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Abstract. Observations of secondary radiation, stimulated

electromagnetic emission (SEE), produced during iono-

spheric modification experiments using ground-based, high-

power, high-frequency (HF) radio waves are considered.

The High Frequency Active Auroral Research Program

(HAARP) facility is capable of generating narrowband SEE

in the form of stimulated Brillouin scatter (SBS) and stim-

ulated ion Bernstein scatter (SIBS) in the SEE spectrum.

Such narrowband SEE spectral lines have not been reported

using the European Incoherent Scatter (EISCAT) heater fa-

cility before. This work reports the first EISCAT results of

narrowband SEE spectra and compares them to SEE previ-

ously observed at HAARP during electron gyro-harmonic

heating. An analysis of experimental SEE data shows ob-

servations of emission lines within 100 Hz of the pump fre-

quency, interpreted as SBS, during the 2012 July EISCAT

campaign. Experimental results indicate that SBS strength-

ens as the pump frequency approaches the third electron

gyro-harmonic. Also, for different heater antenna beam an-

gles, the CUTLASS radar backscatter induced by HF ra-

dio pumping is suppressed near electron gyro-harmonics,

whereas electron temperature enhancement weakens as mea-

sured by EISCAT/UHF radar. The main features of these new

narrowband EISCAT observations are generally consistent

with previous SBS measurements at HAARP.

Keywords. Ionosphere (active experiments; particle accel-

eration; plasma waves and instabilities)

1 Introduction

Ionospheric plasma turbulence can be created by injection

of powerful high-frequency (HF) radio waves from ground-

based transmitters. The interaction between high-power elec-

tromagnetic waves and plasmas in the ionosphere can pro-

duce stimulated electromagnetic emissions (SEEs), first re-

ported by Thidé et al. (1982) and reviewed by Leyser (2001).

SEE spectral lines in the scattered wave can be utilized to

remotely probe the properties of the ionosphere as well as

actively study radio pump-induced phenomena such as artifi-

cial airglow during modification of the ionosphere (e.g. Bern-

hardt et al., 2009, 2010; Pedersen et al., 2010; Mahmoudian

et al., 2013a).

Wideband SEE within 100 kHz of the pump frequency

has been studied extensively for several decades. However,

due to updates of the HAARP facility in 2007, it has been

possible to investigate narrowband (within roughly 1 kHz of

the pump frequency) SEE near the resonance altitude in re-

cent years. Stimulated Brillouin scattering (SBS) has been

recently observed in the high-power, HF wave ionospheric

experiments, shifted by a few tens of hertz from the pump
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frequency (Norin et al., 2009). During the past few years,

SEE observations at HAARP have revealed a plethora of nar-

rowband SEE lines associated with SBS and stimulated ion

Bernstein scatter (SIBS) (e.g. Norin et al., 2009; Bernhardt

et al., 2009, 2010; Samimi et al., 2012, 2013, 2014). Fu et

al. (2013) further investigated SBS and SIBS and their in-

terrelationship in detail over a range of aspect beam angles

and frequency stepping near electron gyro-harmonics. Mah-

moudian et al. (2013b) investigated the threshold for SBS

at HAARP and experimentally showed that an effective ra-

diated power (ERP) ∼ 140 MW is required to excite SBS

associated with ion acoustic (IA) waves. These observations

motivated this campaign at EISCAT to produce SBS using

lower-power HF heating.

The physical process of SBS involves a nonlinear interac-

tion in which an incident (pump) electromagnetic wave de-

cays into an electrostatic IA wave and a scattered electro-

magnetic wave via the Brillouin instability. In such three-

wave interaction processes, the wave-matching conditions

are satisfied: ω0 = ωS+ωL and k0 = kS+ kL, where ω is

the wave frequency; k is the wave propagation vector; and

the subscripts 0, S and L denote the pump waves, the scat-

tered waves and low-frequency waves, respectively. Such

laser-induced parametric decay SBS processes have been

commonly detected and thoroughly studied in unmagnetized

plasmas as summarized by Kruer (1988). The first SBS de-

cay process has been detected only recently in high-power,

HF ionospheric modification experiments.

Observations of SBS at HAARP were considered to arise

from the plasma reflection resonance height where ω0 ≈ ωp

and the upper hybrid UH resonance height ω0 ≈ ωuh. How-

ever, for underdense plasmas, ω0� ωp, it has been sug-

gested that SBS may be produced using the EISCAT inco-

herent radar facility as first discussed by Dysthe et al. (1977).

A modification in the double-humped spectra of incoherent

backscatter was predicted by Fejer (1977) at Jicamarca and

Arecibo. Experimental observation of SBS using the Jica-

marca 50 MHz incoherent scatter radar can cause asymmetry

as large as 25 % in the incoherent ionic backscatter spectrum

(Fejer et al., 1978), resulting in errors of 10–15 m s−1 in the

measured velocity.

The primary purpose of the experiment during the 2012

EISCAT campaign was to investigate the possibility of gen-

erating SBS using the EISCAT HF heating facility and

its modification effects using simultaneous incoherent EIS-

CAT/UHF radar and CUTLASS HF radar diagnostics. It

was also the intention to study the correlation between

SEE, field-aligned irregularities (FAIs) and electron tempera-

ture enhancement near the electron gyro-harmonic frequency

for different aspect angles during the ionospheric modifica-

tion experiment. This paper is organized as follows. In the

next section, experimental procedure and diagnostics are de-

scribed. Thereafter, the experimental observations and anal-

ysis are given. Finally, a summary and conclusions are pro-

vided.

2 Experiment setup

The EISCAT HF facility (69.59◦ N, 19.23◦ E) near Tromsø,

in northern Norway (Rietveld et al., 1993), was used to pro-

duce SEE during a campaign on 3–10 July 2012. The HF

transmitter was operated at O-mode polarization with full

power. The pump frequency was stepped upward and down-

ward through the third harmonic of the ionospheric elec-

tron gyro-frequency 3fce. The pump frequency steps every

20 kHz in a range of 3.9 MHz≤ f0≤ 4.2 MHz. The heater

duty cycle was typically 1 min on and 1 min off, unless oth-

erwise stated. All 12 transmitters on array 2 were used at

80 kW each, resulting in a gain of 22.4 dBi and effective radi-

ated power (ERP) of approximately 148 MW. The beam an-

gle was scanned in small 6◦ steps in the magnetic meridian.

For each angle, the heating time period was 30 min during

the frequency stepping cycle.

The SEE receiver was installed near Breivikeidet, Norway

(69.64◦ N, 19.49◦ E), about 13 km east-northeast of the EIS-

CAT site. The antenna was a broadband resistively loaded

folded dipole. The receiver was an Ettus Research USRP

N210 fitted with a GPS-disciplined oscillator to provide pre-

cise time and frequency references. The receiver was tuned

to 6 MHz and recorded at 6.25 MHz sample rate to cover all

heater frequencies. The sampled data are processed with the

fast Fourier transform (FFT) to yield low-frequency spectra.

The EISCAT 931 MHz UHF radar was operated in Beata

mode, which enables measurement from 50 to 700 km with a

minimum of 5 s time resolution and 3.5 km range resolution.

The UHF radar data were integrated for 60 s to reduce mea-

surement error, with approximately 14 km resolution near

the reflection region. The UHF incoherent scatter radar can

provide ionospheric electron temperature, electron density,

plasma/ion-line frequency spectra and the reflection altitude.

A dynasonde, co-located with EISCAT, made a sounding ev-

ery 6 min, which can also provide the electron density profile

and the reflection altitude in the ionosphere.

The electron gyro-harmonic effects of SEE are associated

with HF, pump-induced FAIs, consisting of narrow filaments

of density depletions a few percent in amplitude and elon-

gated several tens of kilometres along the geomagnetic field

(Fialer, 1974). The heater produced FAIs were diagnosed by

CUTLASS HF coherent radars at Hankasalmi, Finland, and

Thykkvibær, Iceland. The CUTLASS pair of HF radars in

the Northern Hemisphere is part of the SuperDARN network

of HF coherent radars,which is a frequency-agile bistatic HF

radar system operating in the range 8–20 MHz (Robinson et

al, 1997). During this experiment, the CUTLASS radars op-

erated in “stereo” mode by utilizing some of the radar’s spare

duty cycle. The radar employed three frequency bands – 9–

10, 13–14 and 16–17 MHz – which are sensitive to FAIs with

spatial sizes of between 8 and 17 m. The dwell (integration)

time on each radar beam is 1 s for Hankasalmi.
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Figure 1. Narrowband SEE frequency spectra of HF scattered sig-

nals showing strong emission lines at 8–12 Hz using the EISCAT

HF transmitter operating at varying pump frequencies near 3fce
during 19:20–19:32 UT on 3 July 2012. The heating beam points

towards the magnetic zenith direction with 1 min on/off duty cycle.

3 Experimental results

3.1 Narrowband SEE observations

Figure 1 shows narrowband frequency spectra of the scat-

tered HF pump wave for heating near the third electron gyro-

harmonic frequency, 3fce, during 19:20–19:32 UT on 3 July

2012. Electromagnetic backscattered waves were produced

by the EISCAT HF transmitter operating with an ERP of

148 MW for the magnetic zenith beam. Dynasonde data at

19:28 UT on 3 July 2012 indicate quiet ionospheric status.

The reflection altitude for the pump frequency 4.04 MHz

is ∼ 215 km according to dynasonde data. Strong emissions

downshifted by∼ 8 Hz and upshifted by∼ 12 Hz in the spec-

tra are clearly observed in Fig. 1 with power within 10 dB

relative to the reflected pump wave. The power of the down-

shifted (or Stokes) emission line is larger than the upshifted

(anti-Stokes) emission.

These shifted spectral lines observed in Fig. 1 show a sim-

ilar frequency shift and relative amplitude of Stokes and anti-

Stokes lines when compared to experimental observations at

HAARP (e.g. Norin et al., 2009; Bernhardt et al., 2009). The

reflected pump waves and scattered electromagnetic waves

combine to produce upshifted SBS lines with lower intensity

and slightly higher 4–5 Hz frequency offset than the down-
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Figure 2. The measured UHF radar plasma frequency and electron

temperature enhancement 1Te during 19:24–19:30 UT on 3 July

2012. Note that the reflection altitude is approximately 215 km for

the pump frequency 4.04 MHz.

shifted SBS. Upshifted SBS lines have been previously ex-

plained as follows (Bernhardt et al., 2009). After the up-

ward pump reflects near-zero refractive index, yielding a

downward pump wave, it scatters with IA waves to pro-

duce another upward electromagnetic wave with wave vec-

tor k0 = kS+ kL and ω0 = ωS+ωL. Bernhardt et al. (2010)

interpreted1fIA =−(f −f0)= 6∼ 12 Hz below/above the

pump frequency f0 as SBS from the plasma resonance re-

gion. Theoretical and experimental works on SBS indicate

that the production of downshifted lines should be preferred.

The strength of observed sideband emissions in Fig. 1 de-

pends on the electromagnetic pump wave frequency as well.

During the frequency stepping, the SBS emissions were ob-

served at pump frequencies 4.04, 4.02 and 4.00 MHz, rela-

tively close to 3fce. The frequency dependence of the emis-

sion may be attributed to the EISCAT HF transmitter power

being near the threshold for excitation. It may be postulated

that, when less anomalous absorption occurs near 3fce, more

heater power can be transmitted to a higher resonance al-

titude where SBS occurs. Anomalous absorption is due to

scattering of the electromagnetic waves on FAI with a wide

spatial spectrum. For pump frequency near nfce (n= 3,4),

FAI intensity and anomalous absorption are minimum (see

Leyser, 2001, and references therein). This will be discussed

further in the next section.

Figure 2 shows the measured UHF radar plasma frequency

ωp and electron temperature enhancement 1Te profile vs.

height during 19:20–19:32 UT on 3 July 2012. The integra-

tion time is 60 s. Incoherent radar data indicate that the re-

flection altitude is 215 km for the pump frequency 4.04 MHz.

The electron temperature enhancement at ∼ 215 km min-

www.ann-geophys.net/33/983/2015/ Ann. Geophys., 33, 983–990, 2015
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Figure 3. Wideband SEE frequency spectra of HF scattered sig-

nals from the EISCAT HF transmitter operating at varying pump

frequencies near 3fce. The heating direction is along the magnetic

zenith. According to DP measurement, f0 ≈ 3fce occurs between

4.04 and 4.06 MHz.

imizes for pump frequency 4.04 MHz during the interval

19:24–19:25 UT on 3 July 2012. The electron temperature

enhancement and anomalous absorption are correlated as ob-

served by Honary et al. (1995). Electron temperature and

anomalous absorption are minimized when pumping on a

gyro-harmonic frequency because the growth of small-scale

(1–10 m) field-aligned striations is suppressed, as will be dis-

cussed in further detail in the next section. Based on incoher-

ent scatter radar data, the pump-induced electron tempera-

ture enhancement reaches approximately 500–600 K for the

pump frequency 3.98 MHz in the heated region in Fig. 2.

The wave-matching condition for SBS is kL
∼= 2k0

(Bernhardt et al., 2010). An analytical expression for

the IA waves, propagating with an angle θ to the

ambient magnetic field, can be expressed as ωIA =√
(k2

IAc
2
IAcos2θ)/(1+ k2

IAc
2
IA/�

2
ci) when the ion sound

waves have wavelengths much larger than a Debye length

kIAλd� 1. Here, �ci is the ion gyro-frequency and cIA =√
(γeTe+ γiTi)/mi is the IA velocity with γe = 1 and γi =

3, Te and Ti are the electron and ion temperature, respec-

tively, and λd is the Debye length (Bernhardt et al., 2009).

The ion gyro-frequency representative of the conditions over

EISCAT at 215 km is estimated to be fci≈ 46.0 Hz. Based

on incoherent scatter radar data, the electron temperature

is taken to be Te = 2600K and Te/Ti = 2.5. The wave-

matching condition predicts that the strongest IA wave emis-

sions f1 ∼ 8 Hz are excited near the reflection resonance alti-

tude where the local plasma frequency becomes close to the

pump frequency.

3.2 Associated wideband SEE and irregularities

A classic feature of the steady-state SEE spectrum is the

downshifted peak (DP) when pumping near electron gyro-

harmonics (Leyser, 2001). The DP is located at 1fDP ≈ 1–

3 kHz below the pump frequency. An upshifted peak (UP)

feature occurs above the pump frequency at approximately

the mirror frequency of the DP. The DP, 2DP and UP can

be simultaneously observed when the pump frequency ap-

proaches the nth (n≥ 3) electron gyro-harmonic frequency

nfce. Stubbe and Kopka (1990) stated that the DP has been

found to be a strong feature for f0 = 3fce and weak sign for

f0 = 4fce,5fce. It is worth mentioning that Mahmoudian et

al. (2013a) recently noted a similar spectral feature for f0 ≈

2fce pumping with frequency offset 1f ≈ 500− 1000 Hz.

Figure 3 shows the dependence of wideband SEE fea-

tures on the pump frequency when pumping near 3fce for

the same time period and experimental conditions as the

narrowband SEE in Fig. 1. For pump frequencies close to

4.04 MHz, the DP at approximately∼ 2 kHz below the pump

frequency develops. The DP frequency offset drops from ap-

proximately −2.5 to −1.6 kHz as the pump frequency ap-

proaches 3fce, consistent with previous experimental obser-

vations (Stubbe et al., 1994). The DP serves as a good in-

dicator for the pump frequency close to the third electron

gyro-harmonic frequency (Stubbe and Kopka, 1990; Stubbe

et al., 1994; Honary et al., 1995). The DP frequency off-

set for the pump frequency near 3fce can be approximately

estimated based on existing theoretical models (Huang and

Kuo, 1995; Hussein and Scales, 1997; Mahmoudian et al.,

2013a). A detailed description of these DP models is beyond

the scope of the current paper and will be pursued in future

works. If the pump frequency increases further above elec-

tron gyro-harmonic, the downshifted maximum (DM) spec-

tral line (Leyser, 2001) at approximately 8–8.5 kHz below

the pump frequency appears in the lower sideband spec-

trum. The DM involves electrostatic lower hybrid waves,

where the lower hybrid wave frequency is estimated to be

ωlh ' 7.5 kHz. The presence of a DM and upshifted maxi-

mum (UM) in the SEE spectrum, which is closely correlated

with FAIs, can also serve as a indicator of whether the pump

frequency is near to or far from a harmonic of the electron

gyro-frequency (Leyser et al., 1994). Another set of repeated

daytime experiments shows the dependence of the DP on the

pump frequency for different beam angles. The behaviour at

different angles is similar to the magnetic zenith case. If the

transmitter beam angle is tilted further off the magnetic field

line, the amplitude of the DP becomes weak and the second

downshifted peak (2DP) and UP may not appear in the spec-

tra.
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Figure 4. The results of HF pumping during 18:40–19:40 UT on 3 July 2012. The upper panel shows the pump frequency, where the

black arrows indicate the pump frequency 4.04 MHz (approximately 3fce) at 18:52–18:53 and 19:14–19:15 UT. The middle panel shows

the electron temperature profile measured by the EISCAT UHF radar with the integration time 60 s. The lower panel shows CUTLASS

backscatter power, Doppler velocity, and spectral width vs. slant range (line-of-sight distance) in the heating region over EISCAT.

Figure 4 depicts the HF pumping frequency scheme, the

electron temperature profile measured by the EISCAT UHF

radar and CUTLASS backscatter power, the Doppler ve-

locity, and the spectral width during 18:40–19:38 UT on

3 July 2012. The upper panel shows the pump frequen-

cies between 3.92 and 4.2 MHz. The arrows indicate the

pump frequency near 3fce (i.e. f0 = 4.04 MHz). The mid-

dle panel shows the electron temperature measured by the

EISCAT 931 MHz UHF incoherent scatter radar. For the up-

ward frequency stepping, the electron temperature enhance-

ment minimizes during 18:54–18:55 (f0 = 4.06 MHz) and

18:56–18:57 (f0 = 4.08 MHz). For the downward frequency

www.ann-geophys.net/33/983/2015/ Ann. Geophys., 33, 983–990, 2015
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stepping, the electron temperature enhancement reduces dur-

ing 19:22–19:23 (f0 = 4.06 MHz) and 19:24–19:25 (f0 =

4.04 MHz), which correspond to strong DP as observed in

Fig. 3. The electron temperature enhancement minimizes

when the pump frequency approaches 3fce. This agrees with

previous experimental observations (Honary et al., 1995).

The electron temperature enhancement exhibits an asym-

metry for pump frequencies above and below 3fce in the mid-

dle panel of Fig. 4. It should be noted that the measurement

error increases during 19:08–19:15 for f0 > 3fce in the nar-

row altitude range close to the heater reflection height, since

the electron temperature retrieval algorithm is based on the

ion-line spectra which are modified by HF pump-induced ef-

fects. It is unclear whether there is more efficient electron

heating for f0 > 3fce from these observations. Further anal-

ysis will be required on the simultaneous ion-line spectra and

SEE measurements.

The lower panel shows the CUTLASS backscatter power,

Doppler velocity, and spectral width from beam 5 of the Han-

kasalmi radar. The backscattered signals are produced by

Bragg scattering of the sounding waves from pre-existing or

pump-induced field-aligned striations. The aspect-angle de-

pendence for scattering requires that the radio wave k vector

be close to orthogonal to the magnetic field B. The CUT-

LASS radar measures F-region irregularities with a plasma

E×B drift vd. The HF radar beam that is pointed to mag-

netic north measures an eastward (zonal) electric field or-

thogonal to B. The radar cycles through three frequencies:

9.9, 13.2 and 16.6 MHz. Only 13.2 MHz corresponds to

strong backscatter from FAIs of wavelength ∼ 11 m. When

the pump frequency approaches 4.04 MHz during the time

period 18:52–18:53, there is a clear reduction observed in

the backscatter power from a peak of 30 dB to approxi-

mately 15 dB. There exists a minimum of the backscatter

power during the time periods 18:54–18:55 (f0 = 4.06 MHz)

and 18:56–18:57 (f0 = 4.08 MHz). The minimum backscat-

ter power exactly corresponds to the minimum electron tem-

perature enhancement. Based on the temporal evolution of

the backscatter power between approximately 0 and 25 dB,

the rise time of FAIs is estimated to be less than 10 s and the

decay time is approximately 40 s.

The Doppler velocity during the HF pumping is due to the

E×B drift of HF-induced FAIs and reaches a maximum value

of approximately−50 m s−1 corresponding to a frequency of

approximately 5 Hz. The spectral width is typically less than

5 m s−1.

Unfortunately, after 19:00 UT in Fig. 4, the CUTLASS

radar was switched back to operate in its standard mode.

When pumping above 3fce after 19:00, the spectral width

may vary but is not observed in these measurements. In sum-

mary, these observations indicate that when the electron tem-

perature is reduced and FAIs become weak, both SBS and DP

are observed in the scattered signals.

These DP line observations as well as electron temperature

and FAIs hold true for different heater beam angles. The FAIs

are suppressed when pumping very close to 3fce, resulting in

weak CUTLASS backscatter (Honary et al., 1999). While the

electron temperature is minimum in correlation with field-

aligned striation suppression, a prominent DP with a small

frequency shift is observed in the spectrum. When pumping

near electron gyro-harmonics, less absorption occurs near

the upper hybrid resonance level, giving rise to the simul-

taneous presence of a strong DP emission line (Huang and

Kuo, 1995). Huang and Kuo (1995) proposed a generation

mechanism for the DP and UP emissions through paramet-

ric decay of upper hybrid/electron Bernstein (UH/EB) wave

into another UH/EB sideband wave and a nearly perpendic-

ularly propagating IA decay mode wave in an altitude region

slightly above the double resonance layer. Such a DP gener-

ation mechanism process involves short-scale, field-aligned

density irregularities (k = k0) through a thermal oscillat-

ing two streaming instability (OTSI) process (Dysthe et al.,

1983). This differs from SBS, which does not involve field-

aligned density irregularities in its generation process. The

threshold for SBS is usually higher than DP emissions, and

DP appears in the spectra almost immediately after the heater

is turned on (Mahmoudian et al., 2013a).

4 Discussion and conclusions

Using an ERP of ∼ 148 MW, the EISCAT HF facility may

generate SBS emissions. It is noted that this observed power

level is less than that required for SBS generation from the

plasma reflection altitude at HAARP (∼ 320 MW) (Mah-

moudian et al., 2013b). During this campaign, the IA-related

emission lines shifted by 6–12 Hz from the pump are ob-

served for the pump frequency near the third electron gyro-

harmonic. Also, the amplitude of the downshifted ∼ 8 Hz IA

line is larger than the upshifted ∼ 12 Hz IA line. These spec-

tral characteristics of IA emission lines reported in this paper

agree with SBS lines from the plasma resonance region pre-

viously observed at HAARP. As for the critical differences,

more carefully designed experiments are necessary in the fu-

ture to make substantive conclusions at this time.

To further investigate SBS generation near the third gyro-

harmonic, the DP lines are observed simultaneously with

electron temperature from EISCAT/UHF data and FAIs from

CUTLASS radar. During the frequency stepping, experimen-

tal results show that DP structures become prominent as

f0 approaches 3fce, while FAIs are suppressed and elec-

tron temperature becomes minimum. It is postulated that the

enhancement of SBS near 3fce may be explained by weak

FAIs, with the result that more power reaches the reflec-

tion altitude. The correlations between DP structures, plasma

line/ion-line spectrum and FAIs for varying transmitter beam

angle have been observed during the experiments and show

qualitatively similar behaviour to pumping along the mag-

netic field but are not presented here. Further examination of

the data will be provided in the future.
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Although fundamentally different physical processes, SBS

and DP SEE are both a result of parametric decay instabili-

ties with IA waves as the low-frequency decay modes. SBS

involves slow magnetosonic IA waves for frequencies below

the ion cyclotron frequency, while DP involves IA waves for

frequencies above the ion cyclotron frequency. These spec-

tral lines are therefore important consequences of IA waves

in the wideband and narrowband SEE spectrum leading to

additional diagnostic information of ionospheric conditions.

The characteristics of the two processes are compared from

the present experimental observations as follows:

1. For pump frequency stepping across electron gyro-

harmonics, the DP is strengthened as f0 approaches

3fce. SBS is also observed to be enhanced as f0 ap-

proaches 3fce. It is postulated that less absorption and

consequently more power near 3fce plays an important

role in exciting SBS emissions.

2. The frequency offset of SBS at 8–12 Hz appears roughly

independent of f0 where the DP is highly sensitive

to f0 with 1f varying with proximity of f0 to 3fce.

When the pump frequency is increased towards 3fce,

the reduced frequency offset is explained by the wave-

matching condition of the upper hybrid/electron Bern-

stein (UH/EB) parametric decay process (Huang and

Kuo, 1995).

3. The SBS from the plasma resonance altitude is consid-

ered to be a process which does not depend on the pres-

ence of field-aligned striations. This is different from

models of the DP emission generation, which involves

the existence of FAIs (Huang and Kuo, 1995). The DP

may require a lower power threshold field than that for

SBS as observed in experiments. Previous experiments

have observed DP emissions at 4.04 MHz with an ERP

of 86 MW (Stubbe et al., 1984) at EISCAT. According

to calculations by Huang and Kuo (1995), the heater

nominal power threshold is an ERP of ∼ 12 MW by ig-

noring D-region absorption, a factor of 10 less than the

threshold for SBS as a rough estimation. The estimated

power level for the DP seems approximately on the or-

der of the power threshold for FAIs observed by Wright

et al. (2006).

4. The dependence of the SBS and DP lines on aspect an-

gle of the transmitter beam relative to the magnetic field

θ0 is different. The SBS occurs where the parallel elec-

tric field undergoes swelling at the plasma resonance

altitude. The DP requires a large electric field compo-

nent perpendicular to the geomagnetic field in the UH

region. When increasing θ0 for the pump wave, the par-

allel electric field component becomes smaller and the

electric field turns from parallel to the geomagnetic field

towards horizontal at a larger distance below the reflec-

tion height (Leyser, 1991). For tilting beam angles off

the magnetic field, the excitation of SBS from the reflec-

tion region becomes relatively less important compared

to SBS from the upper hybrid level (Fu et al., 2013).

For varying beam angle experiments, strong DP emis-

sions were essentially observed for the magnetic zenith

beam (Tereshchenko et al., 2006).

5. Both SBS and DP are associated with IA waves that

depend on electron temperature. As electron tempera-

ture, Te, is increased during heating, the frequency off-

sets of SBS and DP are predicted to increase. If f0 is

sufficiently far from 3fce, the electron temperature may

be derived based on IA SBS emission from the upper

hybrid resonance level (Bernhardt et al., 2009). Elec-

tron temperature retrieval from SBS and DP lines is a

potentially powerful diagnostic capability; however im-

portant aspects of the theory are still lacking and more

work is required at this time.

Finally, it should be pointed out that both EISCAT (2≈

12◦) and HAARP (2≈ 14◦) HF heating facilities are located

at high latitudes with a comparable geomagnetic angle. The

EISCAT HF heater has approximately one-third the power

of the HARRP HF heater and only higher gyro-harmonic

(n≥ 3) heating capability is available at EISCAT. However,

with the unique advantage of the EISCAT/UHF radars and

CUTLASS radars, new SEE phenomena recently observed

at HAARP may be investigated in further detail at EISCAT

as well.
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