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We present a method of locally inverting the sign of the coupling term in tight-binding systems, by
means of inserting a judiciously designed ancillary site and eigenmode matching of the resulting vertex
triplet. Our technique can be universally applied to all lattice configurations, as long as the individual sites
can be detuned. We experimentally verify this method in laser-written photonic lattices and confirm both
the magnitude and the sign of the coupling by interferometric measurements. Based on these findings, we
demonstrate how such universal sign-flipped coupling links can be embedded into extended lattice
structures to impose a Z2-gauge transformation. This opens a new avenue for investigations on topological
effects arising from magnetic fields with aperiodic flux patterns or in disordered systems.
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Ever since the landmark conjecture of Aharonov and
Bohm, it is well known that charged particles on closed
loops around a magnetic field acquire a phase governed by
the ratio of the encircled flux to one flux quantum [1]. In
two-dimensional tight-binding lattices, this round-trip
phase is distributed over the individual hopping links in
a manner determined by the choice of gauge [2]. If only
real-valued hopping coefficients are permitted, the gauge
falls into the Z2 group and produces phases in multiples of
π, i.e., plaquettes pierced by multiples of half a flux
quantum, which can lead to particularly rich physics.
For instance, square lattices with homogeneous π-phase
fluxes and dimerized hopping amplitudes have been
predicted to host fractional charges with fractional
exchange statistics [3,4]. Under the influence of disorder,
such π-flux square lattices exhibit zero energy modes with
critical behavior [5–8]. In other geometries, Z2 gauges can
be mapped to the physics of interacting lattice spins [9] or
to the exchange phase of identical fermions on a graph [10].
However, a direct implementation of such large magnetic
fluxes in solids exceeds current experimental capabilities
by orders of magnitude. Therefore, one has to resort to
artificial solids, such as atoms in optical potentials [11],
molecules on metal surfaces [12], arrays of microwave
resonators [13], or optical waveguide lattices [14,15], to
mention a few, and employ artificial gauge transformations
for an experimental test of the expected dynamics. Notably,
the crucial aspect for realizing the Z2 gauge is the
capability to change the sign of the hopping or coupling
rate in these systems, which is inherited from the under-
lying physical processes, at will. Control over this sign
can be acquired by dynamical modulation of the lattice
[16–21], Raman-assisted tunneling [22,23], or embedding

defects in infinite arrays [24]. The latter method is effective
for only one particular configuration, whereas the former
two affect the entire lattice in a periodic manner and require
dynamic control or additional pump lasers, respectively.
So far, no approach has been known, however, which

permits changing the sign of coupling in arbitrary geom-
etries without relying on periodicity and, thus, allowing the
implementation of any Z2-gauge transformation. In this
Letter, we propose and experimentally demonstrate such a
method which operates entirely on the level of individual
links. A sign flip of the coupling is achieved via the
insertion of a single defect site on the targeted link and
matching the eigenmodes of the modified system to the
ones of the target lattice. The concept is based solely on
static adjustments and can be universally applied to any
tight-binding system, given that additional sites can be
inserted and the on-site potential can be controlled.
We start with a tight-binding Hamiltonian of a two-

dimensional lattice governed by the adjacency matrix T:

H ¼ −
X
hj;ki

Tjk expðiθjkÞa†jak þ H:c:;

with aj as the particle annihilation operator on site j and
hj; ki denoting ordered pairs. The phases θjk account for
magnetic fluxes threading the lattice. In particular, for a
plaquette P pierced by the flux ΦP, the sum over all phases
around the plaquette must yield eΦP=cℏ [2,3] [see Fig. 1(a)
for an example]. The specific distribution of phases
around P can be chosen arbitrarily and constitutes the
gauge degree of freedom. If all fluxes in the system are
integer or half-integer multiples of a flux quantum, that is,
∀ P∶ΦP ¼ νPhc=e; νP ∈ f0;�1=2;�1;…g, the associ-
ated round-trip phases are multiples of π. Therefore, such
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a scenario can be gauged to have only symmetric real
hoppings of either positive or negative sign, forming the Z2

group of gauges [Fig. 1(b)].
Facilitating the exploration of all possible Z2-gauge

fields requires an independent control over the signs of
all hoppings in the lattice. In what follows, we present a
method for exactly that purpose. To be specific, we use the
notation of evanescently coupled optical waveguides,
where coupling is positive by default, and show how
negative coupling can be implemented in such systems.
The dynamics of two identical single-mode waveguides
coupled with strength κ > 0 (in the frame comoving with
the mode’s propagation constant along the spatial coor-
dinate z) is governed by coupled-mode equations [25]:

i
da1ð2Þ
dz

þ κa2ð1Þ ¼ 0; ð1Þ

with discrete field amplitudes a1 and a2 guided in the two
channels. This system is equivalent to two potential wells,
each supporting one eigenmode, with the tunneling rate κ
between them and z representing the time axis. Such a
coupler features a pair of stationary solutions
(a1ðzÞ; a2ðzÞ)⊺ ≡ uκ

� exp ðiβκ�zÞ with eigenvalues βκ� and
eigenmodes uκ

�. From Eq. (1) readily follows

βκ� ¼ �κ; uκ
� ¼ 1ffiffiffi

2
p ð1;�1Þ⊺;

which is the characteristic pair of symmetric and antisym-
metric eigenmodes [see Fig. 1(c)]. For negative coupling
κ → −κ, the eigenvalues of the pair are exchanged:
β−κ� ¼ βκ∓, as shown in Fig. 1(d). The aim is now to find
a structure consisting entirely of positively coupled units
which has the same eigenmodes as the idealized negative
coupler and, therefore, exhibits identical dynamics.
To this end, we consider an additional waveguide,

inserted between the two sites 1 and 2 with its propagation
constant detuned by Δ. The outer sites may likewise be
detuned by some value δ [see Fig. 1(e)]. The sites are
coupled with the rate κ1, which one can expect to be much
larger than κ for physical realizations of such a system, due
to the exponential dependence of the coupling on the
separation between the sites [26]. At this point, we will
neglect next-nearest-neighbor coupling and discuss its
influence later on. The eigenmodes v of this three-site
system are determined by the eigenvalue problem:

0
B@

δ 0 κ1

0 δ κ1

κ1 κ1 Δ

1
CAv ¼ βv: ð2Þ

One finds that the antisymmetric eigenmode v−¼ð1= ffiffiffi
2

p Þ×
ð1;−1;0Þ⊺ always exists with an eigenvalue of β− ¼ δ,
regardless of the other parameters. Thus, setting δ ¼ κ
perfectly matches v− to the antisymmetric eigenmode of a
negative coupler u−κ

− [purple eigenmodes in Figs. 1(d) and
1(e)]. To acquire a symmetric eigenmode vþ matching its
counterpart for the negative coupler u−κþ , its components
must satisfy vþ;1 ¼ vþ;2 and its eigenvalue βþ ¼ −κ. Both
conditions are met for

δ ¼ κ; Δ ¼ ðκ21=κÞ − κ: ð3Þ
In contrast to the antisymmetric mode, however, the
matching of the symmetric mode is not perfect, as a part
of vþ resides also on the central site [shown in green in
Fig. 1(e)]. The fidelity of reproducing the behavior of a
negative coupler can be quantified by the overlap of the
normalized symmetric eigenmodes:

F≡X2
j¼1

vþ;ju−κþ;j ¼ ½1þ 2ðκ=κ1Þ2�−ð1=2Þ:

This fidelity grows monotonically with the ratio of the
coupling strengths, tending to unity for κ1=κ → ∞, and is
plotted as the solid graph in Fig. 1(f). Hence, a large ratio
κ1=κ will be favorable to obtain a high quality of eigen-
mode matching. In this regime, the third eigenmode v3
[shown in magenta in Fig. 1(e)] resides mostly on the
defect node, is strongly detuned, and, therefore, barely
interferes with the other eigenmodes. Note that, in practical

FIG. 1. (a) Distribution of Aharonov-Bohm phases on a lattice
cell pierced by flux ΦP. (b) Z2 gauge: Flux phases of 0 and π can
be realized by positive and negative real hoppings. (c) Conven-
tional coupler with identical waveguides and its eigenmodes.
Light propagates along the z axis into the image plane. (d) Cou-
pler with negative coupling. (e) Three-site link with detunings δ
and Δ, approximating the negative coupler. Eigenvalues and
eigenmodes were calculated for δ ¼ κ, Δ ¼ κ21=κ − κ, and
κ1 ¼ 5κ. (f) Overlap of the symmetric matched eigenmodes of
the three-site system and the negative coupler (solid line) and
required detuning of the central site (dashed) vs κ1.

PRL 116, 213901 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
27 MAY 2016

213901-2



implementations, the benefit of large ratios κ1=κ has to be
weighted against the fact that the required detuning Δ
grows quadratically with κ1 (dashed graph), for which it
becomes increasingly challenging to maintain single-mode
guiding in a practical implementation.
In order to demonstrate the viability of our approach, we

implemented such systems based on laser-inscribed wave-
guides in fused silica [27]: Mode-locked laser pulses
(wavelength 800 nm, duration τ ¼ 160 fs, repetition rate
100 kHz, and average power P ¼ 23 mW) were focused
(numerical aperture 0.35) 200 μm into the material, moving
with velocity v0 ¼ 110 mm=min, to inscribe L ¼ 4.9 cm
long waveguides. We first fabricated a conventional pos-
itive coupler, with a waveguide separation of 28 μm.
Linearly polarized light from a 633 nm laser was butt-
coupled into one of its ports and its propagation monitored
via fluorescence of color centers [28]. For details of the
experimental setup, see [29] (Figs. 6 and 8 therein). The left
panel in Fig. 2(a) shows the observed light intensity
evolution. Via comparison to the solution of Eq. (1) (right
panel), a coupling strength κ ¼ 0.28 cm−1 can be fitted to
the data. In a next step, one waveguide was detuned by
reducing its inscription velocity [30] to satisfy the first
matching condition δ ¼ κ. In this detuned coupler, only
80% of the light power is transmitted to the other site [25].
Awriting velocity at the detuned site of vδ ¼ 104 mm=min
was found to yield this transmission efficacy [see Fig. 2(b)].
This velocity was subsequently used for all waveguides to
be detuned by δ. Finally, the central site was inserted
(keeping the distance between the outer sites constant) and
its inscription velocity was reduced until the light evolution
fitted the pattern expected for eigenmode matching.
Figure 2(c) shows the light propagation for central writing
velocities of vΔ ¼ 89, 47, and 19 mm=min, respectively.
The first detuning is rather weak, such that κ1 can be
unambiguously identified from the oscillation period as
κ1 ≈ 7.7κ. For growing Δ, the oscillation between the outer
sites slows down, whereas the oscillation on the inner site
accelerates but reduces in amplitude [see second group of
images in Fig. 2(c)]. The third structure (right group)
exhibits a propagation pattern, which facilitates roughly the
same rate of light transport between the outer sites as the
coupler in Fig. 2(a). A close inspection reveals that its
detuning is actually slightly too large, best fitting to

Δexp ≈ 66κ, while the optimal value according to Eq. (3)
would be Δopt ≈ 58κ. However, this deviation from the
optimal design parameter does not compromise the func-
tionality as a negative coupler, as only one eigenvalue is
shifted to βþ;exp ≈ −0.77κ, whereas the other eigenvalue
β−;exp ¼ κ as well as the symmetries of the eigenmodes
remain. Therefore, only the rate of coupling is slightly
reduced to ðβþ;exp − β−;expÞ=2 ≈ −0.88κ, showing the
robustness of our approach. The measured values for κ1
and Δexp translate to a matching fidelity for the symmetric
eigenmode of Fexp ≈ 0.987.
So far, we have demonstrated that the same magnitude of

coupling as in a two-site coupler can be achieved via
eigenmode matching in a three-site system. However, no
information on the sign of the coupling can be obtained from
intensity evolution in the structure alone, as κ and −κ per
definition yield identical patterns. We therefore turn to
interferometry: An approximate negative coupler is fol-
lowed by a conventional positive coupler of the same length
(top row in Fig. 3). If the couplings in the two sections have
equal magnitudes but opposite signs, their eigenmodes will
be swapped at the interface (cf. Fig. 1). Consequently, the
light evolution in the second section will exactly reverse the
one in the first, and a full revival must occur in the initially
excited channel [31]. To compensate for the slight detuning
of the vþ mode in the previous setting, we implemented the
interferometer with vΔ ¼ 20 mm=min. The middle row in
Fig. 3 shows how the light is imaged back into the input
channel during the second half of the propagation. The
fidelity of this revival process is quantified by the fraction of

(a) (b) (c)

FIG. 2. Light propagation. The measured intensity evolution is compared to the numerical solution of the tight-binding equations.
(a) Regular coupler. (b) Coupler detuned by δ. (c) Three-site links with increasing Δ. The other parameters are κ ¼ 0.28 cm−1,
κ1 ¼ 7.7κ, and δ ¼ κ. Each experimental image has been noise filtered and rescaled to its maximum.

FIG. 3. Interferometric phase verification. The three-site struc-
ture is superseded by a regular coupler at z ¼ L=2. The sign
reversal of the coupling leads to refocusing in the injection
channel. The parameters are as before, except Δ ¼ 61κ.
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power in channel 2 at the output and is 98.0% in the
experiment and 99.92% in the best-fitting numerical sim-
ulation (bottom row). Note that, if the couplings in both
sections had the same sign, the light would continue
tunneling from site 2 to site 1 and no revival would occur
at z ¼ L. Therefore, the experimental result shows
unequivocally that the coupling in the first part is negative.
The very small difference between the theoretical fidelity
and 100%, expected for ideal negative coupling, is indicative
of the high quality of the approximation of the negative
coupler by the three-site unit, whereas the deviations in the
experiment can be attributed to fabrication inaccuracies
breaking the symmetry of the structure. To estimate scaling
towards larger systems, one can calculate the influence of the
symmetric eigenmode mismatch [cf. Fig. 1(e)] on the phase
acquiredwhen crossing the negative link. For the parameters
of Fig. 3, one obtains a phase error of about π=70, such that
70 π-flux cells could be traversed before a gauge error
(erasing one flux cell from the system) occurred. These
errors can be asymptotically eliminated for κ1=κ → ∞.
We have so far neglected next-nearest-neighbor coupling

across the three-site link. This is valid, as evidenced by the
observed behavior: Intuitively, one may expect a coupling
rate κ between the outer sites, as their distance is the same
as in the conventional coupler. Adjusting Eq. (2) accord-
ingly would then produce the mode-matching conditions
δ ¼ 2κ and Δ ¼ κ21=ð2κÞ − κ. Hence, the optimal Δ would
be approximately half the value required by Eq. (3). As
evident from Figs. 2(c) and 3, the measured propagation
dynamics clearly follow Eq. (3) with high fidelity.
Attempting to reproduce the observed patterns with halved
Δ does, on the other hand, not yield any reasonable
agreement, which suggests that next-nearest-neighbor cou-
pling is much weaker than κ in our system. This observa-
tion is fully consistent with another recent experiment,
where a suppression of next-nearest-neighbor coupling in a
three-site link has been measured directly [32].
Two key advantages of the method of eigenmode match-

ing are that it does not require any assumptions on the
surrounding and that the outer sites remain in their positions.
Therefore, once the eigenmodes are matched, the approxi-
mate negative coupler can be embedded into arbitrary
environments to replace a positive coupling linkby a negative
one. We demonstrate this capability in a hexagonal con-
figuration as sketched in the left panel in Fig. 4(a). From
Eq. (1) follows that positive coupling induces a phase
shift of π=2 when tunneling between adjacent sites, regard-
less of the direction. Therefore, constructive interference
can be expected at the site opposite to the excitation.
If, however, one of the links is replaced by an effective
negative coupler [Fig. 4(b)], the phase shift across that link
will be −π=2, leading to a phase difference of ΔΦ ¼ π
between the two paths and causing destructive interference.
The latter structure imposes a Z2-gauge transformation
corresponding to one half of a magnetic flux quantum
passing through the plaquette [2] and constitutes a static

photonic Aharonov-Bohm interferometer. The hexagons
were implemented in another glass chip with L ¼ 4.7 cm
and fabrication conditions τ ¼ 180 fs, P ¼ 25 mW, and
v0 ¼ 220 mm=min. The optimal inscription velocities for
the defect sites were determined in a procedure analogous to
the previous experiments, yielding vδ ¼ 206 mm=min and
vΔ ¼ 96 mm=min, with the waveguide track of the Δ
site being inscribed twice. The anisotropy of evanescent
couplingwas compensatedby slightly stretching the lattice in
the vertical direction, as indicated in Fig. 4(a) [33,34]. All
other fabrication parameters and experimental settings
remained as before. Coupling between nonadjacent sites is
taken into account by modeling all couplings with an
exponential dependence on interwaveguide distance d:
κðdÞ ∝ exp ð−γdÞ, with decay parameter γ. As justified
above, next-nearest-neighbor coupling across the three-site
link is neglected. The light intensity output from the purely
positively coupled hexagon shown in the middle panel in
Fig. 4(a) clearly exhibits the expected constructive interfer-
ence. The parameters κ and γ are estimated from the best fit to
the data,which is shown in the right column.Aquite different
scenario arises in the hexagon with a negative coupling link,
as shown in Fig. 4(b): Here, virtually no light (0.4% of the
total power in the experiment and 0.05% in the simulation) is
detected at the site where the destructive interference takes
place. This clearly shows how the presence of the negative
coupling link alters the interference condition by inducing a
phase shift of π on the clockwise path.
The experimental results presented in this work demon-

strate how the insertion of a defect channel between two
tight-binding lattice sites and tailored detuning can be used
to reverse the sign of the coupling rate. This approach

(a)

(b)

FIG. 4. Aharonov-Bohm interferometer. (a) Left panel: Hex-
agonwith all-positive couplings.An excitation of the lower left site
(orange arrow) leads to constructive interference due to equal
phases accumulating on the clockwise (solid arc) and counter-
clockwise path (dashed arc). Central and right panel: Measured
and calculated output light distribution, respectively, with simu-
lation parameters κ ¼ 0.27 cm−1 and γ ¼ 0.1 μm−1. (b) Inserting
a negative coupling link causes destructive interference. Thewhite
ellipses on the output images highlight the difference between the
two cases. The defect parameters κ1 ≈ 4.1κ andΔ ≈ 15κ are set by
κ and γ. Besides replacing the upper link, identical geometries and
parameters were used in both systems.
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permits adjusting the sign of individual coupling links in
arbitrary tight-binding lattices without the need for dynamic
modulation or external control, a key capability for the
realization of arbitrary Z2-gauge transformations in the
highly controllable and stable environment of artificial
solids. For example, the recently suggested strained
Kitaev model with inverted links—corresponding to local
flux impurities [35]—or light trapping via photonic
Aharonov-Bohm caging [36] could both be realized via
our approach.Negatively coupled links could also be used to
endow photonic topological insulators, which can be imple-
mented in a variety of lattice systems [15,37–40], with local
impurity gauge fields. Finally, by introducing interactions,
be it via optical nonlinearities in photonic [41] or atomic
repulsion in optical lattices [11], the spectrum of physical
phenomena coming into experimental reachwill be enriched
even further [42,43].
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