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Summary

The stresses induced on a silicon chip encased in an epoxy compound are considered
due to absorption of moisture and the presence of silica particles in the coating. A range
of different approaches are considered including a one-dimensional model for the curvature
due to the absorption of water in a bi-lateral sheet, numerical simulations for the stress at
the molding compound-silicon die interface and a two-dimensional model in the complex
plane.
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1 Introduction

Analog Devices manufacture silicon chips which are used in a variety of circumstances.
The chips (or die) do not come as a single entity but have electrodes on top and sit on
a copper paddle, all of which is then packaged within plastic. Either the whole thing is
encased or alternatively the plastic may be put over the top with the copper paddle as a
base (Figure 1). The plastic is an epoxy molding compound that consists of the plastic
and up to 90% filler particles that are made of silica.

During manufacture the whole package is heated to a high temperature and then cooled
down to room temperature for use. In this process the package is subjected to significant
forces as the difference in rates of thermal expansion between the die and the plastic
causes the package to bend slightly. This is expected and is a normal part of the process.
The purpose of the silica particles is to minimize the effect of the differences in thermal
expansion between the two materials. The filler particles are uniformly distributed in the
compound and come in a range of sizes, between 50 and 100 microns (Figure 1). To give
an idea of scale in the figure, the copper paddle is approximately 200 microns high. After
this phase the properties of the chip are adjusted by reconfiguring the electronics to have
the required design properties. It is at this point that the chips are shipped for use.

It is apparent that in certain situations the behaviour of the electrical properties of the
chip deteriorate in-situ, sometimes leading to bad performance and sometimes to failure.
One possible reason for this is thought to be the absorption of moisture into the epoxy
compound. It is thought that this leads to a slight further bending (or perhaps unbending)
of the package causing further stresses on the chip circuitry, and it is believed that it is
the silica filler particles that are the dominant factor in causing problems. Electrical
components are susceptible to mechanical stress and so the presence of one or more large
silica particles near to the die may lead to changes in the behaviour. It is even possible
that a collection of small particles may cause problems.

Analog Devices have performed a series of tests involving the placement of a buffer
coating between the epoxy compound and the die to see if this would mitigate the impact
of such silica particles. It was found that this coating had to be quite thick before it had
any beneficial effect. They also tested the moisture absorption of the plastic compound
and found it to absorb water (although the silica particles do not absorb water).

Polyimide with

Silica particles

Silicon die, ≈ 600µm

Copper paddle, ≈ 200µm

Figure 1: The setup of one end of the chip, showing the copper paddle, the die
and the epoxy compound. The silica particles can be clearly seen in the compound
as the lighter colour patches.

The study group was asked to investigate this problem by considering the stress field
generated by the silica particles so that “a series of Monte Carlo simulations” might be
performed by Analog Devices for different distributions of the particles, thus assisting in
design of the layout of the chip.

The solid mechanics involved in this problem is quite difficult and so several different
sub-problems were considered. This combination of approaches should provide some in-
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sight into the process. The outline of this report is as follows. In Section 2 we describe a
model for a two-layer materials problem to consider the effect of variable solid properties
on the bending behaviour. Numerical simulations are presented in Section 3. Specifically,
the finite element method in COMSOL was used to model the stress field near a bent plate
subject to different particle configurations. In Section 4 the problem is approximated via
a two-dimensional model and complex variable methods are applied. Finally, in Section
5 we provide some concluding remarks and suggested directions for future work.

2 Thin strip with variable moisture absorption

2.1 Model description

The task to consider the stress generated locally during bending of the chip and casing
can be considered by examining the stress field generated by individual particles of silica
near to the chip (see later), or it may be considered by looking at a simplified approach in
which variations in concentration of the silica particles along the plastic component might
affect the bending of the plate. The idea is that as water is absorbed (or heated) the
differential absorption along the material will lead to variations in the bending moment,
hence causing kinks or regions of higher curvature in the chip itself. Thus we need to
develop a model of the curvature due to the absorption of water in a bi-material sheet.

Timoshenko [1] computed bending of two metals welded together with different coeffi-
cients of thermal expansion. Subsequently, other authors [2, 3, 4] considered this further,
but the essential ideas were covered by [1] and so we use a similar analysis here. In [1] the
behaviour of a thermostat with two metal strips welded together was determined. The
beams were assumed to be thin and with uniform property along their length. The centre
line was assumed to be such that there could be no relative movement between the two
strips. While we are not dealing with a bi-metal strip in this work, we still have a very
low aspect ratio and so the general assumptions of the model are valid.

One way to interpret his work is to consider it as an analysis of a very small segment
of a longer strip pair where the strips have different properties. In that way the expression
derived for the curvature can be treated as local. Appending pieces with different prop-
erties either side (with an assumption of continuity) leads to a modified equation for the
distortion of the strip, one that now has properties that depend on lengthwise direction,
x.

Timoshenko’s formula for the radius of curvature ρ as shown in Figure 2 can be written
as

1

ρ
=

2h(α1 − α2)(T − T0)

h2 + 4(E1I1 + E2I2)
(

1

E1h1
+ 1

E2h2

) , (1)

where in layers k = 1, 2, αk is the thermal expansion coefficient, EkIk is the flexural
rigidity and hk is the layer thicknes. Temperature, T , is assumed uniform throughout
both layers and h = h1 + h2 is the total thickness. He used this model to compute the
bending due to the differential in thermal expansion between the two layers.

Modifying his analysis to consider continuous variations in material properties along
the strip allows the development of an equation for the variations in behaviour of the two
materials. For example, the two thermal expansion coefficients can be made a function
of x, leading to differential bending along the strip. This change leads to a differential
equation for the bending of the strip, given by

d2y

dx2
=

2h(α1(x)− α2(x))(T (x)− T0)

h2 + 4(E1I1 + E2I2)
(

1

E1h1
+ 1

E2h2

) , (2)

where y(x) is the displacement along the strip. Note that now the thermal expansion
coefficients and temperature are designated as being functions of x. The variation may
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Figure 2: Sketch of the bending due to differential thermal expansion during
heating or moisture absorption in two layers welded together. E is Young’s mod-
ulus, I is moment and α is the thermal expansion coefficient.

also affect the rigidity, but for now we assume this effect is minor.
This equation can be integrated to compute the variation in bending as the strip heats

(or cools). Indeed, it may be possible to estimate the differential between α1 and α2

at any point by examining the outcome of the manufacturing process. Two boundary
conditions are required to enable a solution to this equation, but they can simply be set
to y(0) = y(1) = 0 since in this problem they are not of great importance. It would seem
likely in this application that the variation in the paddle would be much less than the
plastic, as the paddle is made of a single material while the plastic has two constituents.
The variation in α1(x) is likely to be due to the location and density of the silica particles
and related to the local volume fraction that they occupy, while α2 can be expected to
remain almost constant. The length scale of these variations might be expected to be of
the order of the larger particles, but could also be due to a dearth or excess of particles
in one particular location.

In the problem under consideration it is the moisture content that is of concern.
The epoxy will absorb moisture resulting in an expansion of the material and subsequent
bending. This will lead to the same kind of variation as one might expect from the cooling
process, depending on the amount of expansion and the volume occupied by the silica.

Following the same derivation as for the thermal equation, we can arrive at a similar
equation for the moisture induced bending, where the terms involving αk are replaced by
a moisture interaction of the form β1(x)(W1 − W10) − β2(x)(W2 − W20), where βk, k =
1, 2 is the expansion factor as water is absorbed and Wk0, k = 1, 2 is the initial water
concentration in each component. However, since we do not expect the copper to change,
this term in layer 2 will disappear, giving

d2y

dx2
=

2hβ1(x)(W1(x)−W10)

h2 + 4(E1I1 + E2I2)
(

1

E1h1
+ 1

E2h2

) , (3)

if we assume that the presence of the moisture has no influence on the other properties of
the components. In fact, it is relatively simple to include the variation of the properties
if we know the relation, but it is unlikely that it will be of sufficient magnitude to change
the results. The moisture term can be replaced by

B(x) = β1(x)(W1(x)−W10) ,

to test whether it is likely to make a difference, since it is simply a function of x that is
related to the volume fraction of silica along the epoxy layer.

2.2 Results

Figure 3 shows three different cases in which the variability of silica concentration induced
different outcomes. In each case the dashed line represents the curve resulting from a
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Figure 3: Comparison of three cases of variable moisture uptake along the epoxy
side of the component. The dot-dash line indicates the variation in moisture. The
dashed line gives the bending for the uniform case and the solid line is the result
of the variable moisture uptake (due to the variation in silica concentration).
Other parameters; E1 = 18GPa, E2 = 120GPa, h1 = 0.008m, h2 = 0.001m and
I = h3/12.
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Figure 4: Distortion due to sinusoidal variation in the moisture expansion rates.
The plate is now quite “wobbly”.

uniform situation. In frame (a), there is one patch where there is a dearth of silica, so
that the expansion coefficient is higher causing greater curvature at that point. The extra
bending causes a greater arc in the whole system, but that is due to the sharpish corner
that develops. In frame (b), there is a region of lower shrinkage (high silica region) close
to x = 0.4, and a narrow region of high absorption. On this occasion the non-uniform
case has slightly less bending but a slight kink in the shape is clear. Finally, in frame (c)
is shown an example in which the paucity and excess regions are next to each other (as
might happen if there were some repositioning of the silica in the manufacturing process).
In this case the change in shape is quite localized to this region, but involves the formation
of a rather severe kink in the system.

In a final example (Figure 4) we consider a rather extreme case in which there is some
continuous variation in the density of silica along the bi-material. Here the variation in
expansion is causing some quite nasty kinks to form. It is possible that shorter wavelength
inconsistencies can cause more dramatic bending.

2.3 Conclusions

These examples show that if there is variation in the volume fraction along the length of
the coating it may result in extra stresses on the chip itself due to this extra, localized
bending. The variation may be caused by near proximity of several large particles thus
causing an increased local concentration of silica. It is also worth noting that any effect
due to this will occur in the same place in both the cooling phase during manufacture and
in any subsequent moisture absorption. While the “damage” done during manufacture
can be repaired, it is not possible to repair the later damage due to moisture absorption.
It is even possible that given the right circumstances the two effects could be additive,
even though the process of cooling and moisture absorption would result in bending in
the opposite directions.

If this mechanism proves to be a reasonable possibility, it might show up in the amount
of “remedial” work required after manufacture, i.e. those components requiring the most
adjustment post-manufacture may be showing signs of this variability in silica volume
fraction and so it is these that may be most likely to fail later. Note that all of this work
assumes that the chip is kept well away from the ends of the paddle where stress effects
can be expected to be large. There is an assumption that the area of interest is away from
the ends. This model does not take into account bending in the lateral direction where
there may also be variations in local properties. In order to determine the relevance of
this factor it would be worth estimating the variability in ”density” along the length to
determine if it is sufficient to cause the bending required to cause the observed damage.
If it turns out to be unlikely due to the uniformity of the particle distribution, then it
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will be necessary to return to the more time consuming calculation of the stresses due to
individual particles.

3 Numerical simulation for Stress field at epoxy

molding-silicon die interface

3.1 Model description and numerical scheme

In this section we use the finite element method (FEM) in COMSOL to analyse and
simulate the stress near the interface of the epoxy molding and the silicon die as a result
of the silica particles embedded in the molding. We consider a two-dimensional, stationary
model to predict the stress field. Two different particle configurations are studied. Firstly,
in case A (Figure 5(a)) we investigate the relationship between one particle and the stress
in the molding. Next, in case B we examine the impact of two particles on the stress field
(Figure 5(b)).

The starting point is the construction of the problem geometry. The domain consists
of two subdomains, namely a rectangle for the molding and a circle for the silica particle.
As illustrated in Figure 5 the yellow area represents the molding compound, the light grey
circle a silica particle and the dark grey area the silicon die. The simulation domain is
the rectangle delimited by the dashed line. The height and length of the rectangle are
h1 = 1000µm and h2 = 5000µm, respectively. The Cartesian coordinate system is used
to describe the problem with the geometry aligned such that the length is described along
x ∈ [−h2/2, h2/2] and the height y ∈ [0, h1]. The radius of the particle is r = 25µm. In
both configurations, d represents the vertical distance from the base of the rectangle to the
lowest point on the surface of a particle. With respect to case B, l denotes the horizontal
distance between two particles. The COMSOL materials library is used to define the
material properties of both the molding and silica particles. For the molding we use the
material Epoxy-50% silica particles to approximate the molding used by Analog Devices.
A summary of the physical dimensions and material parameters is given in Table 1.

Quantity Symbol Value Units

Molding height, length h1,h2 1× 10−3, 5× 10−3 m

Particle radius r 2.5× 10−5 m

Young’s modulus of epoxy, silica Ee, Es 72.9× 109, 18.03× 109 Pa

Poisson ratio of epoxy, silica νe, νs 0.17, 0.23 -

Density of epoxy, silica ρe, ρs 2203, 1100 kgm−3

Table 1: Dimensions of geometry and material properties of molding compound
(Epoxy-50% silica particles) and silica used in simulations.

To reduce model complexity we use the following assumptions. Firstly, we simplify
the geometry of the problem by neglecting the die and copper paddle located at the base
of the molding. We assume that both the molding and silica particles are linear elastic
materials such that strains vary linearly with stresses.

We use the solid mechanics module in the structural mechanics package to simulate
the stress field. The governing equations are

−∇ · σ = FV , σ = s , s = C : (ǫ− ǫinel) , ǫ =
1

2
[(∇u)T +∇u] , (4)

where σ is the Cauchy stress tensor, FV is the body force per unit volume, ǫ is the
infinitesimal strain tensor, u is the displacement (or strain) vector and C is the fourth-
order elasticity (or stiffness) tensor. The first equation in (4) is the equation of motion,
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l

Figure 5: Sketch of case A and case (b). The yellow area represents a portion
of the molding compound (Epoxy-50% silica particles), the light grey circle a
silica particle and the dark grey area the silicon die. The simulation domain is
represented by the rectangle delimited by the dashed line.

which is an expression of Newton’s second law. The third equation is Hooke’s law, which
relates the unknown stresses and strains.

Boundary conditions are required at the four outer edges of the molding and the
particle-molding interface. At x = −h2/2, x = h2/2 and y = h1 we impose free bound-
ary conditions so that there are no constraints or loads acting on the boundary. At
the particle-molding interface we apply stress continuity. Finally, in order to model the
bending caused by the the moisture absorption in the epoxy, we impose a prescribed dis-
placement condition of the form u = −εx2 at the lower surface of the molding, y = 0. The
small, dimensionless parameter ε = 1 × 10−10 determines the magnitude of the overall
displacement of the molding.

The next step is the discretisation of the original problem which consists of trans-
forming the continuum problem as represented by the partial differential equation model
into a discrete problem in finitely many variables. The domain is subdivided into finite
elements of variable size and shape which are interconnected by a finite number of nodal
points. COMSOL automatically partitions the domain into small finite elements of simple
shape. The resulting partition is referred to as the finite element mesh (Figure 6). In two
dimensions the mesh subdivides the domain into triangles. However, this is only an ap-
proximation as part of the domain close to the particle is curved. The sides and corners of
the triangles are called mesh edges and mesh vertices, respectively. In each finite element
the unknown stress is approximated by some low order interpolating polynomial in such
a way that the stress is defined in terms of the approximate stresses at the vertices. For
the current problem COMSOL used a mesh of 7156 elements. This mesh size was selected
as successive, finer meshes showed no significant change predicted stress.

We performed simulations for the one and two particle configurations. We chose
the parameter sweep option to simulate the stress field for varying molding parameters.
Specifically, for case A the simulation was carried out several times for different values of
d. For case B, d was fixed and simulations for varying l were performed.

3.2 Discussion

The results from the simulations are shown in Figures 7-11. Figure 7 shows the stationary
stress field in the molding for one silica particle. The largest stresses are located near the
edges of the molding at x = −h2/2 and x = h2/2. These high stresses are due to the
displacement boundary condition, u = −ǫx2, at the lower surface of the molding, and
thus are not caused directly by the particle. Hence, for the remainder of the discussion
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Figure 6: FEM mesh for domain with one particle. The mesh consists of 7156
mesh elements and was constructed systematically using COMSOL’s mesh mode.

we neglect the stress field near the edges of the molding.

COMSOL 4.3.2.152 ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 7: Stress field in molding subject to one particle.

Figure 8 shows the stresses for case A near the centre of the molding along y = 0.
The different coloured curves denote solutions for varying d. In particular, we performed
simulations for d = 5µm (blue), 10µm (green), 15µm (red), 20µm (cyan) and 25µm
(magenta). Figure 8 reveals that the stress decays rapidly for increasing values of d. This
fact is corroborated by Figure 9 which shows the stress at the origin for varying d. Smaller
values of d lead to higher stresses.

The stress field for case B near the centre of the molding along y = 0 is shown in
Figure 10. The coloured curves represent solutions for fixed d = 5 m and varying l.
We carried out simulations for l = 5µm(blue), 30µm(green), 55µm(red), 80µm(cyan),
105µm(magenta), 205µm(yellow) and 505µm(black). The graph suggests that in each
case the highest stresses at the die-molding interface are located directly beneath the
particles. Figure 11 illustrates the stresses for case B along y = 0. The horizontal distance
between the two particles is fixed at l = 10 m, and d is varied such that d = 5µm (blue),
10µm (green), 15µm (red), 20µm (cyan) and 25µm (magenta). Again we note that as
d decreases the stresses at the molding-die interface increase. In addition, as before, the
highest stresses are located directly beneath the particles.
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Figure 8: Stress field at the interface between the molding compound and the
silicon die at y = 0 for d = 5µm (blue), 10µm (green), 15µm (red), 20µm (cyan)
and 25µm (magenta).
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Figure 9: Stress at the central point of the interface as a function of d. The
first five points on the left represent the plots from Figure 8. The remaining three
points correspond to larger values of d. The black line is the stress experienced
when the particle is removed.

3.3 Conclusions

In this section we presented numerical simulations for a simple two-dimensional geometry
that approximates the qualitative behaviour of the semiconductor and molding compound
used by Analog Devices. Neglecting the stresses near the edges x = −h1/2 and h1/2, we
showed that in all of the considered scenarios, the highest stresses at the die-molding
interface are located directly below the silica particles As the particles were moved away
from the interface the stresses were shown to decay very fast. A more in depth study of
this phenomena would provide valuable information on how to optimize the size of the
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Figure 10: Stress created at the interface by the presence of the two silica parti-
cles. For this simulations the particle-interface distance is fixed at d = 5µm and
the separation between particles is l = 5µm(blue), 30µm(green), 55µm(red),
80µm(cyan), 105µm(magenta), 205µm(yellow) and 505µm(black).

Figure 11: Stress created at the interface by the presence of the two silica
particles. In this case the separation between particles is fixed at l = 10µm and
the particle-interface distance is d = 5µm (blue), 10µm (green), 15µm (red),
20µm (cyan) and 25µm (magenta).

intermediate layer separating the silicon chip and the molding compound.

4 2D approximation in the complex plane

It is well-known that complex variable theory provides an elegant and powerful tool for
computing incompressible and irrotational fluid flows in 2 dimensions [5]. Perhaps the
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most striking application of this approach is the study of vortex dynamics; analytic contin-
uation and conformal mapping techniques have played significant roles in highly efficient
calculations of the dynamical evolution of vorticity [6], and the fluid forces exerted by
vortices, in a vast array of domains with non-trivial geometries and topologies (see, e.g.,
[7, 8]). It is perhaps less well-known that such techniques can be fruitfully brought to
bear on problems in elasticity theory, as first demonstrated by Kolosov and Muskhel-
ishvili in 1909 (see [9] and references therein). The strategy that we follow here is inspired
by their treatment of elasticity in the complex plane, as presented in Ref. [9], but with
modifications that accommodate thermal stress.

The purpose of these notes is to explore the thermo-mechanical response of a simple
idealised system that captures a flavour of the full problem and is amenable to analytical
investigation. We represent the silica particle as a disc in the complex plane and embed the
disc in a finite medium representing the resin. The Lamé parameters λ, µ, the coefficient
of thermal expansion α and the temperature T of the resin are constant. A thin elastic
loop, with Young’s modulus E, bounds the resin-particle composite and, for simplicity, we
neglect the shear forces within the loop. For convenience, we suppose that the composite
loop-resin-particle system has finite thickness h (out of the plane) and endow the loop
with a rectangular cross-section. The area of the cross-section of the loop is A = hw,
where the width w of the cross-section is much less than the other length scales in the
system, and we will capture the presence of the chip by allowing the product EA to
depend on position within the loop. Of course, we do not permit any element of the
loop-resin-particle system to deform out of the plane and, furthermore, the loop and the
silica particle are both assumed to be inert to changes in temperature. We suppose that
the silica particle is rigid when compared to the resin, and set the displacement of the
resin to zero at its interface with the silica particle. We also appropriately balance the
contact forces at the interface of the loop and the resin.

The small deformation of the composite system due to a change in temperature can
be found by solving

−i
[
(κ+ 1)Ω(Z)− 2µD + βZ

]
=

T

h

dZ

ds
, (5)

for the function Ω(z), which is chosen to be analytic within the region bounded by the
loop. The simple closed curve z = Z(s) specifies the state of the undeformed loop, where
s is the arc parameter of the undeformed loop. The function D(s) is the displacement of
the outer component of the boundary of the resin and has the form

2µD = κΩ(Z)− Z Ω′(Z)− κΩ

(
a2

Z − c
+ c

)
+

(
a2

Z − c
+ c

)
Ω′(Z) , (6)

and the tension T in the loop satisfies

T (s) = EA(s)Re

(
dZ

ds

dD

ds

)
, (7)

where the elastic properties of the loop at the material point s are specified by EA(s).
The centre of the silica particle is located at z = c and a is the radius of the particle. The
material constant κ of the resin is

κ = 3− 4ν , (8)

where the Poisson ratio ν of the resin satisfies

λ

µ
=

2ν

1− 2ν
. (9)

The response of the resin to changes in temperature is determined by β where

β = −(λ+ µ)α(T − T0) , (10)

with T the temperature of the resin and T0 the reference temperature.
We will now turn to the analysis of (5), (6) and (7) for a simple choice of Z(s) and

EA(s); the derivation of (5), (6) and (7) is provided in the Appendix.
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Figure 12: The silica particle (light grey) is represented by a rigid disc, and
the resin (dark grey) is represented by a homogeneous isotropic thermo-elastic
medium. An elastic loop (black curve) interfaces with the outer component of
the boundary of the resin and captures a flavour of the presence of the chip (the
black dot on the right marks the centre of the chip). The silica particle and loop
are assumed to be inert to changes in temperature.

Figure 13: The axially symmetric configuration.

4.1 Application of the model

As we will now show, a perturbative analysis of (5), (6) and (7) for the configuration
shown in Figure 12 yields a relatively simple analytical expression for the inhomogeneity
in the tension due to the presence of the chip and the stresses due to the silica particle.
It is vital to note that our model only allows the chip to sense the particle via interaction
with the resin; it does not account for stresses that arise if the silica particle makes direct
contact with the chip.

4.1.1 Axially symmetric solution

The simplest non-trivial solution to (5), (6) and (7) arises when the silica particle occupies
the inner region of an annulus of resin (Figure 13) and the product EA is constant; thus,
c = 0 and the loop is a circle whose centre is at the origin (for all values of the temperature
T ). The undeformed loop has radius b and, since s is the arc parameter of the undeformed
loop, it follows

Z(s) = b exp(is/b). (11)

The function Ω(z) is chosen to be analytic inside the closed contour Z as part of the
derivation of (6) and, using Z(s) = b2/Z(s), inspection of (6) shows that D can be
expressed as a Laurent series in Z. In particular, a purely radial deformation is described
by1 D = δ1Z where Im(δ1) = 0, and Ω(Z) = α1Z follows from (6). Since Im(T ) = 0 it

1Throughout this section we will label the terms of series in Z by the corresponding power of Z.
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follows that (5), (6), (11) yield Im(α1) = 0 and

(χ− 1)2µδ1 + (κ+ 1)α1 = −β, (12)

2µδ1 = (κ− 1)(1− ε2)α1 , (13)

where

ε =
a

b
, (14)

χ =
EA

2µhb
. (15)

Equation (7) leads to T = EAδ1 and solving (12), (13) for δ1, α1 gives

T = −
EA

2µ

(κ− 1)(1− ε2)β

(κ− 1)[χ(1− ε2) + ε2] + 2
. (16)

Finally, using (8), (9) and (10) to eliminate κ, β yields the expression

T =
EA

2

1− ε2

(1− 2ν)[χ(1− ε2) + ε2] + 1
α(T − T0) , (17)

for the tension in the loop.
It is worth noting that an approximation to (17) can be obtained using simple physical

reasoning. According to Hooke’s law, the tension in the loop is T = EA∆l/l where ∆l
is the increase in circumference of the loop due to the thermal expansion of the resin
and l is the circumference of the loop in the undeformed state. Let r be the radius
of the loop in the deformed state; thus 2πr = l + ∆l. The change in volume ∆V of
the resin is related to temperature as follows: ∆V = π(b2 − a2)hα(T − T0). However,
∆V = π(r2− a2)h−π(b2− a2)h and combining the previous two expressions for ∆V with
r = b+∆r leads to ∆r = b(1− ε2)α(T −T0)/2 to first order in ∆r. Since T = EA∆l/l =
EA∆r/b the result T = EA(1 − ε2)α(T − T0)/2 follows immediately. The additional
terms in the denominator of (17) are a consequence of the back-reaction of the stretched
loop on the resin; the above simple argument does not include the stress exerted by the
loop on the resin in the deformed state.

An immediate consequence of (17) is dT /dε2 < 0, because Poisson’s ratio ν must
satisfy ν < 1/2, which is reassuring because the loop and the silica particle are inert
under changes in temperature and less resin should lead to a lower tension.

4.1.2 Asymmetric configuration

It is straightforward to obtain the tension in the loop when the centre of the silica particle
is a small distance from the centre of the circular loop in the undeformed state (Figure 12).
We suppose that Ω(z) = ξα0+α1z+ξα2z

2+O(ξ2) where the real dimensionless parameter
ξ has been introduced to easily distinguish the perturbations, and we also replace c with
ξc in (6). We will set ξ to unity at the end of the calculation.

Without loss of generality we can set Im(c) = 0 and choose c > 0. It follows that

a2

Z − ξc
+ ξc = ε2Z + ξc

(
1 + ε2

Z2

b2

)
+O(ξ2) , (18)

where ε = a/b as before. Hence

Ω

(
a2

Z − ξc
+ ξc

)
= ξα0 + α1

[
ε2Z + ξc

(
1 + ε2

Z2

b2

)]
+ ξα2ε

4Z2 +O(ξ2) , (19)

and, using Z = b2/Z, inspection of (6) then shows that

D = ξδ0 + δ1Z + ξδ2Z
2 +O(ξ2) , (20)

16



where δ0, δ1, δ2 are constants. The constant δ0 is a uniform displacement and does not
contribute to the tension of the loop, so we will not consider it further. We addressed the
constants δ1, α1 in Section 4.1.1 and the only important new information concerns the
constants δ2, α2. Thus, the remainder of this section is focussed on determining δ2, α2.

For simplicity, we will begin by assuming that EA is constant; we will introduce a
modulation in EA that captures the presence of the chip at the end of this section. Note
that the tension can be written as

T = EARe(δ1 + ξ2δ2Z) +O(ξ2)

= EA(δ1 + ξδ2Z + ξδ2 b
2/Z) +O(ξ2) , (21)

using (7), (20), |dZ/ds| = 1, Z = b2/Z, Im(δ1) = 0. Hence, equating coefficients of ξZ2

in (5), (6) leads to

EAδ2 = −hb[(κ+ 1)α2 − 2µδ2] , (22)

2µδ2 = κ(1− ε4)α2 − c(κ− 1)
ε2

b2
α1. (23)

Solving (22), (23) for δ2, α2 and using the results to eliminate δ2 in T gives

T = T0

{
1−

c

b

8ε2(1− ν)

(1− ε2){(3− 4ν)[χ(1− ε4) + ε4] + 1}
cos θ

}
, (24)

where O(ξ2) terms have been discarded prior to setting ξ to unity and θ = s/b is the angle
from the real axis in the anti-clockwise sense. The constant T0 = EAδ1 is the tension in
the loop when c = 0 (i.e. that given in (17)), the constant χ is given in (15), Poisson’s
ratio ν has been introduced using (8), and (11) has been used to show the point-wise
dependence of (24). Since the parameters in (24) satisfy ν < 1/2, χ > 0, 0 < ε < 1,
c/b > 0 it follows that the tension at θ = 0 is less than the tension at θ = π. This is
intuitively reasonable because there is more resin to the left of the particle than to the
right of the particle (Figure 12).

It is straightforward to capture a flavour of the presence of the chip by modulating
the elastic parameter EA of the loop as follows:

EA(s) = EA0(1 + γ cos θ) , (25)

where EA0 is a constant and θ = s/b. The centre of the chip is located at s = 0 and the
constant γ in (25) satisfies γ > 0 to ensure that θ = 0 is a maximum of EA. Equation
(25) can be written as

EA(s) = EA0[1 + γ1Z(s) + γ1b
2/Z(s)] , (26)

where 2bγ1 = γ, and a repetition of the previous analysis with γ replaced by ξγ leads to
the modification

EA0 (δ2 + γ1δ1) = −hb[(κ+ 1)α2 − 2µδ2] , (27)

of (22). Solving (23), (27) for δ2, α2 then leads to

T = T00

{
1−

8ε2(1− ν)c/b− γ [1 + (3− 4ν)ε4](1− ε2)

(1− ε2){(3− 4ν)[χ0(1− ε4) + ε4] + 1}
cos θ

}
, (28)

where

χ0 =
EA0

2µhb
, T00 =

EA0

2

1− ε2

(1− 2ν)[χ0(1− ε2) + ε2] + 1
α(T − T0) , (29)

and, as before, O(ξ2) terms have been discarded prior to setting ξ to unity. Note that, to
first order in the perturbation, the tension T is directly proportional to the temperature
difference T − T0.
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Since ν < 1/2, χ0 > 0, 0 < ε < 1, inspection of (28) shows that the denominator of
the coefficient of cos θ is positive. However, unlike (24), the numerator has an indefinite
sign because the influence of the chip and the proximity of the silica particle contribute
to (28) with opposite signs (recall γ > 0, c > 0). It follows that a choice of parameters
exists for which the inhomogeneity in the tension vanishes; the optimum position c∗ of
the silica particle for which this occurs is

c∗ =
bγ [1 + (3− 4ν)ε4](1− ε2)

8ε2(1− ν)
. (30)

4.2 Conclusions

We have developed an efficient model of a thermo-mechanical composite system that
captures a flavour of the full problem. Our results are compatible with the notion that
less resin is associated with lower stress and the position of the silica particle can be chosen
to render the stress in the chip uniform. Although our results are intuitively reasonable,
we caution that they are based on a perturbative analysis and Hertzian contact stresses
between the particle and the chip are not included. We also caution that our model of
the chip is somewhat crude and also does not accommodate shear forces. It can be shown
that the above results are insufficient for deducing the curvature of the deformed loop
(which could be used to estimate the magnitude of the shear forces in the chip) because
the perturbative analysis needs to be carried through to at least second order in ξ for this
purpose.

5 Summary and future work

The aim of this report was to use mathematical techniques to assist Analog Devices in
developing an understanding of the stresses in a silicon chip encased in an epoxy compound
due to moisture absorption and the presence of silica particles in the compound. Several
different modelling approaches were considered and these will form the basis of future
inquiries.

In Section 2 the stress field in the system was approximated by considering a model
for the curvature due to the absorption of water in a bi-lateral sheet. The model of
Timoshenko [1] was adapted to the current problem to obtain a differential equation for
the vertical displacement of the strip due to thermal expansion (or equivalently absorption
of water). This bulk approach was easy to implement and did not require time consuming
simulations. It showed that variation in silica concentration along the length of the coating
can result in extra stresses on the chip due to bending. Further work could test to what
extent this variation exists in the epoxy coating and how much would be required to cause
the observed damage.

In Section 3 the FEM was used to study the stress field near the epoxy molding-die
interface for a reduced two-dimensional case. We have identified three possible extensions
to the analysis which can be considered in future studies:

1. The largest stresses were found to be directly beneath the particles near the interface.
These stresses were shown to decay very rapidly as the particles were moved away
from the interface. Further analytical modelling is required to elucidate the nature
of this rapid decay. Indeed, understanding this phenomena in detail would provide
invaluable insight on the optimal size of the intermediate layer separating the silicon
chip from the molding compound.

2. Another extension would be to include more particles in the simulations to reflect
the actual particle distribution in the molding. The particles should be randomly
distributed with varying sizes. Matlab can be used to generate the FEM geometry,
which can then be imported into COMSOL. Preliminary results of geometries with
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randomly distributed particles are shown in Figure 14. For example, Figures 14(a)
and 14(b) correspond to geometries containing 1000 and 100 particles, respectively.
Figures 14(c) and 14(d) show geometries where the maximum particle size was in-
creased. Running COMSOL simulations using this geometries would provide a more
realistic description of the actual process.

3. The bending of the epoxy compound was modelled by imposing a quadratic dis-
placement at the lower boundary of the domain. This simplification was necessary
to make the model tractable in the short term. In a future study, introduction of
bending via a physics-based approach will make the model more representative of
the actual system. In fact, COMSOL has a solid mechanics module that allows one
to include thermal expansion. This would allow one to introduce bending into the
model in a more realistic way.
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Figure 14: Particle geometry for (a) 1000 particles (b) 100 particles with mini-
mum radius of 0.0001 and maximum radius of 0.1 and for (c) 400 particles and (d)
100 particles with minimum radius of 0.01 and maximum radius of 0.5. (Graphs
were generated using dimensionless quantities.)

In Section 4 complex variable theory was used to solve a model for a thermo-mechanical
composite system. The solutions indicated that less resin is associated with lower stresses.
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Moreover, the position of the silica particles can be selected such that the stress in the
chip becomes uniform. In a future study the model should be extended to include shear
forces and Hertzian contact stresses between the particle and the chip.

The problem presented by Analog Devices proved to be demanding due to the inho-
mogeneity of the materials involved, and the group worked hard to come up with several
different possible approaches that may lead to further progress. It is quite likely that
pursuing one or more of these will lead to an answer to the questions posed.

A Derivation of complex theory elasticity model

The stress tensor σjk of the resin is

σjk = µ(∂juk + ∂kuj) +
(
λ∂lu

l + β
)
δjk , (31)

where j, k = 1, 2, and the vector u(x, y) = u1(x, y)x̂ + u2(x, y)ŷ is the displacement
of the infinitesimal element of resin located at (x, y) in the undeformed configuration.
Furthermore, uj = δjkuk where δjk is the Kronecker delta and the Einstein summation
convention has been used.

Following the strategy in Ref. [10], the form of the constant β in (31) is fixed by
demanding that σjk vanishes for a finite element of resin that is allowed to expand freely
due to an increase in temperature. The expression for β is sensitive to the dimension
of the ambient space; our model is constrained to 2 dimensions whereas the analysis in
Chapter 1 of Ref. [10] admits thermal expansion in 3 dimensions. Thus, the expression in
Ref. [10] corresponding to β will not agree with our analysis here; we will determine the
form of β at the end of the Appendix.

Navier’s equation

µ[∇2u+∇(∇ · u)] + λ∇(∇ · u) = 0 , (32)

follows from the local equation of momentum balance ∂jσ
j
k = 0 and (31). Introducing

z = x + iy and the complex displacement D(z, z) = u1(x, y) + iu2(x, y) leads to the
following:

x̂ ·∇(∇ · u) + iŷ ·∇(∇ · u) = 2∂z̄(∂zD + ∂zD), (33)

x̂ · ∇2u+ iŷ · ∇2u = 4∂z̄∂zD , (34)

and (32) can be written as

4µ∂z̄∂zD + 2(λ+ µ)∂z̄(∂zD + ∂zD) = 0. (35)

Inspection of (35) immediately leads to

4µ∂zD + 2(λ+ µ)(∂zD + ∂zD) = φ′(z) , (36)

where the unknown function φ(z) has been introduced via its derivative for later conve-
nience.

Equation (36) and its complex conjugate can be solved for ∂zD and the result used
to eliminate ∂zD from (36). Introducing Ω(z) = (λ+ µ)φ(z)/[4(λ+ 2µ)] in the resulting
expression for ∂zD yields

2µ∂zD = κΩ′(z)− Ω′(z) , (37)

where κ is given in (8). The complex displacement

2µD(z, z̄) = κΩ(z)− zΩ′(z)− ω(z) , (38)

is immediately obtained by inspection of (37) where the unknown function ω(z) has been
introduced via its complex conjugate to conform with the conventions used in Ref. [9].
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Note that (38) is the general solution to (35) and the unknown functions Ω(z) and ω(z)
must be fixed by the boundary conditions. The displacement is chosen to vanish at the
interface between the resin and the silica particle and this will allow us to eliminate ω(z)
(we will return to this point shortly).

As noted in Section 4, it is convenient to endow the resin with a finite height h out
of the plane and, from this perspective, a curve in the complex plane is equivalent to a
ribbon of height h. The contact force per unit area fj exerted at a point on the resin by
the elastic loop is fj = σj

knk, where the unit normal nk points towards the loop. The
boundary condition that we will use to determine Ω(z) is given by the requirement that
the contact force per unit area exerted by the resin on the elastic loop must be equal and
opposite to the contact force per unit area exerted by the loop on the resin. Expressing
σjk in terms of the complex displacement leads to

σ11 + σ22 = 2(λ+ µ)(∂zD + ∂zD) + 2β, (39)

σ11 − σ22 = 2µ(∂zD + ∂zD), (40)

σ12 = iµ(∂zD − ∂zD) , (41)

which, combined with (38), yield

σ11 + iσ12 = Ω′(z) + Ω′(z)− zΩ′′(z)− ω′(z) + β, (42)

σ22 − iσ12 = Ω′(z) + Ω′(z) + zΩ′′(z) + ω′(z) + β. (43)

The geometry of the outer component of the boundary of the resin is specified by the
simple closed curve z = Z(s) where s is the arc parameter of the curve, and we choose
Z to be oriented in the anti-clockwise sense. The tangent to the curve is dZ/ds and it
follows that the outward-pointing normal is n = −idZ/ds where n = n1+ in2. Using (42),
(43) with fj = σj

knk yields the remarkably compact expression

f = −i
d

ds

(
Ω(Z) + Z Ω′(Z) + ω(Z) + βZ ,

)
, (44)

for the force per unit area exerted by the elastic loop on the resin, where f = f1 + if2.

A.1 Boundary condition at the resin-particle interface

For simplicity, the silica particle is assumed to be rigid in comparison with the resin and
the elastic loop. Thus, the displacement (38) must vanish on the curve (z− c)(z− c) = a2

where c is the centre of the particle and a is the radius of the particle. A simple way
to enforce this condition is to analytically continue Ω into the disc occupied by the silica
particle and choose

ω(z) = κΩ

(
a2

z − c
+ c

)
−

(
a2

z − c
+ c

)
Ω′(z). (45)

Note that Ω(z) is chosen to be analytic everywhere within the outer component of the
boundary of the resin, i.e. within the simple closed curve z = Z(s).

A.2 Boundary condition at the resin-loop interface

The width of the cross-sections of the elastic loop are assumed to be much less than the
other length scales in the system. Thus, for simplicity, we identify the outer component
of the boundary of the resin with the space curve representing the loop and neglect shear
forces within the loop. The loop then satisfies the balance law

dN

ds
+ F = 0 , (46)
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associated with an elastic string (see, e.g. [11]) and the contact force N is given by

N = T
d̂R

ds
, (47)

where T is the tension in the loop, R(s) is the space curve describing the shape of the
loop, s is the arc parameter of the loop in the undeformed state and

d̂R

ds
=

1

|dR/ds|

dR

ds
. (48)

The tension is specified in terms of the stretch |dR/ds| and we will adopt the simplest
choice: the linear stress-strain relationship

T (s) = EA(s)

(∣∣∣∣
dR

ds

∣∣∣∣− 1

)
, (49)

where the loop has Young’s modulus E and A(s) is the area of the cross-section of the
loop labelled by s. The vector F in (46) is the force per unit reference length exerted on
the loop by the resin; thus

F = −h (f1x̂+ f2ŷ) , (50)

since f = f1 + if2 is the force per unit area exerted by the resin on the loop and h is the
height of the cross-sections.

The outer component of the boundary of the resin in the undeformed state is the curve
z = Z(s) and so the point labelled by s is located at Z(s) + D(s) in the deformed state
where

D(s) = D
(
Z(s), Z(s)

)
. (51)

Thus,
R(s) = Re[Z(s) +D(s)]x̂+ Im[Z(s) +D(s)]ŷ, (52)

and

T (s) = EA(s)Re

(
dZ

ds

dD

ds

)
, (53)

follows from (49), (52) to first order in the displacement D and its derivatives; hence

x̂ ·N + iŷ ·N = T

(
x̂ ·

d̂R

ds
+ iŷ ·

d̂R

ds

)

= T
dZ

ds
(54)

to first order in the displacement D and its derivatives. Thus, (44), (46), (50) and (54)
yield

d

ds

(
T

dZ

ds

)
+ ih

d

ds

(
Ω(Z) + Z Ω′(Z) + ω(Z) + βZ

)
= 0 , (55)

to first order in the displacement D and its derivatives. Equation (5) is obtained by
integrating (55), setting the constant of integration to zero and eliminating ω(Z) using
(38) and (51).

A.3 Fixing the constant β

The thermo-elastic behaviour of a disc of unconstrained resin can be easily explored by
setting ω(z) = 0 and solving the free surface boundary condition

Ω(Z) + Z Ω′(Z) + βZ = 0 (56)
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for Ω, where Z(s) = b exp(is/b) and b is the radius of the disc (see (44) with ω(z) = 0).
On grounds of symmetry, Ω(z) = α1z and D(z, z) = δ1z where Im(δ1) = 0; hence (38)
yields

2µδ1 = κα1 − α1 (57)

and Im(α1) = 0 is an immediate consequence. Thus

δ1 =
−(κ− 1)β

4µ
(58)

where α1 has been eliminated using (56), and the change

π(b+ δ1)
2 − πb2 =

−(κ− 1)β

2µ
πb2 +O(δ21) (59)

in area of the disc follows to first order in δ1. Hence, the identification

β =
−2µ

(κ− 1)
α(T − T0) (60)

emerges from (59) where α is the coefficient of thermal expansion of the resin, T is the
temperature of the resin and T0 is the temperature of the resin in the undeformed state.
Equation (10) is obtained using (8), (9), and (60).
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