
End-to-End Verifiable Elections in the Standard
Model?

Aggelos Kiayias†‡, Thomas Zacharias‡, and Bingsheng Zhang‡

Dept. of Informatics and Telecommunications,
National and Kapodistrian University of Athens, Greece

{aggelos, thzacharias, bzhang}@di.uoa.gr

Abstract. We present the cryptographic implementation of “DEMOS”,
a new e-voting system that is end-to-end verifiable in the standard model,
i.e., without any additional “setup” assumption or access to a random
oracle (RO). Previously known end-to-end verifiable e-voting systems
required such additional assumptions (specifically, either the existence
of a “randomness beacon” or were only shown secure in the RO model).
In order to analyze our scheme, we also provide a modeling of end-to-
end verifiability as well as privacy and receipt-freeness that encompasses
previous definitions in the form of two concise attack games.
Our scheme satisfies end-to-end verifiability information theoretically in
the standard model and privacy/receipt-freeness under a computational
assumption (subexponential Decisional Diffie Helman). In our construc-
tion, we utilize a number of techniques used for the first time in the
context of e-voting schemes that include utilizing randomness from bit-
fixing sources, zero-knowledge proofs with imperfect verifier randomness
and complexity leveraging.

1 Introduction

In an end-to-end (E2E) verifiable election system, voters have the ability to
verify that their vote was properly cast, recorded and tallied into the election
result. Intuitively, the security property that an E2E verifiable election intends
to capture is the ability of the voters to detect a malicious election authority that
tries to misrepresent the election outcome. E2E verifiability is a strong level of
security for election systems that has been widely accepted as a fundamental
requirement for their adoption, see e.g., [39].

In more details, E2E verifiability mandates that the voter can obtain a receipt
at the end of the ballot casting procedure that can allow her to verify that her
vote was (i) cast as intended, (ii) recorded as cast, and (iii) tallied as recorded.
Furthermore, any external third party should be able to verify that the election

† Research was supported by ERC project CODAMODA.
‡ Research was supported by project FINER, Greek Secretariat of Research and Tech-

nology funded under action “ARISTEIA 1.”
? The authors are ordered alphabetically and the third author is the corresponding

author.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/42416375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Aggelos Kiayias and Thomas Zacharias and Bingsheng Zhang

procedure is executed properly. In fact, it is imperative that the receipts in an
E2E system are delegatable i.e., the voter may delegate the task of verifiability
to any interested third party, for instance an international organization of the
voters’ choosing that aggregates the task of verification. This requirement, as
well as the fact that it should be infeasible for the voter to use her receipt as a
proof of the way she voted (this is necessary to deter vote-selling/buying), make
the design of end-to-end verifiable systems a challenging problem.

All known e-voting systems that offer E2E verifiability provide it under some
setup assumption or in the random oracle (RO) model. Notably, E2E verifiability
can be argued (note that it is never formally proven before) for Helios [1] in the
RO model while for Remotegrity1 [44] in the model where a trusted party (a
“randomness beacon”) provides a stream of unbiased and unpredictable random
coins. More general approaches for defining auditable multiparty computation
(MPC) have recently been proposed [3] and also rely on a setup assumption such
as a CRS.

A critical shortcoming of using setup assumptions for establishing E2E veri-
fiability in e-voting is the fact that the voters will be required to make a “leap
of faith” and accept the setup assumption in order to accept the election result.
This can be an unfortunate state of affairs: since the election authority (EA)
cannot unequivocally convince the voters that the election is correct, then the
election outcome can be always subject to dispute.

Our Results. Motivated by the above, we design a new e-voting system that
we can prove E2E verifiable information theoretically in the standard model,
i.e., without any setup assumption except the existence of a bulletin board (BB)
which provides a consistent view of the election transcript. Our result is further
strengthened by the fact that we make the absolute minimal assumptions on the
computation capabilities of the voters: voters are merely modeled as finite state
transducers and thus are incapable of performing any cryptographic operation
during ballot-casting (note the auditing stage after the election would require
the capability of cryptographic operations but they can be performed at any
time, in the post-election stage).

To accomodate the analysis of our system we provide a model for E2E ver-
ifiability and voter privacy/receipt-freeness. Our model for E2E verifiability is
inspired from input-indistinguishable computation of Micali, Pass and Rosen
[36] since in their setting they are also faced with proving security for multi-
party computation in the standard model (note however they do not deal with
E2E verifiability/auditability in their setting). In our modeling, the election sys-
tem involves three types of entities, the voters V1, . . . , Vn, the election authority
(EA), and the bulletin board (BB) whose only role is to provide storage for the
election transcript for the purpose of verification. Voters submit their votes by
engaging in the ballot casting protocol to the EA and they are not allowed to
interact with each other. Our definition of end-to-end verifiability considers a

1 Note that Remotegrity itself is only a “front-end” type of system. It will be E2E
verifiable if combined with Scantegrity-II [14] as suggested by the authors of the
paper.

End-to-End Verifiable Elections in the Standard Model 3

very powerful adversary that is computationally unbounded and completely con-
trols the EA. On the other hand, BB is completely passive and is only writeable
by the EA and readable by anyone. The definition is satisfied, if and only if
the adversary is incapable of evading being detected when it manipulates the
election result as long as a number of voters perform the verifiability procedure
honestly. Voter privacy on the other hand, considers an adversary that has full
access to all the the voters’ receipts, views of the ballot casting protocol as well
as it may control of a number of malicious voters. For any election tally, the
adversary should be incapable of distinguishing the way honest voters vote.

Our construction cherry picks ideas put forth in previous works, specifically,
code-voting and double ballots from [12,13], but also introduces a number of
novel elements that enable us to prove E2E verifiability in the standard model.
In order to achieve verifiability, our system utilizes a novel ZK proof for candi-
date encoding correctness and collects coins from the voters to form the challenge
(specifically, a single random coin per voter). Given that the majority of vot-
ers cannot be assumed to be properly following the protocol, the sequence of
voter contributed randomness is a particularly “weak source” that cannot be
used for arguing the integrity of the election in a direct way — as we argue it
is a very weak source akin to adaptive bit-fixing sources [35]. We then show
(i) how it is possible to perform our ZK proof with a verifier that has imperfect
randomness (just a min-entropy source), (ii) how to produce a (sufficiently long)
sequence of min-entropy challenge from the random bits contributed by the vot-
ers. The tools that are important in our construction include a generalization
of the Schwartz-Zippel lemma [42,45] for imperfect randomness and a suitable
strategy for dividing the coins of the voters so that the entropy is not lost due to
the adversarial strategy of the EA (who also controls a number of voters). Using
these techniques we design a novel ZK protocol and we prove unconditionally
end-to-end verifiability for our scheme. For voter privacy, we utilize complexity
leveraging to construct a simulator that is capable of reducing a voter privacy at-
tack to a subexponential DDH distinguisher and hence our system offers privacy
and receipt-freeness under a computational assumption.

In summary, our e-voting system is the first construction achieving the prop-
erties E2E verifiability and voter privacy/receipt-freeness in the standard model.
Furthermore, we prove E2E verifiability information theoretically assuming the
voters are computationally restricted transducers that hence are incapable of
performing any cryptographic operation during ballot casting. The only as-
sumptions we make are subexponential Decisional Diffie Hellman assumption
(for voter privacy/receipt-freeness) and a consistent bulletin board board. We
remark that a consistent bulletin board can be easily seen to be a tight condition
since without it, it is easy to verify that E2E verifiability of the election cannot
be achieved: by controlling the BB, an adversarial EA can distribute voters to
their own separate “islands” where within each one the voters will have their
own verifiable view of an election result that can be - in reality - completely
skewed. Implementing a consistent bulletin board is beyond our scope, however
we note that it can be achieved in the standard model using Byzantine agrement

4 Aggelos Kiayias and Thomas Zacharias and Bingsheng Zhang

(BA) (for BA, see e.g., [25]) by assuming secure channels between any pair of
parties. In fact, recently, it is shown that one can achieve BA efficiently even
without secure channels in a completely anonymous setting [26] hence removing
the requirement for pairwise secure channels (but note that this latter work relies
on proofs of work modeled in the RO model).

Why previously known techniques do not work. To motivate further our
approach it is worth-while to emphasize in which way previous works fail to
attain end-to-end verifiability in the standard model. Helios, culminates a long
line of previous schemes that employ homomorphic type of voting [17,22] and
utilizes the Benaloh challenge [5] as the fundamental mechanism to attain verifi-
ability. Helios by design requires the voter to utilize a voter supporting device to
prepare a ciphertext and after an indeterminate number of trials, the voter will
cast the produced ciphertext. Such ciphertexts are to be homomorphically tallied
and thus they should be accompanied by a proof of proper computation. While
such proofs are easy to construct based on e.g., [20], they can only be argued
interactively (which is insufficient in our setting since a corrupt EA together
with a corrupt voter may cook up a malformed proof that is indistinguishable
from a proper one) or using a NIZK [10]. This latter approach is taken in He-
lios where a RO-based NIZK is utilized. In case the RO is dropped in favor of
a standard model NIZK, security would be impossible in our model as NIZK’s
require a common reference string (CRS) and this is unavailable in the standard
model; if the CRS is setup by the EA then in case it is malicious it will know
and exploit the trapdoor; on the other hand, the voters are not interacting with
each other and hence cannot setup the CRS by employing an MPC protocol. It
follows that obtaining E2E verifiability in the standard model is impossible to
overcome for Helios or any other similar scheme. On the other hand, in the case
of Remotegrity/Scantegrity n coins need to be obtained from the randomness
beacon in order to prove the result correct. It is easy to verify that the system
is insecure in terms of end-to-end verifiability in case the randomness beacon is
biased. As before, the only parties active are the EA and the voters who cannot
implement a randomness beacon that is required in the construction. In light of
the above our construction offers a new paradigm in e-voting design: the ran-
domness for the verification of the election can be collected distributively from
the voters. Given that such randomness is by nature very weak (humans are very
bad “randomness generators” and even worse malicious voters may collaborate
with the election authority to cancel the honest voters’ random bits) we show
how suitable cryptographic techniques that deal with imperfect randomness can
be employed to prove security.

Distributing the Election Authority. In our security model, we consider the
EA as a single entity that is malicious in the verifiability game and honest in
the privacy game. In practice one may want to distribute the EA to a number
of “trustees” that collectively implement the EA functionality to improve the
resiliency of the privacy property. While this is not a prime focus of our work
(which centers on verifiability), it is feasible to design an efficient threshold

End-to-End Verifiable Elections in the Standard Model 5

protocol for implementing the EA. Note that our notion of voter privacy and
receipt freeness can be easily extended to allow corrupted sub-authorities.

Other required properties of election systems. Our work by no means
solves the complete set of desired requirements that are needed in an election
system. Our voter-privacy definition implies receipt-freeness, i.e., provided that
the voter receives the voter secret-key over an untappable channel2, the voter
cannot convince any third party about the way she voted. Nevertheless, this
does not imply coercion resistance as the voter may still be forced to divulge the
voter secret prior to her ballot-casting (this does not violate voter privacy - it
just prevents the voter from actually using the system and enables the adversary
to vote on the voter’s behalf). There are techniques that can be used to increase
coercion resistance for internet-voting (e.g., those of [29,16] and others) and
they are compatible with our construction. We leave the integration of these
techniques with information theoretic E2E verifiability for future work. Similarly,
usability aspects are not within our current scope; nevertheless, we stress that
we have implemented our scheme for 1-out-of-m elections and we have used it
in real-world experiments3.

Related work. In [11], Chaum suggested for the first time that anonymous
communication can lead to voting systems with individual verifiability, i.e., the
voters can verify that their votes were counted correctly. In [41], Sako and Kil-
lian introduce explicitly the notion of universal verifiability, that is, the ability
for anyone to verify that the election result derives from the cast votes. Univer-
sal verifiability is also defined by Juels, Catalano and Jakobsson in [29] in the
computational model assuming a trusted setup. Kremer, Ryan and Smyth [31]
introduced symbolic definitions for individual and universal verifiability in the
context of applied pi calculus. A formal definition of universal verifiability is also
provided by Chevallier-Mames et al. in [15].

End-to-end verifiability in the sense of cast-as-intended, recorded-as-cast,
tallied-as-recorded was an outcome of the works of Chaum [13] and Neff [38].
The novelty was the generation of receipts that could be used for simple voter
verification while achieving privacy. The term of E2E verifiability (more pre-
cisely, E2E integrity) also appeared in [19]. Marneffe, Pereira and Quisquater
presented an ideal-world definition for election systems in [23] without explicitly
considering verifiability as a property of the ideal world. In [39], Popoveniuc et
al. proposed a definition of E2E verifiability via a list of properties.

Küsters, Truderung and Vogt [32] introduced symbolic and computational
definitions of verifiability parameterized by a goal and an adversarial environ-
ment. In [34], the same authors showed that individual verifiability and universal
verifiability are not sufficient to guarantee the “global” verifiability of an e-voting
system. A number of other e-voting systems in the cryptographic setting that
do not explicitly deal with E2E verifiability include [18,7,21,22].

2 An untappable channel enables the voter to deny the information that was transmit-
ted in it. Physically distributing voter’s secrets or using non-committing encryption
[4] achieves untappability.

3 For more information check our web-site http://www.demos-voting.org

http://www.demos-voting.org

6 Aggelos Kiayias and Thomas Zacharias and Bingsheng Zhang

Benaloh and Fischer [18] provided a computational definition of privacy as
the property that any coalition of malicious voters cannot distinguish between
any two vote assignments coming from a subset of honest voters that have the
same partial tally. Receipt-freeness has been first studied by Benaloh and Tu-
instra [6] and described as the property of an e-voting system to generate fake
voter transcripts that are indistinguishable from genuine transcripts. Following
this logic, in our voter privacy/receipt-freenes definition, we require simulation-
based indistiguishability of the views of the voters when they engage in the
ballot-casting stage. Chevallier-Mames et al. [15] introduced definitions for un-
conditional of privacy and receipt-freeness and showed incompatibility results of
universal verifiability with each of these two properties.

Formal definitions for privacy and receipt-freeness have been proposed in the
context of applied pi calculus [24] and the universal composability model [27,37].
Küsters, Truderung and Vogt [33], mention that simulation-based definitions are
often too strong to show security for reasonable e-voting systems, due to their
“yes or no” nature (the real and ideal setting are either indistinguishable or
not). In [34], they measure the level of privacy of an e-voting system w.r.t. to
the observation power the adversary has in a protocol run, via a definition which
is close to the Dolev-Yao model.

In [8], Bernhard et al. proposed a game-based notion of ballot privacy and
study the privacy of Helios. In their model, an adversary that chooses a fixed
vote E, cannot distinguish a bulletin board that contains ballots for real votes
from a bulletin board that contains ballots for E. Their definition was extended
by Bernhard, Pereira and Warinschi [9] by allowing the adversary to statically
corrupt election authorities. Both these definitions, although they imply a strong
inditinguishability property, do not consider receipt-freeness. We note that our
game-based definition captures both privacy and receipt-freeness while restricted
to a single EA (and it can easily be extended by including a set of trustees that
the adversary may corrupt).

As we have mentioned previously, modelling coercion resistance is out of the
scope of this work. We refer the reader to [29,24,43,33] for formal definitions of
coercion resistance in the cryptographic, symbolic and universal composability
model.
Organization. In Section 2, we introduce the syntax and define the correctness,
E2E verifibiality and voter privacy/receipt freeness of an e-voting system. In
Section 3, we present at length the construction of our e-voting system, including
a detailed description of all tools that are applied. In Section 4, we prove the
E2E verifibiality and voter privacy/receipt freeness of our e-voting system in the
security framework of Section 2.

2 E-voting Systems

2.1 Preliminaries

We use λ as the security parameter. Associated with an e-voting system, we also
consider two other parameters, the number of voters n and number of candidates

End-to-End Verifiable Elections in the Standard Model 7

m which are both thought as polynomial functions of λ. Let Π be an e-voting
system, where P = {P1, ..., Pm} is the set of candidates and V = {V1, ..., Vn} is
the set of voters. We denote by U ⊆ 2P the collection of subsets of candidates
that the voters are allowed to choose to vote for (which may include a “blank”
option too). The candidate selection U` of voter V` is an element in U .

Let P∗ be the set of vectors of candidate selections of arbitrary length. Let f
be the election evaluation function from P∗ to the set Zm+ so that f(U1, . . . ,Un)
is equal to an m-vector whose i-th location is equal to the number of times Pi
was chosen in the candidate selections U1, . . . ,Un.

The entities involved in an e-voting system Π, are the voters V1, . . . , V`, the
election authority (EA) and the Bulletin Board (BB).

2.2 Syntax and Correctness

An e-voting system Π is a quintuple of algorithms and protocols 〈Setup,Cast,
Tally, Result,Verify〉 specified as follows:

– The algorithm Setup(1λ,P,V,U) is executed by the EA and generates a
master secret key msk, Π’s public parameters Pub (which include P,V,U)
and the voters’ secrets s1, . . . , sn. EA has a state, st which is initialized as
msk. In addition, it posts an initial public transcript τ = Pub on the BB.

– The interactive protocol Cast is between three parties, the voter V`, the
BB and the EA. V` has input (Pub, s`,U`), EA has input msk and BB has
input τ . EA updates its state st and BB updates the public transcript τ .
Upon successful termination, the voter V` receives a receipt α`. We denote
by view` the view of the voter V` in the protocol Cast.

– The interactive protocol Tally with common input Pub is executed by the
EA and the BB on inputs msk, τ respectively. Upon successful termination,
the BB updates the public transcript τ .

– The algorithm Result(τ) outputs the result Rτ for the election or returns
⊥ in case such result is undefined.

– The algorithm Verify(τ, α) outputs a value in {0, 1}, where α is a voter
receipt (that corresponds to the voter’s output from the Cast protocol).

Remark. In many election systems, the EA is implemented by more than a
single authority. This means that Setup might be a protocol executed by those
parties (as opposed to a standalone algorithm). However, from the point of view
of E2E verifiability (where the system is considered malicious as a whole) this
is completely immaterial. Hence, for simplicity in the syntax above we consider
EA a single entity. In our construction the EA may also be distributed. We defer
the details for how this may be done to the full version of the paper.

Definition 1 (Correctness). The e-voting system Π has (perfect) correctness,
if for any honest execution of Π that results in a public transcript τ where the vot-
ers V1, . . . , Vn cast votes for options U1, . . . ,Un and received receipts α1, . . . , αn,
it holds that

Result(τ) = f(U1, . . . ,Un) and ∧n`=1 (Verify(τ, α`) = 1).

8 Aggelos Kiayias and Thomas Zacharias and Bingsheng Zhang

2.3 E2E Verifiability

In order to define E2E verifiability formally, we introduce a suitable notation;
given that candidate selections are elements of a set of m choices, we may encode
them as m-bit strings, where the bit in the i-th position is 1 if and only if
candidate Pi is selected. Further, we may aggregate the election results as the
list with the number of votes each candidate has received, thus the output of
the Result algorithm is a vector in Zm+ . In this case, a result is feasible if and
only if the sum of all its coordinates is no greater than the number of voters.

In our formalization of the E2E verifiability, we postulate the existence of
a vote extractor algorithm E (not necessarily running in polynomial-time) that
explains the election transcript: namely, it receives input of the form (τ,A) where
τ is an election transcript and A = {α`}`∈Ṽ is a set of Cast protocol receipts. By

Ṽ, we denote the set of honest voters that voted successfully. Given such input,
E will compute n − |Ṽ| vectors 〈U`〉V`∈V\Ṽ in {0, 1}m (which correspond to the

choices of all the voters outside of Ṽ) that can be either a candidate selection
if the voter has voted adversarially or a zero vector if the voter has not voted
successfully; E returns the symbol ⊥ in case such values cannot be defined. In the
special case where all voters are honest and have voted successfully (i.e., Ṽ = V),
E returns no value (outputs the empty set). The purpose of the E algorithm will
be to capture the setting when the election transcript τ contains (in potentially
encoded form) a set of well-formed actual votes.

Using the above notion, we will be capable to express the actual result en-
coded in an election transcript. Next, we want to formally express a measure
of deviation from the actual election result (as such deviation is the objective
of the adversary in an E2E verifiability attack). Some preliminary notions will
be needed. In order to express formally the deviation the adversary aims at,
it is natural to equip the space of results with a metric. We use the metric
derived by the 1-norm, ‖ · ‖1 scaled to half, i.e., d1 : Zm+ × Zm+ −→ R with
d1(w,w′) = 1

2 · ‖w−w
′‖1 = 1

2 ·
∑n
i=1 |wi−w′i| where wi, w

′
i is the i-th coordinate

of w,w′ respectively.
Consider R ∈ Zm+ be the election results that correspond to the true voter

intent of n voters, and R′ ∈ Zm+ be the published election results. Denote by
max(U), the maximum cardinality of an element in U . Two encodings of candi-
date selections are within max(U) distance, so intuitively, if the adversary wants
to present R′ as the result of the election, it may do that by manipulating the
votes of at least d1(R,R′)/max(U) voters.

We define next the E2E Verifiability game, GA,E,d,θE2E−Int, between the adversary
A and a challenger C using a voter extractor E , that takes as input the security
parameter, λ, the number of candidates, m and the number of voters, n.
Overview of the game GA,E,d,θE2E−Ver(1

λ,m, n). The attack game is parameter-
ized by d, which is the deviation amount (according to the metric d1(·, ·)) that
the adversary wants to achieve and θ, the minimum number of voters that A
must allow to vote honestly and terminate successfully. The adversary starts by
selecting the voter and candidate identities for given parameters n,m. It also
determines the allowed ways to vote as described by the set U . The adversary

End-to-End Verifiable Elections in the Standard Model 9

fully controls the EA. The adversary manages the Cast protocol executions
where it assumes the role of the EA. For each voter, the adversary may choose
to corrupt it or to allow the challenger to play on its behalf. In the second case,
the adversary provides the candidate selection that the honest voter will use in
the Cast protocol. The adversary completes the execution of EA which results
to the complete election transcript published in the BB. The adversary will win
the game provided that all θ honest voters that completed the Cast protocol
successfully will also audit the result successfully but the deviation of the tally
is at least d; the adversary will also win in case the extractor fails to produce
the candidate selection of the dishonest voters (but θ honest voters still verify
correctly). The attack game is specified in detail in Figure 1.

E2E Verifiability Game GA,E,d,θE2E−Ver(1
λ,m, n)

1. A chooses a list of candidates P = {P1, ..., Pm}, a set of voters V = {V1, ..., Vn}
and the set of allowed candidate selections U . It provides C with the sets P,V,U
along with information Pub and voter credentials {s`}`∈[n]. Throughout the
game, C plays the role of the BB.

2. The adversary A and the challenger C engages in an interaction where A
schedules the Cast protocols of all voters. For each voter V`, A can either
completely control the voter or allow C to operate on their behalf, in which case
A provides a candidate selection U` to C. Then, C engages with the adversary
A in the Cast protocol so that A plays the role of EA. Provided the protocol
terminates successfully, C obtains the receipt α` on behalf of V`.

Let Ṽ be the set of honest voters (i.e., those controlled by C) that terminated
successfully.

3. Finally, A posts the election transcript τ to the BB.

The game returns a bit which is 1 if and only if the following conditions hold true:

(i). |Ṽ| ≥ θ, (i.e., at least θ honest voters terminated).
(ii). ∀` ∈ [n] : if V` ∈ Ṽ, then Verify(τ, α`) = 1 (i.e., the voters in Ṽ verify their

ballot successfully).

and either one of the following two conditions:

(iii-a). If ⊥ 6= 〈U`〉V`∈V\Ṽ ← E(τ, {α`}V`∈Ṽ),
then

d1(Result(τ), f(〈U1, . . . ,Un〉)) ≥ d.
(iii-b). ⊥ ← E(τ, {α`}V`∈Ṽ).

Fig. 1: The E2E Verifiability Game between the challenger C and the adversary
A using the vote extractor E .

10 Aggelos Kiayias and Thomas Zacharias and Bingsheng Zhang

Definition 2 (E2E-Verifiability). Let 0 < ε < 1 and n,m, d, θ ∈ N with d > 0
and 0 < θ ≤ n. The election protocol Π w.r.t. the election function f achieves
E2E verifiability with error ε, for a number of at least θ honest successful voters
and tally deviation d if there exists a (not necessarily polynomial-time) vote-
extractor E such that for any adversary A:

Pr[GA,E,d,θE2E−Ver(1
λ,m, n) = 1] ≤ ε.

In plain words, Definition 2 suggests that an E2E verifiable e-voting system,
provides an “official explanation” of adversarial votes via the vote extractor E ,
such that if at least θ voters verify the result, then any adversary that attempts
to manipulate the election tally (that includes the honest votes and the official
explanation of the adversarial votes) by a shift of d votes will get caught except
from some (supposedly small) probability ε.
Remark. In the only previous works [34,32] where end-to-end verifiability was
considered at a “global level” as we do here, it was expressed with respect to a
set of “good” runs γ of the e-voting protocol in the sense that a judge could test
whether the protocol operated within the set γ. Even though sufficiently expres-
sive, this formulation has the disadvantage that the set γ remains undetermined
and thus the level of verifiability that is offered by the definition hinges on the
proper definition of γ which may not be simple. Using our language the notion
of a good run becomes explicit: a run of the e-voting protocol is good provided
that the extractor E produces votes for the malicious voters which if they are
added to the votes of the honest voters they produce a result that does not
deviate from the published result according to the d1(·, ·) metric. Note that our
vote extractor may require super-polynomial time (in the same way that the set
of good runs γ may have a membership test of super-polynomial complexity).
We remark that the use of a super-polynomial extractor to define properly the
inputs of the malicious participants and hence the soundness of a multiparty
protocol is not novel to our work. For example see, Micali, Pass and Rosen [36]
where they used a similar construct to prove security of their general multiparty
computation protocol.

2.4 Voter Privacy (including Receipt-Freeness)

The definition of voter privacy concerns the actions that may be taken by the
adversary to break the privacy and learn some information about the candidate
selections of the honest voters. We specify the goal of the adversary in a very
general way. In particular, for an attack against voter privacy to succeed, we ask
that there is an election result, for which the adversary is capable of distinguish-
ing how the honest voters voted while it has access to (i) the actual receipts that
the voters obtained after ballot-casting as well as (ii) a set of protocol views that
are consistent with all the honest voters’ views in the Cast protocol instances
they participated (and the adversary has observed).

Observe that any system that is secure against such an attack scenario would
possess also “receipt-freeness”, i.e., voters cannot prove how they voted by show-
ing the receipt they obtain from the Cast protocol or even presenting their view

End-to-End Verifiable Elections in the Standard Model 11

in the Cast protocol. Given that in the privacy definition we allow the adver-
sary to observe the view of the voter in the Cast protocol, we need to allow the
voter to be able to “lie” about her view in this protocol (otherwise an attack
could be trivially mounted). Note that this would require the voter input to the
Cast protocol to be delivered via an untappable channel; in particular, the ad-
versary should not have any side-channel information about the voter’s secrets
s1, . . . , sn.

We formally define the voter privacy of an election via a Voter Privacy/Receipt-

freeness game, denoted by GA,St-priv, that is played between an adversary A and a
challenger C, that takes as input the security parameter, λ, the number of voters,
n, and the number of candidates, m, as described in Figure 2 and returns 1 or 0
depending on whether the adversary wins. An important feature of the game is
the existence of an efficient “voter simulator” S that provides a simulated view
of the voter in the Cast protocol. Intuitively, this simulator captures the way
the voter can lie about her candidate selection in the Cast protocol in case she
is coerced to present her view after she completes the ballot-casting procedure.

Overview of the game GA,St-priv(1λ, n,m). The adversary starts by selecting the
voters and candidates for given parameters n,m. It also determines the allowed
ways to vote. The challenger flips a coin b (that will change its behavior during
the course of the game) and will perform the Setup protocol. Subsequently,
the adversary will schedule all Cast protocols selecting which voters it prefers
to corrupt and which ones it prefers to allow to vote honestly. The adversary
is allowed to corrupt at most t voters. The voters that remain uncorrupted
are operated by the challenger and they are given two candidate selections to
choose. The challenger will select which of the two candidate selections the voter
will use in the Cast protocol according to the bit b. The adversary will also
receive the receipt that is obtained by each voter as well as either the actual
view of each voter during the Cast protocol, if b = 0, or a simulated view, if
b = 1 (this addresses the receipt-freeness aspect). Upon completion of ballot-
casting, the challenger executes the Tally protocol and posts the election result.
Subsequently the adversary will attempt to guess b. The attack is successful
provided that the adversary has corrupted up to t voters, the election tally is
the same with respect to the two alternatives provided for each honest voter by
the adversary and the adversary manages to guess the challenger’s bit b. The
game is presented in more detail in figure 2.

Definition 3 (Voter Privacy/Receipt-Freeness). Let n,m ∈ N. The e-
voting system Π w.r.t. the election function f achieves voter privacy/receipt-
freeness for at most t corrupted voters, if there is a PPT voter simulator S such
that for any PPT adversary A:

∣∣∣Pr[GA,St-priv(1λ, n,m) = 1]− 1/2
∣∣∣ = negl(λ).

12 Aggelos Kiayias and Thomas Zacharias and Bingsheng Zhang

Voter Privacy/Receipt-freeness Game GA,St-priv(1λ, n,m)

1. A on input 1λ, n,m, chooses a list of candidates P = {P1, ..., Pm}, a set of vot-
ers V = {V1, ..., Vn}, and the set of allowed candidate selections U . It provides
C the sets P, V, and U .

2. C flips a coin b ∈ {0, 1} and performs the Setup protocol on input (1λ,P,V,U)
to obtain msk, s1, . . . , sn,Pub; it provides A with Pub.

3. The adversary A and the challenger C engage in an interaction where A sched-
ules the Cast protocols of all voters which may run concurrently. For each
voter V` ∈ V, the adversary chooses whether V` is corrupted:

– If V` is corrupted, then C provides s` to A, and then they engage in a
Cast protocol where A plays the role of V` and C plays the role of EA
and BB.

– If V` is not corrupted, A provides two candidate selections 〈U0
` ,U1

` 〉 to
the challenger C. C operates on V`’s behalf, using Ub` as the V`’s input.
The adversary A is allowed to observe the network trace of the Cast
protocol where C plays the roles of V`, EA, and BB. When the Cast
protocol terminates, the challenger C provides to A: (i) the receipt α`
that V` obtains from the protocol, and (ii) if b = 0, the current view of
the internal state of the voter V`, view`, that the challenger obtains from
the Cast execution, or if b = 1, a simulated view of the internal state of
V` produced by S(view`).

4. C performs the Tally protocol playing the role of EA and BB. A is allowed to
observe the network trace of that protocol.

5. Finally, A using all information collected above (including the contents of the
BB) outputs a bit b∗.

Denote the set of corrupted voters as Vcorr and the set of honest voters as Ṽ =
V \ Vcorr. The game returns a bit which is 1 if and only if the following hold true:

(i). b = b∗ (i.e., the adversary guesses b correctly).
(ii). |Vcorr| ≤ t (i.e., the number of corrupted voters is bounded by t).
(iii). f(〈U0

` 〉V`∈Ṽ) = f(〈U1
` 〉V`∈Ṽ) (i.e., the election result w.r.t. the set of voters

Ṽ does not leak b).

Fig. 2: The Voter-privacy/Receipt-freeness game

3 Presentation of Our e-Voting System

Our system has three stages, setup, ballot-casting and tallying, that parallel
the operation of a Σ protocol. During setup stage, the EA produces a series of
commitments and pre-audit data that correspond to a first move of a Σ protocol
that will establish the validity of the commitments. During ballot-casting, voters
engage with the EA in a protocol that will result in the recording of their vote,
as well as in the submission of a random coin flip that will be used to produce
the challenge for the Σ protocol. Voters will receive a receipt as their local
output from the ballot-casting protocol that can be used for auditing the election

End-to-End Verifiable Elections in the Standard Model 13

result. In the third and final stage, the EA produces the tally of the election and
completes the Σ protocol by publishing openings to commitments as well as
other necessary information needed for verification. The verification step can
take place at any time after the completion of the process using a collection of
at least one receipt from the ballot-casting stage.

In our system, the voter implementation during the ballot-casting stage is
expressed as a probabilistic transducer (see e.g., [28]) with a communication
tape that has a number of states polynomial in the number of candidates m
(and independent to other parameters such as n, λ). Given that such a machine
is severely limited in the computational sense, in order to achieve ballot casting
we utilize a code-voting approach (cf. [12]): the EA corresponds vote-codes to
commitments posted in the BB, and voters cast their vote by simply sending to
the EA the vote-code that they prefer. The commitments have an additive ho-
momorphic property, hence it is possible to tally the result by homomorphically
processing them and opening the resulting “tally commitment.” The proof that
we use in order to ensure verifiability is a conjunction of a cut-and-choose proof
with a Σ proof that a committed value belongs to a set. The challenge needed
for the Σ proof will be extracted by applying a suitable extraction mechanism
to the coin flips of the voter transducers that are collected by the EA.

In Sections 3.1, 3.2, 3.3 and 3.4, we provide a detailed description of the
tools that we apply for the construction of our system, i.e., (i) the homomor-
phic commitment scheme, (ii) a generalization of the Schwartz-Zippel lemma
for imperfect randomness, (iii) the Σ protocol and (iv) the challenge extraction
mechanism, respectively. We describe our e-voting system in Section 3.5 and
prove its correctness in Section 3.6. For the better understanding of our system,
we provide a toy example in Section 3.7.

3.1 Perfectly Binding Commitment

To achieve integrity against computationally unbounded adversaries, we have
to use a perfectly binding commitment scheme. Moreover, our system requires
such a commitment scheme to be additively homomorphic to facilitate the tally
and audit process. In this work, we instantiate the commitment scheme with
lifted ElGamal over elliptic curves. We use elliptic curve domain parameters
Param := (p, a, b, g, q) generated by the curve generator G(1λ), consisting of a
prime p that specify the finite field Fp, two elements a, b ∈ Fp that specify an
elliptic curve E(Fp) defined by the equation: E : y2 = x3 + ax + b (mod p) ,
a base point g = (xg, yg) on E(Fp), and a prime q which is the order of g. We
denote the cyclic group generated by g as G, and it is assumed that the DDH
assumption holds over G. More specifically, our commitment scheme consists of
the following algorithms:

– Gen(Param, 1λ): picks x← Zq, sets h := gx, and outputs ck := (Param, h).

– Comck(m; r): outputs c := (gr, gmhr).

– Verck(c;m; r): outputs accept if c = (gr, gmhr); otherwise, outputs reject.

14 Aggelos Kiayias and Thomas Zacharias and Bingsheng Zhang

It is obvious that the above commitment scheme is perfectly binding and
computationally hiding under the DDH assumption, i.e. for any PPT adversary
A, we have that the advantage

Advhide(A) :=

∣∣∣∣∣∣Pr

Param← G(1λ); ck← Gen(Param, 1λ);
(m0,m1)← A(Param, ck); b← {0, 1} ;
r ← Zq : A(Comck(mb; r)) = b

− 1/2

∣∣∣∣∣∣
is negligible in λ. The commitment scheme is additively homomorphic. Namely,

Comck(m1; r1) · Comck(m2; r2) = Comck(m1 +m2; r1 + r2).

3.2 Schwartz-Zippel (min-entropy variant)

We need a min-entropy variant of the Schwartz-Zippel lemma, to check the
equality of two univariate polynomials f1, f2, i.e. test f1(x) − f2(x) = 0 for

random x
D← Zq. The probability that the test passes is at most max(d1,d2)

2κ if
f1 6= f2, where di is the degree of fi for i ∈ {1, 2}. We state the following lemma
without proof (a proof will be provided in the full version).

Lemma 1 (min-entropy Schwartz-Zippel). Let f(x) be a non-zero univari-
ate polynomial of degree d over Zq. Let D be a probability distribution on Zq such

that H∞(D) ≥ κ. The probability of f(x) = 0 for a randomly chosen x
D← Zq is

at most d
2κ .

3.3 A Σ Protocol for Candidate Encoding Correctness

In order to present the Σ protocol with clarity, we outline some necessary ex-
cerpts of the description of our system that will be explained in detail in Sec-
tion 3.5.

Let N = n + 1, where n is the number of voters. Each voter is given a
ballot that consists of two equivalent parts that contain a list of m vote-codes
corresponding to the list candidates {P1, . . . , Pm}. The voter will flip a coin
to choose the part she is going to use for voting. At the Setup phase, each
ballot is posted to the BB in committed form. Namely, it consists of two sets

of commitments E
(a)
`,j for a ∈ {0, 1} , ` = 1, . . . , n, j = 1, . . . ,m, and each set

commits to a permutation of the encoded candidates, where candidate Pj is
encoded as N j−1.

We emphasize that it is not necessary to prove that each set of the commit-
ments commits to a permutation of the encoded candidates

{
N0, . . . , Nm−1} in

an 1-out-of-m election. This is due to two facts: (i) EA will open one of the two
sets of commitments according to the corresponding voter’s coin a` (the set that
corresponds to the unused ballot part); therefore, a malicious EA will be caught
with probability 1/2 by each honest voter if any of the committed sets is not a
permutation of the encoded candidates or is an inconsistent permutation of the
encoded candidates w.r.t. the one on the voter’s ballot. (ii) Even if we ensure

End-to-End Verifiable Elections in the Standard Model 15

that the set of the commitments commits to a permutation of the encoded can-
didates, it does not imply that the permutation is consistent to the one on the
voter’s ballot. In an 1-out-of-m election, only one of the commitments will be
used for tally, and thus proving that the set of the commitments commits to an
unknown permutation of the encoded candidates can only provide the guarantee
that the tallied commitment commits to an encoded candidate. Note that this
guarantee is important; otherwise, given that we perform homomorphic tallying,
it may be feasible for a cheating EA to introduce a large deviation to the ac-
tual tally result via a single inconsistent ballot; for instance, EA may commit to
10000 ·N j−1 for some j ∈ [m]. Hence, we want the EA to show that each com-
mitment commits to one of N j−1 for j ∈ [m]. 4 We can formalize the correctness
of a single commitment problem as follows. Given commitments E, the prover
wants to convince the verifier that he knows r ∈ Zq such that E = Comck(N

i; r)
and i ∈ [0,m− 1]. Let i, r be the prover’s private input, and w.l.o.g. we assume
m is a perfect power of 2. For general cases, say 2e−1 ≤ m ≤ 2e, we can show
the conjunction i ∈ [0, 2e] ∧ (i + 2e −m) ∈ [0, 2e]. Our Σ Protocol is described
in Fig. 3.

Theorem 1. Let N > 0 be a public integer. Given common input E ∈ G × G,
the protocol described in Fig. 3 is a Σ protocol for knowledge of i ∈ N, r ∈ Zq
such that E = Comck(N

i; r), i ∈ [0,m − 1] that is perfectly complete, statis-
tically sound with soundness error 2−κ+1+log logm when the verifier’s challenge
has min-entropy κ and computationally zero-knowledge with distinguishing ad-
vantage Advzk(A) ≤ logm · Advhide(A) for any PPT adversary A.

Proof. It is straightforward to check that protocol in Fig. 3 achieves perfect
completeness.

In terms of statistical soundness, the protocol verifies two facts. Namely, (i)

{Bj}j∈[0,logm−1] commits to either 0 or 1, and (ii) E commits to N
∑logm−1
j=0 bj2

j

=

N i, where bj is the opening of Bj . To check the first fact, for each committed bj
the protocol builds the degree 1 polynomial

g1(X) = (1− bj)(bjX + t) + c0 = (1− bj)bjX + c′0

for some c0 and c′0. By min-entropy Schwartz-Zippel Lemma 1, if H∞(ρ) ≥ κ
and g1(ρ) = 0, the probability Pr[(1 − bj)bj 6= 0] ≤ 2−κ. Hence, with at least
1−2−κ probability (1−bj)bj = 0, which implies bj ∈ {0, 1}. To check the second

fact, the protocol first computes Aj = BN
2j−1

j · Comck(1; 0) homomorphically.

Let aj be the opening of Aj . It is easy to see that aj = N2j if bj = 1, aj = 1

4 For efficiency, EA is only required to show the commitments that are used for tally
commit to valid encoded candidates. On the other hand, since EA cannot predicate
which commitments are going to be used for tally before the election, she has to
prepare all the Σ protocols in the Setup phase; whereas she is only required to
complete those Σ protocols for the commitment that will be tallied in the Tally
phase.

16 Aggelos Kiayias and Thomas Zacharias and Bingsheng Zhang

P (i, r):
Define bj such that i =

∑logm−1
j=0 bj2

j . Pick
– tj , zj , yj , rj , wj , fj ← Zq for j ∈ [0, logm− 1].

Compute the following commitments:
– For j ∈ [0, logm− 1],
• Bj = Comck(bj ; rj); Tj = Comck(tj ; zj);
• Yj = Comck((1− bj)tj ; yj);
• Wj = Comck(wj ; fj).

Define Aj , aj , r
′
j such that Aj = BN

2j−1
j · Comck(1; 0) = Comck(aj ; r

′
j), for j ∈

[0, logm−1]. Define {βj , γj}logmj=0 such that
∏logm−1
j=0 (ajX+wj) =

∑logm
j=0 βjX

j

and
∏logm−1
j=0 (r′jX + fj) =

∑logm
j=0 γjX

j . (Note that for efficiency reason, the

prover needs to choose the {rj}logm−1
j=0 such that γlogm = r in previous step.)

– For j ∈ [0, logm− 1], Dj = Comck(βj ; γj).

Return φ1 = {Bj , Tj , Yj ,Wj , Dj}logm−1
j=0 and

stateφ = {tj , zj , yj , rj , bj , wj , fj}logm−1
j=0 .

P → V : Send φ1.

V → P : Send ρ← Zq.
P (stateφ): Compute the following answers:

– For j ∈ [0, logm− 1],
• t′j = bjρ+ tj , z

′
j = rjρ+ zj , y

′
j = −yj − rjt′j ;

• w′j = ajρ+ wj , f
′
j = r′jρ+ fj ;

Set φ2 =
{
t′j , z

′
j , y
′
j , w

′
j , f
′
j

}logm−1

j=0
.

P → V : send φ2

V (E, φ1, ρ, φ2): Accept the proof (i.e. output accept) if and only if
– For j ∈ [0, logm− 1],
• Bρj · Tj = Comck(t

′
j , z
′
j),

• (Comck(1; 0)/Bj)
t′j/Yj = Comck(0; y′j);

• Aρj ·Wj = Comck(w
′
j , f
′
j);

– Eρ
logm∏logm−1

j=0 Dρj

j = Comck(
∏logm−1
j=0 w′j ;

∏logm−1
j=0 f ′j);

Fig. 3: The Σ Protocol for Ballot Correctness

if bj = 0, thus it holds that aj = bjN
2j + 1 − bj = N bj2

j

. So that the protocol
just needs to verify that E commits to the product of aj ’s. The verifier checks
equality between two degree logm polynomials

g2(X) =

logm−1∏
j=0

(ajX + wj) =

logm∑
j=0

βjX
j and g′2(X) = uX logm +

logm−1∑
j=0

β∗jX
j

where u is the opening of E and β∗j which is the opening of Dj and are provided
by the (potentially malicious) prover. By min-entropy Schwartz-Zippel lemma, if
H∞(ρ) ≥ κ and g2(ρ) = g′2(ρ), the probability Pr[u = βlogm] ≥ 1− logm

2κ . Hence,

End-to-End Verifiable Elections in the Standard Model 17

we have u = N
∑logm−1
j=0 bj2

j

with at least 1− logm
2κ probability conditioned on the

fact (i). Given that all b0, . . . , blogm−1 need to be shown in {0, 1} the entire proof

is statistically sound with probability (1−2−κ)logm(1− logm
2κ) ≥ 1−logm·2−κ+1.

Our protocol satisfies special soundness, i.e. there exists an extractor that
can extract i ∈ N, r ∈ Zq if the prover is able to complete the protocol twice
with the same φ1 but two distinct challenges (we omit the construction of the
extractor).

To show special honest verifier zero-knowledge property, we now construct
a simulator that on input ρ̂ ∈ Zq can output a transcript that is indistinguish-
able from the real one. The simulator randomly picks b0, . . . , blogm−1 ← {0, 1}
and generates

{
tj , zj , yj , rj , Bj , Tj , Yj , t

′
j , z
′
j , y
′
j , wj , fj ,Wj , w

′
j , f
′
j

}logm−1
j=0

accord-

ing to the protocol description. It then generates {Dj}logm−1j=1 according to the
protocol and set

D0 = Comck(

logm−1∏
j=0

w′j ;

logm−1∏
j=0

f ′j)/(E
ρ̂logm

logm−1∏
j=1

Dρ̂j

j) .

Subsequentely, the simulator sets φ̂1 = {Bj , Tj , Yj ,Wj , Dj}logm−1j=0 and φ̂2 ={
t′j , z

′
j , y
′
j , w

′
j , f
′
j

}logm−1
j=0

, and it outputs (φ̂1, ρ̂, φ̂2). First of all, it is obvious

that all the verification equations hold. Secondly, the distribution of all the vari-
ables in φ̂2 are uniformly random, which is identical to that of a real transcript.
Moreover, if the adversary can distinguish the simulated φ̂1 from that of a real
transcript, she must be able to distinguish at least one of the fake {Bj}logm−1j=0 .
By hybrid argument, we have for any PPT adversary A, the advantage to dis-
tinguish the simulated proof is Advzk(A) ≤ logm · Advhide(A). ut

3.4 Producing the Verifier’s Challenges

The main difficulty in our setting is that we would like to extract the challenge
of the Σ protocol from the voters’ coins a = 〈a1, . . . , an〉 ∈ {0, 1}n using a de-
terministic algorithm. Recall that some of the voters might be malicious and
colluding with the EA, so the entropy of the voters’ coins is only contributed
by the honest voters while the malicious voters’ coins can depend on the hon-
est ones. Note that the voters’ coins should be ordered by their serial numbers,
rather than their submission order. This is because in the latter case, the adver-
sary can schedule the Cast protocols of all voters at will and as a result reduce
the min-entropy of a to be at most log θ where θ is the number of honest voters.
Such level of entropy is insufficient to provide a sufficiently small verifiability
error (that ideally drops exponentially with θ). For all the uncast ballots, we
set their corresponding coins to 0 by default; therefore, a is always an n-bit
source, regardless of the number of voters that complete the Cast protocol. We
observe that the voters’ coins a is a weaker source compared to a non-oblivious
bit-fixing source [30], as the adversary is able to choose which bit(s) to fix during
the coin flipping (source generation) process. On the other hand, if we restrict

18 Aggelos Kiayias and Thomas Zacharias and Bingsheng Zhang

the adversary A in our verifiability game from being capable of scheduling Cast
protocols freely and all voters have to submit their votes sequentially accord-
ing to a pre-determined order in the ballot casting stage, the source a can be
viewed as an adaptive bit-fixing source [35]; in such case, we can employ the
deterministic extractor construction framework from [30] which applies a deter-
ministic low influence function on segments of the source. The majority function
is proven to be an optimal low influence function thus in this way we obtain a
deterministic extractor that generates the challenge. However, this adversarial
setting is not realistic in practice as ballot casting might be scheduled adver-
sarially. Nevertheless, we emphasise that even using a non-oblivious bit-fixing
source, Kamp and Zuckerman showed that at most n/` bits can be extracted
when ` out of n bits are fixed [30]. This result implies that if a deterministic
extractor is used to generate Θ(λ) random bits, then this will restrict the per-
centage of corrupted voters to be below Θ(1

λ) which might also be not a realistic
expectation in practice. An alternative approach may use a condenser as opposed
to an extractor. Randomized condensers with a small/constant seed space have
been put forth see e.g. [2,40]; using such a tool one may iterate over all possi-
ble seeds and thus be assured that one of the seeds will allow the condenser to
produce a sufficiently random challenge. For instance, Barak et al. [2] proposed

a basic 2-bit seed condenser con : {0, 1}n → ({0, 1}n/3)4 such that for every
δ-source X with 0 < δ < 0.9, at least one of the 4 output blocks of con(X) is
a (δ + Ω(δ2))-source. Based on the composing lemma (Lemma 5.5 [2]), we can
iteratively apply the condenser to achieve any desired constant rate. Given a c-
coin condenser Con : {0, 1}n 7→ ({0, 1}`)c, in order to produce a good challenge,
by definition, it should hold that c · ` > n, which means that the condenser will
produce c blocks, one of which is guaranteed to be sufficiently random. However
as we observe below, we can utilize ZK amplification to obtain essentially the
same result as with a c-coin condenser while sacrificing very little entropy from
the weak source. We explain our technique next.

Let {0, 1}`Σ be the challenge space, where `Σ = blog qc and q is the order of
the underlying group used in the Σ protocol. Assume n/k ≤ `Σ for some k ∈ Z+.
We evenly partition the voters’ coins a into k blocks, denoted by a1, . . . ,ak. For
each block ai, the EA should prove the correctness of the ballots using a separate
Σ protocol with ai as its challenge. The verifier only accepts the EA’s proof if all
the Σ protocols are valid. The theorem below shows that the soundness error of
this k-times repeated Σ protocol drops exponentially with θ − k(log logm+ 1).

Theorem 2. Denote a = (a1, . . . ,ak), and suppose H∞(a) = θ. For all adver-
sarial prover A, we have that

ε(m,n, k, θ) = Pr

 ck← Gen(Param, 1λ); (E, x, r, {φ1,i}ki=1)← A(Param, ck);

{φ2,i}ki=1 ← A(a1, . . . ,ak) : Verck(E;x; r) = accept ∧
x 6∈

{
N0, . . . , Nm−1} ∧ ∀i ∈ [k], V (E, φ1,i,ai, φ2,i) = accept

≤ 2k log logm−θ+k.

Proof. See full version of this paper. ut

End-to-End Verifiable Elections in the Standard Model 19

3.5 Description of our e-voting system

The description of our e-voting system follows the syntax in Section 2.2. For sim-
plicity, we present our system for 1-out-of-m elections, i.e. U = {{P1}, . . . , {Pm}}.
The commitment scheme and the Σ-protocol that are applied in our system, are
the ones presented at length in sections 3.1 and 3.3 respectively.

Setup(1λ,P = {P1, . . . , Pm} ,V = {V1, . . . , Vn} ,U = {{P1}, . . . , {Pm}}). Let
(Gen,Com,Ver) be the PPT algorithms that constitute the perfectly binding,
computationally hiding and additively homomorphic commitment scheme pre-
sented in Section 3.1. The EA runs Gen(Param, 1λ) to generate the commitment
key ck. Then, for ` ∈ [n], EA executes the following steps:

(i). It selects a unique label for the `-th double ballot denoted by tag`.

(ii). It selects random permutations π
(0)
` , π

(1)
` over [m]. The use of π

(0)
` (reps.

π
(1)
`) is to shuffle the order that the (vote-code, candidate) pairs in the

part s
(0)
` (resp. s

(1)
`) of the double ballot s` will be posted on the BB (in

committed form), in order to support privacy.

(iii). For j ∈ [m], it selects unique vote-codes C
(0)
`,j , C

(1)
`,j ← Zq, where q is the

size of the group of the commitment scheme5. The vote-code C
(0)
`,j (resp.

C
(1)
`,j) is the one that will be associated with candidate Pj in part s

(0)
` (resp.

s
(1)
`) of s`.

(iv). For a ∈ {0, 1}, it prepares the ballot part s
(a)
` =

{(
Pj , C

(a)
`,j

)}
j∈[m]

and

generates the ballot

s` =
(

tag`, s
(0)
` , s

(1)
`

)
.

(v). For j ∈ [m], it computes j′ = π
(a)
` (j) and

– For a ∈ {0, 1} (where a indicates the part s
(a)
` of s`), it chooses ran-

domness t
(a)
`,j′ ← Zq and computes the vote-code commitment for C

(a)
`,j′ :

U
(a)
`,j′ = Comck

(
C

(a)
`,j′ ; t

(a)
`,j′

)
.

– For a ∈ {0, 1}, it chooses randomness r
(a)
`,j′ ← Zq and computes the

encoded candidate commitment for Pj′ :

E
(a)
`,j′ = Comck

(
(n+ 1)j

′−1; r
(a)
`,j′

)
,

5 For simplicity in presentation, we commit to the vote-codes using the homomorphic
commitment scheme of Section 3.1. We stress that since no arithmetic operations
are executed in the vote-code commitments, we could use more efficient commitment
schemes and in this case vote-codes may be drawn from a domain that is smaller
than Zq resulting in a more “user-friendly” interface.

20 Aggelos Kiayias and Thomas Zacharias and Bingsheng Zhang

where (n + 1)j
′−1 is the encoding of candidate Pj′ . This encoding is

selected to ensure the correctness of our system, as we show in Theorem
3.

– For a ∈ {0, 1}, EA prepares pre-audit data φ
(a)
1,`,j′ to be used for ver-

ifying that E
(a)
`,j′ is a commitment to a valid encoding from the set{

(n+ 1)0, . . . , (n+ 1)m−1
}

at the verification phase. In addition, it

maintains prover state state
(a)
φ,`,j′ . Both φ

(a)
1,`,j′ and state

(a)
φ,`,j′ are de-

scribed in the Σ-protocol shown in Figure 3 (first move) of Section 3.3.

(vi). Pub` =

(
tag`,

{
(U

(a)
`,j′ , E

(a)
`,j′ , φ

(a)
1,`,j′)

}a∈{0,1}
j∈[m]

)
is the public information

w.r.t. s`. It is indexed by tag` and contains the ballot information for
both parts in committed form, as well as the respective pre-audit data.

The information that refers to the (vote-code, candidate) pair (C
(a)
`,j′ , Pj′)

is tabulated in the j-th location of the part that is associated with s
(a)
` .

The public information that EA generates is

Pub = (ck,P,U , {Pub`}`∈[n]) .

The secret key of EA is

msk = {Pub`, s`,msk`, stateφ,`}`∈[n] ,

where we denote msk` =
{

(C
(a)
`,j , t

(a)
`,j , π

(a)
` (j) = j′, r

(a)
`,j)
}a∈{0,1}
j∈[m]

and stateφ,` ={
state

(a)
φ,`,j′

}a∈{0,1}
j∈[m]

.

The Cast protocol. On input (Pub, s`,U`), voter V` flips a coin a` ← {0, 1} and

picks part s
(a`)
` to vote and part s

(a`)
` for audit. Let Pj` be the candidate that

V` is going to vote for, i.e., U` = {Pj`}. Then, V` selects to submit C
(a`)
`,j`

, which

is the vote-code that corresponds to Pj` in part s
(a`)
` . Next, V` casts the vote

ψ` =
(

tag`, a`, C
(a`)
`,j`

)
. The EA receives the vote and updates its state st by

appending ψ`. The receipt α` of V` is the vote ψ` and the part s
(1−a`)
` used for

audit.

The Tally(Pub) protocol. Let Ṽ be the set of the voters that have voted suc-
cessfully.

– For each V` ∈ Ṽ, the EA uses (tag`, a`) from ψ` to recover the respective audit

information s
(1−a`)
` from s`. Then, it sends to BB the list

{
(ψ`, s

(1−a`)
`)

}
V`∈Ṽ

.

It also opens all the vote-code commitments,
{
U

(a)
`,j

}a∈{0,1}
`∈[n],j∈[m]

, by sending

the list of pairs
{

(C
(a)
`,j , t

(a)
`,j)
}a∈{0,1}
`∈[n],j∈[m]

to the BB.

End-to-End Verifiable Elections in the Standard Model 21

– The EA, for every ψ` corresponding to a V` ∈ Ṽ:
(i). locates the decommitted vote-code C

(a`)
`,j′`

that matches the cast vote-

code C
(a`)
`,j`

. Then, it marks the vote-code C
(a`)
`,j′`

as ‘voted’ and adds the

corresponding commitment E
(a`)
`,j′`

into the set Etally (initially empty).

Recall that j′` = π
(a`)
` (j`).

(ii). adds all the commitments {E(1−a`)
`,j }j∈[m] that correspond to the vote-

codes in s
(1−a`)
` into the set Eopen (initially empty).

When finalised, Etally includes the collection of votes that will be counted
(homomorphically) and Eopen includes the information that will be used for
verifying ballot correctness. After this happens, EA posts to the BB the list
of marked vote-codes along with Etally and Eopen.

– The EA produces and posts to the BB all the verifier’s challenges {ρE}E∈Etally

of the Σ-protocols for the validity of the commitments in Etally, as deter-
mined in Figure 3 (second move). The extraction of the challenges is done via
the randomness contributed by the voters’ coin-flips. The extraction method
that is used is described in Section 3.4.

– The EA prepares and posts to the BB all the post-audit data {φ2,E}E∈Etally

of the Σ-protocols for verifying the validity of the commitments in Etally, as
determined in Figure 3 (third move). Thus, for each commitment in Etally

there is a triple of pre-audit data, challenge and post-audit data that form
a complete Σ proof of a valid commitment to some encoded candidate.

– EA performs homomorphic tally by computing Esum =
∏
E∈Etally

E and

preparing (T,R) as the opening of Esum. The additive homomorphic property
implies that T is the election result encoded in the number system with base
N = n + 1 and it is committed under randomness R, which is the sum of
all the randomness used for the commitments in Etally. Next, EA opens all
the commitments in Eopen. Let Open be the set of these openings. Finally,
it sends Open, Esum and (T,R) to the BB.

– In the end of the process, BB contains the list of the marked vote-codes, as
well as

Pub,
{

(C
(a)
`,j , t

(a)
`,j)
}a∈{0,1}
`∈[n],j∈[m]

,
(
Etally, Esum, (T,R)

)
,

(Open,Eopen), {ρE}E∈Etally
, {φ2,E}E∈Etally

.

Result(τ). The election result Rτ is derived by the following decoding algo-
rithm:

Set X ← T ;
For j = 1, . . . ,m:
• xj ← X mod (n+ 1);
• X ← (X − xj)/(n+ 1);
Return 〈x1, . . . , xm〉;

The correctness of the algorithm (and our system) is shown in Theorem 3.

22 Aggelos Kiayias and Thomas Zacharias and Bingsheng Zhang

Verify(τ, α). Initially, α is parsed as
(
tag, a, C, s(1−a)

)
. The algorithm returns

1 only if the following checks are valid:

(i). All committed information in τ is associated with n ballots indexed under
different tags and no two vote-codes under the same tag are marked as
‘voted’.

(ii). Let Ĉ be a vote-code that appears in part ŝ(â) of some ballot and has been
marked as ‘voted’ . Then, only the committed information for the other
part ŝ(1−â) of this ballot has been opened.

(iii). All the complete Σ proofs that are associated with commitments in Etally

are valid.
(iv). Esum =

∏
E∈Etally

E.

(v). All the openings of the commitments are valid.
(vi). tag equals some tag` in τ for some ` ∈ [n] and it holds that a = a`.
(vii). The vote-code that is marked as ‘voted’ and is associated to tag` is C

where ` is as in item (vi).
(viii). The correspondence of candidate encodings to vote-codes revealed in the

opening of the commitments {(U (1−a`)
`,j , E

(1−a`)
`,j)}j∈[m] where ` is as in item

(vi), is equal to the one defined in s(1−a).

3.6 Correctness of our e-voting system

We prove the correctness of our system in the following theorem. In the remaining
of the paper, we assume that n · (n+ 1)m−1 < q.

Theorem 3. Let q be the size of the group for the commitment scheme described
in Section 3.1 and assume that n · (n + 1)m−1 < q. Then, the e-voting system
described in Section 3.5 has perfect correctness.

Proof. See full version of the paper. ut

3.7 Example of our e-Voting System

For the better understanding of our e-voting system, we provide a toy example
of a referendum where P1 = YES, P2 = NO are the candidates and V consists of
three voters V1, V2, V3. Our goal is to familiarize the reader with the functionality
of our system so, for simplicity, we deviate from the description in Section 3.5
by not including Σ-protocol proofs.

EA generates the vote-codes for the ballots s1,s2 and s3 of V1, V2 and V3 as

(C
(0)
1,1 = 27935, C

(0)
1,2 = 75218, C

(1)
1,1 = 84439, C

(1)
1,2 = 77396),

(C
(0)
2,1 = 58729, C

(0)
2,2 = 45343, C

(1)
2,1 = 14582, C

(1)
2,2 = 93484),

(C
(0)
3,1 = 52658, C

(0)
3,2 = 65864, C

(1)
3,1 = 84373, C

(1)
3,2 = 49251)

respectively. The double ballots s1, s2, s3 are labelled by the tags 101, 102, 103
respectively and are formed as follows:

End-to-End Verifiable Elections in the Standard Model 23

101

27935 YES
75218 NO

84439 YES
77396 NO

102

58729 YES
45343 NO

14582 YES
93484 NO

103

52658 YES
65864 NO

84373 YES
49251 NO

EA prepares the commitments to each vote-code and the encoding of the
candidate that they correspond. The commitment for YES (resp. NO) is a com-
mitment to (3 + 1)0 = 1 (resp. (3 + 1)1 = 4). Next, it chooses whether the
commitments of the vote-code and candidate pairs are going to be ordered in
the BB as they are in the ballot part, or swapped. For example, assume that
for the ballot s1, EA chooses to leave the order in ballot part (0) intact and to
swap the pairs in ballot part (1). Then, the information posted in the BB for s1
would have the following form:

101

Comck(27935; t
(0)
1,1) Comck(1; r

(0)
1,1)

Comck(75218; t
(0)
1,2) Comck(4; r

(0)
1,2)

Comck(77396; t
(1)
1,2) Comck(4; r

(1)
1,2)

Comck(84439; t
(1)
1,1) Comck(1; r

(1)
1,1)

Suppose that V1 votes for NO using ballot part (1), V2 votes for YES using
ballot part (1) and V3 votes for YES using ballot part (0). Then, the votes cast by
V1, V2 and V3 are (101, 1, 77396), (102, 1, 14582) and (103, 0, 52568) respectively.
The receipts that the voters receive are

(101,1,77396)

27935 YES
75218 NO

(102, 1, 14582)

58729 YES
45343 NO

(103, 0, 52568)

84373 YES
49251 NO

The coins that V1, V2 and V3 have flipped, are a1 = 1, a2 = 1 and a3 = 0
respectively. Hence, we get internal randomness, (1, 1, 0), of 3 bits (which would
be the “weak source” of randomness used for the extraction of the challenge of
the Σ protocols). After the voting ends, EA opens the vote-code commitments,
marks the cast vote-codes 77396, 14582 and 52658 and includes the corresponding

encoded candidate commitments Comck(4; r
(1)
1,2), Comck(1; r

(1)
2,1) and Comck(1; r

(0)
3,1)

in the tally set. Next, EA performs homomorphic tally, by computing the product
of the above encoded candidate commitments as

Esum = Comck(4; r
(1)
1,2)·Comck(1; r

(1)
2,1)·Comck(1; r

(0)
3,1) = Comck(6; r

(1)
1,2+r

(1)
2,1+r

(0)
3,1).

Then, EA publishes Esum, along with the opening of Esum at value (6; r
(1)
1,2 +

r
(1)
2,1 + r

(0)
3,1). The result is derived by computing x1 = 6 mod 4 = 2 and x2 =

24 Aggelos Kiayias and Thomas Zacharias and Bingsheng Zhang

((6 − x1)/4) mod 4 = 1, which is interpreted as two votes for YES and one for
NO.

In the verification phase, the EA opens the commitments in the ballot parts
that the voters selected for auditing. For example, V1 would check the consistency
of her receipt with audit information in the BB, as illustrated below

101

27935 YES (1, r
(0)
1,1) Comck(1; r

(0)
1,1)

75218 NO (4, r
(0)
1,2) Comck(4; r

(0)
1,2)

77396 VOTED Comck(4; r
(1)
1,2)

84439 Comck(1; r
(1)
1,1)

Encodings

YES 1
NO 4

Observe that, as we will prove, the cut-and-choose verification that V1 per-
forms, does not reveal her vote even to a party that obtains her receipt. This
is because the cast vote-code alone does not leak any information about the
associated candidate, while the entirely opened auditing part only serves as a
check that the correspondence of the vote-codes and candidates in this part has
not been tampered with. Therefore, V1 can delegate the task of verification to a
third party, without compromising her privacy.

4 Security of Our e-Voting System

In this section, we prove the security of our system in the definitional framework
presented in Sections 2.4 and 2.3.

4.1 E2E Verifiability of Our e-Voting System

We prove that our e-voting system achieves E2E verifiability information the-
oretically in the standard model. We follow the notation in Figure 1 and the
description in 3.5.

Theorem 4. Let n be the number of all voters and m be the number of can-
didates. Let q be the size of the group for the commitment scheme described in
Section 3.1. The e-voting system described in 3.5 achieves E2E verifiability in-
formation theoretically with error (1/2)d+ ε(m,n, dn/blog qce, θ−1)), where θ is
the number of honest successful voters, d is the tally deviation that the adversary
wants to achieve and ε(m,n, dn/blog qce, θ − 1) is the soundness error of the Σ
protocol performed by the EA given in Theorem 2.

Proof. Without loss of generality (w.l.o.g.), we assume that in any adversarial

execution as described in the E2E verifiability game GA,E,d,θE2E−Ver(1
λ,m, n), exactly

n ballots are tabulated on τ under n different tags and all vote-codes marked as
‘voted’ correspond to different tags (if such deviations happen the transcript is
immediately rejected). In the same spirit, we assume there is no double ballot

End-to-End Verifiable Elections in the Standard Model 25

that both parts have been opened and that all double ballots for honest voters
in Ṽ are well-formed, otherwise they would not engage in the Cast protocol.
Finally, we recall that the adversary cannot modify the history of the transcript
since it does not have control over the BB. As a first step, we construct a vote
extractor E for our system as follows:

Construction of the vote extractor. E has input τ and the set of receipts {α`}V`∈Ṽ ,

where Ṽ is the set of the honest voters that voted successfully. Let t ≤ |Ṽ| be the
number of different tags that appear in {α`}V`∈Ṽ

6. If Result(τ) = ⊥ (i.e., the
transcript is not meaningful), then E outputs ⊥. Otherwise, E (arbitrarily) ar-
ranges the voters in V \Ṽ and the tags not included in {α`}V`∈Ṽ as 〈V E` 〉`∈[n−|Ṽ|]
and 〈tagE` 〉`∈[n−t] respectively. Next, for every ` ∈ [n− |Ṽ|]:

1. If there is no marked as ‘voted’ vote-code that is associated with tagE` , then
E sets UE` = ∅ (encoded as the zero vector) which is interpreted as an abort
for voter V E` .

2. If there is a ‘voted’ vote-code C
(a)
`,j that is associated with tagE` , then E

brute-force opens the respective encoded candidate commitment E
(a)
`,j to a

value Open` (recall the commitment is perfectly binding). If Open` is a valid
encoding (i.e. Open` ∈ {(n + 1)0, (n + 1)1, . . . , (n + 1)m−1}) of a candidate
PE` , then E sets UE` = {PE` }. Otherwise, it outputs ⊥.

Finally, E outputs 〈UE` 〉V E` ∈V\Ṽ . Note that if t < |Ṽ|, then the remaining tags

tagE
n−|Ṽ|+1

, . . . , tagEn−t are ignored by E .

Based on the above vote extractor, we will prove the E2E verifiability of our
scheme. Assume an adversaryA that wins the game GA,E,d,θE2E−Ver(1

λ,m, n). Namely,
A breaks E2E verifiability by allowing at least θ honest successful voters and
achieving tally deviation d. Since there is at least one honest voter that per-
forms verification (θ > 0), w.l.o.g. we assume that A always outputs meaningful
transcripts.

Let F be the event that there exists a committed value in τ which is marked
to be counted and invalid (i.e., it is in Etally but it is not a commitment to

some candidate encoding). Since condition (i) of GA,E,d,θE2E−Ver(1
λ,m, n) holds, we

have that there are at least θ honest voters. However, the soundness error of the
Σ- protocol is going to be affected by the fact that the invalid commitment is
in a specific ballot part. The min entropy of all the coins given the fact that
the adversary knows the coin of the invalid commitment in order to win, is
at least the min entropy of all the coins minus 1 bit (i.e., the entropy of that
bit). Therefore, by applying Theorem 2 for min entropy equal to θ− 1, we have
that each Σ protocol has soundness error ε(m,n, dn/blog qce, θ − 1). Hence, the
probability that a committed value is invalid while verification accepts is no

6 This implies that the ballot audit for all voters in Ṽ focuses on a list of t tabu-
lated ballots on the BB. Thus, an adversary may inject |Ṽ| − t ballots for candidate
selections of its choice that will be counted in the final tally as if they were honest.

26 Aggelos Kiayias and Thomas Zacharias and Bingsheng Zhang

more than ε(m,n, dn/blog qce, θ − 1). Since there is at least one honest voter
that verifies, we conclude that

Pr[GA,E,d,θE2E−Ver(1
λ,m, n) = 1 ∧ F] ≤ ε(m,n, dn/blog qce, θ − 1). (1)

Assume that F does not occur. Thus, all marked committed values in Etally

correspond to a valid candidate encoding. This implies that (a) the maximum
deviation per marked commitment that A may achieve is 1 (the vote is counted
for a candidate other than the intended one) and (b) E does not output ⊥
(it returns a vector 〈UE` 〉V E` ∈V\Ṽ), so A wins because (i),(ii) and (iii-a) hold.

The auditor can verify that Esum is equal to the homomorphic commitment∏
E∈Etally

E. Due to the perfect binding of the commitment scheme, the tally

f(〈UE` 〉V E` ∈V\Ṽ) that E estimates as non-honest votes, is correctly included in

the adversarial result that derives from the opening (T,R) of Esum. Thus, the
deviation from the intended result that A achieves, derives only by miscounting
the honest votes. This may be achieved by A in two different possible ways:

1. Modification attacks: modify the committed information as compared
with the one in an honest voter’s ballot (e.g., alter the vote-code and can-
didate correspondence). The deviation achieved by this type of attack is at
most 1.

2. Clash attacks: instruct r honest voters whose ballots are indexed under the
same tag to vote so that the votes of any r − 1 out of these r voters are all
different than some fixed r−1 committed votes that are ignored by E (either
cast by corrupted voters or initially injected in τ by A). All r voters verify
the correct counting of their votes by auditing the same information on the
BB and hence miss the injected votes that produce the tally deviation. The
deviation achieved by this type of attack is r − 1.

In the case where all ballot information is committed consistently on the BB
without being deleted or replaced, the adversary can only perform a combination
of these two attacks on the honest voters. Indeed, if all honestly cast votes are
in one-to-one correspondence with the correct encoded candidate commitments,
then the perfect binding property ensures that the opening of the homomorphic
tally matches the intended result.

Let Ṽ1, . . . , Ṽt be the partition of Ṽ s.t. each of these subsets consists of
honest voters that their receipts (hence their ballots) are indexed under the
same tag. These subsets are created adaptively, according to the strategy of A,
under the constraint that |Ṽ| ≥ θ. Note that there are |Ṽ| − t ignored tags in
vote extraction, while

∑
i∈[t](|Ṽi| − 1) = |Ṽ| − t. This implies that the adversary

can perform clash attacks in all these subsets, with maximum possible deviation.
We will prove that given that F does not occur, the success probability of A is
no more than (1/2)d, whatever its strategy might be.

We observe that in order for A to win, all voters in Vi must have the same
receipt, or else inconsistencies will cause verification to fail. To achieve this, A
must instruct the voters from the same subset to vote so that they all cast the
same vote-code (otherwise two marked vote-codes under the same tag should

End-to-End Verifiable Elections in the Standard Model 27

appear) and create the corresponding audit ballot part identically for each au-
diting voter. In detail, in order for A to win, the following must hold for each
Ṽi, i ∈ [t]:

1. There is a representative vote-code Ci that appears in part (a) of all the
double ballots of the voters in Ṽi. The voters must select this part to vote
by casting Ci. Therefore, the coin-flippings of the auditing voters must be
consistent, in the sense that they correspond to ballot parts that contain
a consistent vote-code. There can be at most 2 consistent coin-flips (i.e.,
either all coins are flipped to 0 or all coins are flipped to 1). Thus, the

probability of consistent coin-flipping in Ṽi is at most 2/2|Ṽ|i = (1/2)|Ṽ|i−1.
In addition, the ballot parts that will be used for auditing must contain the
same information, up to a permutation of the vote-code and candidate pairs.

2. If A wants to achieve |Ṽi| deviation exploiting the voters in Vi, then it must
perform a modification attack in at least one voter V in Ṽi. This is because if
all voters’ ballots are consistent to the corresponding committed information
in τ , then by performing only a clash attack in Ṽi, A can achieve deviation
by at most |Ṽi| − 1, as described above. However, the modification comes
with a loss of 1/2 success probability, since A must also guess which is the
part that V is going to use for voting. Indeed, if V chooses to audit the
modified part of the ballot, then she will detect the attack. Therefore, all
voters in Vi must perform a consistent coin-flip that agrees with the coin-
flip of V . It is straightforward that in case of a single modification attack

this event happens with 1/2 · (1/2)|Ṽi|−1 = (1/2)|Ṽi| probability. Moreover,
in case Ṽi ≥ 2, performing two modification attacks does not lead to any
improvement in terms of probability or maximum deviation.

We note that the above arguments hold trivially, if Ṽi is a singleton. Let X
be the set of subsets from {Ṽ1, . . . , Ṽt} that A performs clash attacks and Y the
collection that A performs a modification attack on at least one voter in each of
the subsets. According to the previous arguments, we have the following cases:
(i) for each Vi ∈ X\Y the maximum deviation is |Ṽi|−1, (ii) for each Vi ∈ Y\X
the maximum deviation is 1, (iii) for each Vi ∈ X∩Y the maximum deviation is

|Ṽi| and (iv) for each Vi ∈
{
Ṽ1, . . . , Ṽt

}
\ (X ∪Y) the maximum deviation is 0.

For brevity, let x = |X| and y = |Y|. Therefore, we have that the tally deviation
from the intended result that A achieves is at most

∑
Vi∈X\Y

(|Ṽi| − 1) +
∑

Vi∈Y\X

1 +
∑

Vi∈X∩Y

|Ṽi| =
∑
Vi∈X

|Ṽi| − x+ y ≤ |Ṽ| − x+ y.

We will now upper bound the success probability of A. Since {Ṽ1, . . . , Ṽt} is
a partition of Ṽ, we have that A must not be detected by all the voters in all of

28 Aggelos Kiayias and Thomas Zacharias and Bingsheng Zhang

these subsets. So,

Pr[GA,E,d,θE2E−Ver(1
λ,m, n) = 1|¬F] ≤

∏
Vi∈Y

(1/2)|Ṽi| ·
∏

Vi∈{Ṽ1,...,Ṽt}\Y
(1/2)|Ṽi|−1 =

= (1/2)
∑
Vi∈Y

|Ṽi|+
∑
Vi∈{Ṽ1,...,Ṽt}\Y(|Ṽi|−1) =

= (1/2)|Ṽ|−(t−y) ≤ (1/2)|Ṽ|−x+y,

because x ≤ t. In order for A to win, it must hold that |Ṽ|−x+y ≥ d (condition
(iii-a) holds), therefore

Pr[GA,E,d,θE2E−Ver(1
λ,m, n) = 1 ∧ ¬F] ≤ Pr[GA,E,d,θE2E−Ver(1

λ,m, n) = 1|¬F] ≤ (1/2)d.
(2)

By adding (1),(2) we conclude that

Pr[GA,E,d,θE2E−Ver(1
λ,m, n) = 1] ≤ (1/2)d + ε(m,n, dn/blog qce, θ − 1). ut

Remark 1. Note that if the number of honest voters satisfies the bound θ =
Ω(n log logm/ log q + λ), then the overall soundness error of the repeated Σ
protocol will be sufficiently small. For instance, in an election where there are
n = 1000 voters and m = 40 candidates we can use a group with at least 500 bit
prime order q. Assuming a number of θ = 50 honest voters (5% of total) we can
divide the 1000 voter’s coins into two challenges with 500 bits each (i.e. k = 2).
With these parameters the above theorem will have a verifiability error that is at
most 2−43 +(1/2)d where d is the tally deviation. We remark that in this setting
no deterministic extractor would be able to provide sufficient entropy and hence
our ZK amplification technique is crucial.

4.2 Voter Privacy/Receipt Freeness of Our e-Voting System

In order to show our scheme satisfies privacy, we utilize complexity leveraging.
Specifically, the system security parameter is configured such that breaking the
hiding property of the underlying commitment scheme is much harder than
guessing the challenge of theΣ protocol; therefore, we can simulate the protocol’s
view by guessing the proof challenges without breaking the hiding property of
the commitment scheme. Due to this proof technique, the number of corrupted
voters t should be polynomially related to the security parameter λ in a certain
way; while the total number of voters n can be any function that is poly(λ) (as
long as the correctness requirement is fulfilled, cf. theorem 3). We emphasize
that given a specific n, our system can support privacy for any desired number
of adversarial voters t < n (as long as a suitably large security parameter λ is
used).

Theorem 5. Assume there exists a constant c, 0 < c < 1 such that for any
2λ

c

-time adversary A, the advantage of breaking the hiding property of the com-
mitment scheme is Advhide(A) = negl(λ). Let t = λc

′
for some constant c′ < c.

For any constant m ∈ N and n = poly(λ), the e-voting system described in Sec-
tion 3.5 achieves voter privacy/receipt-freeness for at most t corrupted voters.

End-to-End Verifiable Elections in the Standard Model 29

Proof. See full version of the paper. ut

References

1. Ben Adida. Helios: Web-based open-audit voting. In USENIX Security, 2008.
2. B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulating

independence: New constructions of condensers, ramsey graphs, dispersers, and
extractors. J. ACM, 57(4):20:1–20:52, May 2010.

3. Carsten Baum, Ivan Damg̊ard, and Claudio Orlandi. Publicly auditable secure
multi-party computation. In SCN 2014 Proceedings, 2014.

4. Donald Beaver. Plug and play encryption. In CRYPTO’97, pages 75–89, 1997.
5. Josh Benaloh. Simple verifiable elections. USENIX, 2006.
6. Josh Cohen Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections

(extended abstract). In STOC, 1994.
7. Josh Cohen Benaloh and Moti Yung. Distributing the power of a government to

enhance the privacy of voters (extended abstract). In PODC, 1986.
8. David Bernhard, Véronique Cortier, Olivier Pereira, Ben Smyth, and Bogdan

Warinschi. Adapting helios for provable ballot privacy. In ESORICS, 2011.
9. David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove yourself:

Pitfalls of the Fiat-Shamir heuristic and applications to Helios. In Asiacrypt, 2012.
10. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge

and its applications (extended abstract). In STOC, 1988.
11. David Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Commun. ACM, 24(2):84–88, 1981.
12. David Chaum. Surevote: Technical overview. In Proceedings of the Workshop on

Trustworthy Elections, WOTE, 2001.
13. David Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE Security

& Privacy, 2(1):38–47, 2004.
14. David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan Popove-

niuc, Ronald L. Rivest, Peter Y. A. Ryan, Emily Shen, Alan T. Sherman, and
Poorvi L. Vora. Scantegrity II: end-to-end verifiability by voters of optical scan
elections through confirmation codes. IEEE TIFS, 4(4):611–627, 2009.

15. Benôıt Chevallier-Mames, Pierre-Alain Fouque, David Pointcheval, Julien Stern,
and Jacques Traoré. On some incompatible properties of voting schemes. In
Towards Trustworthy Elections, 2010.

16. Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: Toward a
secure voting system. In IEEE Symposium on Security and Privacy, 2008.

17. Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryptographically
secure election scheme (extended abstract). In FOCS, 1985.

18. Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryptographically
secure election scheme (extended abstract). In FOCS, 1985.

19. United States Election Assistance Commission. Voluntary voting systems guide-
lines, 2005.

20. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In CRYPTO, 1994.

21. Ronald Cramer, Matthew K. Franklin, Berry Schoenmakers, and Moti Yung.
Multi-autority secret-ballot elections with linear work. In EUROCRYPT, 1996.

22. Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and opti-
mally efficient multi-authority election scheme. ETT, 8(5):481–490, 1997.

30 Aggelos Kiayias and Thomas Zacharias and Bingsheng Zhang

23. Olivier de Marneffe, Olivier Pereira, and Jean-Jacques Quisquater. Simulation-
based analysis of E2E voting systems. In Frontiers of Electronic Voting, 2007.

24. Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying privacy-type prop-
erties of electronic voting protocols. J. of Computer Security, 17(4):435–487, 2009.

25. Danny Dolev, Michael J Fischer, Rob Fowler T, Nancy A Lynch, and H. Raymond
Strong. An efficient algorithm for byzantine agreement without authentication.
Information and Control, 52:257–274, 1982.

26. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In EUROCRYPT’15. Springer, 2015.

27. Jens Groth. Evaluating security of voting schemes in the universal composability
framework. In ACNS’04, pages 46–60, 2004.

28. Eitan M. Gurari. Introduction to the theory of computation. Computer Science
Press, 1989.

29. Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections. IACR Cryptology ePrint Archive, 2002:165, 2002.

30. Jesse Kamp and David Zuckerman. Deterministic extractors for bit-fixing sources
and exposure-resilient cryptography. SIAM J. Comput., 36(5):1231–1247, 2006.

31. Steve Kremer, Mark Ryan, and Ben Smyth. Election verifiability in electronic
voting protocols. In ESORICS, pages 389–404, 2010.

32. Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Accountability: Definition
and relationship to verifiability. IACR Cryptology ePrint Archive, 2010:236, 2010.

33. Ralf Küsters, Tomasz Truderung, and Andreas Vogt. A game-based definition of
coercion-resistance and its applications. In CSF, pages 122–136, 2010.

34. Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Verifiability, privacy, and
coercion-resistance: New insights from a case study. In IEEE Symposium on Secu-
rity and Privacy, pages 538–553. IEEE Computer Society, 2011.

35. David Lichtenstein, Nathan Linial, and Michael E. Saks. Imperfect random sources
and discrete controlled processes. In STOC, pages 169–177, 1987.

36. Silvio Micali, Rafael Pass, and Alon Rosen. Input-indistinguishable computation.
In FOCS, pages 367–378. IEEE Computer Society, 2006.

37. Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with everlast-
ing privacy. In CRYPTO, pages 373–392, 2006.

38. C. Andrew Neff. Practical high certainty intent verification for encrypted votes.
Votehere, Inc. whitepaper, 2004.

39. Stefan Popoveniuc, John Kelsey, Andrew Regenscheid, and Poorvi Voral. Perfor-
mance requirements for end-to-end verifiable elections. EVT/WOTE, 2010.

40. Ran Raz. Extractors with weak random seeds. STOC, 2005.
41. Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme - a practical

solution to the implementation of a voting booth. In EUROCRYPT, 1995.
42. Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial

identities. J. ACM, 27(4):701–717, 1980.
43. Dominique Unruh and Jörn Müller-Quade. Universally composable incoercibility.

IACR Cryptology ePrint Archive, 2009:520, 2009.
44. Filip Zagórski, Richard Carback, David Chaum, Jeremy Clark, Aleksander Essex,

and Poorvi L. Vora. Remotegrity: Design and use of an end-to-end verifiable remote
voting system. In ACNS, 2013.

45. Richard Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM,
1979.

	End-to-End Verifiable Elections in the Standard Model

