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Abstract

Multiplicity is common in clinical studies and the current standard is to use the fam-
ilywise error rate to ensure that the errors are kept at a prespecified level. In this paper
we will show that, in certain situations, familywise error rate control does not account
for all errors made. To counteract this problem we propose the use of the expected num-
ber of false claims (EFC). We will show that a (weighted) Bonferroni approach can be
used to control the EFC, discuss how a study that uses the EFC can be powered for
co-primary, exchangeable and hierarchical endpoints and show how the weight for the
weighted Bonferroni test can be determined in this manner.

Keywords expected number of false claims (EFC); familywise error rate; hierarchical end-
points; multiplicity.

1 Introduction

Multiplicity arises frequently in clinical trials, for example, when testing sequentially, consid-
ering multiple treatment arms or multiple endpoints. In the context of confirmatory clinical
trials, the guidelines on multiplicity from the European Medicines Agency [1], clearly advocate
controlling the familywise error rate (FWER) in the strong sense [2]. Let the number of hy-
potheses of interest be m and m0 be the (unknown) number of true null hypotheses. Table 1
defines the standard notation for a multiple hypotheses testing problem [e.g. 2].

Table 1: Standard notation in multiple hypotheses testing.
Hypotheses Rejected Not Rejected Total
True V U m0

False S T m - m0

Total W R m

The FWER is then given by P (V > 0). In this article, we will argue that controlling the
FWER, though essential in many cases, can be insufficient protection against error inflation and
propose that the expected number of rejections, E(V ), is more appropriate in some settings.
To illustrate the point, consider a diabetes study that investigates if a treatment has an effect
on the HbA1c level and/or quality of life. The corresponding null hypotheses can be written as

HH : θH ≤ 0

HQ : θQ ≤ 0
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where θi is the effect (for example difference in change from baseline) for endpoint i (H corre-
sponding to HbA1c and Q to quality of life). Table 2 shows the proportion of times 0, 1 or 2
mistakes are observed under the set of hypothesis discussed above assuming that our endpoints
are independent and using a one-sided level of 0.05 for each endpoint.

Table 2: Proportion of times different number of incorrect rejections occur.
Number of rejections 0 1 2

Proportion 0.9025 0.095 0.0025

The probability of incorrectly rejecting both hypotheses is small in this case, the conse-
quences of making both mistakes can, however, be drastic. Consider, for example, a trial that
investigates a treatment for two different indications. Making two mistakes in this context
means that the treatment could become available to (and taken by) two different patient popu-
lations and hence potentially expose a much larger number of patients to an ineffective, possibly
even harmful, treatment.

From these results, one can see, that the FWER is 1 − 0.9025 = 0.0975 since no attempt
was made to control the FWER at a specific level. An alternative metric of interest is the
expected number of false rejections, E(V ). Denoting {Ii = 1} as the event that hypothesis
Hi is wrongly rejected and {Ii = 0} that either Hi is not rejected or that Hi is not true then,
E(V ) = E(I1 + ...+ Im) = E(I1) + ...+E(Im) = P (I1 = 1) + ...+P (Im = 1). Consequently the
expected number of rejections is at 2∗0.05 = 0.10 slightly larger than the FWER. By rewriting
we find that find that

E(V ) = P (incorrectly reject HH and retain HQ)

+P (retain HH and incorrectly reject HQ)

+2 ∗ P (incorrectly reject HH and HQ)

= FWER + P (incorrectly reject HH and HQ)

and hence it becomes apparent, that designing our hypothetical study to control the FWER
treats incorrectly concluding an effect on HbA1c equal to incorrectly concluding an effect on
quality of life equal to incorrectly concluding an effect on HbA1c and quality of life. This
immediately begs the question: Why is making two mistakes not worse than making one?

At this point one could argue, that one can live with the very small probability of making
two mistakes and hence not consider the problem any further. Looking at the FWER and the
expected number of wrong rejections for the set of hypotheses above under the normal model
for varying correlation in Figure 1, however, clearly shows that the expected number of wrong
rejections becomes substantial as correlation increases. In particular for correlations close to
one, the expected number of wrong rejections is almost twice the FWER.

After motivating the potential shortcoming of using the FWER, we will formalize our pro-
posal, the expected number of false claims (EFC), in the next section. We then continue to
show a simple way to control the EFC and discuss powering studies based on it (Section 3). We
illustrate the methods for different structures of hypotheses and finish with a brief discussion.
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Figure 1: Comparing the FWER and expected number of wrong rejections for different corre-
lation between endpoints. Calculations are based on the joint multivariate normal distribution
obtained using the R package mvtnorm [3].
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2 The expected number of false claims

In the motivating example, we have assumed that each wrong rejection has unwanted conse-
quences. In many multiple testing situations, however, making an additional mistake is of no
further consequence and hence the distinction between one or more mistakes irrelevant. For
example in a dose finding setting where it is desired to determine the minimum effective dose
(MED), incorrectly rejecting the hypothesis that a particular dose is ineffective is of no further
consequence if a dose below has already incorrectly been declared effective. In some sense,
the crucial mistake − a wrong dose being determined as the MED − happens as soon as you
make one wrong rejection. Additional wrong rejections have no further impact on this wrong
decision. This observation was also utilized in [4] to control the FWER when estimating the
MED. For our purposes, it is therefore essential to firstly introduce the notion of a claim, a
single hypothesis or set of hypotheses, whose rejection will result in a consequential decision.
As the name suggests, we are thinking here of rejections that are necessary to add a label claim
to a product, although the applications of this notion goes beyond this specific application (see
Section 4).

Let li be the number of hypotheses that need to be rejected to make claim i and define
the event “making claim i” as {Ci} = {reject li or more H ∈ Ki} for some set of relevant null
hypotheses, Ki. Most commonly rejection of all relevant hypotheses would be required to make
a claim and hence we are focusing on these cases in the remainder of the manuscript. Note also
that in the situation of each claim being based on a single hypothesis and assuming that the
null hypothesis is true implies {Ci} = {Ii = 1}.

For the previous example we define K1 = {HH} and K2 = {HQ} so that {C1} = {reject HH}
and {C2} = {reject HQ}. A different, possibly more realistic, example could investigate the
same two endpoints, but only be interested in the quality of life endpoint if an effect on HbA1c
has been established. In that case we would have K1 = {HH} and K2 = {HH , HQ} so that
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{C1} = {reject HH} and {C2} = {reject HH and HQ}.

With this definitions in mind and supposing that M claims are possible, we can now define
the expected number of false claims (EFC) as

EFC =
M∑
i=1

max
θ0m∈Θ0m

P ({Cm}|θ0m)

where Θ0m denotes all possible parameter configurations relating to the hypotheses in Km

that are consistent with the respective null hypotheses for the mth claim.

Going back to the first example where both individual hypothesis themselves result in a
claim, we can easily find the EFC as 0.1. In the second example where claim 2 can only be
made if both hypothesis are rejected, the EFC under the assumption of independence is smaller
at 0.05 + 0.0025 = 0.0525 due to the fact that the second claim is much harder to achieve.

2.1 Related error rates

Now that we have introduced our proposal it is worth pointing out some relationships between
other proposals in the literature. The first point to make in this respect is that no method exists
that explicitly considers claims. The per family error rate (PFER) discussed in [5] defined there

as
number of erroneous rejections

number of families
or more formally described as E(V ) is a special case of our

proposal. The fundamental difference between the PFER and the EFC is that for the former
any wrongly rejected hypothesis is counted while the EFC only consider cases where at least
li hypotheses in Ki are rejected. To clarify this difference further, consider the second example
given where K2 = {HH , HQ}. In this setting incorrect rejection of HH and HQ is necessary for
it to contribute to the EFC while either one of them would be counted in the PFER.

If we focus on the situation where only a single hypothesis is required for making a claim
(i.e. {Ci} = {Ii = 1} and consequently EFC = E(V )), then we have already shown in section
1 that for two hypothesis the EFC is related to the FWER in the following manner EFC =
E(V ) = FWER + P (incorrectly reject H1 and H2) with similar results easily obtainable for
more hypotheses. Another related error rate in this case is the false discovery rate (FDR) [6]
defined as E(V

R
). From this definition it is apparent that the FDR is bound between 0 and 1

which could be viewed as an advantage while computationally it is slightly more complex as
the case of R = 0 needs to be considered.

2.2 Controlling the EFC

In [7] it is noted that “. . . [in a clinical study] the claim-wise error rate is probably the most
important attribute to control. . . ” and one way to achieve this is by controlling the EFC at a
certain level, say η. This is, in fact, quite easily achieved by simply splitting the overall level, η,
equally between the individual probabilities, that is applying a Bonferroni adjustment to each
claim probability. More specifically, it is easy to see that ensuring

max
θ0m∈Θ0m

P ({Cm}|θ0m) ≤ η

M
m = 1, . . . ,M

will guarantee the overall level η.
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Although this is a very simple approach, it may not be very practical as rarely all claims
will be equally important. A more realistic way to control the EFC therefore uses a weighted
Bonferroni adjustment [8] that allows more weight to be assigned to more important claims.
More specifically, ensuring that

max
θ0m∈Θ0m

P ({Cm}|θ0m) ≤ wmη m = 1, . . . ,M

with wm ≥ 0 such that
∑M

m=1wm = 1 will clearly also control the EFC.

2.3 Examples

The general concept of the EFC as well as methods to control it are fairly straightforward.
In many practical situations, the nature of the individual claims do, however, require partic-
ular care when controlling the EFC. In this section we will provide 3 illustrative examples to
show how EFC control can be achieved. For all illustrations we assume normally distributed
endpoints and use the mvtnorm package [3] for the computations. We will use η = 0.05 and
one-sided hypotheses for superiority. Results for two-sided hypotheses follow the same patterns
except that they are symmetric around a correlation of zero.

2.3.1 Co-primary endpoints

The first case we want to discuss, though only for completeness, is the situation where mul-
tiple primary variables are required to describe a clinical benefit. The CPMP guidance for
Alzheimer’s disease [9], for example, stipulates that a treatment must show an effect on a cog-
nitive endpoint and a functional endpoint. Consequently, even though there are two hypotheses
to be tested, only a single claim is investigated. In order to control the EFC it is therefore
sufficient to ensure that the probability of making this claim (i.e. rejecting both hypothesis) is
controlled at η. Current practice in this situation is to require each hypothesis to be rejected
at level η so that the EFC is clearly below the desired level in this case.

2.3.2 Exchangeable claims

In some situations multiple independent claims are possible for one treatment. We term this
case exchangeable claims since we are envisaging the case were claims are not dependent on
each other and hence making either claim would be considered a success. For this illustration
we return to the motivating example which considered showing an effect on HbA1c or quality
of life (or both) a success. Despite considering both claims a success in this setting let us
assume that making a claim on HbA1c is more important. Consequently we can construct a
testing strategy that controls the EFC at level η by testing HH at level w1η and HQ at (1−w1)η.

Figure 2 shows the probability of making only claim 1, only claim 2 and both for w1 = 0.75
as the correlation changes. Notable is that the probability of making both claims is negligible
for negative correlations, but becomes substantial for strong positive correlations. The EFC
which is simply the sum of the probabilities of making exactly one claim plus twice the proba-
bility of making both claims is exactly 0.05 as desired.

Although the situation described where either a reduction in HbA1c levels or quality of life
are of primary interest (i.e. indifference about which of the two is improved) is probably not
very frequently encountered, there are many related settings where exchangeable claims occur.
For example in the context of regulatory approval, conditional approval of the treatment (Claim

5



Figure 2: Probability of making claims when the claims are exchangeable across different
correlations. A weight of w1 = 0.75 is used.
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1) and full approval (Claim 2) would fall into this framework. Licensing a treatment for different
indications or decisions about (disjoint) subgroups can also be framed as exchangeable claims.

2.4 Hierarchical endpoints

The final case we want to discuss concerns the frequently used hierarchical testing strategies.
In the context of malaria clinical trials, for example, cure is the most important (and primary)
endpoint. Most treatments for malaria are, however, effective so that other measures to distin-
guish treatments are frequently of interest. Consider, for example, prevention of new infections
as a secondary endpoint. In such a case one would usually employ a hierarchical testing strategy
that only tests the secondary endpoint if the primary has been rejected. Note that it is possible
to distinguish different infections in malaria [10] so that it is not necessary to actually cure a
patient to establish if a new infection has occured. Putting this situation into the context of
claims and using subscripts C for the cure endpoint and P for the prevention endpoint, we
have {C1} = {reject HC} and {C2} = {reject HC and HP}.

Consider first the expected number of false claims when the following fixed sequence test
procedure [11] is used: The prevention hypothesis is only tested at full level if the primary
hypothesis has been rejected at full level. In Figure 3 it is easy to see the false sense of security
using FWER control can give. In this example, the FWER is controlled at the desired level of
0.05, the EFC, however, is up to twice as large. In the context of our example, this means that
in addition to allowing an error rate of 0.05 for the primary cure hypothesis we also allow an
up to 0.05 chance of concluding a preventative effect when there is none.

To control the EFC at level η we can, however, once more use the weighted Bonferroni test.
Since claiming cure is clearly more important than claiming a preventative effect, we will use
a weight of w1 = 0.8 here. This means that we can test {C1} at level w1η which implies that
we can test HC at the same level as well as it is the only hypothesis relevant for this claim.
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Figure 3: FWER and EFC for 2 hierarchical endpoints using a fixed sequence test for FWER
control.
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To achieve EFC control we then also need to test {C2} at level (1−w1)η which more precisely
means that we need to ensure that under the null P (reject HC and HP ) ≤ (1 − w1)η. It is
clear, that there are different ways to achieve this. One approach that will ensure that this
probability is controlled for any correlation ρ is to recognize, that it is maximized for ρ = 1.
Consequently testing HP at level (1−w1)η will ensure that P (reject HC and HP ) ≤ (1−w1)η
holds. Figure 4 shows the realized EFC and FWER for w1 = 0.8 when using this method.
As previously the EFC and FWER are essentially identical for negative correlations while the
difference is increasing as the correlation increases. The EFC is below the desired nominal
level of 0.05 and only exhausts the full level for perfect positive correlations due to the use
of the worst case configuration and the dependence between claims. Alternative approaches
that ensure P (reject HC and HP ) ≤ (1 − w1)η that incorporate the correlation could be used
instead to ensure exhaustion of the error level.

3 Power

Having established our proposal, we now consider powering studies that are designed to control
the expected number of false claims and show how setting power constraints can be used to
determine the weight of the weighted Bonferroni test. As before we will differentiate between the
three different types of endpoints/claims as power has different implications for these different
settings. Throughout, however, we will use 1 − βi to describe the power we wish to have to
make claim i and denote the vector of parameters in Km with a particular effect of interest as
θ1m.

3.1 Co-primary endpoints

Co-primary endpoints, as discussed above, occur in the situation where multiple primary vari-
ables are required to describe a clinical benefit. Consequently only a single claim − which is
established based on several endpoints − is of interest. A natural way to power such a study
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Figure 4: EFC with w1 = 0.8 and w2 = 0.2 using a Bonferroni adjustment for EFC control.
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is to ensure that the probability of rejecting all hypotheses necessary for making the claim of
interest is sufficiently large for worthwhile effects. In particular one would power such a study
to ensure that P (reject li or more H ∈ K1|θ11) = P ({C1}|θ11) ≥ 1− β1.

3.2 Exchangeable claims

Looking at the situation where each claim separately can be viewed as a success, the initial
thought is to ensure adequate power for making at least one claim. Previously, however, we
have argued, that even for exchangeable claims there does exist a difference in how important
it is to make a claim. In the context of provisional versus full approval, for example, it is clearly
superior to obtain full approval. To account for this situation we have previously allowed the
claims to carry different weights − how these weights are arrived at, however, was left open.
Our proposal now is to power the study to implicitly determine the weights given to each claim.
In particular, for a situation of M exchangeable claims, we propose to determine the sample
size of the study, n, and the weights w1, . . . , wM−1 simultaneously through solving the system

P ({C1}|θ11) ≥ 1− β1
P ({C2}|θ12) ≥ 1− β2

...
...

P ({CM}|θ1M) ≥ 1− βM . (1)

To give an example, consider a situation with two exchangeable claims each comprised of a
single hypothesis (e.g. the previous example of HbA1c and quality of life). Suppose further that
the standardized effect of interest for the first and second hypothesis is 0.5 and 0.4, respectively.
Table 3 shows the required sample size for the two different ways to power the study using an
EFC of 0.05 and assuming a correlation of 0.5 between endpoints.

Unsurprisingly, the sample size required when looking to make at least one claim is (sub-
stantially) lower, then when requiring a certain power for each claim. More weight is given to
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Table 3: Sample size required per arm (n) and optimal weight (w1) for two exchangeable claims
and standardized effects of (0.5, 0.4) for EFC of 0.05 and a correlation of 0.5 between endpoints.
The first line powers the study to have power of 90% to make at least one claim. The lower
part of the table uses one power constraint for each claim for a variety of power constraints.

1− β1 1− β2 w1 n

At least one claim 0.9 NA 0.82 68

Separate power

0.9 0.9 0.14 113
0.9 0.8 0.35 92
0.9 0.7 0.55 82
0.8 0.9 0.05 109
0.8 0.8 0.17 84
0.8 0.7 0.33 71

the first claim in this situation due to the larger desired effect on the first claim. When using
separate powers, the weight associated with each claim does adjust with the required power
and also the anticipated effect (not shown) as expected. It is notable that the weight on the
first claim when requiring equal power for each claim is below 0.5 (in contrast to being above
0.5 for making either claim) to counteract the smaller effect in the second endpoint by giving
the second claim more weight.

3.3 Hierarchical endpoints

A natural way to power a study using a hierarchical structure is to associate a certain power
with each claim in the structure as before. This setting yields the same system of equations
as given in (1). The fundamental difference between them is how the different claims, {Ci}
are defined and hence which hypotheses need to be rejected to make each claim. Note that a
special case of this proposal is to use βi = 1, i = 2, . . . ,M in which case the study is powered
only for the first claim − a solution often employed when using FWER control.

To illustrate powering for hierarchical claims, we will use a similar setting to the one de-
scribed in the previous section. Consider a situation with two hierarchically ordered claims,
each comprised of a single hypothesis (e.g. the primary claim is on a reduction HbA1c level
while a secondary claim is on quality of life). Suppose further that the standardized effect of
interest for the first endpoint is 0.5 and 0.4 for the second. Table 4 shows the required sample
size using an EFC of 0.05 and assuming a correlation of 0.5 between endpoints for a variety of
power constraints.

The sample size required when only powering for the first claim is identical to a standard
2-sample z-test. In this situation it is, however, notable that not all weight is given to the first
claim. This is due to requiring the sample size to be an integer. In fact, for n = 138 any weight
between 0.98 and 1 will satisfy the power requirement. Similarly multiple choices for w1 are
often also available for other situations considered. We have simply used the smallest value of
w1 satisfying the power constraint in all of our evaluations. Notice also that for the hierarchical
structure, it is not always possible to satisfy the power constraint exactly. Depending on the
effect size and required powers, one of the powers may be larger than the desired value due to the
correlation between the claims. To see this, consider a case where two claims in a hierarchical
procedure are required to have 90% power. In order to achieve 90% power for the second claim
the power for the first claim must be larger than 90% as there is a chance of making claim 1
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Table 4: Sample size required per arm (n) and optimal weight (w1) for two hierarchical claims
with standardized effects of (0.5, 0.4) for EFC of 0.05 and a correlation of 0.5 between endpoints.
The realized powers are given in the columns 1− β̂i.

1− β1 1− β2 w1 n 1− β̂1 1− β̂2
0.9 0 0.98 69 0.900 0.226
0.9 0.9 0.21 130 0.957 0.900
0.9 0.8 0.24 101 0.902 0.800
0.9 0.7 0.48 85 0.900 0.706
0.8 0 0.98 50 0.801 0.133
0.8 0.9 0.21 130 0.963 0.900
0.8 0.8 0.24 101 0.902 0.800
0.8 0.7 0.24 83 0.832 0.700

but not claim 2 as long as the two are not perfectly correlated. The realized powers for each
claim are provided in the additional columns labeled 1 − β̂i in the table. Compared to the
results for exchangeable endpoints, the sample size is increased for the hierarchical setting as
soon as we do require some power for the second claim as expected. For the considered setting,
the realized power for the first claim tends to be larger than the desired minimum which is, in
part, due to the second claim requiring making claim 1.

4 Discussion

In this paper we have introduced the expected number of false claims (EFC), which is designed
to ensure that all relevant mistakes are properly accounted for. We have also shown that a
weighted Bonferroni adjustment can be used to control the EFC at the desired level and il-
lustrated how powering studies based on the EFC can be used to determine the weights of
the weighted Bonferroni adjustment. Although we have focused throughout this work on cases
were the EFC is different from the familywise error rate, both concepts are equivalent when
only one claim is sought or when claims are mutually exclusive. At the same time the aim
of this work is not to claim that the EFC is superior to the FWER, but rather show that in
some situations, such as hierarchically structured questions, it might be more appropriate. A
generalized FWER (gFWER) has also been suggested [12, 13]. This gFWER is designed to
account for the willingness to tolerate more than one false rejections due to the high volume of
hypotheses to be tested, for example, in genomic trials as long as the number of is controlled,
i.e. pre-defined. The EFC approaches the issue of more errors from the other side. Rather
than allowing more mistakes, the EFC focuses on properly accounting for all errors made. As
an immediate consequence the conventional levels of significants used (i.e. 0.05) may be to
stringent for situations with many claims.

Throughout most of the paper we have focused on the case where two endpoints are of
interest. The concept of the EFC is, however, applicable in many more settings. For example,
in the context of regulatory approval, obtaining conditional approval versus full approval of a
treatment naturally falls into the framework discussed. Similarly, we believe that the concept
of EFC is quite natural for the development of a treatment for several indications or multiple
populations.
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