛽𝛽𝑖𝑖 becomes 7 

𝑓𝑓(𝛽𝛽𝑖𝑖) = � 𝑀𝑀
2ℎ2

exp�−|𝛽𝛽𝑖𝑖|�
2𝑀𝑀
ℎ2
�.      

Using the Bayes theorem we can write out the posterior density given the ordinary 8 
least square estimate as follows  9 

𝑓𝑓�𝛽𝛽𝑖𝑖|�̂�𝛽𝑖𝑖� =
𝑓𝑓(�̂�𝛽𝑖𝑖|𝛽𝛽𝑖𝑖)𝑓𝑓(𝛽𝛽𝑖𝑖)

∫ 𝑓𝑓��̂�𝛽𝑖𝑖�𝛽𝛽𝑖𝑖�𝑓𝑓(𝛽𝛽𝑖𝑖)𝑑𝑑𝛽𝛽𝑖𝑖
∞

−∞

 .  

Using the fact that the ordinary least square estimate is Gaussian distributed, we can 10 
write out the term in the integral as follows   11 

� 𝑓𝑓��̂�𝛽𝑖𝑖�𝛽𝛽𝑖𝑖�𝑓𝑓(𝛽𝛽𝑖𝑖)𝑑𝑑𝛽𝛽𝑖𝑖
∞

−∞
=

1
2
� 𝑀𝑀

2ℎ2
� exp�−

𝑁𝑁��̂�𝛽𝑖𝑖 − 𝛽𝛽𝑖𝑖�
2

2
− |𝛽𝛽𝑖𝑖|

2𝑀𝑀
ℎ2
�𝑑𝑑𝛽𝛽𝑖𝑖

∞

−∞
.     

This integral is non-trivial, however we can solve it numerically64. Similarly, the 12 
posterior mean, 𝐸𝐸(𝛽𝛽𝑖𝑖|𝛽𝛽𝚤𝚤� ), also yields a non-trivial integral that can be evaluated 13 
numerically.  14 
 15 
LASSO shrink: When the effects have a Gaussian prior distribution the posterior 16 
prior is symmetric, causing mean and mode to be equal. This is not the case when 17 
we use a Laplace prior for the effects. Although the posterior mean requires 18 
numerical integration, it turns out that the posterior mode has a simple analytical 19 
form65. The posterior mode under a Laplace prior is in fact the LASSO estimate66. If 20 
we assume that the sum of the effects has variance ℎ2, and that the genetic markers 21 
are uncorrelated, then the posterior mode estimate is 22 

𝛽𝛽𝚤𝚤� = sign(𝛽𝛽𝑖𝑖) max�0, |𝛽𝛽𝑖𝑖| −�ℎ2

2𝑀𝑀
� .     

Interestingly, the posterior mode effects for estimated effects below a given 23 
threshold are set to 0, even though all betas are causal in the model.  24 

Posterior mean effects assuming unlinked markers and a non-infinitesimal 25 
model.  26 
Most diseases and traits are not likely to be strictly infinitesimal, i.e. follow Fisher’s 27 
infinitesimal model38. Instead, a non-infinitesimal model, where only a fraction of 28 
the genetic variants are truly causal and affect the trait, is more likely to describe 29 
the underlying genetic architecture. We can model non-infinitesimal genetic 30 
architectures using mixture distributions with a mixture parameter p that denotes 31 
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the fraction of causal markers. More specifically, we will consider a spike and slab 1 
prior with a 0-spike and Gaussian slab (see Supplementary Figure 9).  2 
 3 
Gaussian mixture prior (spike and a slab): Assume that the effects are drawn from a 4 
mixture distribution as follows: 5 

𝛽𝛽𝑖𝑖 ∼ �𝑁𝑁 �0,
ℎ2

𝑀𝑀𝑀𝑀
�  w. prob. 𝑀𝑀

0 w. prob. (1− 𝑀𝑀)   
 . 

Another way of writing this is to use Dirac’s delta function, i.e. write 𝛽𝛽𝑖𝑖 = 𝑀𝑀𝑝𝑝 +6 
(1 − 𝑀𝑀)𝑣𝑣, where 𝑝𝑝 ∼ �0, ℎ

2

𝑀𝑀𝑝𝑝
� and 𝑣𝑣 ∼ 𝛿𝛿𝛽𝛽𝑖𝑖 . Here 𝛿𝛿𝛽𝛽𝑖𝑖 denotes the point density at 𝛽𝛽𝑖𝑖 =7 

0, which integrates to 1. We can then write out the density for �̂�𝛽𝑖𝑖 as follows: 8 

𝑓𝑓��̂�𝛽𝑖𝑖� = � 𝑓𝑓��̂�𝛽𝑖𝑖�𝛽𝛽𝑖𝑖�𝑓𝑓(𝛽𝛽𝑖𝑖)𝑑𝑑𝛽𝛽𝑖𝑖
∞

−∞
 

           =  
𝑀𝑀

2𝜋𝜋
��

𝑁𝑁𝑀𝑀𝑀𝑀
ℎ2

� exp �−
1
2
�𝑁𝑁��̂�𝛽𝑖𝑖 − 𝛽𝛽𝑖𝑖�

2
+
𝑀𝑀𝑀𝑀
ℎ2

𝛽𝛽𝑖𝑖2�� 𝑑𝑑𝛽𝛽𝑖𝑖
∞

−∞
�                                   

                 +(1 − 𝑀𝑀)��
𝑁𝑁
2𝜋𝜋

exp �−
1
2
𝑁𝑁�̂�𝛽𝑖𝑖

2
�� 

            =
1

√2𝜋𝜋
⎝

⎛ 𝑀𝑀

� ℎ2
𝑀𝑀𝑀𝑀 + 1

𝑁𝑁

exp�−
1
2
�

�̂�𝛽𝑖𝑖
2

ℎ2
𝑀𝑀𝑀𝑀 + 1

𝑁𝑁

��

⎠

⎞ +  
1 − 𝑀𝑀

1
√𝑁𝑁

exp �−
1
2
𝑁𝑁�̂�𝛽𝑖𝑖

2
� .      

We are interested in the posterior mean, which can be expressed as  9 

𝐸𝐸�𝛽𝛽𝑖𝑖|�̂�𝛽𝑖𝑖� = �
𝛽𝛽𝑖𝑖𝑓𝑓(�̂�𝛽𝑖𝑖|𝛽𝛽𝑖𝑖)𝑓𝑓(𝛽𝛽𝑖𝑖)

∫ 𝑓𝑓��̂�𝛽𝑖𝑖�𝛽𝛽𝑖𝑖�𝑓𝑓(𝛽𝛽𝑖𝑖)𝑑𝑑𝛽𝛽𝑖𝑖
∞

−∞

∞

−∞
𝑑𝑑𝛽𝛽𝑖𝑖 ,   

hence we only need to calculate the following definite integral  10 

� 𝛽𝛽𝑖𝑖𝑓𝑓��̂�𝛽𝑖𝑖�𝛽𝛽𝑖𝑖�𝑓𝑓(𝛽𝛽𝑖𝑖)𝑑𝑑𝛽𝛽𝑖𝑖
∞

−∞
=

𝑀𝑀
2𝜋𝜋

�𝑁𝑁𝑀𝑀𝑀𝑀
ℎ2

 � 𝛽𝛽𝑖𝑖
∞

−∞
exp �−

1
2
�𝑁𝑁��̂�𝛽𝑖𝑖 − 𝛽𝛽𝑖𝑖�

2
+
𝑀𝑀𝑀𝑀
ℎ2

𝛽𝛽𝑖𝑖2�� 𝑑𝑑𝛽𝛽𝑖𝑖 

Thus the posterior mean is  11 

𝐸𝐸�𝛽𝛽𝑖𝑖|�̂�𝛽𝑖𝑖� = 𝐶𝐶 � 𝛽𝛽𝑖𝑖
∞

−∞
exp �−

1
2
�𝑁𝑁�𝛽𝛽𝑖𝑖2 − 2𝛽𝛽𝑖𝑖�̂�𝛽𝑖𝑖� +

𝑀𝑀𝑀𝑀
ℎ2

𝛽𝛽𝑖𝑖2�� 𝑑𝑑𝛽𝛽𝑖𝑖 

                  = 𝐶𝐶�
2𝜋𝜋
𝑁𝑁
�

1

1 + 𝑀𝑀𝑀𝑀
𝑁𝑁ℎ2

�

3
2�

exp�
𝑁𝑁
2
�

1

1 + 𝑀𝑀𝑀𝑀
𝑁𝑁ℎ2

� �̂�𝛽𝑖𝑖
2
� �̂�𝛽𝑖𝑖 ,  

where  12 
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𝐶𝐶 =

𝑀𝑀
√2𝜋𝜋

�𝑁𝑁𝑀𝑀𝑀𝑀ℎ2 exp �−1
2𝑁𝑁�̂�𝛽𝑖𝑖

2
�

𝑀𝑀

� ℎ2
𝑀𝑀𝑀𝑀 + 1

𝑁𝑁

exp�−1
2�

�̂�𝛽𝑖𝑖
2

ℎ2
𝑀𝑀𝑀𝑀 + 1

𝑁𝑁
�� + 1 − 𝑀𝑀

1
√𝑁𝑁

exp �− 1
2𝑁𝑁�̂�𝛽𝑖𝑖

2
�

 . 

Alternatively, by realizing that the posterior probability that 𝛽𝛽𝑖𝑖 is sampled from the 1 
Gaussian distribution given �̂�𝛽𝑖𝑖 is exactly  2 

𝑃𝑃�𝛽𝛽𝑖𝑖 ∼ 𝑁𝑁(∙,∙)|�̂�𝛽𝑖𝑖� =  
𝑓𝑓��̂�𝛽𝑖𝑖|𝛽𝛽𝑖𝑖 ∼ 𝑁𝑁(∙,∙)�𝑓𝑓�𝛽𝛽𝑖𝑖 ∼ 𝑁𝑁(∙,∙)�

𝑓𝑓��̂�𝛽𝑖𝑖�
 

                                 =

𝑀𝑀

� ℎ2
𝑀𝑀𝑀𝑀 + 1

𝑁𝑁

exp�−1
2�

�̂�𝛽𝑖𝑖
2

ℎ2
𝑀𝑀𝑀𝑀 + 1

𝑁𝑁
��

𝑀𝑀

� ℎ2
𝑀𝑀𝑀𝑀 + 1

𝑁𝑁

exp�−1
2�

�̂�𝛽𝑖𝑖
2

ℎ2
𝑀𝑀𝑀𝑀 + 1

𝑁𝑁
�� + 1 − 𝑀𝑀

1
√𝑁𝑁

exp �− 1
2𝑁𝑁�̂�𝛽𝑖𝑖

2
�

  (𝐴𝐴. 1) 

we can rewrite the posterior mean in a simpler fashion. If we let �̅�𝑀𝑖𝑖 = 𝑃𝑃�𝛽𝛽𝑖𝑖 ∼ 𝑁𝑁(∙3 
𝑁𝑁( �̂�𝛽𝑖𝑖�, denote the posterior probability that 𝛽𝛽𝑖𝑖 is non-zero or Gaussian distributed, 4 
then it becomes  5 

𝐸𝐸�𝛽𝛽𝑖𝑖|�̂�𝛽𝑖𝑖� = �
1

1 + 𝑀𝑀𝑀𝑀
ℎ2𝑁𝑁

� �̅�𝑀𝑖𝑖�̂�𝛽𝑖𝑖 .  

Posterior mean effects assuming linked markers and an infinitesimal model 6 
(LDpred-inf)  7 
Following Yang et al.53, we can obtain the joint least square effect estimates as 8 

�̂�𝛽joint = 𝐷𝐷−1�̂�𝛽marg ,   (15) 
where 𝐷𝐷 = 𝑋𝑋𝑋𝑋′

𝑁𝑁
  is the LD  correlation matrix. In practice, the LD matrix is 𝑀𝑀 × 𝑀𝑀 and 9 

possibly singular, e.g. if two (or more) markers are in perfect linkage.  If the LD 10 
matrix 𝐷𝐷 is singular, there the joint least square estimate does not have a unique 11 
solution.  However, if the individuals in the training data do not display family or 12 
population structure, the genome-wide LD matrix is approximately a banded matrix, 13 
which allows adjust for LD locally instead. To formalize these ideas, let us introduce 14 
some notation. Let 𝑙𝑙𝑖𝑖 denote the ith locus or region with 𝑀𝑀𝑙𝑙𝑖𝑖 markers, and let �̂�𝛽 15 
denote the marginal least square estimate vector. In addition, let 𝛽𝛽(𝑖𝑖) denote the 16 
vector of true effects that are in the ith region, and similarly let �̂�𝛽(𝑖𝑖) denote the 17 
corresponding vector of marginal effect estimates in the region. Under this model 18 
we can derive the sampling distribution for effect estimates at the ith region, i.e.  19 
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�̂�𝛽(𝑖𝑖)|𝛽𝛽(𝑖𝑖). The mean is 𝐸𝐸(�̂�𝛽(𝑖𝑖)�𝛽𝛽(𝑖𝑖)� = 𝐷𝐷(𝑖𝑖)𝛽𝛽(𝑖𝑖), where 𝐷𝐷(𝑖𝑖) = 𝑋𝑋(𝑖𝑖)𝑋𝑋(𝑖𝑖)′
𝑁𝑁

 is the LD matrix 1 
obtained from the markers in the ith region, i.e. 𝑋𝑋(𝑖𝑖). Furthermore, the conditional 2 
covariance matrix is  3 
𝑉𝑉𝑉𝑉𝑟𝑟��̂�𝛽(𝑖𝑖)�𝛽𝛽(𝑖𝑖)� = 𝐸𝐸��̂�𝛽(𝑖𝑖)′�̂�𝛽(𝑖𝑖)|𝛽𝛽(𝑖𝑖)� − 𝐸𝐸��̂�𝛽(𝑖𝑖)�𝛽𝛽(𝑖𝑖)�𝐸𝐸��̂�𝛽(𝑖𝑖)�𝛽𝛽(𝑖𝑖)�

′
 

                            

=
1
𝑁𝑁2 𝐸𝐸 �𝑋𝑋

(𝑖𝑖)�𝑋𝑋(𝑖𝑖)′ 𝛽𝛽(𝑖𝑖) + 𝜖𝜖� �𝑋𝑋(𝑖𝑖)�𝑋𝑋(𝑖𝑖)′ 𝛽𝛽(𝑖𝑖) + 𝜖𝜖�� ′� 𝛽𝛽(𝑖𝑖)�

− �𝐷𝐷(𝑖𝑖)𝛽𝛽(𝑖𝑖)��𝐷𝐷(𝑖𝑖)𝛽𝛽(𝑖𝑖)�
′
 

                            = �𝐷𝐷(𝑖𝑖)𝛽𝛽(𝑖𝑖)��𝐷𝐷(𝑖𝑖)𝛽𝛽(𝑖𝑖)�
′ 1
𝑁𝑁
𝐸𝐸�𝑋𝑋(𝑖𝑖)𝜖𝜖�𝑋𝑋(𝑖𝑖)𝜖𝜖�′�𝛽𝛽(𝑖𝑖)� − �𝐷𝐷(𝑖𝑖)𝛽𝛽(𝑖𝑖)��𝐷𝐷(𝑖𝑖)𝛽𝛽(𝑖𝑖)�

′
 

                            = 𝑋𝑋(𝑖𝑖) 1
𝑁𝑁2 𝐸𝐸�𝜖𝜖𝜖𝜖

′�𝛽𝛽(𝑖𝑖)��𝑋𝑋(𝑖𝑖)�
′

=
1 − ℎ2𝑙𝑙𝑖𝑖
𝑁𝑁2 𝑋𝑋(𝑖𝑖)�𝑋𝑋(𝑖𝑖)�

′
 

                            =
1 − ℎ2𝑙𝑙𝑖𝑖

𝑁𝑁
𝐷𝐷(𝑖𝑖) , 

where ℎ2𝑙𝑙𝑖𝑖  denotes the heritability explained by the markers in the region, i.e. 𝑋𝑋(𝑖𝑖). If 4 
we assume that the heritability explained by an individual region is small, then this 5 
simplifies to 𝑉𝑉𝑉𝑉𝑟𝑟��̂�𝛽(𝑖𝑖)�𝛽𝛽(𝑖𝑖)� =  1

𝑁𝑁
𝐷𝐷(𝑖𝑖) .  This equation is particularly useful for 6 

performing efficient simulations of effect sizes without simulating the genotypes. 7 
Given an LD matrix, D, we can simulate effect sizes and corresponding least square 8 
estimates. Similarly, for the joint estimate we have  9 
𝐸𝐸(�̂�𝛽joint

(𝑖𝑖) �𝛽𝛽(𝑖𝑖)� = 𝛽𝛽(𝑖𝑖), 
and  10 

Var(�̂�𝛽joint
(𝑖𝑖) �𝛽𝛽(𝑖𝑖)� =

1 − ℎ2𝑙𝑙𝑖𝑖
𝑁𝑁

�𝐷𝐷(𝑖𝑖)�
−1

. 
 11 
Gaussian distributed effects: In the following, we let 𝛽𝛽 (and respectively �̂�𝛽) denote 12 
the effects within a region of LD. We furthermore assume that these markers only 13 
explain a fraction, ℎ𝑙𝑙2, of the total phenotypic variance, and ℎ𝑙𝑙2 ≤ ℎ2. Given a 14 
Gaussian prior distribution 𝛽𝛽 ∼ 𝑁𝑁(0, ℎ

2

𝑀𝑀
)  for the effects and the conditional 15 

distribution �̂�𝛽|𝛽𝛽 we can derive the posterior mean by considering the joint density:  16 
𝑓𝑓��̂�𝛽,𝛽𝛽�

=
1

�|𝐷𝐷|
�

𝑁𝑁
2𝜋𝜋(1 − ℎ𝑙𝑙2)�

𝑀𝑀
2

exp �
𝑁𝑁��̂�𝛽 − 𝐷𝐷𝛽𝛽�′𝐷𝐷−1��̂�𝛽 − 𝐷𝐷𝛽𝛽�

2(1 − ℎ𝑙𝑙2) � �
𝑀𝑀𝑀𝑀

2𝜋𝜋ℎ2
�
−𝑀𝑀2

exp �
𝑀𝑀

2ℎ2
𝛽𝛽′𝛽𝛽� 

We can now obtain the posterior density for �̂�𝛽|𝛽𝛽 by completing the square in the 17 
exponential. This yields a multivariate Gaussian with mean and variance as follows  18 

𝐸𝐸�𝛽𝛽��̂�𝛽� =  �
1

1 − ℎ𝑙𝑙2
𝐷𝐷 +

𝑀𝑀
𝑁𝑁ℎ2

𝐼𝐼�
−1

�̂�𝛽 ,  

Var�𝛽𝛽��̂�𝛽� =  
1
𝑁𝑁
�

1
1 − ℎ𝑙𝑙2

𝐷𝐷 +
𝑀𝑀
𝑁𝑁ℎ2

𝐼𝐼�
−1

,  

 19 
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where ℎ2 denotes the heritability explained by the M causal variants and ℎ𝑙𝑙2 ≈
𝑘𝑘ℎ2

𝑀𝑀
 is 1 

the heritability of the k effects, or variants in the region of LD. If 𝑀𝑀 ≫ 𝑘𝑘, then 1 − ℎ𝑙𝑙2 2 
becomes approximately one, and the equations above can be simplified accordingly. 3 
As expected, the posterior mean approaches the maximum likelihood estimator as 4 
the training sample size grows.  5 

Posterior mean effects assuming linked markers and a non-infinitesimal model 6 
(LDpred)  7 
The Bayesian shrink under the infinitesimal model implies that we can solve it 8 
either using a Gauss- Seidel method67,68, or via MCMC Gibbs sampling. The Gauss-9 
Seidel method iterates over the markers, and obtains a residual effect estimate after 10 
subtracting the effect of neighboring markers in LD. It then applies a univariate 11 
Bayesian shrink, i.e. the Bayesian shrink for unlinked markers (described above). It 12 
then iterates over the genome multiple times until convergence is achieved. 13 
However, we found the Gauss-Seidel approach to be sensitive to model assumptions, 14 
i.e., if the LD matrix used differed from the true LD matrix in the training data we 15 
observed convergence issues. We therefore decided to use an approximate MCMC 16 
Gibbs sampler instead to infer the posterior mean. The approximate Gibbs sampler 17 
used by LDpred is similar the Gauss-Seidel approach, except that instead of using 18 
the posterior mean to update the effect size, we sample the update from the 19 
posterior distribution. Compared to the Gauss-Seidel method this seems to lead to 20 
less serious convergence issues. Below we describe the Gibbs Sampler used by 21 
LDpred.  22 
 23 
Gaussian distributed effects: Define q as follows  24 

𝑞𝑞 ∼ �
1     w. prob.  𝑀𝑀            
0     w. prob. (1 − 𝑀𝑀)  , 

  then we can write 𝛽𝛽 = 𝑞𝑞𝑝𝑝  where 𝑝𝑝 ∼ 𝑁𝑁 �0, ℎ
2

𝑀𝑀𝑝𝑝
𝐼𝐼� . Hence we can write the 25 

multivariate density for 𝛽𝛽 as  26 

𝑓𝑓(𝛽𝛽) = ��𝑀𝑀�
𝑀𝑀𝑀𝑀

2𝜋𝜋ℎ2
exp �−

𝑀𝑀𝑀𝑀
2ℎ2

𝛽𝛽𝑖𝑖2� + (1 − 𝑀𝑀)𝛿𝛿𝛽𝛽𝑖𝑖�
𝑀𝑀

𝑖𝑖=1

 . 

The sampling distribution for �̂�𝛽 given 𝛽𝛽 is  27 

𝑓𝑓��̂�𝛽|𝛽𝛽� =
1

�|𝐷𝐷|
�

𝑁𝑁
2𝜋𝜋(1 − ℎ𝑙𝑙2)�

𝑀𝑀
2

exp �
𝑁𝑁��̂�𝛽 − 𝐷𝐷𝛽𝛽�′𝐷𝐷−1��̂�𝛽 − 𝐷𝐷𝛽𝛽�

2(1 − ℎ𝑙𝑙2) � .  (𝐴𝐴. 2) 

As usual, we want to calculate the posterior mean, i.e.  28 

𝐸𝐸�𝛽𝛽|�̂�𝛽� = �
𝛽𝛽𝑖𝑖𝑓𝑓��̂�𝛽�𝛽𝛽�𝑓𝑓(𝛽𝛽)
∫𝑓𝑓��̂�𝛽�𝛽𝛽�𝑓𝑓(𝛽𝛽)𝑑𝑑𝛽𝛽

𝑑𝑑𝛽𝛽  ,  

which now consists of two M-dimensional integrands. Any multiplicative term that 29 
does not involve 𝛽𝛽 in the two integrands factors out. Since the integrand consists of 30 
2M nontrivial additive terms, we result to numerical approximations to sample from 31 
the posterior and estimate the posterior mean effects.  32 



 24 

 1 
Metropolis Hastings Markov Chain Monte Carlo: An alternative approach to obtaining 2 
the posterior mean is to sample from the posterior distribution, and then average 3 
over the samples to obtain the posterior mean. In our case we know the posterior up 4 
to a constant, i.e.  5 
𝑓𝑓�𝛽𝛽|�̂�𝛽� ∝ 𝑓𝑓�𝛽𝛽, �̂�𝛽� = 𝑓𝑓��̂�𝛽|𝛽𝛽�𝑓𝑓(𝛽𝛽𝑖𝑖|𝛽𝛽−𝑖𝑖)𝑓𝑓(𝛽𝛽−𝑖𝑖),   6 
where 𝛽𝛽−𝑖𝑖 denotes all the other effects except for the effect of the ith marker. Note 7 
that (𝛽𝛽𝑖𝑖|𝛽𝛽−𝑖𝑖)𝑓𝑓(𝛽𝛽−𝑖𝑖) = 𝑓𝑓(𝛽𝛽). We can use this fact to sample efficiently in a Markov 8 
chain Monte Carlo setting where we sample one marker effect at a time in an 9 
iterative fashion (the conditional proposal distribution is therefore univariate). This 10 
ensures that the Metropolis-Hastings acceptance ratio 𝛼𝛼(𝛽𝛽 → 𝛽𝛽∗) = 𝛼𝛼(𝛽𝛽∗ → 𝛽𝛽) only 11 
depends on local LD, and not the distributions of other effects, i.e.  12 

𝛼𝛼(𝛽𝛽𝑖𝑖 → 𝛽𝛽𝑖𝑖∗) = min �1,
𝑓𝑓(𝛽𝛽∗, �̂�𝛽)𝑔𝑔(𝛽𝛽𝑖𝑖∗ → 𝛽𝛽𝑖𝑖)
𝑓𝑓(𝛽𝛽, �̂�𝛽)𝑔𝑔(𝛽𝛽𝑖𝑖 → 𝛽𝛽𝑖𝑖∗)

� = min �1,
𝑓𝑓(�̂�𝛽|𝛽𝛽∗)𝑓𝑓(𝛽𝛽𝑖𝑖∗)𝑔𝑔(𝛽𝛽𝑖𝑖∗ → 𝛽𝛽𝑖𝑖)
𝑓𝑓(�̂�𝛽|𝛽𝛽)𝑓𝑓(𝛽𝛽𝑖𝑖)𝑔𝑔(𝛽𝛽𝑖𝑖 → 𝛽𝛽𝑖𝑖∗)

� , 

where the asterisk denotes the proposed effect as sampled from the conditional 13 
proposal distribution g. Since Dirac’s delta density is infinite for a zero value, this 14 
ratio is undefined under the previously proposed infinitesimal model. Therefore, we 15 
consider an alternative mixture distribution with two Gaussians, one with variance 16 
(1−𝜏𝜏)ℎ2

𝑀𝑀𝑝𝑝
 and the other with variance 𝜏𝜏ℎ2

𝑀𝑀(1−𝑝𝑝)
 where τ is a small number, say 𝜏𝜏 = 10−3. 17 

Hence the prior distribution becomes  18 

𝑓𝑓(𝛽𝛽) = ��𝑀𝑀�
𝑀𝑀𝑀𝑀

2𝜋𝜋(1 − 𝜏𝜏)ℎ2
exp �−

𝑀𝑀𝑀𝑀
2(1 − 𝜏𝜏)ℎ2

𝛽𝛽𝑖𝑖2�
𝑀𝑀

𝑖𝑖=1

+ 𝑀𝑀�
𝑀𝑀(1 − 𝑀𝑀)

2𝜋𝜋𝜏𝜏ℎ2
exp �−

𝑀𝑀(1 − 𝑀𝑀)
2𝜏𝜏ℎ2

𝛽𝛽𝑖𝑖2�� . 

The conditional distribution 𝑓𝑓��̂�𝛽|𝛽𝛽� is still the same and is given in equation (A.2). 19 
Together this gives us all the quantities needed to implement the Metropolis 20 
Hastings MCMC.  21 
 22 
Approximate Gibbs sampler (LDpred): The general MH MCMC described above is 23 
tedious to implement and can also be computationally inefficient if proposal 24 
distributions are not carefully chosen. As a more efficient MCMC approach, we also 25 
considered a Gibbs sampler. This requires us to derive the marginal conditional 26 
posterior distributions for effects, i.e. 𝑓𝑓�𝛽𝛽|�̂�𝛽,𝛽𝛽−𝑖𝑖�, where 𝛽𝛽−𝑖𝑖 refers to the vector of 27 
betas excluding the ith beta. We can write the posterior distribution as follows  28 

𝑓𝑓�𝛽𝛽|�̂�𝛽,𝛽𝛽−𝑖𝑖� =
𝑓𝑓��̂�𝛽,𝛽𝛽�
𝑓𝑓��̂�𝛽,𝛽𝛽−𝑖𝑖�

=
𝑓𝑓��̂�𝛽|𝛽𝛽�𝑓𝑓(𝛽𝛽)

𝑓𝑓��̂�𝛽|𝛽𝛽−𝑖𝑖�𝑓𝑓(𝛽𝛽−𝑖𝑖)
=
𝑓𝑓��̂�𝛽|𝛽𝛽�𝑓𝑓(𝛽𝛽𝑖𝑖)
𝑓𝑓��̂�𝛽|𝛽𝛽−𝑖𝑖�

=
𝑓𝑓��̂�𝛽|𝛽𝛽�𝑓𝑓(𝛽𝛽𝑖𝑖)

∫ 𝑓𝑓��̂�𝛽|𝛽𝛽�𝑓𝑓(𝛽𝛽𝑖𝑖)𝑑𝑑𝛽𝛽𝑖𝑖
  .  

Sampling from this distribution is not trivial. However, we can partition the 29 
sampling procedure into two parts where we first sample whether the effect is 30 
different from 0 or not, and then if it is different from zero we can assume it has a 31 
Gaussian prior. To achieve this we first need to calculate the posterior probability of 32 
a marker being causal, i.e.  33 



 25 

𝑃𝑃�𝛽𝛽𝑖𝑖 = 0��̂�𝛽,𝛽𝛽−𝑖𝑖� =
𝑃𝑃(𝛽𝛽𝑖𝑖 = 0, �̂�𝛽,𝛽𝛽−𝑖𝑖)

𝑃𝑃(�̂�𝛽,𝛽𝛽−𝑖𝑖)
=

𝑃𝑃(𝛽𝛽𝑖𝑖 = 0, �̂�𝛽|𝛽𝛽−𝑖𝑖)

𝑃𝑃�𝛽𝛽𝑖𝑖 = 0, �̂�𝛽�𝛽𝛽−𝑖𝑖� + ∫ 𝑓𝑓��̂�𝛽|𝛽𝛽�𝑓𝑓(𝛽𝛽𝑖𝑖)𝑑𝑑𝛽𝛽𝑖𝑖𝛽𝛽𝑖𝑖≠0

 . 

Obtaining an analytical solution to this is non-trivial, however, if we assume that 1 
𝑃𝑃�𝛽𝛽𝑖𝑖 = 0��̂�𝛽,𝛽𝛽−𝑖𝑖� ≈ 𝑃𝑃�𝛽𝛽𝑖𝑖 = 0��̂�𝛽𝑖𝑖,𝛽𝛽−𝑖𝑖�, then we can simply extract out the effects of LD 2 
from other effects on the effect estimate �̂�𝛽𝑖𝑖 and then use the marginal posterior 3 
probability of the marker being causal from equation (A.1) instead, i.e. 4 
𝑃𝑃�𝛽𝛽𝑖𝑖 = 0��̂�𝛽𝑖𝑖,𝛽𝛽−𝑖𝑖� ≈ �̅�𝑀𝑖𝑖. If we sample the effect to be non-zero, and again make the 5 
simplifying assumption that 𝑓𝑓�𝛽𝛽𝑖𝑖��̂�𝛽,𝛽𝛽−𝑖𝑖� ≈ 𝑓𝑓�𝛽𝛽𝑖𝑖��̂�𝛽𝑖𝑖,𝛽𝛽−𝑖𝑖� then we can write out its 6 
posterior distribution, extract the effects of LD on the effect estimate, and sample 7 
from the marginal (without LD) posterior distribution derived above. More 8 
specifically, the marginal posterior distribution for 𝛽𝛽𝑖𝑖 becomes  9 
𝑓𝑓�𝛽𝛽𝑖𝑖��̂�𝛽,𝛽𝛽−𝑖𝑖� ≈ 𝑓𝑓�𝛽𝛽𝑖𝑖��̂�𝛽𝑖𝑖,𝛽𝛽−𝑖𝑖� = (1 − �̅�𝑀𝑖𝑖)𝛿𝛿𝛽𝛽𝑖𝑖 + �̅�𝑀𝑖𝑖ℎ(𝛽𝛽𝑖𝑖) ,  
where ℎ(𝛽𝛽𝑖𝑖) is the Gaussian density for the posterior distribution conditional on 10 
𝛽𝛽𝑖𝑖 ≠ 0, i.e.  11 

𝛽𝛽𝑖𝑖|�̂�𝛽𝑖𝑖,𝛽𝛽−𝑖𝑖,𝛽𝛽𝑖𝑖 ≠ 0 ∼ 𝑁𝑁
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�

⎠
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 12 
Practical considerations for LDpred: Throughout the derivation of LDpred above we 13 
assumed that the LD information in the training data was known. However, in 14 
practice that information may not be available and instead we need to estimate the 15 
LD pattern from a reference panel. In simulations we found that the accuracy of this 16 
estimation does affect the performance of LDpred, and we recommend that the LD 17 
be estimated from reference panels with at least 1000 individuals. In the current 18 
implementation of LDpred we fixed an LD window around the genetic variant when 19 
calculating the posterior mean effect. This is a parameter in the model that the user 20 
can set, and the optimal value may depend on the number of markers and other 21 
factors. For our analysis we accounted for LD between the SNP and a fixed window 22 
of SNPs of each side. The actual number of SNPs that were used to account for LD 23 
depends on the total number of SNPs used in each analysis, with larger windows for 24 
larger datasets.  25 
Although LDpred aims to estimate the posterior mean phenotype (the best unbiased 26 
prediction) it is only guaranteed to do so if all the assumptions hold. As LDpred 27 
relies on a few assumptions (both regarding LD and mathematical approximations), 28 
it is an approximate Gibbs sampler, which can lead to robustness issues. Indeed, we 29 
found the LDpred to be sensitive to inaccurate LD estimates, especially for very 30 
large sample sizes. To address this we set the probability of setting the effect size to 31 
0 in the Markov chain to be at least 5%. This improved the robustness of LDpred as 32 
observed in both simulated and real data. If converge issues arise when applying 33 
LDpred to data, then it may be worthwhile to explore higher values for the 0-jump 34 
probability.  35 
Finally, an important parameter that LDpred assumes to known is p, the fraction of 36 
“causal markers”. This parameter may of course not actually reflect the true fraction 37 



 26 

of causal markers as the model assumptions are, as always, flawed and the causal 1 
markers may not necessarily be genotyped. However, it is likely related to the true 2 
number of causal sites and may give valuable insight into the genetic architecture. 3 
Analogous to P-value thresholding we recommend that users calculate generate 4 
multiple LDpred polygenic risk scores for different values of p and then inferring 5 
and/or optimize on it in an independent validation data.  6 

Appendix B: Conditional joint analysis  7 
To understand the conditional joint (COJO) analysis as proposed by Yang et al.53, we 8 
implemented a stepwise conditional joint analysis method in LDpred. The COJO 9 
analysis estimates the joint least square estimate from the marginal least square 10 
estimate (obtained from GWAS summary statistics). If we define 𝐷𝐷 = 𝑋𝑋𝑋𝑋′

𝑁𝑁
 , then we 11 

have the following relationship  12 
�̂�𝛽joint = (𝐷𝐷)−1�̂�𝛽 . 
This matrix 𝐷𝐷 has dimensions 𝑀𝑀 × 𝑀𝑀 and may be singular. However, as for LDpred, 13 
we can adjust for LD locally if the individuals in the training data do not display 14 
family or population structure, in which case the genome-wide LD matrix is 15 
approximately a banded matrix. In practice, COJO analysis with all SNPs suffers a 16 
fundamental problem of statistical inference, i.e. it infers a large number of 17 
parameters (M) using N samples. Hence, if 𝑁𝑁 < 𝑀𝑀, we do not expect the method to 18 
perform particularly well. We verified this in simulations (see Supplementary 19 
Figure 7a)). By restricting to “top” SNPs and accounting for LD using a stepwise 20 
approach (as proposed by Yang et al.53) we alleviate this concern. However, 21 
although this reduces overfitting when 𝑁𝑁 < 𝑀𝑀 this approach also risks discarding 22 
potentially informative markers from the analysis. Nevertheless, by optimizing the 23 
stopping threshold via cross-validation in an independent dataset, the method 24 
performs reasonably well in practice, especially when the number of causal markers 25 
in the genome is small. In contrast, LDpred conditions on the sample size and 26 
accounts for the noise term appropriately (under the model), leading to improved 27 
prediction accuracies regardless of training sample size.  28 
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 1 

Figure 1: The performance of polygenic risk scores using LD-pruning (r2<0.2) 2 
followed by thresholding (P+T) with optimized threshold when applied to simulated 3 
genotypes with and without LD.  The prediction accuracy, as measured by squared 4 
correlation between the true phenotypes and the polygenic risk scores (prediction 5 
R2), is plotted as a function of the training sample size.  The results are averaged 6 
over 1000 simulated traits with 200K simulated genotypes where the fraction of 7 
causal variants p was let vary.  In a) the simulated genotypes are unlinked.  In b) the 8 
simulated genotypes are linked, where we simulated independent batches of 100 9 
markers where the squared correlation between adjacent variants in a batch was 10 
fixed to 0.9.   11 
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Figure 2: Comparison between the four different methods listed in Table 1 when 2 
applied to simulated traits with WTCCC genotypes.  The four subfigures a-d, 3 
correspond to different values of the fraction of simulated causal markers (p) with 4 
(non-zero) effect sizes sampled from a Gaussian distribution. To aid interpretation 5 
of the results, we plot the accuracy against the effective sample size defined as 6 
𝑁𝑁𝑒𝑒 = 𝑁𝑁

𝑀𝑀𝑠𝑠𝑖𝑖𝑠𝑠
𝑀𝑀, where N=10,786 is the training sample size, M=376,901 is the total 7 

number of SNPs, and 𝑀𝑀𝑠𝑠𝑖𝑖𝑚𝑚 is the actual number of SNPs used in each simulation: 8 
376,901 (all chromosomes), 112,185 (chromosomes 1-4), 61,689 (chromosomes 1-9 
2) and 30,004 (chromosome 1), respectively. The effective sample size is the sample 10 
size that maintains the same N/M ratio if using all SNPs.   11 
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 1 
Figure 3: Comparison of methods when applied to 7 WTCCC disease data sets, type-2 
1 diabetes (T1D), rheumatoid arthritis (RA), Chron’s disease (CD), bipolar disease 3 
(BD), type-2 diabetes (T2D), hypertension (HT), coronary artery disease (CAD).  The 4 
Nagelkerke prediction R2 is shown on the y-axis, see Supplementary Table 1 for 5 
other metrics.  LDpred significantly improved the prediction accuracy for the 6 
immune-related diseases T1D, RA, and CD (see main text). 7 
 8 
  9 
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 1 
Figure 4: Comparison of prediction accuracy for 5 different diseases, schizophrenia 2 
(SCZ), multiple sclerosis (MS), breast cancer (BC), type-2 diabetes (T2D), and 3 
coronary artery disease (CAD).  The risk scores were trained using large GWAS 4 
summary statistics data sets and used to predict in independent validation data sets. 5 
The Nagelkerke prediction R2 is shown on the y-axis (see Supplementary Table 1 6 
for other metrics).  LDpred improved the prediction R2 by 11-25% compared to LD-7 
pruning + Thresholding (P+T).  SCZ results are shown for the SCZ-MGS validation 8 
cohort used in recent studies9,13,15, but LDpred also produced a large improvement 9 
for the independent SCZ-ISC validation cohort (Supplementary Table 4).  10 
 11 
 12 
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