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Abstract: 

Neurobiological research supports the characterization of disordered gambling (DG) as a 

behavioral addiction. Recently, an animal model of gambling behavior was developed (rat 

gambling task – rGT), expanding the available tools to investigate DG neurobiology.  We 

investigated whether rGT performance and associated risk gene expression in the rat’s brain 

could provide cross-translational understanding of the neuromolecular mechanisms of addiction 

in DG.  We genotyped tagSNPs in 38 addiction-related genes in 400 DG and 345 non-DG 

subjects.  Genes with p<0.1 in the human association analyses were selected to be investigated in 

the animal arm to determine whether their mRNA expression in rats was associated with the rat’s 

performance on the rGT. In humans, DG was significantly associated with tagSNPs in DRD3 (rs 

167771) and CAMK2D (rs3815072).  Our results suggest that age and gender might moderate the 

association between CAMK2D and DG. Moderation effects could not be investigated due to 

sample power.  In the animal arm, only the association between rGT performance and Drd3 

expression remained significant after Bonferroni correction for 59 brain regions.  As male rats 

were used, gender effects could not be investigated. 

Our results corroborate previous findings reporting the involvement of DRD3 receptor in 

addictions.  To our knowledge, the use of human genetics, pre-clinical models and gene 

expression as a cross-translation paradigm has not previously been attempted in the field of 

addictions. The cross-validation of human findings in animal models is crucial for improving the 

translation of basic research into clinical treatments, which could accelerate neurobiological and 

pharmacological investigations in addictions. 

Word Count: 250 

Key-words: disordered gambling, pathological gambling, rat gambling task, genetics, gene 

expression, rs 167771, rs3815072. 
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Introduction 

 The worldwide expansion of legalized gambling has resulted in increased gambling-

related harm, as observed by higher rates of bankruptcy, divorce and suicide secondary to 

excessive gambling involvement (1).  It is estimated that 0.6 to 1% (1, 2) of the population in the 

United States and Canada meet DSM-IV criteria for pathological gambling (PG).  However, 

individuals who do not reach the DSM-IV diagnostic threshold also experience negative 

consequences from their gambling behavior (3, 4).  Thus, in keeping with the recent literature (5) , 

we will use the term disordered gambling (DG) to characterize the full spectrum of gambling-

related disorders, including PG and sub-clinical PG. The term PG will be reserved for the 

specific DSM-IV definition of the disorder. 

 Neurobiological research in DG has advanced in the last two decades, supporting its 

characterization as a behavioral addiction (6). Studies show that DG and substance addictions 

share, at least in part, dysfunctions in similar brain regions as well as performance on 

neuropsychological tasks (7).  For instance, similar deficits have been reported for both DG and 

substance addiction in assessments of inhibitory responses (8) and reflection impulsivity (9) .  In 

particular, DG and substance dependent subjects present deficits in the Iowa Gambling Task 

(IGT) (8, 10, 11), which assesses decision-making mediated by the pre-frontal cortex (12). In regards 

to genetic vulnerability, it is estimated that as much as 74% of the overlap between DG and 

alcohol dependence are accounted for by genetic factors in men (13) .   

 Two large twin studies estimated that genetic factors account for 50 to 60% of the 

vulnerability for developing DG (14, 15), showing that clinical and subclinical forms of the 

disorder are part of a single genetic continuum. However, there has been little advance in the 

understanding of the molecular genetic underpinnings of DG (16).  Most molecular genetic studies 

in DG were performed in small samples and investigations have focused on the dopamine and 
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serotonin system (16, 17).  Recently the first genome-wide association study in DG was published 

(18), and association trends were found with metaxin, ataxin and the very low density lipoprotein 

receptor genes.  In addition, a canonical pathway analysis revealed that several addiction-related 

pathways presented a higher frequency of SNPs nominally associated with DG.  Finally, the 

authors report that SNPs associated with DG were more frequent amongst candidate genes for 

dopamine-agonist induced PG in Parkinson’s disease.   

 The combination of human genetic and animal research in substance addictions has 

resulted in a better understanding of neural pathways involved in the development and 

maintenance of addiction-related processes (19, 20). Recently, animal models of “gambling-like” 

behavior using a risky decision-making paradigm have been developed (21, 22).  The utility of 

these animal models for the understanding of DG and for pre-clinical investigation of 

pharmacological treatments depends on how findings in humans and animals can be replicated 

across species (23).   

 Here, we have combined a molecular genetic association study in humans with an in situ 

hybridization study in brains of rats submitted to an animal model of gambling behavior, the Rat 

Gambling Task (rGT) (22).  Our goal was to investigate whether this three-component paradigm 

could provide preliminary support for human genetic findings in DG.   

 

Participants and Methods 

Human arm 

Subject recruitment: Subjects were recruited in the provinces of Ontario and Alberta, Canada 

between 2006 and 2010.  In Alberta, subjects were invited to participate in the Leisure, Lifestyle, 

and Lifecycle Project (LLLP) (24) -- a population-based study that investigates the natural 

progression of gambling behavior.  The LLLP sample recruitment strategy has been previously 
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described (3)  (see Supplementary Information).  A total of 609 adults consented to donate blood 

or saliva samples for genetic analyses.  

 In Ontario, individuals from the Greater Toronto Area who perceived their gambling as 

excessive were invited to participate in a genetic study.  These individuals were recruited 

through advertisements in the community and at problem gambling treatment centers.  Thus, 

Ontario provided an enriched sample for disordered gambling.  A total of 447 adult subjects were 

eligible to participate in the study and donated blood for genetic analyses. 

 Research protocols were approved by the participating institutions research ethics boards 

and were in compliance with the Declaration of Helsinki.  All subjects provided written informed 

consent to participate in the study. 

Measures: Lifetime and past-year gambling behavior were assessed using a DSM-IV based 

interview (25) and research analysts from both sites were trained on the administration of the 

instrument by board certified psychiatrists.   

 Diagnosis of psychotic disorders (e.g., schizophrenia and bipolar disorder) and 

neurological illnesses (e.g., seizures, Parkinson’s Disease) were considered exclusion criteria.  

Subjects were screened for psychiatric disorders through the Structured Clinical Interview 

Diagnosis in Psychiatry based on DSM-IV criteria (SCID-NP) in the Toronto (Ontario) sample 

and through the Composite International Diagnostic Interview (CIDI) in the Alberta sample. 

Gene Selection and Genotyping: The Knowledgebase for Addiction Related Genes (KARG) 

pathways database (26) was our initial source for gene selection, from which 24 genes were 

randomly selected through a computerized random number generator. Another 16 genes were 

selected based on higher association reliability scores ( 1) in the KARG database and/ or on 

preliminary evidence of association from our previous studies (27-30), totaling 40 genes (384 SNP 

panel).  
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 Selection of tagSNPs was performed using genotypic data from the International 

Haplotype Map Project database public release #3 (www.hapmap.org) in the Utah residents with 

ancestry from northern and western Europe sample (i.e., CEU population).  TagSNPs with 

minor-allele frequencies (MAF)  0.10 and with a minimum distance of 60bp between SNPs 

were selected using the aggressive pairwise-tagging algorithm in the software Haploview v4.2 

(31). 

 Genomic DNA was extracted using standard methods from either blood lymphocytes or 

saliva (OrageneTM DNA Self-Collection Kit).  Genotyping for tagSNPs was performed using 

Illumina GoldenGate® custom SNP genotyping protocols (Illumina, San Diego, California, 

USA).  Genetic analysis was performed using an Illumina Beadstation 500G platform.  Quality 

control metrics from GenCall v6.2.0.4 were used to exclude SNPs with poor performance: 

genotype calls <95%, with < 10% MAF, and not in Hardy-Weinberg equilibrium (p<10-3) in 

either cases or controls.  A total of 320 tagSNPs distributed along 38 genes were included in the 

analysis (Table 1).   

Statistical Analysis: Power calculations were performed through QUANTO (32) and revealed that 

a case-control ratio of 1: 1, with 400 cases would have ~80% power to detect associations with 

an odds ratio of 1.5 (two-tailed p-values), considering a MAF of 0.10, and a population 

prevalence of 0.05 (mean prevalence of DG in Canada) (4, 33, 34).  

 We compared DG and non-DG groups in regards to gender and age, using chi-squared 

and t-tests respectively.  Allelic-based genetic associations were investigated using chi-squared 

tests or logistic regressions as appropriate, using Golden Helix SNP and Variation Suite v7.6.11 

(35)(Golden Helix, Inc., Bozeman, MT) .  SNP spectral decomposition(36) was used to correct 

association tests for multiple testing.  

http://www.hapmap.org/
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Animal Arm 

Sample: 12 male Sprague-Dawley rats weighing 200–250 g (Charles River, Quebec) were used 

for all experiments. All procedures were approved by the Animal Care Committee at the Centre 

for Addiction and Mental Health and complied with Canadian Council on Animal 

Care (CCAC) and NIH standards and guidelines.  

Rat Gambling Task (rGT): The Rat Gambling Task (rGT) (22), a rodent analogue of the human 

Iowa Gambling Task(12), was conducted in commercial five-choice chambers (Med Associates, 

St. Albans, VT) as described previously(22) and as recently implemented in our laboratory (37).  

Each rGT option (P1-P4) was calculated as a percent of total trials per session, and an impulsive 

choice ratio was determined for each animal (high-risk P4 choices divided by optimal P2 

choices).  A high rGT impulsive choice ratio reflects persistent choice of high-risk options, 

which are linked to larger rewards, but ultimately result in fewer pellets earned per session 

(Supplementary Information). 

In situ hybridization:  Upon completion of the behavioural testing, brains were recovered and 

coronal sections were prepared Hybridization was performed with [35S]UTP labeled riboprobes 

complementary to the sequences of interest (Supplementary Information – Table S1).  In situ 

hybridization signals on film were quantified using MCID Basic 7.0 image analysis software 

(Interfocus Imaging, Linton, UK) (Supplementary Information).  Densitometry data for each 

region were averaged across brain sections for each animal. Association between the rGT choice 

data and mRNA density in different rat brain regions for the three genes was performed using 

correlation analysis. 

 

Results 

Human Arm  
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Sample Characteristics:  1,056 individuals were recruited for this study, of which 76% (n=803) 

reported European Caucasian, 6.8% (n=72) African, and 9.2% (n= 97) Asian ancestry.  Ancestry 

was determined using genealogical information provided by the participants (e.g., subjects 

reporting a minimum of three European Caucasian grandparents were considered as Caucasians).  

Individuals who were adopted, reported mixed ancestry (e.g., 50% Caucasian and 50% Asian) or 

were unable to provide information regarding their ethnic background comprised 8% (n=84) of 

the sample and were excluded from the analyses.  To further confirm ancestry, we compared the 

distribution of 269 SNPs1 between self-reported Caucasians in the Toronto and Alberta samples 

and HapMap populations (HapMap release #3, www.hapmap.org ).  Results from principal 

component analysis (PCA) show that the majority of self-reported Caucasian subjects from our 

sample were clustered within the HapMap CEU sample (Supplementary Information - Figure 

S1). A second PCA was performed to investigate whether population stratification was present 

between the Toronto and Alberta samples (Supplementary Information - Figure S2). Subjects 

identified as outliers through PCA were excluded.   

Subjects endorsing a minimum of two PG DSM-IV criteria lifetime were included in the 

DG group. This cut off was selected for two main reasons: (i) previous studies in Canadian 

samples show that reporting two or more PG symptoms is the optimal threshold for determining 

gambling-related harm (3, 4, 38), whereas subjects reporting 0 to 1 PG criteria are considered low-

risk gamblers and do not experience gambling-related harm; (ii) heritability for DG is 

significantly higher in subjects presenting ≥2 PG DSM-IV criteria lifetime compared to those 

presenting only one criteria (14, 15).  Because different thresholds can be used to define DG in the 

literature, we have also performed secondary analyses using broader (≥ 1 DSM-IV criteria) and 

                                                 
1 From the SNPs in our panel, 296 SNPs were available in HapMap populations and were used for PCA. 

http://www.hapmap.org/
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narrower (≥ 5 DSM-IV criteria) definitions of the disorder.  Subjects included in the non-DG 

group did not endorse any DSM-IV criteria for PG in their lifetime.   

Our final sample was composed of 745 Caucasian subjects (400 DG and 345 non-DG 

subjects). The majority of control subjects (99%) originated from the LLLP study and the 

majority of DG subjects originated from the Toronto sample (73.5% of DG subjects).  The 

prevalence of pathological gambling (≥ 5 DSM-IV criteria) in the general population is 0.6 to 1% 

(1, 2), which is in keeping with the frequency found in the LLLP sample (1%). 

 The proportion of males and females was significantly different between groups (DG 

37.5% females, non-DG 68.4% females, χ2 70.8, df = 1, p < 0.001) and subjects in the DG group 

were significantly older (DG mean age = 43.513.6 years, non-DG mean age = 37.5 20.6, 

t(578)= -4.7, p <0.001).  The majority of the DG group met DSM-IV criteria for PG (5 criteria, 

68.5%, n= 274), with 10.5% (n= 42) endorsing two criteria and 21% (n= 84) endorsing three or 

four DSM-IV criteria.  

Genetic Association Analyses:  Because it has been recently shown that the addition of known 

covariates can significantly decrease power to identify new genetic variants when disease 

prevalence is < 15%(39) we present results of allelic association tests and of a logistic regression 

model including age and gender as covariates (Table 2). 

Single nucleotide polymorphism spectral decomposition(36) was applied to the 320 SNPs 

analyzed, resulting in 185.3 independent tests.  After inclusion of covariates in a logistic 

regression model, the association with rs167771 (DRD3) remained significant, and a tagSNP in 

CAMK2D (rs3815072) also became significant (Table 2).  Secondary analyses using both 

broader (≥ 1 DSM-IV criteria) and narrower (≥ 5 DSM-IV criteria) definitions of DG reveal that 

the same SNPs in CAMK2D and DRD3 (rs3815072 and rs16771, respectively) were associated 
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with the smallest p-values, although with different levels of significance due to changes in 

sample power and in the specificity of the phenotype (Supplementary Information - Table S3). 

In order to investigate possible functional effects of these polymorphisms, we used in 

silico function prediction tools and searched for effects of these tagSNPs on DRD3 and 

CAMK2D expression in public gene expression databases.  Brain Cloud (40) data shows that 

rs167771does not alter DRD3 expression in the human prefrontal cortex, whereas the GTEx 

eQTL database (http://www.ncbi.nlm.nih.gov/gtex/GTEX2/gtex.cgi) has no information 

regarding expression of rs167771 in brain tissue.  Neither Brain Cloud nor GTEx eQTL 

databases have information regarding the expression of rs3815072.  Our in silico analysis using 

RegulomeDB(41) reveals that there is minimal evidence for transcription factor binding sites in 

rs167771 (RegulomeDB score= 5) and in rs3815072 (RegulomeDB score= 6) in samples from 

peripheral tissue and embryonic stem cells. 

 

Animal Arm 

Rat Gambling Task (rGT) Performance:  Individuals generally exhibited an extremely stable 

pattern of behavior, with small within-subject variability (Supplementary Information, Figure 

S3), but considerable variability in the choice distribution between animals (P2 range: 15-98%; 

P4 range: 0-26% of total choices per session).  The average P4/P2 ratio for the group was 0.32 

(SD = ± 0.61).  While the majority of animals adopted the most optimal strategy, a few rats 

exhibited varying preferences for the higher risk options (P4) (Figure 1 – only last 6 trials 

shown), consistent with previous reports(22).  One animal was of particular interest, as it had a 

high impulsive choice ratio of 2.07. 

rGT Performance and In situ hybridization Correlation Analyses:  Genes with p-values <0.1 (χ2 

tests, Table 2) in the human genetic association analyses were selected to be investigated in the 
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animal arm.  In situ hybridization was performed in eight brain regions for Drd32, 32 regions for 

Camk2d and 19 regions for Htr2a.  The rat genes Drd3, Htr2a, and Camk2a present 85%, 91% 

and 90% nucleotide identity with human orthologues respectively (www.genecards.org)(42).   

Both rGT performance and in situ hybridization data were normally distributed 

(Kolmogorov-Smirnov tests, p-values > 0.05).  Pearson’s r correlation tests are presented in 

Table 3 by brain region for each of the three genes of interest.  Figure 2 illustrates gene 

expression in brains of rats with high and low impulsive choice.   

After correction for multiple testing (59 brain regions tested in total) only the association 

between rGT performance and (mRNA)Drd3 levels in the Islands of Calleja remained 

significant.  Noteworthy is the fact that the correlation with rGT performance presents opposing 

direction in the Islands of Calleja and Islands of Calleja Major.  Opposing direction of 

association is a common finding in animal studies using detailed regional analyses of the brain 

(e.g. Creed et al.(43)). 

  

Discussion 

Human and Pre-Clinical findings on Dopamine D3 gene/ receptor in addictions 

A relatively small number of human genetic studies have investigated the association of 

DRD3 polymorphisms with substance and behavioral addictions, with most candidate gene 

studies being conducted in small samples.  Recently, studies on larger ethnically homogeneous 

samples have reported significant associations of a number of DRD3 polymorphisms with 

nicotine (45, 46), opioid (47), and alcohol addiction (48). 

                                                 
2 In accordance with current nomenclature standards, human genes are indicated by capital letters in italics (e.g., 
DRD3) and human gene products by capital letters only (e.g., DRD3). Rat genes are indicated by lower case letters 
in italics (e.g., Drd3) and rat gene products by lower case letters only (e.g. Drd3).  When referring to both human 
and animal genes and gene products, we use capital letters and specify whether we are referring to genes or its 
products (e.g. DRD3 receptors, DRD3 gene). 
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In keeping with previous DG candidate gene studies (17, 49, 50), we did not find a 

significant association with the functional DRD3 polymorphism rs6280 (Ser9Gly).  However, we 

did find a significant association with DRD3 rs167771.  Possibly we were able to unveil this 

association because we used a larger sample and because the use of 15 tagSNPs allowed us to 

cover 98% of the variation in DRD3, whereas previous studies genotyped only rs6280.  It should 

also be noted that rs6280 and rs167771 are in high linkage disequilibrium (D’ = 0.92), thus either 

SNP (as well as other neighboring SNPs in high linkage disequilibrium) could contribute to 

association signals.   

The function of rs167771 is unknown, but studies suggest it may have a functional role 

because of its association with motor side-effects secondary to risperidone use (44).  Although 

Brain Cloud data does not indicate a functional effect for this SNP, it is important to note Brain 

Cloud has no expression data for DRD3 polymorphisms in brain areas where the DRD3 gene is 

highly expressed (e.g., nucleus accumbens and Islands of Calleja).  Likewise, in silico functional 

prediction analysis (RegulomeDB database) did not use brain tissue data.  Thus, the effect of 

rs16771 on DRD3 expression in the striatum remains to be investigated. 

Approximately 85% of other impulse control disorders cases in Parkinson’s disease 

patients are associated with the use of selective DRD3 receptor agonists(51) (e.g., pramiprexole, 

ropinirole, and rotigotine) .  Lee et al. (52) have found DRD3 to be associated with the occurrence 

of impulse control disorders (including DG) in Parkinson’s disease patients receiving dopamine 

(DA) agonist therapy in a large Korean sample.  Imaging studies have also found an association 

between impulse control disorders in Parkinson’s disease and D2/D3 receptor availability in the 

striatum(54).  Similarly, a positron emission tomography study in humans reported a significant 

association of DRD3 receptor binding with DG severity(53).  Thus, together with our results, a 

small but consistent body of research supports the involvement of DRD3 in DG. 
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The animal arm of our study also suggests the involvement of Drd3 in DG, supporting 

our human study results.   Our findings relate to Drd3 gene expression in a very circumscribed 

brain area in the ventral striatum (namely the Islands of Calleja) where Drd3 expression and 

Drd3 receptor binding as assessed with D3-specific ligands is particularly high (55).   

Regarding animal models of gambling behavior, previous animal studies have 

investigated the role of D1 and D2 receptors (21), while investigations of the role of D3 receptors 

in this context are at an early stage.  Recently, Cocker et al. (56) reported that risk aversion in rats 

was associated with decreased Drd2/Drd3 availability in the caudate-putamen, whereas no 

association was found with Drd2/Drd3 availability in the ventral striatum.  Several aspects may 

have contributed to the discrepancy between Cocker et al.’s and our findings.  Firstly, the 

decision-making task (“betting task’) used by Cocker et al. captures biases specifically for gains  

by giving animals the choice between a guaranteed reward and a 50% chance of doubling that 

reward or receiving nothing (57).  In contrast, the rGT captures decision-making under 

uncertainty, where reward and punishment are randomized across five options (22).  In the betting 

task, lesions to the basolateral amygdala (BLA) do not affect choice preference (57), whereas in 

the rGT, BLA lesions increase risky decision-making behavior in animals (58).  Thus, the rGT and 

the betting task likely measure different decision-making constructs.  Secondly, it is unclear to 

what extent Cocker et al.’s findings reflect Drd3-specific availability.  Previous studies suggest 

that raclopride can provide an indirect measure of D3 receptor density (59), however raclopride 

has significantly higher affinity to D2 compared to D3 receptors and other ligands have been 

shown to be more suited for assessing D3 availability (59).  On the other hand, although mRNA 

measures are highly specific they might not always correlate with receptor availability since 

post-transcriptional mechanisms may also affect gene expression (60).  Thus, in order to better 
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understand the role of D3 receptors, future studies would benefit from using Drd3-specific 

methods across different gambling and decision-making tasks.  

In substance addiction, both increased (61, 62) and decreased (63) D3 receptor levels have 

been associated with amphetamine-induced DA release.  Recent studies report increased 

amphetamine-induced release of striatal DA in pathological gamblers (64) and in animals exposed 

to a gambling-like schedule of reinforcement (65).  While our study did not address functional 

mechanisms, it is conceivable that the decreased Drd3 gene expression observed in our animals 

reflects: (1) a compensatory mechanism for increased DA release, or (2) a vulnerability 

mechanism in which decreased availability of D3 receptors (which act as autoreceptors in the 

nucleus accumbens, inhibiting DA release (66)) leads to decreased inhibition of dopamine release.  

In fact, a model has been proposed in which highly impulsive individuals presenting low 

midbrain D2/D3 receptor density would present higher DA release in response to reward (63).  

Further investigations will be necessary to determine whether or not this proposed model would 

apply equally to D2 and D3 receptors. 

 

Human and Pre-Clinical findings on CAMK2D gene/kinase in addictions:  

To the best of our knowledge, no other study has investigated CAMK2D genetic 

polymorphisms in association with addictions.  Similarly to DRD3 rs167771, the effect of 

rs3815072 on CAMK2D expression is yet unknown.  

CAMK2D is part of a larger family of type 2 Ca2+/calmodulin-dependent protein kinase 

genes, which are the common link between all five proposed addiction-related genetic pathways 

(26). CAMK2 kinases have been found to have an important role in mediating stimulant-induced 

DA release (67), conditioned place preference (68), and behavioral sensitization (69), to be involved 

in nicotine-induced neuroplastic changes (70, 71), and to participate in processes leading to the 
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development of opioid tolerance and addiction (72).  In particular, pre-clinical studies have found 

Camk2d to be involved in the regulation of neuroplastic processes, such as embryonic axonal 

development and neuronal apoptosis (73), and in the recovery from traumatic brain injury (74).  

Recently, Camk2d transcripts have been found to be up-regulated in GABAergic neurons in 

nucleus accumbens of rats in an animal model of nicotine self-administration, suggesting that 

Camk2d may be involved in nicotine-induced signaling changes from GABAergic projections in 

the nucleus accumbens to the ventral pallidum (75).  

 Our results indicate that sex might moderate the association between CAMK2D and DG.  

Interestingly, estrogen has been shown to modulate Camk2 activity in the brain (76).  Moreover, 

estrogen has been shown to regulate Camk2 activity in female rats submitted to a chronic 

cocaine administration treatment, which has not been observed in male rats under the same 

treatment regimen (77).  No studies have investigated the effect of estrogen specifically on 

CAMK2D kinase activity in the brain; however, pre-clinical studies have found that estrogen 

regulates Camk2d in cardiac tissue (78, 79).  Together, these findings suggest that sex might 

moderate the association between CAMK2D (kinase/ gene) and addiction – a hypothesis that 

deserves further investigation. 

 

Genetic Associations in previous DG studies 

Previous DG candidate gene studies reported associations with polymorphisms in DRD1 

(50, 80), DRD2 (80, 81), DRD4 (82),  HTR2A (30), MAO-A and MAO-B (83). Our analyses included the 

same polymorphisms for DRD1, DRD2, and HTR2A but our results do not replicate previously 

reported associations with these genes.  Earlier studies included only pathological gamblers, 

whereas our study included subjects presenting sub-clinical forms of the disorder.  However, it is 

unlikely that sample composition alone could account for the lack of replication because the 
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majority of cases in our sample (68.5%) meet DSM-IV criteria for PG.  Likely, the lack of 

replication of results from earlier studies is related to differences in sample size (less than 150 

cases per sample in earlier studies), advances in technology which now allow the genotyping of 

increasingly number of variants within a gene, and/ or to potential population stratification bias. 

Currently only one DG genome-wide association study (GWAS) has been published (18).  

The authors suggest that genes in chromosomes 9 and 12 may be associated with DG, which 

does not coincide with the chromosomal location of either DRD3 or CAMK2D.  Nevertheless, 

results show that SNPs nominally associated with DG are enriched within KARG and 

Parkinson’s disease genetic pathways, which is in line with our findings and candidate gene 

selection.  It is unclear whether our study is fully comparable to Lind et al.(18) due to the 

significant variation in sample composition (i.e., proportion of individuals meeting PG diagnostic 

criteria) and genetic methodology. 

 

Limitations and Conclusion  

As with any study, it is important to consider limitations in the interpretation of our 

results.  Our human sample is of moderate size, thus there is a potential for false positives, which 

we aimed to minimize by using appropriate multiple testing correction procedures.  We did not 

use specific ancestry informative markers; however we combined self-report ancestry 

information and HapMap population data to minimize possible effects of population 

stratification.  While we have made efforts to ensure that the Toronto and Alberta samples are 

genetically homogeneous, because of methodological limitations (e.g., number of SNPs 

analyzed) it is possible that some degree of population stratification still exists.  This issue could 

be addressed in future studies using other methodological approaches and larger samples.  It is 

also important to note that samples of pathological gamblers (≥ 5 DSM-IV criteria) are difficult 
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to obtain – the prevalence of PG is estimated at 1% (1, 2) and only 7-12% of pathological gamblers 

seek treatment (83).  Thus, while the potential for population stratification cannot be fully 

excluded, combining subjects from Toronto and Alberta allowed us to obtain a sample composed 

by a larger proportion of pathological gamblers. 

Although we used tagSNPs, coverage of the selected genes was partial because we used a 

small SNP-panel.  An important strength of our sample is the large proportion of subjects that 

met DSM-IV criteria for PG.  Considering that the heritability of DG is higher in subjects who 

meet DSM-IV criteria for the disorder(14, 15) and that broader phenotype definitions may result in 

a “dilution of the effect” of the phenotype (85), future studies could benefit from increasing the 

proportion of subjects more severely affected by DG in their samples.   

The major limitation of our preliminary animal study is sample size.  Future studies 

should include a larger sample, with more animals with high rGT impulsive ratios.  At this time 

our animal study is descriptive in nature and possible functional roles of the observed alterations 

will need to be tested with other experimental designs using controlled brain interventions.  For 

example, causal associations could be tested by means of local injections of D3 receptor 

agonists/antagonists into these brain areas.  Nonetheless, we believe the current data serve as an 

important proof-of-concept for the use of functional animal data as an adjunct to human genetic 

findings.  

 In summary, we have found a significant association with DG and rs167771 (DRD3) and 

with rs381572 (CAMK2D) in humans.  Most importantly, our results regarding DRD3 were 

supported by results from animal experiments.  We could not investigate age and gender effects 

in the animal arm of the study, which might account for the lack of association between 

(mRNA)Camk2d and rGT performance.   
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The replication of human findings in animal models is crucial for improving the 

translation of basic research in to clinical treatments.  If replicated, our results suggest that the 

use of human genetics, pre-clinical models and gene expression as a cross-translation paradigm 

could significantly accelerate neurobiological and pharmacological investigations in DG and 

possibly other addictive disorders. 
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Table 1: Genes and number of polymorphisms (tagSNPs) included in the analysis. 

 

1
 ANKK1, TTC12 and DRD2 are in close physical relationship and the TaqA1 variant is now known to be located 

in ANKK1; 
2
 also known as DAT1; 

3
 also known as 5-HTT or SERT 

Gene Name Gene Symbol (number of tagSNPs included in the analysis) 

Ankyrin repeat and kinase domain 
containing 1 ANKK1 (4) 1 

Calcium/calmodulin-dependent protein 
kinase, types 2A, 2B, 2D CAMK2A (17), CAMK2B (10), CAMK2D (33), CAMK2G (4) 

Cocaine- and amphetamine-regulated 
transcript CARTPT (7) 

Cannabinoid receptor, type 1 and type 2 CNR1 (2), CNR2 (3) 

Dopamine receptor gene, types 1 2, 3, 
and 4 DRD1 (3), DRD2 (7) 1, DRD3 (15), DRD4 (2) 

Gonadotropin-releasing hormone, types 
1 and 2 GNRH1 (3), GNRH2 (1) 

Metabotropic glutamate receptor, types 
1 and 5 GRM1 (10), GRM5 (18) 

Serotonin receptor, types 1B, 2A, 3A, 
3B, 6, and 7 

HTR1B (8) ,HTR2A (23), HTR3A (7), HTR3B (7), HTR6 (5), 
HTR7 (4) 

Mitogen-activated protein kinase, 
kinase 1, 2, and 4 MAP2K1 (4), MAP2K2 (9), MAP2K3 (5), 

Mitogen-activated protein kinase 1 MAPK1 (4) 

Phospholipase D, type 1 and 2 PLD1 (5), PLD2 (6) 

Protein kinase, cAMP-dependent, 
catalytic, types beta and gamma PRKACB (9), PRKACG (2) 

Solute carrier family 6 
(neurotransmitter transporter, 
dopamine), member 3 SLC6A3 (5) 2 

Solute carrier family 6 
(neurotransmitter transporter, 
serotonin), member 4 SLC6A4 (8) 3 

Tachykinin receptor, types 1, 2, and 3 TACR1 (23), TACR2 (3), TACR3 (9) 

Tyrosine hydroxylase TH (6) 

Tryptophan hydroxylase, type 2 
(neuronal) TPH2 (20) 

Tetratricopeptide repeat domain 12 TTC12 (9) 1 
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Table 2: Genetic associations with Disordered Gambling (DG) in a sample of 400 DG  

and 345 non-DG subjects, allelic association tests and logistic regression analysis with gender and age as covariates1. 
 

A1 Count (frequency) 
tagSNP Gene A1/A22

Cases Controls 
χ2 Allelic Test 

p-value3 
Logistic regression 

p-value4 
OR 

(95%CI) 

rs167771 DRD3 A/G 626 (0.78) 593 (0.87) 14.7 2.2E-02 4.0E-02 1.7 (1.3-2.2) 

rs7997012 HTR2A G/A 483 (0.60) 354 (0.51) 12.4 7.8 E-02 8.0E-01 1.4 (1.2-1.8) 

rs3815072 CAMK2D A/G 705 (0.88) 562 (0.82) 12.1 9.2 E-02 1.7E-02 1.7 (1.2-2.2) 

rs1524998 CAMK2D A/G 486 (0.61) 360 (0.52) 11.1 1.6E-01 4.0E-01 1.4 (1.2-1.7) 

rs9534512 HTR2A A/G 462 (0.57) 346 (0.5) 7.8 7.4E-01 4.1E-01 1.4 (1.1-1.7) 
   1 Top 5 results shown. Significant associations highlighted in bold.  

2 A1 refers to major allele and A2 to minor allele, significantly associated alleles highlighted in bold. 
3 SNP spectral decomposition corrected p-value, chi-squared test (no covariates). 
4 Logistic regression p-value for the genetic association with DG, including gender and age as covariates, SNP spectral 

decomposition corrected p-value.  
   ` 
 



 

Table 3: Correlation tests between rGT impulsive choice ratio (P4/P2, mean 0.32 ±0.61) 
and Htr2a, Drd3 and Camk2a mRNA density by brain region, Pearson’s r 1. 
 

1 Only correlations ( Pearson’s r) above 0.6 shown 

Rat Gene Brain Region 
mRNA density 

mean (±SD) 
Pearson’s r p-value 

Corrected  

p-value 2 

Islands of Calleja 44.47 (13.06) -0.91 8.96 e-05 0.005 
Drd3 

Islands of Calleja Major 53.45 (11.69) 0.62 0.04 > 0.05 

Medial Amygdaloid Nucleus 60.49 (14.19) -0.65 0.04 > 0.05 
Camk2d 

Lateral Amygdaloid Nucleus 15.85 (3.95) -0.64 0.04 > 0.05 

Cingulate Cortex 21.47 (2.76) 0.65 0.03 > 0.05 
Htr2a 

Piriform Cortex 33.16 (5.61) 0.61 0.04 > 0.05 

2 Bonferroni correction for a total of 59 brain regions. 
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