
Noname manuscript No.
(will be inserted by the editor)

Fast separation for the three-index assignment problem

Trivikram Dokka · Ioannis Mourtos · Frits C.R.
Spieksma

Received: date / Accepted: date

Abstract A critical step in a cutting plane algorithm is separation, i.e., establishing whether
a given vector x violates an inequality belonging to a specific class. It is customary to
express the time complexity of a separation algorithm in the number of variables n. Here,
we argue that a separation algorithm may instead process the vector containing the positive
components of x, denoted as supp(x), which offers a more compact representation, especially
if x is sparse; we also propose to express the time complexity in terms of |supp(x)|. Although
several well-known separation algorithms exploit the sparsity of x, we revisit this idea in order
to take sparsity explicitly into account in the time-complexity of separation and also design
faster algorithms. We apply this approach to two classes of facet-defining inequalities for the
three-index assignment problem, and obtain separation algorithms whose time complexity
is linear in |supp(x)| instead of n. We indicate that this can be generalized to the axial k-
index assignment problem and we show empirically how the separation algorithms exploiting
sparsity improve on existing ones by running them on the largest instances reported in the
literature.
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1 Motivation

Cutting plane algorithms constitute a fundamental way of solving combinatorial optimiza-
tion problems. Typically, in such an approach, a specific combinatorial optimization problem
is formulated as an Integer Linear Program (ILP) of the form min{cTx : Ax = b, x ∈ Zn+},
where x denotes an n-dimensional column vector of variables and A, b, and c are matrices of
appropriate dimension. The convex hull of the feasible solutions is defined by the correspond-
ing polyhedron PI = conv{x ∈ Zn+ : Ax = b}. Then, there is interest in identifying classes of
inequalities that are valid for PI and, preferably, facet-defining (for related background see,
for example, [23]). Although identifying such families provides a (partial) characterization of
PI , the computational benefit of these families, in terms of finding z = min{cTx : x ∈ PI},
can be realized only if these inequalities can efficiently be added to the linear programming
(LP) relaxation PL = min{cTx : Ax = b, x ≥ 0}.

Since there can be many inequalities within a family, their addition within a cutting
plane scheme should be made ‘on demand’, i.e., an inequality should added to the current
LP-relaxation only if violated by a specific vector x ∈ Rn. The problem of determining
whether such a vector violates an inequality of a specific family is called the separation
problem for this family and an algorithm solving it is called a separation algorithm. Hence
the importance of designing, typically family-specific, separation algorithms that should be
of low computational complexity.

It is quite customary to express the complexity of a separation algorithm in terms of n,
the dimension of the vector x. This seems reasonable since, at the very least, one would need
to inspect every entry of the vector x to decide whether a violated inequality exists. In fact,
separation algorithms with a complexity of O(n) have been called “best-possible” for the 3-
index assignment problem [4,21]. If the input to a separation algorithm is an optimal solution
to the current LP-relaxation, i.e., a vector x ∈ PL\PI , such an input is typically sparse in
the sense that few entries of x are positive. Thus, replacing x by its support supp(x) offers
a more compact representation of the input. This leads to the following question: when
the input to a separation algorithm is supp(x), is it possible to obtain faster separation
algorithms and express their time-complexity in terms of |supp(x)|?

Clearly, the input to a separation algorithm cannot be restricted to x-vectors that rep-
resent extreme vertices of the LP-relaxation at hand. Indeed, any x-vector is a potential
input to the separation algorithm. For example, one might be interested in separating vec-
tors that do not represent vertices, because the solution of the LP-relaxation is obtained via
an interior point method, or because the vector to be separated is a vertex from a differ-
ent relaxation. We point out that our results hold in such cases as well, since any vector x
can be encoded by listing the |supp(x)| positive components of x. However, it is true that
the advantage of this more compact input in terms of algorithm’s running time disappears.
Thus, representing a vector x by using the support leads to speedups when the vector is
sparse. This typically happens when a separation algorithm is incorporated within a Branch
& Cut or a cutting plane scheme, since then the separation algorithm receives as input not
any x ∈ Rn, but a vertex x ∈ PL\PI , which is sparse particularly for problems having much
more variables than constraints.

We elaborate on the idea of using sparsity in Section 2, where we also discuss several
known separation algorithms that exploit sparsity thus motivating our work. We apply
this idea to the (axial) 3-index assignment problem (Section 3) and show that linear-time
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separation in terms of supp(x) is plausible (Section 5). That is, we obtain algorithms of time
O(|supp(x)|), which are much faster than existing ones of O(n) time [4] for separating not
only vertices of the LP-relaxation but any sparse vector; the algorithms of [4] neither exploit
sparsity nor assume that the input vector is a vertex. We also propose such algorithms
for the k-index assignment problem (Section 6). Testing the performance of our separation
algorithms on large literature instances for the 3-index assignment problem offers strong
empirical support for our effort (Section 7).

2 Exploiting sparsity in separation algorithms

Traditionally, to describe the input needed for an algorithm separating a specific class of
inequalities, the n entries of the vector x = (x1, . . . , xn) are provided. We propose here an
alternative measure of the input: the cardinality of the support of the vector x, denoted by
T = |supp(x)|. That is, we propose to express the running time of a separation algorithm in
terms of T. This allows us to exploit the fact that the input received by a separation algorithm
is not any vector x but, typically in cutting plane schemes, the vertex of a polyhedron having
several zero entries.

It could be of help to consider the following (imaginary) setting. Suppose that several
instances of some combinatorial optimization problem are being solved in parallel through
a cutting-plane approach, using multiple computers. However, only a single computer is
available for the separation routine. Then, this routine receives several fractional vectors
corresponding to the instances being solved by the cutting-plane approach. In such a sit-
uation, one easily imagines that the sole input to the separation routine are the positive
components of the vector x, i.e., supp(x). In other words, we examine the decision problem
with respect to a certain class of valid inequalities C, as follows:

– INPUT: support(x)
– QUESTION: Is there an inequality violated by x in C?

Let us emphasize that this idea is not new, since there are many examples in the literature
where sparsity is implicitly used in the design of separation algorithms. The oldest such
example concerns the traveling salesman problem (TSP) and the well-known class of subtour
elimination constraints [3]. Assuming a binary variable xe per edge e, these inequalities are
formulated as ∑

e : |e ∩ S| = 1

xe ≥ 2 for any nonempty proper subset S of cities.

To solve the separation problem for these inequalities, the solution of the LP-relaxation of
the traditional TSP formulation, say x∗, is used to build a support graph G∗ = (V ∗, E∗)
such that e ∈ E∗ if and only if x∗e > 0.. One particular separation heuristic ([3, see p.159],
called the parametric connectivity heuristic, uses an edge in e ∈ E∗ only if x∗e > ε for a
fixed ε > 0, while the Padberg-Rinaldi exact separation algorithm computes a minimum cut
in G∗. Another important class of inequalities for the TSP, namely the comb and blossom
inequalities, are separated by the odd component heuristic [3] that uses a graph with vertex
set is V and edge set is {e ∈ E∗ : 0 < x∗e < 1}.
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Another indicative case is the separation of odd-cycle inequalities for the stable set prob-
lem. If C̃ is the set of all induced odd cycles in the underlying graph, such an inequality
is ∑

e∈C
xe ≤

|C| − 1

2
for each C ∈ C̃. (1)

To separate odd-cycle inequalities for a given vector x∗, shortest paths are computed in
an bipartite graph H [23, p.1186-1187]). The complexity of this separation algorithm is
O(|V | · |E| · log|V |) [10,9], although zero-weighted edges may result in nodes and edges of H
not required in the shortest path calculation [22].

Regarding the index selection problem, formulated as a set packing problem [8], the
separation of lifted odd-hole inequalities is accomplished by determining a minimum-weight
odd cycle in a graph having one node for each fractional variable, where the weight of each
edge depends only on the positive components of x∗. The number of variables is much larger
than the number of constraint, thus any x∗ produced by the LP-relaxation is sparse because
the number of its positive components is bounded by the number of constraints.

Further examples of separation procedures that use only the fractional components of
the solution to the LP-relaxation have been proposed for the 0 − 1 knapsack problem [16],
the winner determination problem in combinatorial auctions [18], the sequence alignment
problem [17], the time-indexed formulation of single-machine scheduling [12] and the pallet
loading problem [1].

Overall, it is common that separation algorithms receive as input a vertex of the LP-
relaxation and that such a vector is sparse, particularly when the number of variables is
larger than the number of constraints.

3 The 3-index assignment polytope (3AP)

The 3-index assignment problem, defined on three disjoint n-sets I, J,K and a weight func-
tion w : I × J × K −→ R, asks for a collection of triples M ⊆ I × J × K such that each
element of each set appears in exactly one triple, and the function w is minimized (over all
possible such collections). Its formulation as an integer linear program is

min
∑
i∈I

∑
j∈J

∑
k∈K

wijkxijk

s.t.
∑
j∈J

∑
k∈K

xijk = 1 ∀i ∈ I, (2)∑
i∈I

∑
k∈K

xijk = 1 ∀j ∈ J, (3)∑
i∈I

∑
j∈J

xijk = 1 ∀k ∈ K, (4)

xijk ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K. (5)

Let An denote the (0, 1) matrix corresponding to the constraints (2) - (4), which has
n3 columns and 3n rows. Notice that hereafter n denotes the cardinality of each set being
‘assigned’, hence the number of variables is n3. Then, the 3-index assignment polytope is
PI = conv{x ∈ {0, 1}n3

: Anx = e}, while its LP-relaxation is Pn = {x ∈ Rn
3

: Anx =
e, x ≥ 0}. For a survey on the 3-index assignment problem, see [24].
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The first investigation of the facial structure of PI appears in [5]. Let us describe the two
families of facet-defining inequalities presented in [5]. The column intersection graph of An,
namely G(V,E), has a node for each column of An and an edge for every pair of columns
that have a +1 entry in the same row. Notice that a column contains three +1’s. We define
the intersection of two columns c and d as the set of rows of An such that each row in the
set has a +1 entry in column c and in column d; this is denoted by |c ∩ d|. It is easy to see
that V = I × J ×K and E = {(c, d) : {c, d} ⊆ V, |c ∩ d| ≥ 1}, i.e., a node in V corresponds
to a triple, and two nodes are connected if the corresponding triples share some index. A
clique is a maximal complete subgraph.

Clearly, a clique in G corresponds to a valid inequality with right-hand side 1. In fact,
G(V,E) contains two types of cliques, each yielding a family of inequalities that are facet-
defining for PI . To formally define the two types of clique inequalities, let

– for each c ∈ V : Q(c) = {d ∈ V : |c ∩ d| ≥ 2},
– for each c ∈ V : coQ(c) = {d ∈ V : |c ∩ d| = 1}, and
– for each c, d ∈ V with |c ∩ d| = 0 : Q(c, d) = {c} ∪ {Q(d) ∩ coQ(c)}.

Thus, Q(c) is the set of triples sharing at least two indices with triple c, while coQ(c) is
the set of triples that has exactly one index in common with triple c. Finally, when given
two disjoint triples c and d, Q(c, d) is the set of triples that has two indices in common with
d, and one with c, together with triple c. Notice that Q(c, d) has exactly four elements. As
usual, we write x(A) for

∑
q∈A xq.

Definition 1 For each c ∈ V , the facet-defining inequality x(Q(c)) ≤ 1 is called a clique
inequality of type I.

Once we organize the variables xijk in a three-dimensional array (a cube), a clique
inequality of type I can be seen as the sum of those x-variables that lie on the three “axes”
through a particular cell (see Figure 1 for a geometric illustration).

Definition 2 For each c, d ∈ V with |c∩d| = 0, the facet-defining inequality x(Q(c, d)) ≤ 1
is called a clique inequality of type II.

An illustration of a clique inequality of type II is given in Figure 2.
The separation of inequalities induced by cliques of type I and II was first treated in [5]

through algorithms of O(n4) time complexity. Improved O(n3) algorithms (i.e., of complexity
linear in the number of variables) appear in Balas and Qi [4], in which they are characterized
as “best-possible”. We illustrate them also here as Algorithms 1 and 2.

To discuss how improved separation algorithms can be obtained by using a compact
input, let us recall from linear programming that the number of non-zero variables in a
vertex of the LP-relaxation cannot exceed the number of constraints.

Remark 1 A solution corresponding to a vertex of Pn has at most 3n non-zero variables.

Given a vector x ∈ Pn, let supp(x) = {c ∈ V : xc > 0} and T = |supp(x)|. To ease the
presentation, let us assume that supp(x) contains the triples indexing the non-zero entries
of x and the corresponding (positive) fraction per triple.

In the next sections we discuss some preliminaries and then obtain algorithms of O(T )
time, i.e., of O(n) time when x is vertex of Pn by Remark 1. This is significantly smaller
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I

K

J

(i,j,k)

Fig. 1 Geometric illustration of a clique inequality of type I; the three dotted axes correspond to the
variables in this inequality

k

icjdkd idjdkd

icjckd idjcjd

j

icjdkc idjdkc

icjckc idjckc i

Fig. 2 Geometric illustration of a clique inequality of type II; the four highlighted cells correspond to the
four variables in this inequality.

than the O(n3) time complexity of Algorithms 1 and 2; notice that O(T ) reaches O(n3)
only if x is ‘fully dense’. Our algorithms achieve such a speed-up by pre-calculating certain
sums of x’s entries and, as expected, by utilising the fact that the input vector contains only
non-zero values. Thus their main difference from Algorithms 1 and 2 is their effective use of
sparsity.

4 Notation and preliminaries

Before describing the separation algorithms exploiting sparsity for the 3AP, we give some
intuition on their structure. An inequality in each of the classes examined here corresponds
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Algorithm 1 Balas & Qi Separation Algorithm for cliques of type I
{Input: the vector x and an integer v ≥ 4}
for all c ∈ V do

dc := 0;
end for
for all c ∈ V do

if xc ≥ 1
v·n then

for all t ∈ Q(c) do
dt := dt + xc;
if dt > 1 then

return x(Q(t)) ≤ 1 as violated;
end if

end for
end if

end for
for all c ∈ V do

if dc > v−3
3

then
compute x(Q(c));
if x(Q(c)) > 1 then

return x(Q(c)) ≤ 1 as violated;
end if

end if
end for

Algorithm 2 Balas & Qi Separation Algorithm for cliques of type II
{Input: the vector x}
for all c ∈ V : 1

4
< xc < 1 do

for all t ∈ V : |t ∩ c| = 1 do
if xt >

1−xc
3

then
for all d ∈ V : |d ∩ c| = 0 and |d ∩ t| = 2 do

compute x(Q(c, d));
if x(Q(c, d)) > 1 then

return x(Q(c, d)) ≤ 1 as violated;
end if

end for
end if

end for
end for

to a set of ‘core’ elements C ⊂ I ∪ J ∪ K, in the sense that given C and supp(x) we can
explicitly compute the left-hand side of the inequality. For example, each clique inequality
of type I corresponds to a C having one element from each of I,J and K. Similarly, for a
clique inequality of type II, the corresponding C contains two elements from each of I, J
and K. Therefore, a natural idea when searching for a violated inequality from a particular
class is to identify the set C the inequality corresponds to. A naive algorithm would check
all possible C’s; clearly, this can be prohibitively expensive as the cardinality of C and n
increases.

The algorithms presented here find the C of a violated inequality by exploiting the
properties of a point in Pn. To show these properties, we introduce some notation. Define,
for x ∈ Pn:

– for each j ∈ J, k ∈ K: SUMI(j, k) =
∑
i∈I

xijk,
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– for each i ∈ I, k ∈ K: SUMJ(i, k) =
∑
j∈J

xijk,

– for each i ∈ I, j ∈ J : SUMK(i, j) =
∑
k∈K

xijk.

Informally, each of these quantities corresponds to an axis in the geometric description given
in Figure 1.

Lemma 1 Let ε > 0. For all i ∈ I, the number of pairs (i, j) (respectively number of pairs
(i, k)), j ∈ J (k ∈ K), such that SUMK(i, j) > ε (respectively SUMJ(i, k) > ε) is at most
1
εn.

Proof If not, at least 1
εn pairs (i, j) ∈ I × J have SUMK(i, j) > ε. This implies we have∑

i

∑
j

SUMK(i, j) >
1

ε
· εn = n =

∑
i

∑
j

∑
k

xijk =
∑
i

∑
j

SUMK(i, j)

which is a contradiction. ut

Further, we define

– for each i ∈ I: J(i) = {j ∈ J : SUMK(i, j) > 1
3}.

Notice that |J(i)| ≤ 2 for each i ∈ I, due to (2) and Lemma 1.
We can compute all aforementioned quantities by scanning supp(x) only once. For ex-

ample, to compute SUMI(j, k) for a specific j, k, it suffices to add the values of xv’s for
each triple v ∈ V having |v ∩ {j, k}| = 2 encountered while scanning supp(x). Algorithm 3
describes all steps in detail.

Algorithm 3 Calculating SUMI(j, k) and J(i)

{Input: supp(x)}
for all c ∈ supp(x) with c = (ic, jc, kc) do

if variable SUMK(ic, jc) does not exist then
create variable SUMK(ic, jc);
SUMK(ic, jc) := 0;

end if
SUMK(ic, jc) := SUMK(ic, jc) + xc;
if SUMK(ic, jc) > 1

3
then

if J(ic) does not exist then
create variable J(ic);

end if
J(ic) := J(ic) ∪ {jc};

end if
end for

Lemma 2 For an arbitrary x ∈ Pn, all positive SUMI(j, k), SUMJ(i, k) and SUMK(i, j)
values (for i ∈ I, j ∈ J, k ∈ K) as well as the sets J(i) for each i ∈ I can be calculated in
O(T ) steps.

Proof Algorithm 3 shows how to compute SUMI(j, k), for each j, k, as well as J(i) for each
i in O(T ) steps. A straightforward extension of Algorithm 3 implies the result. ut
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For each i ∈ I (resp j ∈ J, k ∈ K), let val(i) (resp. val(j), val(k)) be the value of the
third largest variable indexed by a triple containing i (resp. j, k). Then we define for any
x ∈ Pn:

– for each i ∈ I: A(i) = {(i, j, k) ∈ V : xijk ≥ val(i), j ∈ J, k ∈ K},
– for each j ∈ J : B(j) = {(i, j, k) ∈ V : xijk ≥ val(j), i ∈ I, k ∈ K},
– for each k ∈ K: C(k) = {(i, j, k) ∈ V : xijk ≥ val(k), i ∈ I, j ∈ J}.

It follows that the sets A(i) (resp. B(j), C(k)) contain the largest three such variables, i.e.
the three largest variables indexed by a triple containing i (resp. j, k). In addition, we define

– for each i ∈ I: A>
1
4 (i) = {(i, j, k) ∈ V : xijk >

1
4 , j ∈ J, k ∈ K},

– for each j ∈ J : B>
1
4 (j) = {(i, j, k) ∈ V : xijk >

1
4 , i ∈ I, k ∈ K},

– for each k ∈ K: C>
1
4 (k) = {(i, j, k) ∈ V : xijk >

1
4 , i ∈ I, j ∈ J}.

Observe further that all elements from a specific A>
1
4 (i) (resp. B>

1
4 (j), C>

1
4 (k)) occur

in a single equality among equalities (2) (resp. (3), (4)). Since the right-hand side of any
equality is 1, and each element in any such set has value strictly larger than 1

4 , it follows

that |A> 1
4 (i)| ≤ 3, |B> 1

4 (j)| ≤ 3, and |C> 1
4 (k)| ≤ 3, for i ∈ I, j ∈ J, k ∈ K. In fact, we can

state the following.

Lemma 3 For every fixed ε > 0 and i ∈ I, the number of triples (i, j, k), with j ∈ J and
k ∈ K, such that xijk > ε is at most 1

ε − 1.

Again, scanning supp(x) only once allows us to compute the sets defined above. That is,
whenever we encounter a triple v ∈ V in supp(x) with |v∩i1| = 1, then if xv >

1
4 we add v to

A>
1
4 (i1) and if xv is larger than xu with u ∈ A(i1) we replace u with v in A(i1). Algorithm 4

contains all related steps.

Lemma 4 For an arbitrary x ∈ Pn, the sets A(i) and A>
1
4 (i) for i ∈ I, can be calculated

in O(T ) steps.

Proof Algorithm 4 shows how to compute A(i) and A>
1
4 (i), for each i ∈ I in O(T ) steps. A

straightforward extension of Algorithm 4 implies the result. ut

5 Improved separation algorithms

This section describes O(T ) separation algorithms for clique inequalities of types I and II.
Regarding clique inequalities of type I, recall that, with c = (ic, jc, kc), Q(c) = {(ic, jc, kc)}∪

{(ic, jc, k), k ∈ K\{kc}} ∪ {(ic, j, kc), j ∈ J\{jc}} ∪ {(i, jc, kc), i ∈ I\{ic}} (see Figure 1).
Thus:

x(Q(c)) = SUMK(ic, jc) + SUMJ(ic, kc) + SUMI(jc, kc)− 2 · xicjckc ≤ 1. (6)

In the rest of the section we assume that a violated inequality corresponds to a triple
(i, j, k) satisfying SUMK(i, j) ≥ SUMJ(i, k) ≥ SUMI(i, k). Notice that this assumption is
without loss of generality since we can interchange the roles of i, j, k. Algorithms similar
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Algorithm 4 Calculating A(i) and A>
1
4 (i)

{Input: the list supp(x)}
for all c ∈ supp(x) with c = (ic, jc, kc) do

if xc > 1
4
then

if set A> 1
4 (ic) does not exist then

create set A> 1
4 (ic);

A> 1
4 (ic) := ∅;

end if
A> 1

4 (ic) := A> 1
4 (ic) ∪ {c};

end if
if set A(ic) does not exist then

create set A(ic);
A(ic) := ∅;

end if
if |A(ic)| < 3 then

A(ic) := A(ic) ∪ {c}
else

if xc > xd where xd = mint∈A(ic)x(t) then
A(ic) := A(ic)\{d} ∪ {c}

end if
end if

end for

to this case can be constructed for the other cases by interchanging the role of i, j, k and
pre-computing the sets similar to J(i) via a slight modification of Algorithm 3.

Let us first give an informal description of our separation algorithm for this class. As
mentioned in Section 4, the set C in this case contains one element from each of the sets
I,J ,K, thus our separation algorithm checks whether such a triple (i, j, k) corresponds to a
violated inequality. The separation algorithm, Algorithm 5, contains two ‘for’ loops. The first
loop examines all triples (ic, jc, kc) in the support, and uses, in the subsequent if-statement,
the values of ic and kc. (Algorithm 5 presents only the case where these two elements are in
I,K since the other two cases are implemented similarly). The second ‘for’ loop checks the
inequality explicitly for each possibility of the third element.

Lemma 5 Given its input, Algorithm 5 determines in O(T ) steps whether an arbitrary
x ∈ Pn violates a clique inequality of type I.

Proof Let us first show that a clique inequality of type I is violated only if there is (ic, jc, kc)
such that

SUMK(ic, jc) >
1

3
(7)

and
SUMJ(ic, kc) > 0. (8)

Notice that (7) follows directly from (6) and our assumption that SUMK(ic, jc) ≥
SUMJ(ic, kc) ≥ SUMI(jc, kc). Concerning (8), observe that SUMJ(ic, kc) = 0 yields SUMI(jc, kc) =
0, while the remaining terms of (6) cannot sum to a total of more than 1 and hence (6) cannot
be violated.

Next, observe that each (ic, kc) ∈ I × K satisfying (8) is contained in some triple in
supp(x). Algorithm 5 does consider each triple in supp(x). Once ic, kc are fixed, then by
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definition all jc for which (7) is satisfied are stored in the, pre-calculated by Algorithm 3,
J(ic). Algorithm 5 proceeds by checking the inequality for each (ic, j, kc) with j ∈ J(ic),
given ic, kc. Hence Algorithm 5 is correct.

Regarding complexity, the first ‘for’ loop runs O(T ) times. The second ‘for’ loop runs
for O(1) times as the cardinality of J(i) is at most 2. Therefore, the overall complexity of
Algorithm 5 is O(T ). ut

Theorem 1 For any x ∈ Pn, clique inequalities of type I can be separated in O(T ) steps.

Proof Lemma’s 2 and 5 imply that applying first Algorithm 3 and applying Algorithm 5,
determines whether there is a violated clique inequality of type I. Total complexity follows
easily from the complexity of these algorithms. ut

Algorithm 5 A separation algorithm for clique inequalities of type I
{Input: supp(x); SUMI(j, k), SUMJ(i, k), SUMK(i, j), and J(i) for all i, j, k}
for all c ∈ supp(x) with c = (ic, jc, kc) do

for all j ∈ J(ic) do
if SUMJ(ic, kc) + SUMI(j, kc) + SUMK(ic, j)− 2 · xic,j,kc > 1 then

return x(Q(c′)) ≤ 1 as violated, c′ = (ic, j, kc);
end if

end for
end for

Let us now focus on clique inequalities of type II. For c = (ic, jc, kc) and h = (ih, jh, kh),
Q(h)∩ coQ(c) = {(ic, jh, kh), (ih, jc, kh), (ih, jh, kc)}. Hence Q(c, h) = {c} ∪ (Q(h) ∩ coQ(c))
is a clique with exactly four nodes, any pair of which share exactly one index; notice also that
any node in Q(c, h) can play the role of c. Last, observe that any three nodes in Q(c, h) are a
subset of the node set of a clique of type I; for example, {(ic, jh, kh), (ih, jc, kh), (ih, jh, kc)} ⊆
Q(h), {(ic, jc, kc), (ic, jh, kh), (ih, jc, kh)} ⊆ Q((ic, jc, kh)), and so on.

Assuming that no clique inequality of type I is violated, i.e., Algorithm 5 has returned
no violated inequality, we provide an O(T ) separation algorithm for clique inequalities of
type II.

The main idea of our algorithm is again to construct the set C associated with a violated
inequality, which in this case contains two elements from each of I, J,K. Our separation
algorithm for this class is called Algorithm 6 and has three ‘for’ loops. In the first ‘for’
loop, three of the six elements are added to the set C associated with the inequality to be
checked. The second and third loop use the precomputed sets mentioned in Section 4 to
add the remaining three elements to C. Then, the inequality is explicitly checked for the
constructed C.

Lemma 6 Given its input, Algorithm 6 determines in O(T ) steps whether an arbitrary
x ∈ Pn violates a clique inequality of type II.

Proof Let us first examine the correctness of the algorithm, by considering some x ∈ Pn

such that
x(Q(c, d)) = xicjdkd + xidjckd + xidjdkc + xicjckc > 1. (9)

11



Recall that (9) is symmetric in the sense that any three variables in it appear together in
a clique inequality of type I and any two variables in it have exactly one index in common.
Therefore, let us assume without loss of generality that

xicjckc ≥ max{xicjdkd , xidjckd , xidjdkc}. (10)

Then, the triple indexing the variable with the smallest value in (9) can be (ic, jd, kd) or
(id, jc, kd)) or (id, jd, kc); it suffices to prove the correctness of the algorithm for the case
where xicjdkd is the smallest of the four variables in (9). Due to the assumption that no clique
inequality of type I is violated, it follows that all four variables from (9) must be positive,
and hence appear in supp(x). Therefore, (ic, jd, kd) ∈ supp(x). Algorithm 6 proceeds by
considering each possibility of (ic, jd, kd) in supp(x). Further, observe that at least one of
the variables of (9) must have a value greater than 1

4 . By (10) we have xicjckc >
1
4 , for some

(ic, jc, kc) ∈ supp(x). Note that, for a fixed ic, such an (ic, jc, kc) should be in A>
1
4 (ic).

Moreover, for any fixed c = (ic, jc, kc) such that xc >
1
4 , there are at most 4 possible triples

h that do not contain ic, and xh >
1−xc

3 . By definition they all should be in B(jc) and C(kc)
. Consequently, Algorithm 6 is correct.

Concerning the complexity of Algorithm 6, note that there are four loops, namely one
‘outer’, one ‘inner’ and two ‘innest’ (with a slight language abuse). The ‘outer’ loop is

performed O(T ) times. Since the cardinality of A>
1
4 (i),B>

1
4 (j),C>

1
4 (k) is at most 3, the

inner loop is performed at most 3 times. Therefore ‘inner’ loop runs for O(T ) times. For
each c ∈ supp(x) such that xc >

1
4 , the two ‘innest’ loops are performed a constant number

of times as the cardinality of A(ic),B(jc),C(kc) is constant. Therefore, the two ‘innest’ loops
are run O(T ) times. In total, the complexity of Algorithm 6 is O(T ). ut

Algorithm 6 Separation algorithm for clique inequalities of type II
{Input: the list supp(x), sets A(i), B(j), C(k) for i ∈ I, j ∈ J , and k ∈ K}
for all c′ ∈ supp(x), let c′ = (ic, jd, kd) do

for all (ic, jc, kc) ∈ A> 1
4 (ic) such that jc 6= jd,kc 6= kd do

for all h ∈ B(jc) ∪ C(kd) such that h = (id, jc, kd) and xh > 1−xc
3

do
if x(Q(c, d)) > 1 then

return x(Q(c, d)) ≤ 1 as violated;
end if

end for
for all h ∈ B(jd) ∪ C(kc) such that h = (id, jd, kc) and xh > 1−xc

3
do

if x(Q(c, d)) > 1 then
return x(Q(c, d)) ≤ 1 as violated;

end if
end for

end for
end for

Theorem 2 For any x ∈ Pn, clique inequalities of type II can be separated in O(T ) steps.

Proof Lemma’s 4 and 6 imply that first applying Algorithm 4, and then applying Algorithm 6
determines whether there is a violated inequality of type II. The complexity follows easily.
ut
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6 The k-index assignment polytope

The ideas presented in the previous section are also applicable to the axial assignment
problem comprising more than 3 sets, see Appa et al. [2]. The k−index axial assignment
problem can be defined using k disjoint n-sets M1, . . . ,Mk and a cost-function w : M1 ×
· · · ×Mk −→ R. Let M ≡M1×M2× . . .×Mk be the cartesian product of the sets Mi. The
problem is to find a minimum-cost collection of n disjoint k−tuples such that every element
of each set (i.e., every m(i) ∈Mi, i ∈ {1, . . . , k}) appears in exactly one k-tuple.

First let us introduce some notation which is useful to explain the formulation and
algorithms.

min
∑
m∈M wm · xm (11)

s.t.
∑
m:m(j)=i xm = 1, ∀j = 1, . . . , k, i ∈Mj , (12)

xm ∈ {0, 1}n
k

, ∀m ∈M. (13)

Let A(k,n) denote the (0, 1) matrix of the constraints (12). The matrix A(k,n) has nk columns
and k · n rows, while each constraint includes nk−1 variables. The associated (axial assign-

ment) polytope is P
(k,n)
I = conv{x ∈ {0, 1}nk

: A(k,n)x = e}, while its LP-relaxation is

P (k,n) = {x ∈ Rnk

: A(k,n)x = e, x ≥ 0}. As in Remark 1, any solution of P (k,n) has at most
k · n non-zero variables.

The column intersection graph of A(k,n), namely G(V k, Ek), has a node for each column
of A(k,n) and an edge for every pair of columns that have a +1 entry in the same row. It is
easy to see that the node set V k is identical to M and that if c, d ∈ V k then (c, d) ∈ Ek if
and only if |c ∩ d| ≥ 1 (i.e. two nodes are connected if the corresponding tuples have at least
one index in common).

Let us now generalize the concepts of Sections 5 by defining

– for each c ∈ V k: Qk(c) = {d ∈ V k : |c ∩ d| = k − 1},
– for each c ∈ V k: coQk(c) = {d ∈ V k : |c ∩ d| = 1}, and
– for each c, d ∈ V k with |c ∩ d| = 0: Qk(c, d) = {c} ∪ {Qk(d) ∩ coQk(c)}.

We refer to the inequalities x(Qk(c)) ≤ 1 as generalized inequalities of type 1, and to
the inequalities x(Qk(c, d)) ≤ 1 as generalized inequalities of type 2. We point out here that
these particular inequalities, while valid, are not facet-defining for k ≥ 4. However, separating
these inequalities efficiently is still relevant, since they can either be added directly to the
linear program, or strengthened by lifting some coefficients to obtain facets (see Magos and
Mourtos [19]).

By generalizing the ideas and algorithms of the previous sections, we obtain the following
results, whose proofs can be found in Dokka [13].

Theorem 3 The generalized inequalities of type I can be separated in O(k2T ) steps.

Theorem 4 The generalized inequalities of type II can be separated in O(k3T ) steps.
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7 Computational experiments

In this section we report on the computational performance of the separation algorithms
for clique inequalities of types I and II. We compare the running times of our algorithms
with the performance of the traditional separation algorithms described in Balas and Qi [4].
All algorithms have been coded in C++ using Visual Studio C++ 2005 and ILOG concert
technology. All the experiments have been conducted on a Dell Latitude E6400 PC with
Intel core 2 Duo processor with 2.8 GHz and 1.59 GB RAM under Windows XP. CPLEX
12.4 has been used for solving the LP-relaxation.

7.1 Instances

For our experiments we consider seven classes of instances used in the literature.

The first class includes the instances proposed by Balas and Saltzman [6]. The integer
cost coefficients ci,j,k are generated uniformly in the interval [0, 100]. These instances are
denoted as UNIFORM instances.

The instances of the second class are generated using again the method in [6], the only
difference being that the cost coefficients are generated uniformly in the interval [0, 9999].
We denote these instances as UNIFORM10K.

The third class of instances consists of the 18 instances from Crama and Spieksma [11].
These include are 9 instances size 33 and 9 instances of size 66. In these instances, the cost
function is decomposable and the details on the generation procedure can be found in [11].

The fourth and fifth classes of instances are taken from Höfler and Fügenschuh [15] and
denoted as QUAD and CLUSTER respectively. The QUAD instances are randomly gener-
ated, with their cost coefficients having a value 10000 · z2 where z is uniformly distributed
in the interval [0,1]. The cost coefficients of the CLUSTER instances are chosen out of
three clusters [0, 49],[450, 499],[950, 999], where each coefficient lies in a specific cluster with
probability equal to 1/3 and is then chosen uniformly from the range of that cluster.

The sixth class of instances, denoted as BRW, is generated using the method described in
Burkard et al. [7]. Each cost coefficient is decomposable, assuming the form ci,j,k = ai ·bj ·ck,
where each of ai, bj , ck is uniformly distributed in the interval [1, 10].

The last class of instances, denoted as GP, is generated using the algorithm proposed
in Grundel and Pardalos [14] with random costs coefficients selected uniformly from the
interval [1, 300]. A detailed explanation on the generation of the cost coefficients can be
found in [14].

The largest instances used in the literature are of size 26. To better understand the
improvement achieved by our fast separation algorithms, we create larger instances for the
each of the classes described above. That is, for each among the first six classes, we generate 5
instances for each of the sizes 25, 54, 66, 80, 100, 120. For GP instances we create 5 instances
for each of the sizes 25, 54, 66, 80 and 100. Table 1 gives a summary of the problem classes
used in our experiments. All instances can be found at http://www.lancaster.ac.uk/

staff/dokka/download.htm.

14



Instance class parameters method
UNIFORM [0,99] [6]

UNIFORM10K [0,9999] [6]
QUAD

⌊
10000 · z2

⌋
, z ∈ [0, 1[ [15]

CLUSTER [0, 49], [450, 499], [950, 999] [15]
GP [0, 300] [14]

BRW [1, 10]× [1, 10]× [1, 10] [7]
FY [0,100] [11]

Table 1 Problem classes

7.2 Implementation details

There are different ways of implementing a cutting plane algorithm. For instance, one can
add a single violated inequality or all violated ones in each iteration. Although having
experimented with both options, we only report the results of the implementation where all
violated inequalities are added per iteration. This is because, when adding a single inequality,
the inequality found by our separation algorithms may differ from the violated inequality
found by the traditional algorithms, thus yielding a different number of iterations and hence
a less transparent comparison.

Further, we opt for the following strategy: first, we separate (and add to the LP-
relaxation) clique inequalities of type I; next, we separate clique inequalities of type II only
if no violated type I inequalities are detected (see Algorithm 7). Of course, this procedure
favors the detection of violated type I inequalities.

Algorithm 7 Algorithm Outline
0. Let lp = LP relaxation of (2)-(5)
1. Solve lp and find sup(x∗)
2. Input sup(x∗) to separation algorithm for clique inequalities of type I
if violated clique inequalities of type I have been found then

update lp by adding all violated clique inequalities of type I; goto step 1
else

Input sup(x∗) to the separation algorithm for clique inequalities of type II
if violated clique inequalities of type II have been found then

update lp by adding all violated clique inequalities of type II; goto step 1
end if
STOP: if no violated clique inequalities of type I or type II

end if

Clearly, when implementing Algorithm 7 (see line 1), we need to find the support, i.e.,
we need to detect which entries are nonzero.To do that we use a tolerance level of 1.0e− 05.
We ran the experiments with other tolerance levels, and found no significant differences.

7.3 Results and discussion

The outcomes of our experiments are described in Table 2. We denote the cutting plane
scheme that uses our separation algorithms by DMS, and the scheme using the traditional
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algorithms by BQ. The first and second columns specify the class and the size of the
instances. The third and fourth columns are times taken by DMS and BQ, respectively .
The time reported for each size and class is the average time over the 5 (4 for each size of
UNIFORM class) instances of that size (and class). The last column gives the average number
of cuts added for DMS. Clearly, the LP-bound found by the two separation algorithms is
identical; however, the total number of cuts added by both separation algorithms can be
different. The reason for this is that, after the first iteration, CPLEX may find different LP
solutions (albeit with the same LP value, of course) which is caused by the fact that even
if the set of violated inequalities is the same for both separation algorithms, the order in
which these inequalities are added to the formulation can be different, and this may influence
the LP solution found by the CPLEX. Indeed, when we sorted the inequalities found, and
added them in the same order to the formulation, the total number of cuts found by the
two separation algorithms is identical. Sorting the inequalities, however, slightly increases
the running time, and we chose not to do this. Moreover, we found that the total number
of cuts for both implementations differs only marginally; so, we chose to report the average
number of cuts for DMS.

Further, since our main focus is on running times of the separation algorithms, we do
not report the increase of the LP value (recall that we solve the 3-index assignment as a
minimization problem).

Surprisingly, no violated clique inequalities of type II are found in almost all instances.
Only in 3 instances, namely 2 from the BRW class and 1 from there UNIFORM class,
there have been violated clique inequalities of type II. For this reason, we only report the
average number of cuts added. Although this behavior appears uncommon at first sight,
similar behavior has been observed for other problems, e.g., for the node packing problem
regarding clique and odd-hole inequalities [20]. This may be caused (partly) by the set-up of
the separation routine, i.e., there would violated clique of type II if separated before cliques
of type I. However, recall that Algorithm 6 relies on the fact no clique inequality of type I
is violated in order to exploit the property that any three variables in a clique inequality of
type II appear in a clique inequality of type I (and thus improve significantly its running
time compared to the traditional algorithm).

The results of Table 2, show that DMS outperforms BQ in all instances, the improvement
being more impressive as the size of the instance grows. Also, compared to BQ the variance in
running time is also low for DMS. Thus, also in practice, exploiting sparsity yields separation
algorithms that are much faster, often by an order of magnitude: on average, DMS is more
than 15 times faster than BQ. This behavior is better illustrated in Figure 3 (whose y-axis
reports the average over all classes per size). This shows that T indeed grows very slowly
compared to the n3 and in general scales-up pretty well.

One might be interested in comparing the separation time with the time needed to re-
optimize the LP after cut addition. This is done in Figures 4, where ‘lp time’ is the time
spent only on re-solving the LP (without the time for solving it initially). It can be seen
that the relative amount of time spent in separation is much smaller if DMS is used instead
of BQ. Let us also note that the ‘lp time’ may in general vary significantly depending upon
the instance.
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8 Conclusion

In this paper we have revisited the idea of exploiting sparsity in separation algorithms. We
have also suggested to express the time complexity of such algorithms in terms of sparsity
(i.e., the number of non-zero entries in the input). By allowing the input vector of a sepa-
ration algorithm to be described by its support, we have obtained more efficient separation
algorithms for the clique inequalities of the 3-index assignment problem.

Indeed, the improvement achieved for the 3-index axial assignment problem is significant
if the vectors to be separated are vertices of the LP-relaxation because the corresponding
formulation contains more variables than constraints. Therefore, analogous improvements
could be plausible for other problems whose formulations share this property. However,
notice that for problems where column generation is used to solve a linear programming
formulation, this idea seems not applicable, since, in such a setting, variables are generated
instead of violated inequalities. Thus, formulations with more variables than constraints
that are not being solved by a column generation approach are susceptible to the design of
efficient separation algorithms that exploit sparsity.
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Type size DMS BQ DMS BQ cuts
Avg Avg Stdev Stdev (#)

CPU(s) CPU(s)
UNIFORM 25 0.006 0.021 0.008 0.008 5.25

54 0.037 0.35 0.023 0.052 8.5
66 0.054 0.764 0.019 0.054 7
80 0.152 2.195 0.023 0.232 8.67
100 0.262 4.008 0.060 0.872 10.4
120 0.408 7.799 0.126 0.804 10.6

QUAD 25 0.004 0.019 0.007 0.018 6.4
54 0.032 0.331 0.009 0.017 7
66 0.065 0.785 0.021 0.031 7.75
80 0.124 1.603 0.052 0.434 14.2
100 0.307 4.74 0.110 0.780 12.8
120 0.382 7.836 0.085 0.608 13.4

BRW 25 0.004 0.022 0.013 0.008 7.6
54 0.043 0.371 0.017 0.028 16.6
66 0.083 0.814 0.041 0.054 17.2
80 0.166 1.729 0.047 0.124 19.4
100 0.265 4.161 0.135 1.454 17.75
120 0.487 9.379 0.118 3.059 21.2

Continued on next page
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Fig. 3 DMS vs BQ with increasing n

Table 2 – continued from previous page
Type size DMS BQ DMS BQ cuts

UNIFORM10K 25 0.003 0.018 0.011 0.007 6.6
54 0.027 0.307 0.015 0.017 4.6
66 0.051 0.693 0.022 0.027 5.8
80 0.089 1.407 0.026 0.433 4.6
100 0.159 3.368 0.041 0.480 5.6
120 0.293 7.03 0.077 0.696 7

CLUSTER 25 0.004 0.024 0.007 0.018 7.4
54 0.037 0.313 0.013 0.039 9.2
66 0.074 0.788 0.024 0.046 10.2
80 0.148 1.673 0.019 0.152 15.6
100 0.313 4.323 0.077 0.448 13
120 0.446 8.505 0.104 0.655 13.8

GP 25 0.003 0.004 0.007 0.007 6.4
50 0.014 0.038 0.009 0.023 7.5
66 0.035 0.121 0.015 0.046 9.4
80 0.067 0.251 0.028 0.146 13
100 0.1326 0.6488 0.007 0.052 16.2

FY 33 0.006 0.019 0.007 0.008 0.89
66 0.031 0.224 0.009 0.015 2.45

Table 2: Comparison of average computation times
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Fig. 4 Comparison of lp times with separation times
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