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Abstract—Cloud computing is now extremely popular be-
cause of its use of elastic resources to provide optimized,
cost-effective and on-demand services. However, clouds may
be subject to challenges arising from cyber attacks including
DoS and malware, as well as from sheer complexity problems
that manifest themselves as anomalies. Anomaly detection tech-
niques are used increasingly to improve the resilience of cloud
environments and indirectly reduce the cost of recovery from
outages. Most anomaly detection techniques are computation-
ally expensive in a cloud context, and often require problem-
specific parameters to be predefined in advance, impairing their
use in real-time detection. Aiming to overcome these problems,
we propose a technique for anomaly detection based on data
density. The density is computed recursively, so the technique is
memory-less and unsupervised, and therefore suitable for real-
time cloud environments. We demonstrate the efficacy of the
proposed technique using an emulated dataset from a testbed,
under various attack types and intensities, and in the face of
VM migration. The obtained results, which include precision,
recall, accuracy, F-score and G-score, show that network level
attacks are detectable with high accuracy.
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I. INTRODUCTION

Cloud environments are hugely popular because they
offer a range of beneficial properties, such as on-demand
self-service, resource pooling, rapid elasticity and measured
service, using virtualization as an enabling base technol-
ogy [1]. However, they are susceptible to traditional chal-
lenges including DoS attacks, malware and misconfigura-
tion. In addition, cloud properties can also exacerbate these
challenges in both their detection and impact, hence these
challenges increase the management costs, and lead to SLA
violations [2] [3]. A recent study by security-as-a-service
provider Alert Logic, says that application attacks aimed
at cloud deployments grew 45% over the previous year
(2014) [4]. Their research is based on an analysis of one
billion events during the whole of 2014 across more than
3000 of its customers.

Motivated predominantly by cost reduction, cloud en-
vironments are also being used by sectors operating crit-
ical services, such as safety-critical operations (e.g., Air
Traffic Control networks), critical manufacturing services
(e.g., utility networks and industrial control systems), and
critical real-time services (e.g., transportation and surveil-
lance systems) [5]. For these critical infrastructures, there
are stringent security and resilience requirements, which

are arguably higher than traditional IT services because
attacks on these high-assurance IT services that support
critical infrastructures could have severe implications. Con-
sequently, the detection of anomalies, which can signal
attacks and challenges, is a vital element of operations in
clouds. The dynamic nature of cloud environments and the
diverse workload patterns of the applications they run impact
the detection ability of anomaly detection techniques [6].
Therefore, a technique which allows the construction, ac-
cumulation, and self-learning of a dynamically evolving
information model of “normality”, and which can operate
in real time, would be of great value.

In our previous work [7], we investigated how intra-cloud
live VM migration affects state-of-the-art anomaly detection
techniques, potentially making them unreliable for services
running in cloud environments. In order to quantify the im-
pact of VM migration on AD techniques, and to understand
their computational complexity, we developed a toolchain
which provides reference implementation for six detectors
based on K-means1, PCA2, Wavelet3, GMM4, SVM5 and
Naı̈ve Bayesian6 techniques. Our results suggested that in
some configurations challenge anomalies are missed and
some configuration anomalies are wrongly classified. More-
over, we noticed that the computational complexity of these
techniques is high because they require complex statistical
computations, as well as the storage of the complete histor-
ical metrics to detect anomalous patterns. Based on these
results, we argue that there is a need for robust, preferably
real-time, anomaly detection for cloud environments with
high degree of accuracy where migration is recognized as
normal.

There exist many techniques for anomaly detection in
several disciplines, and they have exhibited sufficient de-
tection accuracy in a variety of scenarios, as indicated
in a comprehensive survey [8]. In the context of cloud
computing, a few anomaly detection techniques have been
adopted and redefined [9], [10], [11], [12]. However, these
approaches use complex statistical measures, lack scalability,

1https://en.wikipedia.org/wiki/K-means clustering
2https://en.wikipedia.org/wiki/Principal component analysis
3http://www.pybytes.com/pywavelets/regression/wp.html
4http://scikit-learn.org/stable/modules/mixture.html
5http://scikit-learn.org/stable/modules/svm.html
6http://scikit-learn.org/stable/modules/naive bayes.html
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and often require prior knowledge of the behaviour of rele-
vant patterns, making them potentially unusable in a cloud-
operational context. In contrast, we propose a technique
that is lightweight and aims to address the scalability needs
of cloud infrastructure. We employ a data density-based
technique that can easily scale as metric volume grows
because it does not require storing of metrics. In addition,
there is no need for prior knowledge about anomalous
behaviour, so it operates unsupervised. As a result, we can
detect anomalies that are not well understood (i.e., there are
no prior models) or have not been experienced previously.

A. State-of-the-art of Anomaly Detection in Cloud Comput-
ing

The importance of anomaly detection in cloud computing
is due to anomalies in data translating to important action-
able information. For example, an anomalous traffic pattern
could indicate the request rate for VMs suddenly increas-
ing, which could eventually decrease service availability to
authorized users. In general, anomaly detection is applied at
various levels of cloud computing, due to its native strength
in identifying unknown attacks.

Wang et al. [13] proposed the EbAT system to allow the
on-line analysis of multiple metrics obtained from system-
level components (e.g., CPU utilization on rack servers,
memory utilization, read/write counts of the OS, etc.). The
system showed potential in detection accuracy and monitor-
ing scalability, but it was not evaluated in the context of
adequately pragmatic cloud scenarios. Guan et al. [14] and
Garfinkel et al. [15] proposed multi-level anomaly detection
techniques to detect intrusions at different levels of a cloud
system. The techniques appear to be rather inflexible and
the application of those techniques in an operational context
requires better clarification. Lee et al. [16] proposed a multi-
level approach, which provided fast detection of anomalies
discovered in the system logs of each guest OS. One of
its disadvantages is the apparent lack of scalability, since
it required increasingly more resources under high system
workload. Also, it is only specific to detection in logging
data.

Similarly, Dastjerdi et al. [17] proposed an approach based
on mobile agents for an intrusion detection system for cloud
systems. However, scalability appears to be an issue due to
the high number of virtual machines that are required to be
attached to the agent.

The authors in [18] instrumented a real-time adaptive
anomaly detection framework that was able to detect anoma-
lies through the analysis of runtime metrics using the tradi-
tional two-class Support Vector Machine (SVM) algorithm.
However, the main issue raised by this study was that the
formulation of the two-class SVM algorithm suffered from
the data imbalance problem, which affected the training
phase, and consequently led to several mis-classifications
of newly tested anomalies.

PREPARE [19] and DAPA [20] are two recently proposed
frameworks for performance evaluation based on anomaly
detection for virtualized environments. Although, their main
focus is to identify SLA violations. These frameworks only
address application-related issues which are manifested into
performance anomalies. However, none of these approaches
focus on the impact of elasticity of the cloud such as VM
live migration and high volume of data due to heterogeneity
of the cloud. We make an attempt to propose a technique
that can work under these challenges.

In summary, and compared to prior work on cloud
anomaly detection, the main contributions of the paper are
as follows:

1) We present a novel, memory-less technique for
anomaly detection using density, which can be used
in cloud environments where metrics are monitored in
large volumes and in real time.

2) We evaluate the proposed technique using emulated
data captured from a cloud testbed with respect to
various attack types and intensities in the face of
migration. Results show that the technique is effective
in detection high and low intensity network level
attacks with 98% accuracy.

The remainder of this paper is organized as follows:
Section II details the proposed technique for detecting
anomalies. Section III presents an evaluation of the proposed
technique. Section IV describes the outcomes of our analysis
and discusses the results we obtained while Section V
summarizes our contributions..

II. PROPOSED TECHNIQUE

The proposed technique is based on the concept of data
density introduced in [21], which uses a non-parametric
Cauchy function [22] that can be updated recursively. Due
to being non-parametric, only a very small amount of data—
only the mean of all data samples µk and the scalar product
quantity Σk calculated at the current moment in time k—
needs to be stored in memory and updated [23]. This has
significant implications in a cloud-operating context since
it allows theoretically an infinite amount of data (infinitely
large monitoring metrics) to be processed in near real time
without having to store the historical data itself.

Let all measurable physical variables form the vector x ∈
Rn be divided into several clusters. Then, the local density
dΛ of cluster Λ, based on Euclidean distance, is defined as:

dΛ =
1

1 +
1

NΛ

NΛ∑
i=1

‖xk − xfΛ
i
‖2

(1)

where NΛ denotes the number of data samples associated
with cluster Λ. fΛ

i transforms i (identifying a vector con-
tributing to the cluster) into the domain of k (identifying
a vector from the complete set). In the case of anomaly



detection, xk represents the feature vector with values for
the instant k. It can be shown, that this formula can be
derived as an exact quantity [24]:

Dk =
1

1 + ‖xk − µk‖2 + Σk − ‖µk‖2
(2)

where both, the mean, µk and the scalar product, Σk can
be updated recursively as follows:

µk =
k − 1

k
µk−1 +

1

k
xk, µ1 = x1 (3)

Σk =
k − 1

k
Σk−1 +

1

k
‖xk‖2,Σ1 = ‖x1‖2 (4)

The data is collected continuously, in on-line mode during
the detection process. Some of the new data reinforce and
confirm the information contained in the previous data.
Other data, however, bring new information, which could
indicate a change in operating conditions, development of an
anomaly or simply a more significant change in the dynamic
of the system [25]. In order to detect anomalous behaviour,
the variable ∆Dk is, then, calculated as follows:

∆Dk = |Dk −Dk−1| (5)

where Dk is the density calculated for the current data
sample xk and Dk−1 is the density calculated for the
immediately previous data sample xk−1. The mean of all
densities so far D̄k can also be calculated, and compared
to indicate whether the system is in an anomalous state
(indicated when Dk < D̄k) or a normal state. D̄k is
calculated as follows:

D̄k =

(
ks − 1

ks
µDk−1

+
1

ks
Dk

)
(1−∆Dk)+Dk∆Dk (6)

where k counts the number of data samples which are
read, and ks counts the number of time steps in which
the system remains in the same status (normal/anomalous).
Since the computation of Dk < D̄k is based entirely on the
concept of data density, it is highly suitable and applicable
for real-time anomaly detection in cloud environments.

III. EVALUATION

The technique is evaluated using network traces obtained
from a controlled testbed resembling a cloud environment,
featuring VM migration as a normal cloud operation, plus
network attacks that should be regarded as anomalies. The
main reason for emulating network level attacks is be-
cause usually in cloud there are more end users consuming
resources and this therefore increases the attack surface,
which can be more damaging. The cloud can offer more
computational power in the form of virtual resources, to cope
with additional work loads. This to some extent supports the

Algorithm 1 Proposed anomaly detection technique

1: Let x1 be the first feature vector;
2: Let S = 0; (normal state)
3: Let k = 1;
4: Let Dk = 1.0;
5: Let D̄k = Dk;
6: Let µk = xk;
7: Let Σk = ‖xk‖2;
8: Let c = 0;
9: while more vectors do

10: Let k = k + 1;
11: Let xk be the next feature vector;
12: µk = update by equation 3;
13: Σk = update by equation 4;
14: Dk = update by equation 2;
15: ∆Dk = |Dk −Dk−1|;
16: if S = 0 then
17: D̄k = update by equation 6;
18: Let ks = ks + 1;
19: if Dk ≤ D̄kTh1 then
20: Let c = c+ 1;
21: if c ≥Ws1 then
22: Let S = 1; (anomalous state)
23: Let ks = 0;
24: end if
25: else
26: Let c = 0;
27: end if
28: else
29: D̄k = D̄k−1

30: Let ks = ks + 1;
31: if Dk ≥ D̄kTh2 then
32: Let c = c+ 1;
33: if c ≥Ws2 then
34: Let S = 0; (normal state)
35: Let ks = 0;
36: Let Dk = 1.0;
37: Let D̄k = Dk;
38: Let µk = xk;
39: Let Σk = ‖xk‖2;
40: end if
41: else
42: Let c = 0;
43: end if
44: end if
45: end while

attackers by enabling them to perform a loss of availability
on the intended service [26].

The testbed allows the traces to be labelled with ground
truth, about both the expected anomalies and the presence
of a migration. Comparison of the output of a detector with
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Figure 1: Experimental setup / test-bed

ground truth allows us to determine the performance of the
technique as a detector.

A. Testbed

The cloud testbed consists of two hosts which serve as
compute nodes running multiple VMs, each VM running
Apache HTTPd. The client host acts as a controller to
initiate migrations, and also to generate background traffic.
The ‘challenger’ host runs custom attack scripts to generate
attack traffic directed towards the VMs’ address range for a
selected attack type and intensity (i.e., the volume of traffic
it generates). Tcpdump7 is used to simultaneously collect
packet traces from the two virtual bridge interfaces, one in
each physical node, and so these traces represent aggregated
traffic to/from all VMs on a node. All are connected to a
LAN, as shown in Fig. 1.

Each physical node runs KVM8 as virtualization infras-
tructure, and QEMU9 provides hardware emulation. Migra-
tion is achieved with libvirt10. All VMs on a node are
connected to a virtual bridge interface virbr0, so their
own interfaces appear to be part of the LAN.

This set-up allows experiments to be run in which the
legitimate traffic of several web servers is continuously
emulated, while anomalous traffic is emulated by inject-
ing attack traffic into the legitimate traffic during part of
the experiment. Independently, one of the VMs running a
webserver can be migrated live between the nodes during a
period of either normal or anomalous traffic. Traces obtained
at the virtual bridges are fed into the detector to observe
its reactions to normal/anomalous traffic. Network traces
are split into 1-second bins, and then a set of statistical

7Tcpdump: http://www.tcpdump.org/
8Kernel-based Virtual Machine: http://www.linux-kvm.org/
9Quick EMUlator: http://www.qemu.org/
10The virtualization API: http://libvirt.org/libvirt2

properties (features) of the traffic in each bin is computed;
each feature vector is submitted to the detector. The vector
includes number of packets, number of bytes, number of
active flows in each bin, entropy of source IP address
distribution, entropy of destination IP address distribution,
entropy of source port distribution, entropy of destination
port distribution, entropy of packet size distribution. For
evaluation, each vector is also labelled with ground truth
about the presence of anomalies and migration. Packet traces
are captured with libpcap11. Because we have control over
when anomaly and migration occur, we can confidently label
our obtained traces with ground truth about both conditions,
and therefore assess the performance of proposed detection
technique.

B. Evaluation Metrics

The single metric alone is not sufficient to make a
firm conclusion about performance of underlying anomaly
detection technique [27]. Therefore, we evaluated the effec-
tiveness of the proposed technique using several metrics.
Each input entry submitted to the detector describes the
features of monitored network traffic during a given time
period (bin), and the detector then computes deviation from
normal traffic. Therefore, the performance can be assessed
by determining the difference between the class it produces
for a given input and the class it should have.

Correctly identified negatives are True Negatives (TN),
incorrectly identified negatives are False Positives (FP),
correctly identified positives are True Positives (TP) and
incorrectly identified positives are False Negatives (FN).
From this output it allows computation of the true-positive
rate (TPR, sensitivity or recall; TP/(TP + FN )), the
false-positive rate (FPR; FP/(FP + FN )), the preci-
sion (TP/(TP + FP)), the accuracy (TP + TN /TP +
TN + FP + FN ), the F score (2× (Precision ×
Recall ) / (Precision + Recall )), and the G mean
(
√
Precision × Recall ).
Accuracy is the degree to which the detector classifies data

samples correctly; precision is a measure of how many of the
positive classifications are correct, i.e. the probability that a
detected anomaly has been correctly classified; and recall
is a measure of the detector’s ability to correctly identify
an anomaly, i.e. the probability that an anomalous sample
will be correctly detected. The final two metrics are the
harmonic mean (F score) and geometric mean (G mean),
which provide a more rounded measure of the performance
of a particular detector by accounting for all of the outcomes
to some degree. The Precision and Recall are important
for evaluation since there could be a possibility that some
of the data instances are few in number relative to others.
For example if the portscan attack represented 95% of total
traffic in our captured traffic and the normal data instances

11libpcap API:http://www.tcpdump.org/

http://www.linux-kvm.org/
http://www.qemu.org/
http://libvirt.org/libvirt2


were 5%. If all the predicted instances were portscan then
the overall accuracy will be 5% in spite of the lost predicted
normal class of data.

C. Tuning the algorithm

The background traffic on the testbed consists of random
client HTTP requests producing substantially oscillatory
behaviour that could confound a detector. To overcome this,
we first analyzed various experimental runs, and introduced
tuning parameters with respect to the captured dataset de-
tailed below:

1) In order to have more defined normality regions, the
mean of density D̄k is recursively updated only for
normal data.

2) Transition from one state to another is controlled
by two tolerance thresholds Th1 and Th2 and two
windows Ws1, Ws2, where;

• the detector output can only switch from normal
to anomalous when Dk ≤ D̄kTh1 for Ws1

successive bins, and
• the detector output can only switch from anoma-

lous to normal if Dk ≥ D̄kTh2 for Ws2 succes-
sive bins.

The windows Ws1 and Ws2 are intuitive enter/exit
thresholds, which permit a good trade-off between
response time and stability of the detector.

3) Once the system is back in a normal state the density
of a current sample is reset back to one, i.e., Dk = 1,
to mitigate the impact of current anomalous data den-
sity onto subsequent data density computation. Cor-
respondingly, other recorded values are reset, namely,
D̄k = Dk, µk = xk and Σk = ‖xk‖2.

The coefficient (1−∆Dk) will lead D̄k to near the actual
mean of density when there is a smooth change in the data,
and ∆Dk will lead D̄k to near the new value of Dk in the
presence of an anomaly.

The detection technique with these modifications is shown
in Algorithm 1.

IV. ANALYSIS OF RESULTS

To validate the tuning strategy, a collection of traces
previously obtained from the testbed is analyzed. Each
experimental run yields a pair of packet traces that are
labelled with the ground truth regarding the presence of
attack traffic and migration in the trace. In each 10-minute
run, background traffic occurs continuously and hence ap-
pears throughout the trace. After the first 5 minutes in the
first run, an attack script starts, hence its traffic appears
in each trace from the midpoint. At either 2.5 minutes or
7.5 minutes, a migration of one of the VMs is initiated.
A run can therefore be characterised by the attack type
(labelled DoS for denial-of-service, NS for netscan and PS
for portscan) and intensity AH for high; AL for low, and
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Figure 3: After tuning

whether the migration occurs during the attack (AM) or
during the normal period (NM) (i.e., ‘migration overlap’).
Each trace from a run can be further characterised by
whether the node it was taken from experienced an outward
(MDout) or inward (MDin) migration of the VM. A run
is also characterised by whether the attack targets the VM
that migrates (MT0) or a VM that does not (MT1). The
fixed background traffic involves five VMs running identical
HTTP servers. Three VMs on one physical host, and two
on the other. A host external to the VM infrastructure runs
HTTP clients repeatedly connecting to each VM, two per
VM. We have observed an improvement in performance
when detector is augmented with the additional parameters
and behaviour. For example, for a high-intensity DoS attack
with migration during the attack DoS-AH-AM-MT0, Fig-
ure 2 shows the output of density-based detector that simply
signals when normalized D̄k (red) drops below Dk (blue),
which oscillates considerably even during the normal period.
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Figure 4: Detection results of high-intensity DoS attack

Table I: Detection results of DoS attack with MT0 under high and low intensity

Scenario Recall Precision Accuracy F-score G-mean

High-intensity(AH)

BC0-DoS-AH-M1-AM-MT0-MDin 0.996667 0.993377 1.0000 0.996678 0.996683

BC0-DoS-AH-M1-AM-MT0-MDout 0.991653 0.993289 0.989967 0.991625 0.991626

BC0-DoS-AH-M1-NM-MT0-MDin 0.923333 0.869186 0.996667 0.928571 0.930746

BC0-DoS-AH-M1-NM-MT0-MDout 0.936561 0.887240 1.00 0.940252 0.941934

Low-intensity(AL)

BC0-DoS-AL-M1-AM-MT0-MDin 0.978333 0.967427 0.990000 0.978583 0.978648

BC0-DoS-AL-M1-AM-MT0-MDout 0.988333 0.980328 0.996667 0.988430 0.988464

BC0-DoS-AL-M1-NM-MT0-MDin 0.8900 0.825000 0.990000 0.900000 0.903742

BC0-DoS-AL-M1-NM-MT0-MDout 0.948247 0.908537 0.996656 0.950558 0.951577

With D̄k relatively stable, many normal bins are reported as
anomalies, as indicated by the green circles. In comparison,
Figure 3 shows the same trace fed through the augmented
density-based algorithm. The window Ws1 has caused fewer
normal bins to be signalled as anomalies, reducing the
false-positive rate. Also, with D̄k not being updated once
an anomaly has been signalled, fewer anomalous bins are
signalled as normal, increasing the true-positive rate.

A. Detection with Migration

Using a feature set that is capable of encapsulating
changes to the volumetric properties of traffic on the
network, we were able to detect Denial-of-Service (DoS)
attacks on VMs using our detector with a high degree of
accuracy during migration.

Figures 4a and 4b visually represent detection perfor-
mance under high-intensity DoS attack with MT1 (i.e.,
the VM experiencing the attack is migrating) where mi-
gration happens during anomalous and normal periods re-
spectively. The results show that the anomalous region

precisely detected (marked by green circles) with very few
false-positives13. The output of the detector was used to
produce evaluation metrics according to the formulae in
Section III-B.

The results in Table I and Table II show that our choice of
network features is appropriate and sufficient for detecting
network based DoS attacks with high and low intensity. In
order to aid the evaluation process, we also present detection
results for netscan (NS) and portscan (PS) in Table III. The
results of detection are promising, with excellent detection
observed for network level attacks under various intensities.
In addition, this featureset could be expanded to include
statistics derived from other resources (such as vCPU usage).
There is a trade-off since more computation resources will
be required, but this could be beneficial in the detection of
other types of anomaly.

13The overall results are the best measure of the performance of the
detector and were calculated by combining the results of both components
as if they had been produced by a single detector.



Table II: Detection results of DoS attack with MT1 under high and low intensity

Scenario Recall Precision Accuracy F-score G-mean

High-intensity(AH)

DoS-AH-M1-AM-MT1-MDin 0.991667 0967532 1.0 0.983498 0.983632

DoS-AH-M1-AM-MT1-MDout 0.978333 0.920245 1.0 0.958466 0.959294

DoS-AH-M1-NM-MT1-MDin 0.958333 0.933754 0.986667 0.959481 0.959846

DoS-AH-M1-NM-MT1-MDout 0.96500 0.0 NaN12 0.0 NaN

Low-intensity(AL)

DoS-AL-M1-AM-MT1-MDin 0.981667 0.937107 0.993333 0.964401 0.964811

DoS-AL-M1-AM-MT1-MDout 0.978297 0.925466 0.993333 0.958199 0.958799

DoS-AL-M1-NM-MT1-MDin 0.980000 0.973684 0.986667 0.980132 0.980154

DoS-AL-M1-NM-MT1-MDout 0.984975 0.0 NaN 0.0 NaN

Table III: Detection results of netscan and portscan attacks under high and low intensity

Scenario Recall Precision Accuracy F-score G-mean

Netscan (NS))

BC0-NS-AH-M1-AM-MDin 0.836667 1.0 0.673333 0.804781 0.820569

BC0-NS-AH-M1-AM-MDout 0.963272 1.0 0.926421 0.961806 0.962508

BC0-NS-AH-M1-NM-MDin 0.828333 0.818770 0.843333 0.830870 0.830961

BC0-NS-AH-M1-NM-MDout 0.855000 0.863481 0.843333 0.853288 0.8553348

BC0-NS-AL-M1-AM-MDin 0.781302 0.7800000 0.782609 0.781302 0.781303

Portscan (PS)

BC0-PS-AH-M1-AM-MDin 0.960000 0.925926 1.0 0.961538 0.962250

BC0-PS-AH-M1-AM-MDout 0.973333 0.949367 1.0 0.974026 0.974355

BC0-PS-AH-M1-NM-MDin 0.894825 0.837143 0.979933 0.902928 0.905728

BC0-PS-AH-M1-NM-MDout 0.909850 0.847025 1.0 0.917178 0.920340

BC0-PS-AL-M1-AM-MDin 0.863333 0.791444 0.986667 0.878338 0.883681

V. CONCLUSION

We have presented a modified anomaly detector based on
the density of observed feature vectors. The modifications
we made have achieved improved detection for dynami-
cally evolving workload patterns without having pre-defined
anomaly models. This encourages further work concerning
monitoring scalablility in terms of efficiency and accuracy
with cloud specific workloads.

The density computation is expressed recursively, i.e.,
based only on the signal at the previous step together with
the latest vector. This makes the algorithm memoryless, i.e.,
it does not need to store historical data. The lightweight
nature of this approach makes it particularly suitable for
deployment in cloud environments. In particular, a detector
associated with a specific VM is sufficiently lightweight to
travel with the migrating VM. This is especially vaulable, as
a detector that does not migrate with a VM may interpret the
sudden departure or arrival of the VM as an anomaly. Cloud
infrastructures will benefit from our approach because it is
designed to be flexible and distributed as well as being able

to respond to new threats and challenges in real time.
The cloud-specific dataset, labelled with the ground truth

of migration and anomalies on which this work is based,
is available on request. Our implementation of the density-
based detector in Python is available online14.
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