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Abstract— In this paper adopting stochastic geometry we
investigate the system performance in heterogenous networks
including multiple tiers of BSs with multiple-input single output
spatial division multiple access (MISO-SDMA) technique. In the
related literature on heterogenous systems, ideal cell association
(CA) rules are often considered for simplicity, where each user
equipment (UE) examines a very large number of pilots across
the tiers before choosing its associated base station (BS). Here
we consider practical cases where UEs are restricted to examine
KH ≥ 1 pilots across all tiers before choosing their associated
BS. We then obtain closed-form expressions for the system
performance measured by the coverage probability and UE’s data
rate. Our analytical results provide quantitative insights on the
impact of different factors on the system performance including
the BS’s spatial density, their transmission powers, number of
transmit antennas, SIR thresholds, number of UEs served by each
BS, andKH . Interestingly, we observe that increasingKH always
improves the coverage probability however, it only improves data
rate up to a certain point. The data rate is then reduced by
further increasing of KH . Given KH pilots in practical cases,
the issue is how to allocate the pilots among different tiers. We
address this issue by developing an algorithm and show that by
careful allocation of available pilots, the network performance
is significantly improved even in cases with smallKH . Our
results also indicate a fundamental tradeoff, as sharing strategies
providing the best coverage performance yield very poor capacity
and vice versa. Such trade-off provides a new degree of freedom
in heterogeneous networks design.

I. I NTRODUCTION

Cellular systems have been under radical design shifts
in order to handle the occurring traffic demands. Current
perspectives strongly advocate the installation of as many as
possible small cells in the coverage area of macro cells in order
for efficient traffic offloading [1]. Measurements suggest that
about 60% of the traffic could conceivably be offloaded simply
by installing a handful number of femto-cells over a macro
cell. An immediate consequence is then the substantial growth
of the networks spectral efficiency and/or energy efficiency.
On the other hand, backed with extensive researches in two
previous decades, more capacity growth is expecting to be
realized by gearing up BSs with multiple antennas [2], [3],
which has sparked broad researches in academia and industry.

The evaluation of the network’s performance of MIMO
communications in HetNets is an active research trend. Ex-
ploiting benefits of stochastic geometry, see, e.g., [4] for details

of the theory and several applications in wireless communica-
tions analysis, various aspects of MIMO techniques have been
extensively investigated. Here we do not present all due to
space limitations. Relevant literature to the particular subject
of this paper—which is the evaluation of the network-wise
performance of spatial division multiple access (SDMA) in
HetNets—is then provided in the following. The focus in [5]
was the single macro cell system overlaid by a number of
multi-antenna femto cells. Work of [6] considered the design
of uplink/downlink MIMO SDMA two-tier HetNets in order
for the optimization of network’s energy efficiency. Traits of
wireless backhauling was also incorporated in the design. By
assuming maximum signal-to-interference (SIR) cell associ-
ation (CA) rule in [7] authors then provided some ordering
results on the coverage probability of SDMA systems. The
evaluations suggested that in many practical regimes SDMA
is inferior to single-user beamforming. Fractional frequency
reuse was also investigated in [8] in SDMA system.

However, in all the above mentioned work likewise many
other relevant work in the field of stochastic geometry in
cellular networks, see, e.g., [9], [10], [11], [12], a very limiting
assumption is made for modeling CA: in each communication
frame that the network’s status changes—due for instance
to mobility, congestions, and fading—user equipments (UEs)
are assumed stayed associated with thebest BS, which is
selected out of the entire pool of BSs. Ignoring congestion-
driven CA/handoff, the BS providing the maximum average
pilot power (range expansion method) [12], [13], [14], [15] or
the BS offering the maximum SIR [10], [7], [8] is regarded
as the serving BS. But, to find this best BS countably infinite
number of measurements of the emitted pilot signals from all
the BSs is required, which is an unrealistic assumption and
imposes staggering complexities and ultimately depletes the
resources. In effect, the entire frame time must be designated
for merely the CA mechanism, and unfortunately nothing will
be left for actual data transmission—zero spectral efficiency.

In practice however, UEs are advocated to check the feasi-
bility of a number of adjacent BSs for association. Accord-
ingly, our goal in this paper is to investigate the impact of
practical CA rule on the performance of SDMA in HetNets.
To do this, we derive the coverage probability and per UE data
rate taking into account the maximum number of BSs across
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all tiers that UEs are allowed to assess for association,KH .
It is seen that, the coverage probability improves substantially
by increasingKH before reaching its stable status. But, by
increasingKH the data rate linearly diminishes to zero after
reaching its summit. We further show that the way thatKH is
shared among the tiers can dramatically improve the coverage
and capacity. In fact, adopting our proposed algorithms one
may achieve almost 90% of the stable coverage (which is
obtainable whenKH À 1) only whenKH is 2. We further
observe that methods enhancing coverage probability may
render a very weak capacity performance and vise vera.

II. SYSTEM MODEL

Our main focus is on the downlink communication
paradigm in aK-tier HetNet. As in [10], [11], a tractable
network model of HetNets consists ofK tiers of randomly
located BSs. Each tieri is specified by tuple(λi, Pi, βi ≥
1, N t

i ,Mi), respectively, indicating BS’s spatial density, trans-
mission power of BSs, SIR threshold, the number of antennas
BSs are equipped with, and the number of UEs served in
each cell by SDMA method. BSs at the tieri are spatially
distributed via a homogenous Poisson Point Process (PPP)
Φi ∈ R2 with given spatial densityλi ≥ 0. The processes are
mutually independent. UEs are single-antenna and distributed
through a homogenous PPPΦU , independent of setsΦi, with
given spatial densityλU .

We focus on narrow-band, block-fading model in which
fading is constant per frame duration and evolves randomly
according to the specified fading distribution at the start of
each frame. The typical UE is positioned at the origin that is
presumably associated with BSxi. We hear focus on zero-
forcing precoding. Lethxi be the small-scale channel power
gain between BSxi ∈ Φi and the typical UE, which according
to [7], [8] is a chi-squaredr.v. with 2M̂i degrees-of-freedom
(DoFs) whereM̂i = N t

i − Mi + 1. Other BSs all over the
network are potential interferers under the premise of universal
frequency reuse and open access. The experienced signal to
interference ratio (SIR) at the typical UE is

SIRxi =
Pi

Mi
‖xi‖−αhxi∑K

j=1 Ij

, (1)

where α > 2 is the path-loss exponent,‖xi‖ stands for
the Euclidean distance. We further letα̌ = 2

α in the rest
of this paper. Also,Ij =

∑
xj∈Φj/x0

Pj

Mj
‖xj‖−αgxj is the

interference contribution of tierj. Fadinggxj is a chi-squared
r.v. with DoFs2Mj [7]. Note that all involved fading variables
in (1) are statistically independent.

By CA procedure UEs are able to examine pilot signals
emitted from BSs and associate themselves with the most
suitable one. As [10], [7] maximum SIR association is con-
sidered: each UE attaches to the BS that is able to provide
the highest SIR. But, here we assume that the network is
designed in the way that the assessment of solelyKH ≥ 1 SIR
values is permitted before finding the best one. This is inline
with relevant issues dominating the practical scenarios, pilot’s

reuse factor, and network’s resource constraints. Further, let
0 ≤ ni ≤ KH be the number ofi-th tier pilots that the typical
UE measure so that

∑
i ni = KH . We introduce setΦH

i as
the index of BSs of tieri that UE assesses for CA procedure.
Regarding the fact that in practice pilots corresponding to
nearby BSs have the higher chance of being successfully
detected and network’s configuration advocates handoff to
adjacent cells rather far cells, setΦH

i is assumed to contain
the ni nearest BSs to the typical UE.

III. PERFORMANCEANALYSIS

A. Coverage Probability

The typical UE is in coverage if for somei
maxxi∈ΦH

i
SIRxi ≥ βi is valid. We denote the coverage

probability byo = P
{

maxxi∈
⋃

i ΦH
i

SIRxi ≥ βi

}
.

Proposition 1: The coverage probability of the considered
SDMA K-tier HetNets can be lower-bounded by

o ≥
∑

i

πκ̃i

C̃(α)
K∑

j=1

κj(Mj)

M̂i−1∑
m=0

(
Γ(α̌ + m)

Γ(α̌)Γ(1 + m)

− (−1)m

m!

dm

dsm

s−α̌

(
1 + C̃(α)

πs−α̌κ̃i

K∑
j=1

κj(Mj)

)ni

∣∣∣
s=1

)
, (2)

where Γ(.) is the gamma function andκ̃i(Mi) =

λi( Pi

Mi
)α̌β−α̌

i , κj(Mj) = λj

(
Pj

Mj

)α̌
Γ(α̌+Mj)

Γ(Mj)
, and C̃(α) =

πΓ(1− α̌).
Proof: See Appendix.¤
Proposition 1 provides an expression of the coverage prob-

ability that the typical UE experiences in SDMA systems.
Impacts of various system parameters including the density of
BSs, SIR thresholds, and speciallyni are apparent from (2).
For example, by increasingni the significance of the second
term in the summation reduces and the first term dominates
the behavior of the coverage performance. As a result, by
increasingni the coverage performance improves. However,
under the constraint of

∑
i = KH it is in practice impossible

to increasenis as freely as it wishes. It is in fact very critical
to intelligently shareKH among the tiers according to the
manners that tiers affect the coverage probability. For instance,
one may decide to given a bigger portion ofKH to the tier
responsible with smaller values of the second term in (2).
Another approach could be sharingKH among the tiers based
on the levels of their transmission powers. We pursue these
agendas in the design of the CA procedure with more details
in Section IV.

Before ending this part we provide some corollaries to
Proposition 1:

Corollary 1: If ni À 1 ∀i, then (2) is increased to

oKH=∞ =

K∑
i=1

πκ̃i(Mi)

C̃(α)
K∑

j=1

κj(Mj)

M̂i−1∑
m=0

Γ(α̌ + m)

Γ(α̌)Γ(1 + m)
.



Note that it is noteworthy to point out that the literature fails in
providing a closed-form expression of the coverage probability
of SDMA HetNets, see e.g., [7], [14], which is tackled in
Corollary 1.

Corollary 2: For full SDMA, i.e., Mi = N t
i ∀i, (2) is

simplified tooF−SDMA ≥ ∑
i

Ai

(
1− (

1 + 1
Ai

)−ni
)
, whereAi =

πκ̃i

C̃(α)
K∑

j=1
κj(Mj)

.

According to Corollary 2 one may argue that
Ai

(
1 + 1

Ai

)−ni is the damage that limited CA procedure
imposes on the coverage performance of tieri. Since function
Ai

(
1 + 1

Ai

)−ni is increasing with respect toAi, one may
decide to assign a bigger portion ofKH to the tier with
smallestAi across tiers.

B. Per-UE Capacity

The amount of time that the typical UE spends for associ-
ation is proportional to the value ofKH . In the following we
consider a very straightforward scenario. Let0 < τ ≤ 1 be
the fraction of time frame that is devoted for measuring pilot
from a BS. Further, letC = {maxxi∈ΦH

i
SIRxi

≥ βi} stand
for the coverage event of the typical UE. The capacity that the
typical UE can achieve is then obtained from

R = (1−KHτ)+E

[
log

(
1 + max

xi∈ΦH
i

SIRxi

) ∣∣∣C
]

= (1−KHτ)+
∫

t>0

P

{
max

xi∈ΦH
i

SIRxi > 2t − 1
∣∣∣C

}
dt

=
(1−KHτ)+

o

∫

t>0

P

{
max

xi∈ΦH
i

SIRxi > max{2t − 1, βi}
}

dt

= (1−KHτ)+ log(1 + βmin) +
(1−KHτ)+

o

∑
i

∫

t>log(1+βmin)

ni∑

l=1

P
{

SIR
x
(l)
i

≥ max{2t − 1, βi}
}

dt, (3)

whereβmin = mini βi andP
{

SIR
x
(l)
i
≥ max{2t − 1, βi}

}
is

calculated in Proposition 1.

IV. SIMULATION RESULTS AND SYSTEM DESIGN

The way thatKH is shared among tiers has a profound
impact on the coverage probability as well as per-UE capac-
ity. While optimizing (2) and/or (3) with respect tonis is
mathematically complex, we in the following provide a greedy
algorithm that can be found in Algorithm 1 (referred to as Alg.
1 in the following). In Alg.1 parameterψi shall be interpreted
as the performance reward gained by assigning a new BS for
CA procedure to tieri. Pssible choices are:ψi = oi (the
coverage probability associated with tieri); ψi = Ri (the per-
UE capacity associated with tieri); andψi = A−1

i whereAi is
given in Corollary 2. We also consider the case thatψi = Pi

meaning that a tier with higher transmission power has the
higher superiority to have higher share ofKH .

Algorithm 1 Alg. 1
1: t = 0, K̂ = ∅
2: while

∑
i ni ≤ KH do

3: i∗ = arg max
i∈K/K̂

ψi

4: ni∗ = ni∗ + 1
5: K̂ = K̂⋃{i∗}
6: t = t + 1
7: if K̂ = K then
8: K̂ = ∅
9: end if

10: end while
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Fig. 1. Coverage Probabilityvs. KH for several values ofβ4 (Alg1. with
ψi = Pi).

In the rest of this section we evaluate the performance of
Alg. 1 for several choices ofψi. However, we first study the
accuracy of Proposition1’s bound against simulations1. For
this goal we simply letψi = Pi in Fig. 1. As it is seen
from this figure the provided lower-bound in Proposition 1
is adequately accurate. Moreover, it is seen that by increasing
KH the coverage probability improves and then gets stable.
In fact, as many as 8 BSs are enough for CA procedure from
the coverage perspective.

A plot of per-UE capacity of (3) for several values ofβ4

is shown in Fig. 2vs. KH under the algorithm Alg. 1. As
it is seen, in contrary to coverage performance (see Fig. 1)
increasingKH has a conflicting impact onR: it first improves
the capacity and then proportionally pushes its value to zero.
In the case ofβ4 = 2 settingKH = 2 in fact results in the
maximization of the capacity. Nevertheless, Fig. 1 reveals that
for this specific setting the coverage performance is very poor.

We further study the performance of Alg. 1 for several
choices of parameterψi in Fig. 3, which shows the coverage
performance, and Fig. 4, which shows the per-UE capacity.

Consider Fig. 3. As it is seen, whenψi = oi the coverage
performance is the highest compared to the other choices for
each value ofβ4. For example, whenβ4 = 2, it is observable
that only 3 BSs are required for CA procedure to guarantee
almost the same coverage thatKH → ∞ can provide. This
is also true for the case ofβ4 = 7.5. On the other hand, for
both values ofβ4 we see that choice ofψi = Ri performs

1For the simulations in this paper we have considered the following
parameters:λ1 = 10−5, λ2 = 10−4, λ3 = 5 × 10−4, λ4 = 5 × 10−3,
P1 = 50, P2 = 10, P3 = 5, P4 = 1, β1 = 2.5, β2 = 5, β3 = 5, M1 = 3,
M2 = 5, M3 = 7, M4 = 2, andNt

i = 8 ∀i.
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Fig. 2. Per-UE capacityvs.KH for several values ofβ4 (Alg1. with ψi =
Pi).
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Fig. 3. λ1 = 10−4. α = 4, Nr = 10, P1 = 50 W, P1 = 10W, β1 = 2,
andβ2 = 5.

very poorly. Finally, ifψi = 1/Ai, the coverage performance
improves compared toψi = Pi. For both choices ofψi = 1/Ai

and ψi = Pi and in both cases ofβ4 = 2 and β4 = 7.5 we
require KH = 8 to achieve ultimate coverage performance.
As a result, a wise choice of parameterψi can dramatically
reduce the complexity of CA procedure without damaging the
coverage performance.

Now consider Fig. 4 that depicts the capacity performance
of Alg. 1 for different choices ofψi. There are a number of
important points deserved to be explained. First, as a general
rule the larger the value ofKH , the smaller the capacity will
be. As a result, though the coverage performance benefits
from higher values ofKH the same can not be claimed
from the perspective of capacity. Second, the choices ofψi

that performs great from the capacity point of view, which
is ψi = Ri, yields a very poor coverage performance (see
Fig. 3), while choice ofψi = oi that has the best coverage
performance yields the weakest capacity performance (see
Fig. 4). In fact, from capacity view point, see Fig. 4 for
β4 = 7.5, the capacity boost one may gain from changing
the parameterψi from oi to Ri is more than3 nats/sec/Hz,
while the coverage performance degrades more than15%.
Third, choices ofψi = Pi and ψi = 1/Ai have almost
the same capacity performance. Besides, their corresponding
performance is somewhere between capacity ofψi = Ri and
capacity ofψi = oi. It is important to compare Fig. 3 with Fig.
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4 to realize that these two choices yields their best capacity
performance—for exampleKH = 3 for the case ofβ4 = 2—
with the cost of less than10% coverage lost (compared to the
coverage that choiceψi = oi yields). On the other hand, for
this case the capacity lost compared toψi = Ri (KH = 3 and
β4 = 2) is less than 1 nats/sec/Hz. As a result, the conclusion
one may draw here is that to balance between two conflicting
performance metrics of coverage and capacity it is better to
have a moderate number of BSs for CA procedure, which
could be chosen with accordance ofψi = 1/Ai.

V. CONCLUSIONS

Adopting tools from stochastic geometry we derived the
coverage probability and capacity of MIMO-SDMA in Het-
Nets. We mainly focused on practically appealing scenarios
whereby user equipments (UE) were restricted examining
KH ≥ 1 pilots across all tiers before choosing the associated
base station (BS) in contrary to the literature that have con-
sidered idealistic cell association (CA) rules, i.e.,KH → ∞.
Adopting our proposed bounds on the coverage probability and
capacity we then concocted a number of greedy algorithms for
sharingKH among the tiers.
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APPENDIX: PROOF OFPROPOSITION1
Let sort the BSs in tieri such that‖x(l)

i ‖ ≤ ‖x(l+1)
i ‖ where

x
(l)
i is the position ofl-th closest BS to the origin. Note that

r.v. πλi‖x(l)
i ‖2 is distributed according to2l chi-squared [16].

Under the premise ofβi ≥ 1, the coverage probability is then
calculated as

o =

K∑
i=1

E


 ∑

xi∈ΦH
i

1 (SIRxi ≥ βi)

∣∣∣∣∣{Φ
H
j }




≥
K∑

i=1

E


 ∑

xi∈ΦH
i

1 (SIRxi ≥ βi)

∣∣∣∣∣Φ
H
i


 =

K∑
i=1

ni∑

l=1

P
{

SIR
x
(l)
i

≥ βi

}

in which we have applied the whole probability formula and
the fact that at mostni candidate BSs in tieri are assessable
for CA procedure. We then have

P
{

SIR
x
(l)
i

≥ βi

}
=

∞∫

0

fχ2
2l

(x)P

{
hxi ≥

βix
α/2

(πλi)
α
2

Pi
Mi

K∑
j=1

Ij

}
dx

=

∞∫

0

fχ2
2l

(x)E{Ij}

∞∫

0

L−1
F̄

χ2
2M̂i

(s)e

−s
βixα/2

(πλi)
α
2 Pi

Mi

K∑
j=1

Ij

dsdx, (4)

whereL−1
F̄

χ2
2M̂i

(s) is the Laplace transform of CCDF of random

variable χ2
2M̂i

L−1
F̄

χ2
2M̂i

(s) =
M̂i−1∑
m=0

1
m!δ

(m) (s− 1). such that

∞∫
0

e−shL−1
F̄

χ2
2M̂i

(s)ds = e−h
M̂i−1∑
l=0

hl

l! , andδ(m)(t) is the m-th

derivative of Dirac delta function [17]. Then,

(4) =

∞∫

0

fχ2
2l

(x)

∞∫

0

L−1
F̄

χ2
2M̂i

(s)

K∏
j=1

LIj

(
s

βix
α/2

(πλi)
α
2

Pi
Mi

)
dsdx

(b)
=

∞∫

0

fχ2
2l

(x)

∞∫

0

L−1
F̄

χ2
2M̂i

(s)e
−


s

βi
Pi
Mi




α̌

C̃(α)
πλi

K∑
j=1

κj(Mj)x

dsdx

=

∞∫

0

LF̄
χ2
2M̂i

(s)

∞∫

0

fχ2
2l

(x)e
−

(
s

Miβi
Pi

)α̌ C̃(α)
πλi

K∑
j=1

κj(Mj)x

dxds

(c)
=

∞∫

0

L−1
F̄

χ2
2M̂i

(s)

(
1 +

(
s
Miβi

Pi

)α̌
C̃(α)

πλi

K∑
j=1

κj(Mj)

)−l

ds,

where in step (b) we introduceκj(Mj) = λjP
α̌
j E[(χ2

2Mj
)α̌]

where E[(χ2
2Mj

)α̌] = Γ(α̌+Mj)
Γ(Mj)

, and plug the Laplace
transform of random variableIj that is LIj

(t) =

e
−tα̌C̃(α)λj(

Pj
Mj

)α̌E[(χ2
2Mj

)α̌]
, for t = s

Miβi‖x(l)
i ‖α

Pi
. Step (c)

finally follows by some straightforward manipulations. As a

result,
ni∑
l=1

P
{

γ(x(l)
i ) ≥ βi

}
is

=

∞∫

0

L−1
F̄

χ2
2M̂i

(s)

ni∑

l=1

(
1 +

(
s
Miβi

Pi

)α̌
C̃(α)

πλi

K∑
j=1

κj(Mj)

)−l

ds

=

∞∫

0

L−1
F̄

χ2
2M̂i

(s)
πs−α̌κ̃i(Mi)

C̃(α)
K∑

j=1

κj(Mj)

×

1−

(
1 +

C̃(α)

πs−α̌κ̃i(Mi)

K∑
j=1

κj(Mj)

)−ni

 ds

=
πκ̃i(Mi)

C̃(α)
K∑

j=1

κj(Mj)

∞∫

0

L−1
F̄

χ2
2M̂i

(s)s−α̌ds

− πκ̃i(Mi)

C̃(α)
K∑

j=1

κj(Mj)

∞∫

0

L−1
F̄

χ2
2M̂i

(s)s−α̌

(
1 + C̃(α)

πs−α̌κ̃i(Mi)

K∑
j=1

κj(Mj)

)ni
ds. (5)

Following the same procedure developed in [17] we can show
that

∞∫

0

L−1
F̄

χ2
2M̂i

(s)s−α̌ds =
M̂i−1∑
m=0

Γ(α̌ + m)
Γ(α̌)Γ(1 + m)

. (6)

On the other hand,

∞∫

0

L−1
F̄

χ2
2M̂i

(s)s−α̌

(
1 + C̃(α)

πs−α̌κ̃i(Mi)

K∑
j=1

κj(Mj)

)ni
ds

=

M̂i−1∑
m=0

1

m!

∞∫

0

δ(m) (s− 1) s−α̌

(
1 + C̃(α)

πs−α̌κ̃i(Mi)

K∑
j=1

κj(Mj)

)ni
ds

=

M̂i−1∑
m=0

(−1)m

m!

dm

dsm

s−α̌

(
1 + C̃(α)

πs−α̌κ̃i(Mi)

K∑
j=1

κj(Mj)

)ni

∣∣∣
s=1

. (7)

By combining (7), (6), and (5) the desired result will be
obtained.


