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Abstract

Recently, Kiayias, Zacharias and Zhang proposed a new E2E verifiable e-voting
system called ‘DEMOS’ that for the first time provides E2E verifiability without
relying on external sources of randomness or the random oracle model; the main
advantage of such system is in the fact that election auditors need only the elec-
tion transcript and the feedback from the voters to pronounce the election process
unequivocally valid. Unfortunately, DEMOS comes with a huge performance and
storage penalty for the election authority (EA) compared to other e-voting systems
such as Helios. The main reason is that due to the way the EA forms the proof of the
tally result, it is required to precompute a number of ciphertexts for each voter and
each possible choice of the voter. This approach clearly does not scale to elections
that have a complex ballot and voters have an exponential number of ways to vote
in the number of candidates. The performance penalty on the EA appears to be
intrinsic to the approach: voters cannot compute an enciphered ballot themselves
because there seems to be no way for them to prove that it is a valid ciphertext.

In contrast to the above, in this work, we construct a new e-voting system that
retains the strong E2E characteristics of DEMOS (but against computational ad-
versaries) while completely eliminating the performance and storage penalty of the
EA. We achieve this via a new cryptographic construction that has the EA produce
and prove, using voters’ coins, the security of a common reference string (CRS) that
voters subsequently can use to affix non-interactive zero-knowledge (NIZK) proofs
to their ciphertexts. The EA itself uses the CRS to prove via a NIZK the tally
correctness at the end. Our construction has similar performance to Helios and
is practical. The privacy of our construction relies on the SXDH assumption over
bilinear groups via complexity leveraging.

1 Introduction

End-to-end (E2E) verifiability has been widely identified as a critical property for the
adoption of e-voting systems in real world election procedures (see e.g., [RG15] for

∗Research was partly supported by ERC project CODAMODA.
†Research was supported by project FINER, Greek Secretariat of Research and Technology funded

under action “ARISTEIA 1.”
‡Research was performed while Zhang was a post-doc at National and Kapodistrian University of

Athens, Greece.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/42416286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


a recent high level account). In an E2E verifiable election system, it is possible for
an auditor to verify the correctness of the election tally utilizing feedback from the
participants and examining the public election transcript. Naturally, E2E verifiability
should be achieved without violating the privacy of the voters and any other desirable
property of the election system.

Helios, [Adi08], proposed by Adida, is a widely used e-voting system that can
achieve E2E verifiability and privacy (assuming it is suitably instantiated, cf. [BCP+11,
BPW12]). To achieve verifiability, an important design element is the incorporation of
an “audit or cast” procedure in the voting booth application that prepares the encrypted
voter’s choice [Ben06]. This process enables the voter to challenge her device that assists
her in the preparation of her ballot. Once the voter is convinced that the device is not
cheating her she can submit the enciphered vote together with a cryptographic proof
(called a Non-interactive Zero-Knowledge proof or NIZK, cf. [BFM88, GS08]) that the
ciphertext properly encodes the voter’s choice. The inclusion of the NIZK is critical for
verifiability: without it, it is possible for a malicious client to violate the encoding of the
candidate choice and “stuff” the virtual ballot box with additional votes for a certain
candidate of her choice (or in general invalidate the election tally).

In Helios, an auditor can verify the election tally by utilizing some feedback from
the voters (specifically hashes of submitted ciphertexts that are called “smart ballot
trackers”) and the election transcript. The auditor will verify that ciphertexts included
in the transcript match the hashes given by the voters and furthermore that all the
NIZK’s in the transcript are valid. If all appear to be in order the election tally can be
accepted to be correct.

The above argumentation has a caveat: the verification of the NIZK’s relies on the
random oracle model (RO) [BR93] which basically posits that a given hash function is
a random function from the perspective of the adversary. It follows that the auditor
should believe the election tally as long as she believes the Election Authority (EA)
has no essential understanding of the hash function1 that gives her an advantage in
breaking soundness of the underlying NIZK’s. While it will be surprising to obtain a
soundness attack against SHA256 based NIZK such an attack cannot be ruled out as
forging SHA256-NIZK’s is not a problem that has been sufficiently studied. Further, in
the case of e-voting, even a single bad NIZK on a single voter ciphertext would be enough
to completely corrupt the election tally and if e-voting is deployed in the large scale the
EA could be subverted by a truly mighty adversary (e.g., it is believed by many that
the US Government/NSA has an understanding of hash function vulnerabilities that
surpasses what is publicly known).

To resolve the above concern, a system called DEMOS was put forth in [KZZ15]
where it is possible to prove E2E verifiability in the “standard model”, which in the
terminology of that paper, means without access to an external source of randomness
or the random oracle model. The main idea is to remove the task of calculating the
encrypted vote from the voter client and have the EA precompute for each voter a
ciphertext for each potential voter choice. The voter then casts a vote by pointing to a
specific ciphertext and the EA terminates the procedure by proving all the encryptions
were done correctly (actually they use commitments instead of encryptions). The system
meets its objective as the EA is the sole entity that performs a Σ proof (cf. [CDS94])
with the verifier’s challenge formed collectively by the voters who submit coins (that
may be biased) to the election transcript.

1The current Helios implementation uses the SHA256 hash function for implementing NIZKs.
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At first it may seem that this precomputation step is necessary to obtain this level of
strong E2E verifiability. The only way to avoid precomputation from the EA, is to have
the voter clients perform the encryption of the voters’ choices and in such case a proof
that the encryption is done correctly is needed. Such proof has to be non-interactive
since the auditor will be active only after the end of the election (and in fact there
may be many independent auditors that wish to check that the election was executed
properly). Unfortunately NIZK’s require either a “common reference string” (CRS) or
the RO. In the former case, the only entity to produce the CRS is the EA and because
the EA is malicious from the perspective of E2E verifiability, if she chooses the CRS, she
can choose it so that the NIZK is “simulatable” and hence she may be able to produce
valid looking NIZKs for an incorrect statement.

1.1 Our Results

We construct a new e-voting scheme that retains the strong E2E verifiability charac-
teristics of [KZZ15] (but against computational adversaries) while completely obviating
the need for a precomputation step by the EA. In the asymptotic sense our system has
the same characteristics as Helios (while entirely removing the reliance to the RO model
for security).

We achieve this via a new technique for proving the validity of ciphertexts that are
submitted by the voters during ballot casting. Our proof technique may have applica-
tions beyond the e-voting domain - more comments on this below.

As mentioned above, the way to remove the precomputation is to have the voter
clients produce the encrypted choices of the voter; the main technical challenge is how
to prove the validity of those ciphertexts. For simplicity let us assume for now that the
ciphertext ψ that is to be produced by each voter encrypts a plaintext in {0, 1}. Our
construction strategy is as follows.

We will use a type of NIZK where there are two possible ways to generate the
CRS, one that makes every NIZK perfectly sound and another that makes every NIZK
simulatable using the trapdoor information associated to the CRS. The EA will use this
dual mode CRS and will publish a CRS that is of the first type, i.e., one that makes
all NIZK’s perfectly sound. This is reasonable in the sense that if the EA is honest,
NIZK statements produced by the voters over this CRS will be guaranteed to be valid.
However, a danger comes from the fact that nobody can distinguish such CRS from the
other type of CRS that is simulatable and will enable any collaborator of the EA to fake
a NIZK and stuff the virtual ballot box with fake votes.

To mediate this problem we will have the EA prove that the CRS she publishes is
of the first type following the same general Σ proof structure suggested in [KZZ15] (in
contrast to this latter paper though, the EA will be only proving her CRS is of the first
type — not that the whole election tally is valid). Subsequently any other entity (such
as a voter or a trustee) can utilize the CRS of the EA (we call it the master CRS) to
produce a “second layer” CRS that she can use for proving a certain statement using
NIZK.

In more details our technique is as follows. The master CRS published by the EA
can be seen as a public-key of an additively homomorphic encryption scheme. When
the prover gets to know the statement to be shown, for instance when the voter wishes
to show that a ciphertext ψ is an encryption of {0, 1} she performs the following. She
creates two strings crs0, crs1 that are homomorphic ciphertexts based on the master
CRS of the EA. The crs0, crs1 strings also can be used as dual CRS’s and have the
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property that if they are multiplied they provide an encryption of 1. The dual property
of crs0, crs1 is by design as follows: if crs0 is an encryption of 0 then one can produce
simulatable fake NIZK’s with respect to crs0 while if crs0 is an encryption of 1 then one
can produce only perfectly sound proofs with respect to crs0. The same properties hold
true for crs1.

The product of the two crs0, crs1 is denoted by crs0/1 and we call it the second layer
CRS. The prover will now show that crs0/1 is an encryption of 1 via a NIZK w.r.t. the
master CRS. Then, the prover will show ψ to be an encryption of 0 with respect to crs0

and an encryption of 1 with respect to crs1 via two independent NIZK’s on the individual
CRS’s. Observe that in order for the prover to accomplish this she will have to cheat in
one of these two proofs; this is possible due to the fact that she has chosen the strings
crs0, crs1 herself and she is only subject to the constraint that their product, crs0/1, is
an encryption of 1 (as she has to give a NIZK proof with respect to the master CRS
about this fact). This flexibility enables her to choose crs0 or crs1 to be an encryption
of 0 and hence simulate one of the two proofs that show ψ to be an encryption of 0 or
an encryption 1 (she knows the plaintext inside ψ so she has to choose crs0 and crs1

accordingly).
Using the above strategy, all voters can provide ciphertexts and prove them to be

valid encodings of a candidate choice. It is easy to see that as long as the master CRS
is of the perfectly sound type, the proofs that crs0/1 is an encryption of 1 will be perfect
and hence the voters cannot stuff invalid ciphertexts in the virtual ballot box. However,
as mentioned above, the EA might attempt to use a master CRS of the second type
(simulatable) and then collaborate with a voter to violate integrity. To prevent that we
require the EA to start a Σ proof showing that the master CRS is of the perfectly sound
type. As in [KZZ15] we collect coins from the voters to form a weak random source and
finally at the end have the EA publish together with the result the final move of the Σ
protocol using the coins of the voters as the challenge. The auditor now is tasked with
checking all the NIZK’s w.r.t. the CRS’s generated by the voters as well as the NIZK’s
provided w.r.t. the master CRS. Finally, she is also tasked with checking the Σ proof
provided by the EA showing that the master CRS is of the perfectly sound type.

Given the above, one may wonder how we will be able to prove privacy. Naturally,
if we are to prove privacy, we should be able to construct a type of simulation argument
that enables us to plug in some instance of a hard problem into the honest voters’
ciphertexts. This requires faking at least one of the NIZK’s which by nature of perfect
soundness we will be unable to perform. To circumvent this we utilize complexity-
leveraging: in the privacy proof, our reduction will take super-polynomial time to find
an execution of the adversary where the reduction can cheat the Σ protocol proof and
fake it so that the master CRS is of the second type (simulatable NIZK’s). In this
execution our reduction will be able to fake all proofs and thus plug in any given hard
problem instance. While this cannot happen in the real world (as the EA needs to run in
real time so she is not expected to find such an execution) our reduction will still yield an
algorithm that breaks a hard problem (it will be the symmetric external Diffie-Hellman
(SXDH) problem over bilinear groups). Assuming this problem is subexponentially hard
we get a contradiction and hence privacy holds.

Note that in our system we can have trustees participate (exactly as in the case of
Helios) and produce the master CRS on behalf of the EA; hence we can achieve the same
distribution of trust with respect to privacy as in the Helios system (this was left open in
[KZZ15]). An interesting side note is that our strategy above provides an efficient way
to perform a Lapidot-Shamir [LS90] type of Σ protocol: the prover performs a Σ-proof
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for the CRS that, by nature, does not have to depend on the statement to be shown
which can become known to the prover only in the third move of the protocol (where in
our case the prover will show using a NIZK). This proof technique can be generalized
and may have applications beyond e-voting.

1.2 Related Work

Our technique for structuring our proof argument is inspired by [GOS06] where corre-
lated random strings are chosen by the prover in such a way that a verifier can check that
at least one of them will yield a perfectly sound proof but she cannot distinguish which
one. The prover then proceeds to issue NIZK’s for each random string thus ensuring
that one of them will be valid. Our NIZK proof is a modified and simplified version of
the NIZK given in [GS08].

In terms of modeling privacy and verifiability we follow previous works in the area
[KTV10, KTV11, BCP+11, BPW12, KZZ15] mostly using the latter reference as a basis
for our formulation. Importantly, due to the virtues of our construction, we can achieve a
stronger level of privacy compared to [KZZ15] that is in the simulation based sense, akin
to [BPW12], as opposed to the indistinguishability-type of privacy shown in [KZZ15].

We also argue that our definition captures a level of receipt-freeness in the sense of
[KZZ15]. On the other hand, we do not deal with coercion resistance; however techniques
such as those of [JCJ02] are in principle compatible with our approach and our system
may be augmented to incorporate them. We leave this for future work.

2 Preliminaries

2.1 Notations

Throughout this paper, we use λ as the security parameter. We use negl(λ) to denote
that some function is negligible in λ. Calligraphic letters are used for sets and algorithms.
A shorthand x← X denotes that x is drawn uniformly from a set X . For algorithms and
distributions, the same notation x← A means that the element x is sampled according
to the (output) distribution. When A is a probabilistic algorithm, we use A(x; r) to
denote running A on input x with explicate random coin r. Let A = (A1, A2) ∈ G2

and B = (B1, B2) ∈ G2 be two ElGamal ciphertexts. By A · B, we denote the direct
product (A1 ·B1, A2 ·B2); by Ax we mean (Ax1 , A

x
2). We use Dlogg(h) to label the discrete

logarithm of h with respect to base g.

2.2 Bilinear Groups and SXDH Assumptions

Let Genbp(·) be a probabilistic polynomial time (PPT) bilinear group generator that
takes as input, 1λ and outputs the group parameters, σbp := (p,G1,G2,GT , e, g1, g2),
where (i) G1,G2,GT are cyclic multiplicative groups with prime order p; (ii) g1 ∈ G1

and g2 ∈ G2 are generators of G1 and G2 respectively; (iii) e : G1 ×G2 7→ GT is a non-
degenerate bilinear pairing such that e(ga1 , g

b
2) = e(g1, g2)ab. We assume the decisional

Diffie-Hellman problem is hard in both groups, a.k.a., the symmetric external Diffie-
Hellman (SXDH) assumption, stated in Defintion 1, holds for G1 and G2.
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Definition 1 (SXDH assumption). We say SXDH assumption holds for Genbp(1λ) if
for any PPT adversary A we have that for i ∈ {1, 2}:

Advsxdh(A) :=

∣∣∣∣∣∣Pr

 σbp ← Genbp(1λ);
a, b← Z∗p :

A(σbp, g
a
i , g

b
i , g

ab
i ) = 1

− Pr

 σbp ← Genbp(1λ);
a, b, c← Z∗p :

A(σbp, g
a
i , g

b
i , g

c
i ) = 1

∣∣∣∣∣∣ = negl(λ),

where Advsxdh(A) is the distinguishing advantage of A.

2.3 Sigma Protocols

Let L be a language in NP and let RL be an efficiently computable binary relation
for L. For all (x,w) ∈ RL, we call x the statement and w the witness for x in L. In
a Sigma protocol, the prover P wants to convince the verifier V a statement x ∈ L
in a zero knowledge fashion. More specifically, Sigma protocols are 3-move public coin
special honest-verifier zero knowledge proofs of knowledge with special soundness. In the
first step, the prover publishes a commitment message, denoted as Σ(1). In the second
step, the verifier gives a challenge message, denoted as ch. In the third step, the prover
outputs a response message, denoted as Σ(2). At the end, the transcript (Σ(1), ch,Σ(2))
is publicly verifiable with respect to (x,L).

In this work, we employ the Schnorr’s identity protocol [Sch89] to show the knowl-
edge of discrete logarithm. For instance, Σdlog {(s) : h = gs} stands for a Sigma protocol
for the knowledge of secret s satisfying the equation h = gs. We also use the DDH
tuple proof [Cha90] to show the correctness of election parameters. In particular, by
Σddh {(x) : C = Ax ∧D = Bx}, we mean a Sigma protocol showing the DDH tuple re-
lation of (A,B,C,D).

2.4 Non-interactive Zero Knowledge Proofs.

A non-interactive proof system Γ = (Gencrs, Simcrs, Prov, Vrfy, Sim) for group languages
consists of the following PPT algorithms:

• Gencrs(σbp) is a CRS generation algorithm that takes as input the bilinear group
parameter σbp ← Genbp(1λ) and outputs a common reference string crs.

• Simcrs(σbp) is a CRS simulator that takes as input the bilinear group parameter
σbp ← Genbp(1λ) and outputs a simulated common reference string crs∗ together
with a simulation trapdoor td.

• Prov(crs;x;w) is the prover algorithm that takes as input the common reference
string crs, the statement x and the witness w, and outputs a proof π.

• Vrfy(crs;x;π) is the verifier algorithm that takes as input the common reference
string crs, the statement x and the proof π, and outputs 1 if the proof is acceptable
and 0 otherwise.

• Sim(crs∗;x; td) is the proof simulator that takes as input the simulated crs∗, the
statement x and the simulation trapdoor td, and outputs a simulated proof π∗.

Definition 2 (NIZK). We say that Γ = (Gencrs, Simcrs, Prov, Vrfy, Sim) is a non-
interactive zero knowledge (NIZK) proof system for group language L if it has com-
pleteness, soundness, and zero knowledge properties described below.
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1. Perfect completeness:

Pr

[
σbp ← Genbp(1λ); crs← Gencrs(σbp); (x,w)← A(crs);
π ← Prov(crs;x;w) : Vrfy(crs;x;π) = 1 ∨ (x,w) 6∈ RL

]
= 1

2. Perfect soundness: for all adversaries A,

Pr

[
σbp ← Genbp(1λ); crs← Gencrs(σbp);
(x, π)← A(crs) : Vrfy(crs;x;π) = 1 ∧ x 6∈ L

]
= 0

3. Computational zero-knowledge: there exists a pair of probabilistic polynomial time
simulators (Simcrs,Sim) such that for all non-uniform polynomial time adversaries
A,∣∣∣∣∣∣Pr

 σbp ← Genbp(1λ);
crs← Gencrs(σbp) :

AProv(crs;·;·)(crs) = 1

− Pr

 σbp ← Genbp(1λ);
(crs∗, td)← Simcrs(σbp) :

ASim∗(crs∗,td,·,·)(crs∗) = 1

∣∣∣∣∣∣ = negl(λ),

where Sim∗(crs∗, td, x, w) = Sim(crs∗, x, td) for (x,w) ∈ RL and both oracles output
⊥ if (x,w) 6∈ RL.

3 E-voting Security Framework

3.1 Syntax

An e-voting system is an interactive protocol Π among an election authority EA, a
bulletin board BB, a set of voters V = {V1, . . . , Vn} (who may utilize a voter supporting
device (VSD) to vote), and a set of trustees T = {T1, . . . , Tt}. Let O = {opt1, ..., optm}
be the set of election options. We denote by U ⊆ 2O the collection of subsets of options
that the voters are allowed to choose to vote. We denote the option selection of voter
V` as U` ∈ U , which is a subset of the options.

Let ~U be the set of vectors of option selections of arbitrary length. Let F : ~U 7→
(Z+)m be the election evaluation function such that F (U1, . . . ,Un) is equal to an m-
vector whose i-th location is equal to the number of times opti was chosen in the option
selections U1, . . . ,Un.

Similar as [KZZ15], we consider an e-voting system Π as a quintuple of algorithms
and protocols that are denoted by (Setup,Cast,Tally,Result,Verify) as follows:

• Setup is a protocol executed among the trustees T , the election authority EA, and
the bulletin board BB. During the protocol, the election public parameters includ-
ing V,O,U are generated and published on BB. The voters’ credentials (s1, . . . , sn)
are generated and distributed to the voters. After the protocol execution, each
trustee Ti obtains a private state sti.

• Cast is a protocol executed between the voter V` (who operates a VSD) and BB.
In the protocol, V` posts her ballot blt` to BB and obtains a receipt rec`.

• Tally is a protocol executed among T1, . . . , Tt, EA and BB. In the protocol, each
Ti sends her partial tally data tai to the EA, and the EA will post the received
data to BB after all Ti complete their Tally protocols.
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The ideal election process for privacy Fm,npriv .

• Upon receiving (sid, init,O,V,U) from EA, it parses O as options {opt1, ..., optm}, V as
voters {V1, ..., Vn}, and U voting option selections U ⊆ 2O. It sets the election status to
‘vote’ and initiliazes a list records as empty. Finally, it sends (sid, vote,O,V,U) to the
adversary S.

• Upon receiving (sid, cast,U`) from V`, if the election status is ‘vote’ and U` ∈ U , then it
sends (sid, cast, V`) to S.

• Upon receiving (sid, cast, V`) from S, if the election status is ‘vote’ and (sid, cast,U`) was
sent before by V`, it adds (V`,U`) to records.

• Upon receiving (sid, tally) from S, if the election status is ‘vote’, it sets the election status
to ‘tally’ and computes the election result τ ← F (〈U`〉(V`,U`)∈records). Finally, it sends τ
to S.

Figure 1: The ideal process Fm,npriv interacting with the ideal world adversary S.

• Result is an algorithm that takes as input the election transcript info on BB, and
outputs the election result or returns ⊥ in case such result is undefined.

• Verify is an algorithm that takes as input the election transcript info on BB and
an auxiliary information aux, and outputs 0 or 1. aux can be either a voter’s
receipt, rec` or a trustee’s private state sti.

3.2 Simulation-based Privacy

We model privacy as indistinguishability between a real-world experiment and an ideal
world experiment.

In the ideal experiment, we consider an ideal process Fm,npriv defined in Figure 1 that
captures the essential aspects of the election functionality from a privacy perspective (we
stress that this is not a full ideal functionality as it is not intended to capture correctness
or verifiability which we model separately). All the voters V1, . . . , Vn, are modeled as
dummy parties that simply forward the inputs they receive from the environment Z
to the ideal process Fm,n,tpriv . Note that the environment Z can schedule all the election
entities arbitrarily. The ideal world adversary S that is active in the experiment interacts
with Fm,npriv and provides output to Z which makes a final decision outputing a bit.
Note that the interaction between Z and S is restricted in this way (in the spirit of
[Can98]) since in our setting it is impossible to achieve stronger notions of simulation-
based security (such as universal composition, [Can01]). We denote the output of the
environment in the ideal experiment by IDEALFm,npriv ,S,Z(λ).

In the real world experiment, the entities T = T1, . . . , Tt, V = V1, . . . , Vn, EA, BB
participate in the e-voting system Π = (Setup,Cast,Tally,Result,Verify) in the
presence of an adversary A who has corrupted up to k voters and t − 1 trustees. The
voters and the trustees run the protocol on command by the environment Z. We denote
the output of the environment in the real world experiment by REALΠ,A,Z(λ). The
objective of the adversary is to obtain sufficient information about the honest voters’
option selection so that, in collaboration with the environment, is able to distinguish
the real from the ideal world execution.

8



We say that the e-voting system is private if for all real-world adversaries A there is
a simulator S so that it is impossible for any environment Z to distinguish between the
real and ideal world experiment. Formally, we define it as follows.

Definition 3. Let n,m, t, k ∈ N with k ≤ n and let Π = (Setup,Cast,Tally,Result,
Verify) be an e-voting system with t trustees and n voters. We say that Π is k-private if
for every PPT adversary A controlling up to k voters and up to t−1 trustees, there is an
adversary S in the ideal world experiment, such that for every environment Z the random
variables IDEALFm,npriv ,S,Z(λ) and REALΠ,A,Z(λ) are computationally indistinguishable.

3.3 E2E Verifiability

We would like to extend the E2E verifiability definition in [KZZ15] by adding VSD and
trustees. Similarly, we use the metric d1(·, ·) derived by the 1-norm, ‖ · ‖1 scaled to half,
i.e.,

d1 : Zm+ × Zm+ −→ R
(w,w′) 7−→ d1(w,w′) = 1

2 · ‖w − w
′‖1 = 1

2 ·
∑n

i=1 |wi − w′i|

to measure the adversarial success rate with respect to the amount of tally deviation d
and the number of voters that perform audit θ. The adversary starts by selecting the
voter, options and trustee identities for given parameters n,m, k. It also specifies the
set U of the allowed ways to vote. The adversary now fully controls all the trustees and
the EA. The adversary manages the Cast protocol executions, playing the role of the
VSD. For each voter, the adversary may choose to corrupt it or to allow the challenger
to play on its behalf. In the second case, the adversary provides the option selection
that the honest voter will use in the Cast protocol. The adversary finally posts the
election transcript to the BB.

As in [KZZ15], we consider a vote extractor algorithm E (not necessarily running
in polynomial-time) that explains the election transcript from the dishonest voters’
aspect. The adversary will win the game provided that there is a subset of θ honest
voters that audit the result successfully but the deviation of the tally is bigger than d;
the adversary will also win in case the vote extractor fails to produce the option selection
of the dishonest voters but still, θ honest voters verify correctly. The attack game is
specified in detail in Figure 2.

Definition 4 (E2E-Verifiability). Let 0 < ε < 1 and m,n, t, d, θ ∈ N with θ ≤ n and
Π an e-voting protocol with n voters and t trustees. Π achieves E2E verifiability with
error ε, w.r.t. the election function F , a number of θ honest successfull voters and tally
deviation d if there exists a (not necessarily polynomial-time) vote extractor E such that
for any PPT adversary A it holds that

Pr[GA,E,d,θe2e-ver (1λ,m, n, t) = 1] < ε.

In plain words, Definition 4 implies that in an E2E verifiable e-voting system, if
the number of voters that verify the result is θ then any adversary that attempts to
manipulate the result by a shift of d according to the metric d1(·, ·) will get caught with
probability more than 1− ε.
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E2E Verifiability Game GA,E,d,θ
e2e-ver (1λ,m, n, t)

1. A chooses O = {opt1, ..., optm}, V = {V1, ..., Vn}, T = {T1, ..., Tt}, and U ⊆ 2O. It sends
them to C along with some public election parameters and voter credentials {s`}`∈[n]

parameterized by security parameter λ. Throughout the game, C plays the role of the
BB.

2. A and C engage in an interaction where A schedules the Cast protocols of all voters.
For each voter V`, A can either completely control the voter or allow C operate on V`’s
behalf, in which case A provides an option selection U` to C. Then, C engages in the
Cast protocol with the adversary A, so that A plays the roles of EA and VSD. Provided
the protocol terminates successfully, C obtains the receipt α` on behalf of V`.

Let Ṽ be the set of honest voters (i.e., those controlled by C) that terminated successfully.

3. Finally, A posts the election transcript info to the BB..

The game returns a bit which is 1 if and only if the following conditions hold true:

1. |Ṽ| ≥ θ (i.e., at least θ honest voters terminated).

2. ∀` ∈ [n] : if V` ∈ Ṽ then Verify(info, rec`) = 1.

and either one of the following two :

3.a. if ⊥ 6= 〈U`〉V`∈V\Ṽ ← E(info, {rec`}V`∈Ṽ ) then

d1

(
Result(info), F (U1, . . . ,Un)

)
≥ d,

3.b. ⊥ ← E(info, {rec`}V`∈Ṽ).

Figure 2: The E2E Verifiability Game between the challenger C and the adversary A
using the vote extractor E .

4 Building Blocks

4.1 A NIZK for DDH Tuple

In this section, we construct a NIZK proof that allows the prover to convince the ver-
ifier that (A,B,C,D) ∈ (G1)4 is a DDH tuple. Namely, the prover shows that he
knows s ∈ Zp such that C = As ∧ D = Bs. The same proof works analogously
for DDH tuples in (G2)4, and such a NIZK proof with respect to crs is denoted as
NIZK {crs; (s) : C = As ∧D = Bs}.

Our proof can be seen as a simplification of the well-known Groth-Sahai (GS) proof
system [GS08]. Similar to [GOS06], we use additively homomorphic public key cryp-
tosystem, lifted ElGamal, for the commitment scheme. Given an lifted ElGamal cipher-
text u ∈ (G2)2 under public key pk, the commitment of m ∈ Zp with randomness r ∈ Zp
under commitment key ck = (pk, u) is defined as

Comck(m; r) := um · Encpk(0; r)

. It is easy to see that:

1. If u is an encryption of a non-zero value x, then the commitment Comck(m; r) is
an encryption of xm and it is perfectly binding.

2. If u is an encryption of 0, then for very m the commitment Comck(m; r) is an
encryption of 0 and it is perfectly hiding.
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The CRS of our NIZK consists of the bilinear group parameter, σbp and the com-
mitment key, ck := (pk, u). The CRS is perfectly sound when the perfectly binding
commitment key is used, while it is perfectly simulatable when the perfectly hiding com-
mitment key is used. Formally, the NIZK proof system Γddh consists of the following
PPT algorithms:

• Genddh
crs (σbp):

– Pick α1, α2 ← Z∗p;
– Set h2 := gα1

2 and u := (u1, u2) := (gα2
2 , g2h

α2
2 );

– Set ck := (h2, u);

– Output crs := (σbp, ck);

• Simddh
crs (σbp):

– Pick α1, α2 ← Z∗p;
– Set h2 := gα1

2 and u = (u1, u2) := (gα2
2 , hα2

2 );

– Set ck := (h2, u);

– Output crs∗ := (σbp, ck) and td := α2;

• Provddh(crs; (A,B,C,D); s):

– Pick r ← Zp;
– Set c := (c1, c2) = Comck(s; r) := (us1g

r
2, u

s
2h
r
2), π1 := Ar, and π2 := Br;

– Output π := (c, π1, π2);

• Vrfyddh(crs; (A,B,C,D);π):

– Output 1 if and only if the following hold:

∗ e(C, u1) · e(π1, g2) = e(A, c1);

∗ e(C, u2) · e(π1, h2) = e(A, c2);

∗ e(D,u1) · e(π2, g2) = e(B, c1);

∗ e(D,u2) · e(π2, h2) = e(B, c2);

• Simddh(crs∗; (A,B,C,D); td):

– Pick r ← Zp;
– Set c∗ = (c1, c2) := (gr2, h

r
2), π∗1 = ArC−α2 , and π∗2 = BrD−α2 ;

– Output π∗ := (c∗, π∗1, π
∗
2);

Clearly, the simulated CRS is computationally indistinguishable from the real CRS
based on the IND-CPA security of the underlying ElGamal cryptosystem. We state the
following theorem without providing the proof since it can be directly derive from the
generic GS proof for the SXDH instantiation in [GS08].

Theorem 1. The protocol Γddh is a NIZK proof system for the language

Lddh =
{

(A,B,C,D) ∈ (G1)4 | ∃s : C = As ∧D = Bs
}
,

i.e. (A,B,C,D) is a DDH tuple. The NIZK proof has perfect completeness, perfect
soundness and computational zero-knowledge under the SXDH assumption.
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4.2 NIZK OR Composition

In our work, OR composition of the NIZK proofs is often needed, e.g., to show a lifted
ElGamal ciphertext in (G1)2 (resp. (G2)2) is an encryption of 0 or 1. To achieve this,
we adopt the correlated key generation technique from [GOS06]2. The intuition is to use
two tiers of NIZK proofs, where the CRS for the first tier NIZK is given as the master
CRS. To prove an OR composition of statements such as x1 ∨ . . . ∨ xn, the prover first
generates n second tier CRS’s, crs1, . . . , crsn and uses the master CRS to show that at
least one of them is a perfectly sound CRS; the prover then uses the second tier CRS
crsi to prove the statement xi for i ∈ [n]. Since the prover is able to generate n − 1
perfectly simulatable CRS’s with trapdoors, he can simulate any n− 1 statements. On
the other hand, at least one of the crsi is perfectly sound, so at least one of the statement
xi is valid. The ZK property directly follows the fact that it is computationally hard to
distinguish which CRS is perfectly sound.

More specifically, the prover gives n lifted ElGamal ciphertexts as the n second tier
CRS, and shows the product of them is an encryption of 1 using the DDH tuple NIZK
described in Section 4.1. Therefore, we can ensure that at least one of the CRS encrypts
an non-zero value. In the following, we describe two special cases of OR compostion
that we apply in our e-voting system.

4.2.1 Proving that a ciphertext encrypts 0 or 1

We describe the NIZK proof system Γ0/1 for the ciphertext c = Encpk(b; r) ∈ (G1)2

encrypts 0 or 1, i.e., b ∈ {0, 1}.

• Gen
0/1
crs (σbp):

– Use G1 variant of Genddh
crs (σbp) to produce a master CRS crsm in G1;

• Sim
0/1
crs (σbp):

– Use G1 variant of Simddh
crs (σbp) to produce a simulated CRS crs∗m in G1 and a

trapdoor td;

• Prov0/1(crsm; (pk := (g1, f1), c); (b, r)):

– Pick α1, α2, α3 ← Zp;

– Set h2 := gα1
2 , u(b) := (u

(b)
1 , u

(b)
2 ) = (gα2

2 , g2h
α2
2 ),

and u(1−b) := (u
(1−b)
1 , u

(1−b)
2 ) = (gα3

2 , hα3
2 );

– Set ck(b) := (h2, u
(b)) and ck(1−b) := (h2, u

(1−b));

– Define crs(b) := (σbp, ck(b)) and crs(1−b) := (σbp, ck(1−b));

– Set (u1, u2) = u(b) · u(1−b) ∈ (G2)2;

– Compute πcrs ← Provddh(crsm; (g2, h2, u1, u2/g2);α2 + α3);

– Set π(b) ← Provddh(crs(b); (g1, f1, c1, c2/g
b
1); r)

and π(1−b) ← Simddh(crs(1−b); (g1, f1, c1, c2/g
1−b
1 );α3);

2We refer interested readers to [Ràf15] for more general NIZK composition via correlated key gener-
ation.

12



– Output π := (crs(0), crs(1), πcrs, π
(0), π(1));

• Vrfy0/1(crsm; (pk := (g1, f1), c);π):

– Output 1 if and only if the following verifies.

∗ Vrfyddh(crsm; (g2, h2, u1, u2/g2);πcrs)=1;

∗ Vrfyddh(crs(0); (g1, f1, c1, c2);π(0)) = 1;

∗ Vrfyddh(crs(1); (g1, f1, c1, c2/g2);π(1)) = 1;

• Sim0/1(crs∗m; (pk := (g1, f1), c); td):

– Pick α1, α2, α3 ← Zp;

– Set h2 := gα1
2 , u(0) = (u

(0)
1 , u

(0)
2 ) := (gα2

2 , hα2
2 ),

and u(1) := (u
(1)
1 , u

(1)
2 ) = (gα3

2 , hα3
2 );

– Set ck(0) := (h2, u
(0)) and ck(1) := (h2, u

(1));

– Define crs(0) := (σbp, ck(0)) and crs(1) := (σbp, ck(1));

– Set (u1, u2) = u(0) · u(1) ∈ (G2)2;

– Compute πcrs ← Simddh(crs∗m; (g2, h2, u1, u2/g2); td);

– Set π(0) ← Simddh(crs(0); (g1, f1, c1, c2);α2)

and π(1) ← Simddh(crs(1); (g1, f1, c1, c2/g1);α3);

– Output π∗ := (crs(0), crs(1), πcrs, π
(0), π(1));

Theorem 2. The protocol Γ0/1 is a NIZK proof system for c encrypts 0 or 1. The NIZK
proof has perfect completeness, perfect soundness and computational zero-knowledge un-
der the SXDH assumption.

Proof. Perfect completeness. It directly follows from the completeness and simulata-
bility of the underlying NIZK proof Γddh.

Perfect soundness. The prover generates two CRSs, crs(0) and crs(1), and uses
Γddh to show that the product of them is lifted ElGamal encryption of 1. Since Γddh

is perfect sound, it is sure that at least one CRS encrypts to a non-zero value. By
simultaneously showing the given ciphertext c is encryption of 0 and 1 with respect to
crs(0) and crs(1), we guarantee that c encrypts either 0 or 1.

Computational zero-knowledge. It is straightforward that if the SXDH assump-
tion holds, then crs(0) and crs(1) are computationally indistinguishable (hence DDH is
hard for G2) and the simulated CRS crs∗m is computationally indistinguishable from
the real one crsm. Moreover, the Γddh is computationally zero-knowledge, so all the
simulated sub-proofs are indistinguishable from the real ones. Therefore, π∗ is compu-
tationally indistinguishable from π. �

4.2.2 Proving that a ciphertext encrypts a value between min and max

Observe that this case is a generalization of Γ0/1, where we set min = 0 and max = 1.
The description follows the lines of Γ0/1 where now we generate max−min +1 CRSs
denoted by crs(min), . . . , crs(max). For j ∈ [min,max], crs(j) contains σbp and the com-

mitment key ck(j), which in turn consists of a random element h2 ∈ G2 and an ElGamal
encryption of j, u(j).
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• P → V: crsL and Σcrs
(1)

{
(r) : GenL

crs(σbp; r) = crsL
}

• V → P: ch

• P → V: x, π ← NIZK
{

crsL; (w) : (x,w) ∈ R
}

and Σcrs
(2)

{
(r) : GenL

crs(σbp; r) = crsL
}

Figure 3: The message structure of the composed 3-move ZK for L.

4.3 Lapidot-Shamir Revisited

Kiayias, Zacharias and Zhang [KZZ15] proposed a technique that allows the EA to prove
the validity of some cryptographic elements on the BB using Sigma protocols. In par-
ticular, the EA posts the commitment messages of Sigma protocols on the BB before
the election starts; During the election, the verifier’s challenge is jointly contributed
by all the voters (1 bit per voter); After the election ends, the EA then completes the
Sigma protocols by posting the corresponding response messages on the BB. However,
this technique has its limitations, namely, the statement to be proven must be fixed
before the election starts. In order to prove a statement that is generated during or
after the election, we need a generic 3-move ZK protocol whose commitment message
is independent of the statement, such as the Lapidot-Shamir protocol3 [LS90]. Unfor-
tunately, one has to convert the original language to Hamiltonian cycle in order to use
the Lapidot-Shamir protocol, so it is very inefficient in practice.

To resolve this issue, we propose a new Lapidot-Shamir like 3-move ZK frame-
work where the prover’s first move does not depend on the statement to be proven.
The idea is to combine a 3-move public coin honest-verifier zero-knowledge protocol
with a perfectly sound NIZK proof. For notation simplicity, we will use Sigma pro-
tocol notation for such 3-move public coin honest-verifier zero-knowledge protocols,
but we emphasize that the special soundness and special ZK properties are not nec-
essary for our composition. Let ΓL be a perfectly sound NIZK proof system for some
NP language L, and let Σcrs

{
(r) : GenLcrs(σbp; r) = crsL

}
be a Sigma protocol to show

the given crsL is a perfectly sound CRS. The message structure of the composed 3-
move ZK protocol between the prover P and the verifier V is depicted in Figure 3.
In the first move, the prover P generates a NIZK CRS crsL and sends it to the ver-
ifier V together with the commitment message of Σcrs

{
(r) : GenLcrs(σbp; r) = crsL

}
.In

the second move the verifier V gives the challenge message ch. In the third move,
the prover V fixes the statement x ∈ L and computes the NIZK proof for x, π ←
NIZK

{
crsL; (w) : (x,w) ∈ R

}
. P then sends to V the statement x, the NIZK proof π,

and the response message of Σcrs
{

(r) : GenLcrs(σbp; r) = crsL
}

. V accepts the proof if (i)

(Σcrs
(1)

{
(r) : GenLcrs(σbp; r) = crsL

}
, ch,Σcrs

(2)

{
(r) : GenLcrs(σbp; r) = crsL

}
) is a valid Sigma

protocol transcript and (ii) VrfyL(crsL;x;π) = 1.

Theorem 3. Let ΓL be a perfectly complete, perfectly sound, and computationally zero-
knowledge NIZK proof system for language L, and let Σcrs

{
(r) : GenLcrs(σbp; r) = crsL

}
be

a 3-move public coin honest verifier zero-knowledge protocol with perfectly completeness,
statistical soundness, and computational zero-knowledge. The above composed 3-move

3NB: Technically, the size of the commitment message of the Lapidot-Shamir protocol still depends
on the statement.
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public coin honest verifier zero-knowledge protocol for language L is perfectly complete,
statistically sound, and computationally zero-knowledge.

Proof. Perfect completeness. It directly follows from the perfect completeness prop-
erties of both ΓL and Σcrs

{
(r) : GenLcrs(σbp; r) = crsL

}
.

Statistical soundness. Since Σcrs
{

(r) : GenLcrs(1
λ; r) = crsL

}
is statistically sound,

crsL is a perfectly sound CRS with over-whelming probability. When crsL is a perfectly
sound CRS, no adversary can produce a fake π∗ to make the verifier accept an invalid
x∗ 6∈ L such that VrfyL(crsL;x∗;π∗) = 1. Hence, the composed ZK is statistically sound.

Computational zero-knowledge. The simulatable CRS crs∗ generated by SimLcrs(σbp)
is computationally indistinguishable from a perfectly sound CRS. From the computa-
tionally zero-knowledge properties of both ΓL and Σcrs

{
(r) : GenLcrs(σbp; r) = crsL

}
, it is

easy to see that the simulated composed ZK proof is computationally indistinguishable
from a real one. �

5 System Design

5.1 System Overview

Our system is a single-server web-based system. In an election, the election server
mainly plays the roles of the EA and BB but may aid the other parties. All the other
parties are realized by Javascripts running at the client side. We assume there is a
secure channel between the election server and each trustee, say, realized by HTTPS.
The system uses homomorphic tally and currently supports x-out-of-m type of option
selection. Let mmin and mmax be the minimum and maximum number of options that
is allowed to choose to vote.

Setup. To create an election, the EA needs to login to the election server and
provides the election definition. An election definition consists of question, options,
(mmin, mmax), start/end time, trustee list (including their email addresses), and voter
list (including their voter IDs and email addresses). The election server then creates
a unique election ID, eid, selects a bilinear group parameter for the election, σbp :=
(p,G1,G2,GT , e, g1, g2) ← Genbp(1λ), and posts σbp on BB. (Note that σbp is hard-
coded in our prototype.) The election server then generates and sends a random 128-bit
credential to each trustee by email, inviting them to setup the election parameters. Upon
receiving the credential, each trustee authenticates himself to the server and executes
the election parameters setup process (cf. Section 5.2). Once all the trustees jointly
setup the election parameters, the EA triggers the server to send an invitation email
(with the voter ID, vid` ∈ G2 and a freshly generated random 128-bit credential s`) to
each voter V`, where vid` is a random group element in G2 generated by the election
server.

Cast. After the election starts, each voter V` uses (vidi, s`) to authenticate herself
to the election server. Next, she prepares and casts her vote using the voter supporting
device VSD. The voters’ ballots are prepared locally in the VSD and are posted to the
election server, which will be displayed on the BB. (cf. Section 5.3).

Tally. When the election is finished, the server computes the tally ciphertexts by
multiplying all the valid submitted ciphertexts for each option on the BB4. The voters’
coins are used to produce the Sigma protocol challenge (cf. Section 5.4.1). The trustees
are then invited by the election server to complete their Sigma protocols and decrypt

4Note that, during this step, any invalid ciphertexts and duplicated ciphertexts are removed.
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the tally ciphertexts (cf. Section 5.4.2). Note that each trustee should respond to this
invitation (EA) using a secure channel such as HTTPS. Upon receiving such a message
from a trustee, the election server checks the validity of all the Σ proofs and NIZK
proofs, and rejects it in case some of the proofs are invalid. The election server posts
all the received trustees’ messages to the BB only after all the trustees have successfully
completed their Tally protocols.

Result. The election result can be computed according to standard threshold ElGa-
mal decryption using the partial decryption of the tally ciphertexts from each trustees.

Verify. After the Setup protocol, each trustee Ti is able to check the consistency
between the posted election parameters on the BB and its private state sti. After the
election, each voter V` is able to fetch the election transcript, info from BB and verify
the integrity of the election with its receipt rec`. The voter checks if the data in blt`
hashes to the rec` and the validity of all the Sigma proofs and NIZK proofs.

5.2 Setup

Generating election parameters. The election parameters generation does not re-
quire the interaction between the trustees, and each trustee Ti only needs to interact
with the election server. At first, the election server then generates and sends a random
128-bit credential to each trustee inviting them to setup the election parameters. Next,
the interaction is completed two rounds. In particular,

Round 1.

• Each trustee Ti performs the following:

– Pick random αi, βi ← Zq;

– Set h1,i = gαi1 and u0,i = gβi1 ;

– Post/Append h1,i, u0,i to the public election parameters on the BB together
with the following Σ commitment messages:

∗ Σdlog
(1) {(αi) : h1,i = gαi1 };

∗ Σdlog
(1)

{
(βi) : u0,i = gβi1

}
;

• The election server computes and posts on the BB:

– pk := (g1, h1 :=
∏k
i=1 h1,i);

– u0 :=
∏k
i=1 u0,i;

Round 2.

• Each trustee Ti performs the following:

– Pick random γi ← Zq;
– Set u1,i = gγi1 and u2,i = uγi0 ;

– Post/Append u1,i, u2,i to the public election parameters on the BB together
with the following Σ commitment messages:

∗ Σddh
(1) {(γi) : u1,i = gγi1 ∧ u2,i = uγi0 }

Upon termination, each trustee Ti keep its working tape as its private state sti. After
all the trustees have participated in Setup, the election server:
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• Computes ck := (u0, (
∏k
i=1 u1,i, g1 ·

∏k
i=1 u2,i));

• Posts crsm := (σbp, ck) on the BB;

Generating Voters’ Private Information. For every voter V`, i ∈ [n], the election
server generates (i) the voter ID, vid` ∈ G2 by selecting a random group element in G2

and (ii) a freshly generated random 128-bit credential s`. It provides (vid`, s`), ` ∈ [n]
to all the voters.

5.3 Cast

The VSD fetches election parameters from the BB and works as a “voting booth”. The
VSD shows the election question and a list of options to the voter V`. The voter V`
can select x ∈ [mmin,mmax] options and let the VSD prepare the ballots. Let ~e =
(e1, e2 . . . , em) be the characteristic vector corresponding to the voter’s selection, where
ej = 1 if the option optj is selected and ej = 0 otherwise. The VSD prepares two versions
of the ballot that encrypts the same option selection as follows

• For j ∈ {1, 2, . . . ,m}:

– Pick random rj,(a), rj,(b) ← Zp;

– Compute c
(a)
j = (c

(a)
j,1 , c

(a)
j,2 ) = (g

rj,(a)
1 , g

ej
1 h

rj,(a)
1 );

– Compute c
(b)
j = (c

(b)
j,1, c

(b)
j,2) = (g

rj,(b)
1 , g

ej
1 h

rj,(b)
1 );

• Compute two receipts:

– rec(a) = hash(eid, vid`, ‘A’, c
(a)
1 , . . . , c

(a)
m );

– rec(b) = hash(eid, vid`, ‘B’, c
(b)
1 , . . . , c

(b)
m );

The VSD presents to the voter the receipts for both A and B versions of the bal-
lot, rec(a) and rec(b); meanwhile, it displays two buttons labeled as ‘A’ and ‘B’ re-
spectively. The voter should keep the receipts and then randomly choose one of the
buttons to proceed. Suppose the voter chooses ‘A’ (resp. ‘B’), the system opens
the version B (resp. A) of the ballot by revealing the randomness used to create all
the ciphertexts in version B (resp. A), r1,(b), . . . , rm,(b). The voter can export the
data and use any third-party auditing software to perform the check. The VSD then
computes the NIZK proofs for the version A of the ballot; for j ∈ {1, 2, . . . ,m}, the

VSD computes π
(a)
j ← NIZK{crsm; (ej , rj,(a)) : c

(a)
j = Encpk(ej ; rj,(a)) ∧ ej ∈ {0, 1}}.

Note that in above NIZK proofs, Prov0/1 uses the vid` as the h2 in the description of
Section 4.2.1 instead of generating a fresh h2 = gα1

2 for crs(0) and crs(1) every time.

It then sets c(a) =
∏m
j=1 c

(a)
j , e =

∑m
j=1 ej , and r(a) =

∑m
j=1 rj,(a), and computes

π(a) ← NIZK{crsm; (e, r(a)) : c(a) = Encpk(e; r(a)) ∧ e ∈ [mmin,mmax]}. The VSD posts

the ballot blt` :=

〈
vid`, ‘A’,

{
c

(a)
j , π

(a)
j

}
j∈[m]

, π(a)

〉
to the BB.

The voter’s receipt is defined as rec` := (vid`, ‘A’, rec(a)) assuming version A of the
ballot was selected during the Cast protocol.
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5.4 Tally and Result

5.4.1 Producing the Sigma Protocols Challenge

After the election is finished, the voters’ coins are collected to produce the Sigma protocol
challenge. On the BB, everyone can identify the version of each submitted ballot. We
interpret ‘A’ as 0, ‘B’ and 1, and if the voter did not submit a ballot, his coin is fixed as
0. Denote ρj as the voter Vj ’s coin and ρ = (ρ1, ρ2, . . . , ρn). As studied in [KZZ15], the
voters’ coins can be modeled as an adaptive non-oblivious bit fixing source. Nevertheless,
we still want to produce a single challenge if only computationally bounded adversaries
are considered. Assume hash is a cryptographic collision resistant hash function such that
there is no known algorithm can find a collision with 22κ expected steps. We compute
the challenge ch← hash(ρ). In the following theorem, we show that if H∞(ρ) ≥ κ, then
H∞(hash(ρ)) ≥ κ.

Theorem 4. Let X be an n-bit efficiently sampleable distribution with H∞(X) ≥ κ.
Let hash : {0, 1}∗ 7→ {0, 1}λ be a cryptographic hash function, where λ > 2κ is a security
parameter. If H∞(hash(X)) < κ, then there exists an algorithm that can find a collision
for hash within 22κ expected number of steps.

Proof. Since H∞(hash(X)) < κ ≤ H∞(X), we have that

∃σ : Pr[x← X : hash(x) = σ] > 2−κ and ∀x : Pr[x← X] ≤ 2−κ.

Therefore, σ must have collisions. Consider the algorithm Aσ that repetitively samples
x from X at random and stores hash(x), trying to find a collision for σ. Given that
Pr[x ← X : hash(X) = σ] > 2−κ, the expected running time for Aσ to find a collision
for the hash image σ is less than 22κ. �

5.4.2 Finalizing the Election

The election server computes the tally ciphertexts by multiplying all the valid sub-
mitted ciphertexts for each option on the BB. The tally ciphertexts are denoted by
(E1, . . . , Em), where Ej = (Ej,1, Ej,2). Next, each trustee Ti fetches all the posted
information from BB and checks its consistency. After that, Ti:

• Computes and sends the following response messages to the election server (EA):

– Σdlog
(2) {(αi) : h1,i = gαi1 };

– Σdlog
(2)

{
(βi) : u0,i = gβi1

}
;

– Σddh
(2) {(γi) : u1,i = gγi1 ∧ u2,i = uγi0 };

• For j ∈ {1, . . . ,m}:

– Computes and sends to the the election server (EA) the partial decryption
Dj,i = Eγij,1 together with the proof

πi,j ← NIZK
{

crsm; (γi) : h1,i = gγi1 ∧Dj,i = Eγij,1

}
.

After all the trustees partial decryption of the tally ciphertexts has been posted,
the election server, for j ∈ [m], computes τj = Dlogg1(Ej,2/

∏k
i=1Dj,i). The discrete

logarithm can be solved in approximately
√
n steps, given the knowledge that τj ∈ [0, n],

as there are maximum n possible votes for each option in total. It then posts the final
tally τ = (τ1, . . . , τm) on the BB and informs all the voters by email.
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5.5 Verify

After the Setup protocol, each trustee Ti is able to check the consistency between the
posted election parameters on the BB and its private state sti. The voter checks the
following:

• There is a unique ballot blt` indexed by vid` in the election transcript info.

• The data in blt` hashes to the rec`.

• There is no duplicated ciphertexts and NIZK proofs across the entire election
transcript info.

• All the NIZK proofs in each ballot blt` uses vid` as a part of the second layer
CRS’s.

• All the Sigma and NIZK proofs are valid.

6 Security

6.1 On the Non-malleability of the NIZK Proofs

It is well-known that GS proofs are malleable with respect to the same CRS. More
specifically, given a GS proof, π, for the statement x with respect to crs, anyone can
re-randomize the proof to produce a distinct proof π∗ for x respect to crs. To prevent
replay attacks, all the duplicated ciphertexts shall be removed. However, the adversary
can still copy and re-randomize some honest voters’ ciphertexts as well as their attached
NIZK proofs if the same CRS is used among all the voters. To address this issue, each
voter is required to use a distinct vid` as a part of her second layer CRS’s.

Regarding privacy, recall that we assume the election servers (EA and BB) are honest;
in particular, all the voter ID’s {vid`}`∈[n] should be generated honestly such that no
one knows the discrete logarithms: Dlogg2(vid`) for all ` ∈ [n] and Dlogvid`1

(vid`2) for all

`1 6= `2 ∈ [n]. We now show that, given c = Encpk(b) for an unknown b ∈ {0, 1} together
with a proof π generated by the NIZK proof system Γ0/1 using vid1, no PPT adversary
can produce ĉ = Encpk′(b), where pk′ 6= pk, and π̂ that includes vid2 as a part of its
second layer CRS’s with non-negligible probability.

Recall that in the NIZK proof system Γ0/1 described in Section 4.2.1 the prover
generates crs(0) and crs(1) and shows, via a DDH tuple NIZK proof described in 4.1,
that the ciphertext c encrypts 0 using crs(0) and c encrypts 1 using crs(1). Since the
DDH tuple NIZK proof is perfectly sound, if c encrypts b, the proof that uses crs(b)

must be perfectly sound and the proof that uses crs(1−b) must be simulatable. By the
description of the NIZK proof systemΓddh, crs(b) and crs(1−b) must be encryptions of 1
and 0 respectively under the “public key”, pk1 = vid1. Similarly, in π̂, ĉrs(b) and ĉrs(1−b)

must be encryptions of 1 and 0 respectively under the “public key”, pk2 = vid2. Hence,
the non-malleability problem is reduced to the following theorem.

Theorem 5. Given randomly chosen pk1, pk2 and c0 = Encpk1(m), c1 = Encpk1(1 −
m) for unknown m ∈ {0, 1}, the probability that a PPT adversary A produces ĉ0 =
Encpk2(m), ĉ1 = Encpk2(1 − m) is negligible ,if the underlying encryption scheme is
IND-CPA secure.
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Proof. The proof is via reduction. Assume there is a PPT adversary A who can produce
ĉ0 = Encpk2(m), ĉ1 = Encpk2(1 −m). Then, we can contruct an adversary B who can
win the IND-CPA game of the underlying encryption scheme as follows:

In the IND-CPA game, B is given pk1 and it sends m0 = 0,m1 = 1 to the IND-CPA
challenger C. B will receive c0 = Encpk1(mb) from C and will be challenged to guess b.
B then computes c1 = Encpk1(1)/c0 = Encpk1(1−mb) and generates (sk2, pk2). Next, it
sends c0, c1, pk1 and pk2 to A. Upon receiving ĉ0 and ĉ1 from A, B decrypts ĉ0 and ĉ1.
Finally, it sends b′ to C, if ĉ0 and ĉ1 are indeed encryptions of b′ and 1 − b′, otherwise,
she sends random b′ ← {0, 1} to C.

Clearly, B wins when A succeeds (i.e., ĉ0 and ĉ1 are indeed encryptions of b′ and
1− b′). Therefore if the probability that A wins is p, we have that

Pr[B wins] = Pr[A succeeds] · Pr[B wins|A succeeds] + Pr[A fails] · Pr[B wins|A fails] =

= p · 1 + (1− p) · 1/2 = 1/2 + p/2.

�

6.2 Privacy

Our system achieves the simulation-based privacy defined in Section 3.2. Similarly to
[KZZ15], we utilize complexity leveraging. Specifically, we choose the security parame-
ters such that breaking the SXDH assumption of Genbp and finding a collision for hash
is much harder than guessing the challenge of the Sigma protocols.

Theorem 6. Assume there exists a constant κ, 0 < κ < 1 such that for any 2λ
κ
-time

adversary A the advantage of breaking the SXDH assumption of Genbp is negl(λ). Let
n,m, t, k ∈ N, where 0 < k < n. Then, for every m,n, t = poly(λ) and every k < λκ,
the e-voting system Π described in Section 5 is k-private, unless there is an explicit
algorithm that can find a collision for hash : {0, 1}∗ 7→ {0, 1}λ in 2λ

κ
time.

Proof. (Sketch) Given an adversaryA, we construct a simulator S s.t. IDEALFm,n,tpriv ,S,Z(λ)

and REALΠ,A,Z(λ) are computationally ingistinguishable. Without loss of generality, let
Tw be the honest trustee. The simulator S operates as follows:

At the beginning of the experiment, S selects all the voters’ coins (including both
honest and corrupted voters) at random, denoted as ρ = (ρ1, . . . , ρn) ∈ {0, 1}n and pro-
duces the challenge of the Sigma protocols using ρ. When S receives (sid, vote,O,V,U)
from Fm,n,tpriv , it simulates Π in the Setup protocol playing roles as EA and BB, and
interacting with all the corrupted trustees. In addition, it generates T = {T1, . . . , Tw}
and allows A to corrupt all the trusteed except from Tw. In the simulation of Tw, S
performs the following modifications: it sets u2,(w) = uγw0 /g1 and simulates a proof for
the fake DDH relation of (g1, u0, u1,(w), u2,(w)). Once all the trustees have completed
their Setup, S generates vid` such that d` = Dlogg2(vid`) is known. It then sends the
credentials to all the voters.

During the Cast protocol, S plays the role of the EA and BB. Upon receiving
(sid, cast, V`) from Fm,n,tpriv for an honest V`, S executes a Cast protocol on behalf of V`
with a random U` ∈ U . After all the voters cast their ballots, S plays the role of the
EA interacting with the corrupted trustees in the Tally protocol. Importantly, S sends
suitably long messages to EA to fake the Tally interaction for Tw. Due to the secure
channel between Tw and the EA, A cannot tell Tw’s Tally protocol is fake.
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After all the corrupted trustees finish the Tally protocol, S does not post their
tally messages to the BB; instead, it stores the set of the transcripts of all the Sigma
protocols and rewinds the state of the experiment to the Cast protocol of the last
honest voter, VL. In the second run, S executes the Cast protocol for VL again but
this time it chooses a different ballot version to submit. Namely, S flips the coin of VL.
Then, S completes the rest of the protocol in the second run until all the corrupted
trustees finish the Tally protocol. If there is no collision for hash, the challenge of the
Σ protocols must be distinct from that of the first run, otherwise we obtain a collision
finding algorithm for hash. Hence, S obtains another set of the transcripts of all the Σ
protocols with a different challenge. Subsequently, S utilizes the knowledge extractor
to extract all the corrupted trustees’ witnesses αi, βi, γi, i 6= [k] \ {w}. Hence, S can
compute γ =

∑k
i=1 γi. Note that now the master CRS crsm is an encryption of 0 and

thus it is a perfectly simulatable CRS and γ is the trapdoor.
After that, S rewinds the state of the experiment to the beginning of the Cast

protocol and starts a third run. In the Cast protocol, S uses the pre-generated coins
ρ` of each honest voter V`. In addition, it encrypts an invalid U∗` 6∈ U and simulates the
NIZK proofs using the trapdoor γ. In case the corrupted voters’ coins do not match
the pre-generated (guessed) coins, S resets back to the beginning of the experiment and
starts over. S repeats the above procedure until it has three runs of the execution and
the voters’ coins of the third run execution is guessed correctly. The expected running
time to make this happen is 2k · poly(λ) < 2λ

κ
.

Subsequently, for each corrupted voter V`, S uses d` to decrypt all the second layer
CRSs in her ballot blt` on the BB, and thus determine U`. If U` 6∈ U , S aborts.
Otherwise, S sends (sid, cast, V`,U`) to Fm,n,tpriv . After sending all the corrupted vot-

ers’ option selections, S sends (sid, tally) to Fm,n,tpriv . Upon receiving the election result

τ := (τ1, . . . , τm) from Fm,n,tpriv , for j ∈ [m], S computes D∗j,(w) = Ej,2/(g
τj
1 · E

∑
i 6=w αi

j,1 )
and simulates the NIZK corresponding proofs. Finally, S posts D∗j,(w) on the BB.

We first show that the probability that the above simulator S aborts is negligible.
In case the extracted U` 6∈ U for some corrupted voter V`, the adversary A must have
managed to either break the soundness of the underlying NIZK proof system or ‘copy’
one of the honest voter’s ciphertexts by re-randomizing them. According to Theorems 2,
3 and 5, either events happen with negligible probability.

Suppose now S does not abort. We will show that if the lifted ElGamal is IND-CPA
secure, then the protocol view created by S is indistinguishable from the real execution.
Note that IND-CPA security of the ElGamal implies that SXDH assumption holds.
Given an adversary A who can distinguish the protocol view simulated by S, we can
construct an adversary B who can break the IND-CPA game. Indeed, in the reduction,
when B receives the public key, we will post it as hi,(w) in the Setup protocol, simulating
the Dlog Sigma protocol. B then sends m0 = 0,m1 = 1 to the IND-CPA challenger.
When receiving a ciphertext c = (c1, c2), B can transfer the ciphertext under public
key h1,(w) to be a ciphertext under the public key h1 and use it in the honest voters’

ballots. The transformation: c′ = (c1, c2 · g
∑
i 6=w αi

1 ). Clearly, c and c′ encrypts the
same message under different public keys. If the adversary A can distinguish the honest
voters’ ballots, then the adversary B distinguish the IND-CPA challenge with running
time 2k · poly(λ) < 2λ

c
. �

Remark. As in [KZZ15], we use complexity leveraging to argue privacy which means
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k < λ. But for any desired k we can always choose a suitable security parameter λ
such that the system is k-private. In most real world elections (e.g., national elections)
privacy is only guaranteed between hundreds or a few thousands voters that belong
to a precinct. If one wants to achieve privacy nation-wide as well, it is still possible
to use our scheme efficiently with the following modification: the trustees, each one
individually, will perform a Sigma OR proof that either their published parameter is
properly generated or that they know a preimage of a one-way hash function of the coins
of the voters (this should be done using a Lapidot-Shamir like proof since the statement
is not determined fully before the first move of the protocol). In the privacy proof the
simulator can use complexity leveraging to find such preimage in time independent of
the number of corrupted voters and thus complete the simulation in time proportional
to breaking the one-way function.

6.3 E2E Verifiability

For simplicity, our analysis is for 1-out-of-m elections can be easily extended to x-out-
of-m cases. Our proof strategy follows the lines in [KZZ15, Theorem 4], as our e-voting
system shares many common elements with DEMOS.

Theorem 7. Let n,m, t, θd ∈ N where 1 ≤ θ ≤ n. The e-voting system described
in Section 5 achieves E2E verifiability for a number of θ honest successfull voters and
tally deviation d with error (1/2)d + (1/2)θ unless there is an algorithm that can find a
collision for hash : {0, 1}∗ 7→ {0, 1}λ in 22θ expected number of steps.

Proof. We emphasize that in the E2E verifiability proof, only BB is assumed to be
honest. The rest components of the election server are controlled by the adversary.
Hence, the voter ID, vid`, may not necessarily be unique, and the adversary is allowed to
change the content on the BB arbitrarily before the Tally protocol starts. Nevertheless,
we can assume all the Sigma protocols and the NIZK proofs on the BB are valid if
there is at least one honest voter that performs verification. We first construct a vote
extractor E for our system as follows:
E takes input as the election transcript, info and a set of receipts {rec`}V`∈Ṽ . If

Result(info) = ⊥, then E outputs ⊥. Otherwise, for all the corrupted voters V` ∈ V \ Ṽ,
E extracts U` by exhaustive search over the ElGamal ciphertexts in the ballot blt`. It
then outputs 〈U`〉V`∈V\Ṽ .

Based on the above vote extractor, we now prove the E2E verifiability of our scheme.
Assume an adversary A that wins the game GA,E,d,θe2e-ver (1λ, n,m, t). Namely, A breaks E2E
verifiability by allowing at least θ honest successful voters and achieving tally deviation
d. Let E be the event that there exists one tallied ciphertext that encrypts e∗ 6∈ U .
By Theorems 1 and 2, all the NIZK proofs are perfectly sound. Hence, the adversary
needs to cheat on at least one Sigma protocol to make event E occur. By Theorem 4
and since the voters’ coins have min entropy θ, the Sigma protocols challenge hash(ρ)
should also have min entropy θunless there is an algorithm that can find a collision for
hash in 22θ expected number of steps. Hence, each Sigma protocol has soundness error
no more than (1/2)θ. Therefore,

Pr[GA,E,d,θe2e-ver (1λ, n,m, t) = 1 | E] ≤ (1/2)θ. (1)

Now assume that E does not occur. In this case, the deviation from the intended result
that A achieves, derives only by miscounting the honest votes. This may be achieved
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by A in two different possible ways:

• Modification attacks. Modify one of the versions of the honest voters’ ballots
when it was produced on the VSD. This attack is successful only if the voter
chooses to submit the modified version. Since the version is valid, it encrypts an
option in U , hence for each successful attack the achieved deviation is 1.

• Clash attacks. Assign the same vid to y honest voters so that the adversary can
inject y − 1 ballots. This attack is successful only if all the y voters verify the
same ballot on the BB and hence miss the injected votes that produce the tally
deviation. The maximum deviation achieved by this attack is y − 1.

Recall that each honest voter should select one of the two versions of the ballot at
random, and the other version will be opened for auditing. Hence, the success probability
of x deviation via the modification attack is (1/2)x. With regard to the clash attacks,
similarly, it is easy to see that the success probability to clash y honest voters without
being detected is (1/2)y−1 (all y honest voters choose the same version to vote). Given
that E does not occur the total tally deviation achieved is x + y ≥ d. Therefore, the
upper bound of the success probability of A when E does not occur is

Pr[GA,E,d,θe2e-ver (1λ, n,m, t) = 1 | ¬E] ≤ (1/2)x+y ≤ (1/2)d. (2)

By Eq. (1), (2), we have the overall probability

Pr[GA,E,d,θe2e-ver (1λ, n,m, t) = 1] ≤ (1/2)d + (1/2)θ .

�

7 Implementation

Our prototype is written in Django framework. We also adopt Twitter Bootstrap [Boo15]
for better user interface. All the cryptographic elements are Base64 encoded and inter-
changed in JSON format. We use SHA3 to implement hash and adopt CryptoJS [Mot15]
as its JavaScript implementation. We use Type F pairing groups [BN06] as the asym-
metric bilinear group candidates. Its JavaScript implementation employs SJCL [SJC15]
for basic big number arithmetic. On top of SJCL, we ported the Type F pairing arith-
metic of jPBC [DI11] to JavaScript. Unlike DEMOS [KZZ15], the election setup step
of DEMOS-2 is very efficient and independent of m,n. This is because all the votes are
encrypted at the client side during the cast phase on demand. The benchmark results in
Tbl. 1 shows the time that a VSD (client) takes to encrypt a vote and produce a ballot
(using Javascript). The benchmark is produced on a Mac Mini with 2.5 GHz Intel Core
i5, 4GB RAM. For instance, when m = 2, it takes 0.4s to prepare both A and B versions
of the ballot; afterwards, it takes 2.2s to complete the NIZK proofs.
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[KTV10] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Accountability: Defi-
nition and relationship to verifiability. ePrint, 2010:236, 2010.

24

http://getbootstrap.com/
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