Measurements of four-lepton production in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$ with the ATLAS detector

ATLAS Collaboration*

A R TICLE INFO

Article history:

Received 28 September 2015
Received in revised form 4 December 2015
Accepted 16 December 2015
Available online 18 December 2015
Editor: W.-D. Schlatter

Abstract

The four-lepton ($4 \ell, \ell=e, \mu$) production cross section is measured in the mass range from 80 to 1000 GeV using $20.3 \mathrm{fb}^{-1}$ of data in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$ collected with the ATLAS detector at the LHC. The 4ℓ events are produced in the decays of resonant Z and Higgs bosons and the nonresonant $Z Z$ continuum originating from $q \bar{q}, g g$, and $q g$ initial states. A total of 476 signal candidate events are observed with a background expectation of 26.2 ± 3.6 events, enabling the measurement of the integrated cross section and the differential cross section as a function of the invariant mass and transverse momentum of the four-lepton system. In the mass range above 180 GeV , assuming the theoretical constraint on the $q \bar{q}$ production cross section calculated with perturbative NNLO QCD and NLO electroweak corrections, the signal strength of the gluon-fusion component relative to its leading-order prediction is determined to be $\mu_{g g}=$ 2.4 ± 1.0 (stat.) ± 0.5 (syst.) ± 0.8 (theory). © 2015 CERN for the benefit of the ATLAS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP ${ }^{3}$.

1. Introduction

This paper presents measurements of the production of four isolated charged-leptons in proton-proton collisions at a centre-ofmass energy of $\sqrt{s}=8 \mathrm{TeV}$ using $20.3 \mathrm{fb}^{-1}$ of data collected with the ATLAS detector at the LHC. For the four-lepton ($4 \ell, \ell=e, \mu$) production, both the integrated cross section and the differential cross sections as functions of invariant mass ($m_{4 \ell}$) and transverse momentum ($p_{\mathrm{T}}^{4 \ell}$) of the 4ℓ system are measured in a mass range $80<m_{4 \ell}<1000 \mathrm{GeV}$. In addition, the 4ℓ signal strength of gluon fusion ($\mathrm{g} g \mathrm{~F}$) production relative to its leading-order (LO) QCD estimate is measured. These measurements test the validity of the Standard Model (SM) through the interplay of QCD and electroweak effects for different 4ℓ production mechanisms as described by the LO Feynman diagrams shown in Fig. 1.

The 4ℓ signal events come from the decays of resonant Z and Higgs bosons and the non-resonant $Z Z$ continuum produced from $q \bar{q}, g g$, and $q g$ initial states, which are briefly discussed below.

- $q \bar{q}$-initiated 4ℓ production

The tree-level diagrams for $q \bar{q} \rightarrow 4 \ell$ production are shown in Fig. 1(a) and Fig. 1(b). The cross section as a function of $m_{4 \ell}$ is shown in Fig. 2 (the dashed black histogram). The 4ℓ event production at the Z resonance occurs predominantly via the s-channel diagram as shown in Fig. 1(a), and was measured previously by

[^0]the ATLAS and CMS collaborations [1,2]. In the 4ℓ invariant mass region above the Z resonance the 4ℓ event production mainly proceeds through the t-channel process as shown in Fig. 1(b). The cross section significantly increases when both Z bosons are produced on-shell, resulting in a rise in the $m_{4 \ell}$ spectrum around 180 GeV . In addition, a small portion of the 4ℓ events with the $q \bar{q}$ initial state can be produced from the vector-boson scattering (VBS) process.

- gg-initiated 4ℓ production

The LO diagrams of the Higgs-boson production and non-resonant 4ℓ production via $g g F$ are shown in Fig. 1(c) and Fig. 1(d), respectively. The cross sections as a function of $m_{4 \ell}$ are shown in Fig. 2 (the coloured histograms). The features of the 4ℓ events from the decays of Higgs-boson and continuum $Z Z$ production via $g g F$ are described below.
(1) The dominant Higgs-boson production mechanism is $g g F$. Other Higgs-boson production mechanisms, vector-boson fusion (VBF), vector-boson associated production ($V H$), and toppair associated production ($t \bar{t} H$), contribute less than 15% to the on-shell Higgs-boson decay to $Z Z^{*}$ event rate. The onshell Higgs-boson production and decay leads to a narrow resonance around 125 GeV , which has been a key signature in the Higgs-boson discovery by the ATLAS [3] and CMS [4] collaborations. The off-shell Higgs-boson production has a large destructive interference with continuum $Z Z$ production from the $g g F$ processes [5-7]. This effect can be observed in the

Fig. 1. The LO Feynman diagrams for the $q \bar{q}-$ and $g g$-initiated production of 4ℓ : (a) s-channel production of $q \bar{q} \rightarrow Z^{(*)} \rightarrow \ell^{+} \ell^{-}$with associated radiative decays to an additional lepton pair; (b) t-channel production of $q \bar{q} \rightarrow Z^{(*)} Z^{(*)} \rightarrow 4 \ell$; (c) Higgs-boson production through gluon fusion $g g \rightarrow H^{(*)} \rightarrow Z Z^{(*)} \rightarrow 4 \ell$; (d) non-resonant 4ℓ production through the quark-box diagram $g g \rightarrow Z^{(*)} Z^{(*)} \rightarrow 4 \ell$. The $Z^{(*)}$ notation stands for production of on- and off-shell Z bosons (Z and Z^{*}) and production of off-shell photons (γ^{*}).

Fig. 2. The differential cross sections, $\mathrm{d} \sigma / d m_{4 \ell}$ versus the invariant mass of the four leptons $m_{4 \ell}$, calculated by MCFM from the $q \bar{q}$ and $g g$ initial states at $\sqrt{s}=8 \mathrm{TeV}$ for the $2 e 2 \mu$ final state in the experimental fiducial phase space (see Table 2 for definition). The inclusive $g g \rightarrow 4 \ell$ distribution is the sum of the $g g \rightarrow H \rightarrow 4 \ell$ and the $g g \rightarrow Z Z \rightarrow 4 \ell$, and interference terms. The calculation of the $q \bar{q} \rightarrow 4 \ell$ differential production cross section includes perturbative QCD corrections at NLO, while the distributions from the gg initial state are calculated at LO. The NNLO K-factors are applied to on-shell Higgs-boson production.
high-mass tail of the distributions shown in Fig. 2, and has been used as a tool to constrain the total Higgs-boson width by the ATLAS and CMS collaborations [8,9].
(2) The non-resonant $Z Z \rightarrow 4 \ell$ production via $g g F$, includes the production of off-shell Higgs bosons and continuum ZZ production as well as their interference. This process produces a sizeable number of 4ℓ events in the $m_{4 \ell}>2 \times m_{Z}$ mass region and dominates the total $g g$-initiated 4ℓ production.

Contributions from different processes have different strengths as a function of $m_{4 \ell}$ (Fig. 2) and $p_{\mathrm{T}}^{4 \ell}$. Therefore, differential 4ℓ production cross sections are measured separately as a function of $m_{4 \ell}$ and $p_{\mathrm{T}}^{4 \ell}$. The measurement of the integrated cross section is first performed in the experimental fiducial phase space, and then extended to a common phase space for three 4ℓ channels: $4 e, 4 \mu$, and $2 e 2 \mu$. This common phase space is defined by $80<m_{4 \ell}<1000 \mathrm{GeV}, m_{\ell^{+} \ell^{-}}>4 \mathrm{GeV}, p_{\mathrm{T}}^{Z_{1,2}}>2 \mathrm{GeV}$, and the presence of four leptons each with $p_{\mathrm{T}}>5 \mathrm{GeV}$ and $|\eta|<2.8$.

Currently, the gluon-fusion production is estimated theoretically with only a LO QCD approximation for the $g g$ continuum production [6,10]. In this analysis the mass range above 180 GeV is used to determine the signal strength of the gluon-fusion com-
ponent with respect to its LO prediction. This is done by fitting the observed $m_{4 \ell}$ spectrum using the next-to-next-to-leading-order (NNLO) QCD theoretical prediction, corrected for next-to-leadingorder (NLO) electroweak effects, for the production originating from the $q \bar{q}$ initial state.

2. The ATLAS detector

The ATLAS detector [11] has a cylindrical geometry ${ }^{1}$ and consists of an inner tracking detector (ID) surrounded by a 2 T superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer (MS) with a toroidal magnetic field. The ID provides tracking for charged particles for $|\eta|<2.5$. It consists of silicon pixel and strip detectors surrounded by a straw tube tracker that also provides transition radiation measurements for electron identification. The electromagnetic and hadronic calorimeter system covers the pseudorapidity range $|\eta|<4.9$. For $|\eta|<2.5$, the liquid-argon electromagnetic calorimeter is finely segmented and plays an important role in the electron identification. The MS includes fast trigger chambers ($|\eta|<2.4$) and high-precision tracking chambers covering $|\eta|<2.7$. A three-level trigger system selects events to be recorded for offline physics analysis.

3. Signal and background simulation

The signal modelling for $q \bar{q} \rightarrow 4 \ell$ production uses the POWHEGBOX Monte Carlo (MC) program [12-14], which includes perturbative QCD corrections at NLO. The production through the $q g$ initial state is an NLO contribution to the $q \bar{q}$ process. The CT10NLO [15] set of parton distribution functions (PDFs), with QCD renormalisation and factorisation scales $\left(\mu_{\mathrm{R}}, \mu_{\mathrm{F}}\right)$ set to $m_{4 \ell}$ are used to calculate the cross section and generate the kinematic distributions. The NNLO QCD [16] and the NLO electroweak (EW) [17] corrections are applied to the NLO cross section calculated by POWHEG-BOX as a function of the 4ℓ mass for the kinematic region where both Z bosons are produced on-shell. Following the same approach as described in Ref. [8], the 4ℓ event distributions are re-weighted to match those expected when using QCD scales of $m_{4 \ell} / 2$. This is done to unify the QCD scales used in simulation of the $q \bar{q}$ and the $g g$ processes.

[^1]The signal modelling of the on-shell Higgs-boson production via the $g g F$ and VBF mechanisms uses POWHEG-BOX which provides calculations at NLO QCD, with the CT10NLO PDFs and $\mu_{\mathrm{R}}, \mu_{\mathrm{F}}=$ $m_{4 \ell}$. The Higgs-boson production via the VH and $t \bar{t} H$ mechanisms is simulated with PYTHIA8 [18]. The NNLO QCD and NLO EW effects on the cross-section calculations for on-shell Higgs-boson production are summarised in Ref. [19]. The expected event yields of on-shell Higgs boson are normalised to the higher-order corrected cross sections.

The non-resonant 4ℓ signal production includes off-shell Higgsboson production, continuum $Z Z$ production, and their interference. The LO MCFM generator [20] is used to simulate the nonresonant ggF production, with the CT10NNLO [21] set of PDFs with QCD scales of $\mu_{\mathrm{R}}, \mu_{\mathrm{F}}$ set to $m_{4 \ell} / 2$; while the LO MADGRAPH generator [22] is used to simulate non-resonant VBF and VBS production and their interference. The NNLO QCD corrections are available for off-shell Higgs-boson production [23] and for the interference between off-shell Higgs bosons and $Z Z$ pairs from the $g g$ initial state [24]. However, no higher-order corrections are available for the continuum $g g \rightarrow Z Z$ process, which dominates the 4ℓ events from the $g g$ initial state in the region outside the Higgs-boson resonance. Therefore, the LO cross section is used for the normalisation of the 4ℓ events produced in gluon-fusion processes.

All the signal MC generators are interfaced to PYTHIA8 for parton shower simulation, except MADGRAPH, which is interfaced to PYTHIA6 [25].

Backgrounds in this analysis include reconstructed 4ℓ events from $Z+$ jets, $t \bar{t}$, diboson ($Z W, Z \gamma$ and double Drell-Yan), triboson $V V V(V=Z, W)$, and $V H(H \rightarrow V V)$, and $Z+\operatorname{top}(t \bar{t}$ and $t)$ processes, which are also simulated.

The reducible background from $Z+$ jets production, which includes light- and heavy-flavour contributions, is modelled using both SHERPA [26] and ALPGEN [27]. The $Z \gamma$ process is simulated with SHERPA. The $t \bar{t}$ background is modelled using POWHEG-BOX.

Background events from $Z H$ production, where $Z \rightarrow \ell \ell$ and $H \rightarrow V V(V V=W W$ or $Z Z$ with two leptons and two neutrinos or two leptons and two jets in the final state), are simulated with PYTHIA8. The $Z W$ and the $t Z$ processes are simulated with SHERPA and MADGRAPH, respectively. The irreducible background from $V V V$ and $t \bar{t} Z$ is modelled with MADGRAPH. Finally, the double-Drell-Yan ZZ production is modelled with PYTHIA8.

For background modelling the POWHEG-BOX and MADGRAPH generators are interfaced to PYTHIA6 for the parton shower, hadronisation and underlying-event simulation. The ALPGEN generator is interfaced to HERWIG [28] for the parton shower and to JIMMY [29] for the underlying event simulation. SHERPA uses built-in models for both the parton shower and underlying-event description.

Both the signal and background MC events are simulated using the ATLAS detector simulation [30] based on the GEANT4 [31] framework. Additional $p p$ interactions in the same and nearby bunch crossings (pile-up) are included in the simulations. The MC samples are re-weighted to reproduce the distribution of the mean number of interactions per bunch crossing observed in the data.

4. Event reconstruction and selection

The following event selection criteria are applied to the events collected with a single-lepton or dilepton trigger. The transverse momentum and transverse energy thresholds of the single-muon and single-electron triggers are 24 GeV . Two dimuon triggers are used, one with symmetric thresholds at 13 GeV and the other with asymmetric thresholds at 18 GeV and 8 GeV . For the dielectron trigger the symmetric thresholds are 12 GeV . Furthermore, there is
an electron-muon trigger of thresholds at 12 GeV (electron) and 8 GeV (muon).

A primary vertex reconstructed from at least three tracks, each with $p_{\mathrm{T}}>0.4 \mathrm{GeV}$, is required. For events with more than one primary vertex, the vertex with the largest $\sum p_{\mathrm{T}}^{2}$ of the associated tracks is selected.

Electron candidates are reconstructed from a combination of a cluster of energy deposits in the electromagnetic calorimeter and a track in the ID. They are required to have $p_{\mathrm{T}}>7 \mathrm{GeV}$ and $|\eta|<$ 2.47. Candidate electrons must satisfy a loose set of identification criteria based on a likelihood built from parameters characterising the shower shape and track association as described in Ref. [32].

Muon identification is performed according to several criteria based on the information from the ID, the MS, and the calorimeter. The different types of reconstructed muons are: a) Combined (CB), which is the combination of tracks reconstructed independently in the ID and MS; b) Stand-Alone (SA), where the muon trajectory is reconstructed only in the MS; c) Segment-tagged (ST), where a track in the ID is associated with at least one local track segment in the MS; and d) Calorimeter-tagged (CaloTag), where a track in the ID is identified as a muon if it is associated with a minimum ionising particle's energy deposit in the calorimeter.

The acceptance for both the CB and ST muons is $|\eta|<2.5$, while the SA muons are used to extend the $|\eta|$ acceptance to include the region from 2.5 to 2.7 , which is not covered by the ID. CaloTag muons are used in the rapidity range $|\eta|<0.1$ where there is incomplete MS coverage. All muon candidates are required to have $p_{\mathrm{T}}>6 \mathrm{GeV}$.

In order to reject electrons and muons from hadron decays, only isolated leptons are selected. Two isolation requirements are used, one for the ID and one for the calorimeter. For the ID, the requirement is that the scalar sum of the transverse momenta, $\sum p_{\mathrm{T}}$, of all tracks inside a cone of $\Delta R \equiv \sqrt{(\Delta \eta)^{2}+(\Delta \phi)^{2}}=0.2$ around the lepton, excluding the lepton itself, be less than 15% of the lepton p_{T}. For the calorimeter, the $\sum E_{\mathrm{T}}$ deposited inside a cone of $\Delta R=0.2$ around the lepton, excluding the lepton itself and corrected for contributions from pile-up and, in the case of electrons, shower leakage, is required to be less than 30% of the muon $p_{\text {T }}$ (15% for $S A$ muons) and 20% of the electron E_{T}.

At the closest approach of a track to the primary vertex, the ratio of the transverse impact parameter d_{0} to its uncertainty, the d_{0} significance, must be smaller than 3.5 (6.5) for muons (electrons) to further reject leptons from heavy-flavour decays. The longitudinal impact parameter, $\left|z_{0}\right|$, must be less than 10 mm for electrons as well as muons (no vertex requirements are applied to SA muons).

Selection of lepton quadruplets is done separately in each of the channels $4 \mu, 2 e 2 \mu, 4 e$, keeping only a single quadruplet per channel. Candidate quadruplets are formed by selecting two oppositesign, same-flavour lepton pairs ($\ell^{+} \ell^{-}$). The two leading- p_{T} leptons of the quadruplet must have $p_{\mathrm{T}}>20$ and 15 GeV , respectively, while the third lepton must have $p_{\mathrm{T}}>10$ (8) GeV if it is an electron (muon). The four leptons of a quadruplet are required to be separated from each other by $\Delta R>0.1$ (0.2) for same (different) flavour. At most one SA or a CaloTag muon is allowed in each quadruplet. The inclusion of final-state radiation to charged leptons follows the same approach as described in Ref. [33]. Each event is required to have the triggering lepton(s) matched to one or two of the selected leptons. All the selected 4ℓ events must lie in the $80<m_{4 \ell}<1000 \mathrm{GeV}$ range.

For each channel, the lepton pair with the mass closest to the Z-boson mass is selected as the leading dilepton pair and its invariant mass, m_{12}, is required to be between 50 and 120 GeV . The sub-leading $\ell^{+} \ell^{-}$pair with the largest invariant mass, m_{34}, among the remaining possible pairs, is selected in the invariant
mass range $12<m_{34}<120 \mathrm{GeV}$. In the $4 e$ and 4μ channels all possible $\ell^{+} \ell^{-}$pairs are required to have $m_{\ell^{+} \ell^{-}}>5 \mathrm{GeV}$ to reject events containing $J / \psi \rightarrow \ell^{+} \ell^{-}$decays. The transverse momenta of the lepton pairs must be above 2 GeV .

5. Background estimation

The dominant reducible backgrounds for this analysis are from $Z+$ jets and $t \bar{t}$ processes and are estimated from data. Contributions from $Z W, Z \gamma, t Z$ as well as from the irreducible backgrounds from $t \bar{t} Z, V V V, Z H$ and double-DY processes are estimated from simulation.

The $Z+$ jets and $t \bar{t}$ backgrounds are estimated using two different final states in data: $\ell \ell+\mu \mu$ and $\ell \ell+e e$, where $\ell \ell(\ell=e, \mu)$ is the leading-lepton pair. The $\ell \ell+\mu \mu$ background arises from $Z+$ jets and $t \bar{t}$ processes where the $Z+$ jets contribution involves the associated production of a Z boson and heavy-flavour hadrons, which decay semileptonically, and a component arising from $Z+$ light-flavour jets with subsequent π / K in-flight decays. The background for $\ell \ell+e e$ final states arises from associated production of a Z boson with other objects namely jets misidentified as electrons, which can be light-flavour hadrons misidentified as electrons, photon conversions reconstructed as electrons, or electrons from semileptonic decays of heavy-flavour hadrons.

For both the $\ell \ell+\mu \mu$ and $\ell \ell+e e$ cases, the numbers of background events are estimated from a fit performed simultaneously to three mutually exclusive control regions, each of them providing information on one or more background components. The fit is based on the mass of the leading dilepton, m_{12}, which peaks at the Z mass for the $Z+$ jets component and has a broad distribution for the $t \bar{t}$ component. The three control regions are fit simultaneously to extract the different components of the reducible background, using a profile likelihood approach where the input template shapes for $Z+$ jets and $t \bar{t}$ are obtained from simulation. The fitted yields in the control regions are extrapolated to the signal region using efficiencies, referred to as transfer factors, obtained from simulation. Independent validation regions are used to check the extrapolations.

The three control regions for $\ell \ell+\mu \mu$ background are defined based on the impact parameter significance and isolation variables of the sub-leading muon pair and are constructed as follows:

- A heavy-flavour-enriched control region where at least one of the muons in the second pair fails the impact parameter significance requirement while the isolation requirement is relaxed;
- A light-flavour-enriched control region where at least one of the muons in the second pair fails the isolation requirement but passes the impact parameter significance cut;
- A $t \bar{t}$-enriched region where the leading lepton pair is made of opposite-sign and different-flavour leptons. For the muons of the second pair there is no charge requirement, the isolation cut is relaxed and the muons must not satisfy the impact parameter requirement.

A validation region to check the $\ell \ell+\mu \mu$ background extrapolation is populated by both $Z+$ jets and $t \bar{t}$. The leading lepton pair is required to fulfil the full selection criteria, while there is neither isolation nor impact parameter requirements on the sub-leading muon pair. This region is used to check the fit results and verify that the data and MC simulation agree.

The three control regions for $\ell \ell+e e$ background are defined based on the impact parameter significance, isolation and electron identification requirements on the second electron pair. In all control regions at least one of the electrons in the second pair must

Table 1
Numbers of expected background events for different processes and channels.

Process	$4 e$	4μ	$2 e 2 \mu$
$t \bar{t}$	0.45 ± 0.24	0.68 ± 0.19	1.3 ± 0.5
$Z+$ jets	0.6 ± 0.29	5.3 ± 1.5	6.3 ± 1.4
Diboson	1.25 ± 0.18	0.83 ± 0.18	2.84 ± 0.34
Triboson	0.67 ± 0.12	0.97 ± 0.14	1.46 ± 0.19
$Z+$ top	0.62 ± 0.15	1.19 ± 0.32	1.7 ± 0.5

not satisfy the identification criteria. These regions are constructed as follows:

- A $Z+$ jets-enriched control region where at least one of the electrons of the second pair fails the track isolation and no calorimeter isolation is required;
- An additional $Z+$ jets-enriched control region where no charge requirement is made on the electrons of the second pair, while at least one of these electrons fails the impact parameter selection and no calorimeter or track isolation is required;
- A $t \bar{t}$-enriched region, where the leading lepton pair is selected from opposite-sign and different-flavour leptons. There is no charge requirement for the sub-leading electron pair. At least one of the electrons of the second pair fails the calorimeter isolation requirement and neither track isolation nor impact parameter requirements are applied.

A validation region to check the $\ell \ell+e e$ background extrapolation is defined by removing the calorimeter isolation and requiring that at least one electron in the sub-leading pair fails the electron identification. Each candidate in the pair is required to pass the impact parameter and the track isolation selections. this region is used to check the fit outcome and verify that the data and MC simulation agree.

The residual contributions from $Z Z$ and $Z W$ production in all control regions are estimated from simulation. The purity of the $Z+$ jets and $t \bar{t}$ backgrounds in the control regions is above 95%.

In the validation regions, the post-fit MC predictions agree with the data within the statistical uncertainty.

The major uncertainties for the fitted reducible background come from the number of events in the control regions followed by the systematic uncertainty in the transfer factors. The latter is evaluated from the difference in the selection efficiency determined in data and simulation in dedicated control regions using leptons accompanying $Z \rightarrow \ell^{+} \ell^{-}$candidates, where the leptons composing the Z-boson candidate are required to satisfy isolation and impact parameter criteria. Events with four leptons are excluded. For the MC estimated background the systematic uncertainties mainly come from theoretical cross-section uncertainties for different processes and from luminosity uncertainties in normalisations. The differential distributions for all background processes are taken from simulation.

The total number of background events estimated from data and MC simulation is 26.2 ± 3.6. Numbers of background events expected per channel estimated for different processes are shown in Table 1. The background estimation was cross-checked with an alternative method, described in Refs. [1,34], called the fake-factor method. The results from this cross-check are found to be consistent within uncertainties with those described above.

6. Cross-section extraction method

Two cross sections are extracted from the number of observed events. One is the fiducial cross section, $\sigma_{4 \ell}^{\text {fid }}$, in the experimental phase space defined by the event selection criteria and the other is the cross section, $\sigma_{4 \ell}^{\text {ext }}$, in an extended common phase space

Table 2
List of selection cuts which define the fiducial region of the cross-section measurement. Same-flavour opposite-sign lepton pairs are denoted as SFOS, the leading lepton pair mass as m_{12}, and the sub-leading lepton pair mass as m_{34}. The fourmomenta of all final-state photons within $\Delta R=0.1$ of a lepton are added to the four-momentum of that lepton.

Lepton selection	
Muons:	$p_{\mathrm{T}}>6 \mathrm{GeV},\|\eta\|<2.7$
Electrons:	$p_{\mathrm{T}}>7 \mathrm{GeV},\|\eta\|<2.5$
Lepton pairing	SFOS lepton pair with smallest
Leading pair:	$m_{Z}-m_{\ell \ell} \mid$
	The remaining SFOS with the largest
Sub-leading pair:	$m_{\ell \ell}$
	$p_{\mathrm{T}}^{\ell^{+} \ell^{-}>2 \mathrm{GeV}}$
For both pairs:	
Event selection	$>20,15,10(8$ if $\mu) \mathrm{GeV}$
Lepton $p_{\mathrm{T}}^{\ell_{1}, \ell_{2}, \ell_{3}:}$	$50<m_{12}<120 \mathrm{GeV}$
Mass requirements:	$12<m_{34}<120 \mathrm{GeV}$
	$\Delta R\left(\ell_{i}, \ell_{j}\right)>0.1(0.2)$
Lepton separation:	for $s a m e-(\mathrm{different-)} \mathrm{flavour} \mathrm{leptons}$
	$m\left(\ell_{i}^{+}, \ell_{j}^{-}\right)>5 \mathrm{GeV}$
J / ψ veto:	$80<m_{4 \ell}<1000 \mathrm{GeV}$
4ℓ mass range:	

where electrons and muons have the same geometric and kinematic acceptance. The fiducial phase space is defined in Table 2. The extended phase space for the 4ℓ cross-section extraction is defined by $80<m_{4 \ell}<1000 \mathrm{GeV}, m_{\ell^{+} \ell^{-}}>4 \mathrm{GeV}, p_{\mathrm{T}}^{Z_{1,2}}>2 \mathrm{GeV}$, and the presence of four leptons each with $p_{\mathrm{T}}>5 \mathrm{GeV}$ and $|\eta|<2.8$.

The cross section measurement is performed using a likelihood fit described below. For a given channel i, the observed number of events, $N_{\text {obs }}^{i}$, follows a Poisson distribution, $\operatorname{Pois}\left(N_{\text {obs }}^{i}, N_{\text {pred }}^{i}\right)$, the mean of which, $N_{\text {pred }}^{i}=N_{\mathrm{s}}^{i}+N_{\mathrm{b}}^{i}$, is the sum of the expectations for signal and background yields. These yields depend on the fiducial cross section and the nuisance parameters, \vec{x}, which represent the experimental and theoretical uncertainties as:

$$
\begin{align*}
N_{\mathrm{s}}^{i}\left(\sigma_{4 l}^{\mathrm{fid}}, \vec{x}\right) & =N_{\mathrm{s}}^{i}\left(\sigma_{4 l}^{\mathrm{fid}}, 0\right)\left(1+\sum_{k} x_{k} S_{k}^{i}\right), \tag{1}\\
N_{\mathrm{b}}^{i}(\vec{x}) & =N_{\mathrm{b}}^{i}(0)\left(1+\sum_{k} x_{k} B_{k}^{i}\right) \tag{2}
\end{align*}
$$

where S_{k}^{i} and B_{k}^{i} are the relative systematic effects on the signal and background, respectively, due to the k-th source of systematic uncertainty. The central expectation of the signal yield, corresponding to the systematic sources at the nominal value (referred to as the nuisance-free expectation), is given by:
$N_{\mathrm{s}}^{i}\left(\sigma_{4 l}^{\mathrm{fid}}, 0\right)=\mathcal{L} \cdot C_{4 \ell} \cdot K_{\tau} \cdot \sigma_{4 l}^{\text {fid }}$,
where \mathcal{L} is the integrated luminosity, and $C_{4 \ell}$ is the ratio of the number of accepted signal events to the number of generated events in the fiducial phase space. Corrections are applied to $C_{4 \ell}$ to account for measured differences in trigger and reconstruction efficiencies between simulated and data samples. The $C_{4 \ell}$ values are $53.3 \%, 82.2 \%$ and 67.7% for the $4 e, 4 \mu$, and $2 e 2 \mu$ channels, respectively. The contribution from τ-lepton decays is accounted for by a correction term $K_{\tau}=1+N_{\tau}^{\mathrm{MC}} / N_{\text {sig }}^{\mathrm{MC}}$, where N_{τ}^{MC} is the number of accepted simulated 4ℓ events in which at least one of the Z bosons decays into τ-lepton pairs, and $N_{\text {sig }}^{\mathrm{MC}}$ is the number of accepted simulated $Z Z$ events with decays into electrons or muons.

Cross-section measurements are extracted for a single channel or any combination of channels, using a likelihood method. The likelihood function is:
$L\left(\sigma_{4 l}^{\text {fid }}, \vec{x}\right)=\prod_{i} \operatorname{Pois}\left(N_{\text {obs }}^{i}, N_{\text {pred }}^{i}\left(\sigma_{4 l}^{\text {fid }}, \vec{x}\right)\right) \cdot \mathrm{e}^{-\frac{\vec{x}^{2}}{2}}$,

Table 3
The combined relative uncertainties on the efficiency correction factor $C_{4 \ell}$, evaluated as the sum in quadrature of the uncertainties from different sources, including electron and muon identification and theoretical uncertainties due to PDFs, QCD scales, and parton shower modelling. Extra uncertainties due to higher-order corrections for the $g g$ process (NNLO K-factors for Higgs-boson production applied to the inclusive $g g$ process) are also given.

Sources	$\Delta C_{4 \ell} / C_{4 \ell}$		
	$4 e$	4μ	$2 e 2 \mu$
Experimental (e)	4.8%	-	2.3%
Experimental (μ)	-	1.8%	0.9%
Theoretical	0.1%	0.1%	0.2%
Extra $g g$ corrections	0.6%	0.2%	0.3%
Combined uncertainty	4.9%	1.9%	2.5%

Table 4
Theoretical relative uncertainties on the fiducial acceptance $A_{4 \ell}$ and $A_{4 \ell} \times C_{4 \ell}$ due to PDFs, QCD scales and parton shower modelling. Extra uncertainties due to higherorder corrections for the $g g$ process (NNLO K-factors for Higgs-boson production applied to the inclusive $g g$ process) are also given.

Sources	$\Delta A_{4 \ell} / A_{4 \ell}$		
	$4 e$	4μ	$2 e 2 \mu$
Theoretical	1.2%	1.0%	1.6%
Extra $g g$ corrections	4.0%	3.0%	3.9%
	$\Delta\left(A_{4 \ell} \times C_{4 \ell}\right) /\left(A_{4 \ell} \times C_{4 \ell}\right)$		
Theoretical	1.4%	1.1%	1.7%
Extra $g g$ corrections	4.6%	3.2%	4.2%

where the product runs over the channels to be considered.
For the extended phase space the likelihood function is parameterised as a function of the extended cross section similar to the one shown in Eq. (3) and multiplied by the fiducial acceptance $A_{4 \ell}$, which is the ratio of the number of events within the fiducial phase-space region to the total number of generated events in the extended phase space. The fiducial acceptance $A_{4 \ell}$ is evaluated using simulation to be $41.6 \%, 50.3 \%$, and 42.2%, for the $4 e, 4 \mu$, and $2 e 2 \mu$ channels, respectively. The differences are due to the electron and muon geometric detection coverage.

To find the central value of the cross section σ, the likelihood function is maximised simultaneously with respect to the nuisance parameters and σ. Correlations between the signal and background systematic uncertainties are taken into account in the likelihood fitting procedure.

7. Systematic uncertainties

Systematic uncertainties on the measurement arise from uncertainties on the integrated luminosity, the experimental calibrations of the lepton energy and momentum, and the lepton detection efficiencies, as well as the theoretical modelling of signal acceptance, and the background estimation. The overall uncertainty on the integrated luminosity is $\pm 2.8 \%$, which is derived following the same methodology as that detailed in Ref. [35]. A summary of the relative uncertainties of $C_{4 \ell}, A_{4 \ell}$, and $A_{4 \ell} \times C_{4 \ell}$ is given in Tables 3 and 4.

The effect on the expected signal event yields due to experimental systematic uncertainties is determined from the uncertainties on lepton energy and momentum scales and resolutions, as well as the uncertainties on efficiencies of the lepton reconstruction and identification. The major contributions come from the uncertainties on lepton reconstruction and identification efficiencies [36-38].

The uncertainties on the signal acceptance for both $C_{4 \ell}$ and $A_{4 \ell}$ include theoretical uncertainties from the choice of QCD scales and PDF set. The scales are varied independently from 0.5 to 2.0 times

Table 5
Summary of the observed and predicted numbers of 4ℓ events in different 4ℓ channels. $N^{\text {Data }}$ denotes the selected number of data candidates. $N_{\text {expected }}^{\text {Total }}$ denotes the total predicted number of events (including τ contributions) for signal plus background. $N_{\text {non-gg }}^{\text {signal }}$ and the $N_{g g}^{\text {signal }}$ denote the predicted non-gg signal and the $g g$ signal (no NNLO K-factor has been applied), respectively. N_{τ}^{MC} denotes the τ contributions. N_{bkg} denotes the total estimated number of background events (from data and MC simulation). The listed uncertainties of the expected number of signal events include statistical and experimental systematic uncertainties.

Channel	$N^{\text {Data }}$	$N_{\text {expected }}^{\text {Total }}$	$N_{\text {non-gg }}^{\text {signal }}$	$N_{g g}^{\text {signal }}$	$N_{\tau}^{\text {MC }}$	
$4 e$	85	80 ± 4	68.4 ± 3.4	6.24 ± 0.31	1.28 ± 0.06	
4μ	156	150.2 ± 2.9	128.2 ± 2.5	11.00 ± 0.21	2.18 ± 0.09	
$2 e 2 \mu$	235	205 ± 5	172 ± 5	3.0 ± 0.4	9.0 ± 1.5	
Total	476	435 ± 9	369 ± 9	33.3 ± 0.8	13.6 ± 2.1	

the nominal values of μ_{R} and μ_{F}. The PDFs uncertainties are estimated by using the envelope [39] of variations of different PDF sets, CT10, MSTW2008 [40] and NNPDF2.3 [41].

The $C_{4 \ell}$ uncertainty is mostly experimental and of the order of $2-5 \%$, while the $A_{4 \ell}$ uncertainty is entirely theoretical and of the order of $3-5 \%$. A range of values of the relative uncertainties on the $C_{4 \ell}$ are given by $4.9 \%, 1.9 \%$, and 2.5% for the $4 e, 4 \mu$, and $2 e 2 \mu$, respectively. The uncertainties on $C_{4 \ell}$ due to higher-order corrections to the $g g$ production processes are less than 0.6%. This is estimated by applying an approximate NNLO K-factor determined for the Higgs-boson production [23], assuming that it is applicable to the normalisation of the continuum $g g \rightarrow Z Z$ production cross section.

Uncertainties on $C_{4 \ell}$, as a function of $m_{4 \ell}$ and $p_{\mathrm{T}}^{4 \ell}$, are also computed for the differential cross section measurements. In the mass region ($m_{4 \ell}<150 \mathrm{GeV}$), the relative uncertainties on $C_{4 \ell}$ vary in the range of $4-9 \%, 1.7-2.7 \%$, and $2-5 \%$ for the $4 e, 4 \mu$, and $2 e 2 \mu$ channel, respectively. In the mass region $m_{4 \ell}>150 \mathrm{GeV}$, they are almost constant as a function of $m_{4 \ell}$ and are about 4%, 1.8%, and 3% for the $4 e, 4 \mu$, and $2 e 2 \mu$ channel, respectively.

The relative uncertainties on $A_{4 \ell}$ are $1.2 \%, 1.0 \%$, and 1.6% for the $4 e, 4 \mu$, and $2 e 2 \mu$ channel, respectively, evaluated by comparing POWHEG-BOX and MCFM MC samples with the same approach for the QCD scales and the PDF uncertainties as described earlier. The QCD scale uncertainties do not change when going from NLO to NNLO for the signal normalisation for the $q \bar{q} \rightarrow 4 \ell$ events [16]. An additional uncertainty ($3-4 \%$) is included in the $A_{4 \ell}$ uncertainty estimate to account for the uncertainty of the Higgs-boson NNLO K-factor normalisation correction of the non-resonant 4ℓ signal from gluon fusion (labelled "extra gg corrections" in Tables 3 and 4).

The overall uncertainty on the background estimation is $\pm 14 \%$. The contributions from different sources and channels are given in Table 1.

8. Results

8.1. Cross-section measurements

The numbers of expected and observed events after applying all selection criteria are shown in Table 5. A total of 476 candidate events is observed with a background expectation of 26.2 ± 3.6 events. The observed and predicted $m_{4 \ell}$ and $p_{\mathrm{T}}^{4 \ell}$ distributions for the selected events are shown in Fig. 3.

The measured cross sections in the fiducial and extended phase space for different 4ℓ channels are summarised in Table 6 and compared to the SM predicted cross sections. The combined 4ℓ cross section in the extended phase space is found to be $73 \pm$ 4 (stat.) ± 4 (syst.) ± 2 (lumi.) fb, compared to a SM prediction of $65 \pm 4 \mathrm{fb}$. One should note that the cross section for non-resonant ZZ production from the $g g$-induced signal is only calculated at LO approximation, which could be significantly underestimated.

Fig. 3. Data and MC prediction comparison for selected events as a function of the invariant mass $m_{4 \ell}$ (top) and the transverse momentum $p_{\mathrm{T}}^{4 \ell}$ (bottom) of the fourlepton system. The solid colours show the expected contributions from signal and background and the black points represent data with statistical error bars. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

8.2. Differential cross-section measurement

The measurement of the differential cross-section is performed in the fiducial phase space defined in Table 2. The events from all three 4ℓ channels are combined into a common sample for the unfolding procedure. The unfolding is done as a function of the two kinematic variables $m_{4 \ell}$ and $p_{\mathrm{T}}^{4 \ell}$. The $m_{4 \ell}$ spectrum is essential for the study of the different production mechanisms, while the $p_{\mathrm{T}}^{4 \ell}$ spectrum is sensitive to higher-order QCD corrections and to QCD resummation effects at small $p_{\mathrm{T}}^{4 \ell}[10]$. The high- $p_{\mathrm{T}}^{4 \ell}$ region is sensitive to top-loop effects in $g g \rightarrow H$ production as well as to anomalous triple-boson couplings.

Table 6
Measured cross sections in the fiducial phase space ($\sigma^{\text {fid }}$) and extended phase space ($\sigma^{\text {ext }}$), compared to their SM predictions (calculations described in Section 3). One should note that the non-resonant $g g$-induced signal cross section is only calculated at LO approximation.

4ℓ	Measured $\sigma^{\text {fid }}$ [fb]	SM $\sigma^{\text {fid }}[\mathrm{fb}]$	Measured $\sigma^{\text {ext }}$ [fb]	SM $\sigma^{\text {ext }}[\mathrm{fb}]$
$4 e$	$7.4_{-0.8}^{+0.9}$ (stat) ${ }_{-0.3}^{+0.4}$ (syst) ${ }_{-0.2}^{+0.2}$ (lumi)	6.9 ± 0.4	$17.8_{-2.0}^{+2.1}$ (stat) ${ }_{-1.1}^{+1.5}$ (syst) ${ }_{-0.5}^{+0.5}$ (lumi)	16.4 ± 1.0
4μ	$8.7_{-0.7}^{+0.8}$ (stat) ${ }_{-0.2}^{+0.2}$ (syst) ${ }_{-0.2}^{+0.3}$ (lumi)	8.3 ± 0.5	$17.3_{-1.4}^{+1.5}$ (stat) ${ }_{-0.7}^{+0.9}$ (syst) ${ }_{-0.5}^{+0.5}$ (lumi)	16.4 ± 1.0
$2 e 2 \mu$	$15.9_{-1.1}^{+1.1}$ (stat) ${ }_{-0.4}^{+0.5}$ (syst) ${ }_{-0.4}^{+0.5}$ (lumi)	13.7 ± 0.9	$37.7_{-2.6}^{+2.7}$ (stat) ${ }_{-2.0}^{+2.5}$ (syst) ${ }_{-1.1}^{+1.1}$ (lumi)	32.1 ± 2.0
Total			73_{-4}^{+4} (stat) ${ }_{-4}^{+4}$ (syst) ${ }_{-2}^{+2}$ (lumi)	65 ± 4

Fig. 4. The measured differential cross-section distributions (the black points) of $m_{4 \ell}$ (left) and $p_{\mathrm{T}}^{4 \ell}$ (right), unfolded into the fiducial phase space, and compared to theory predictions (red histogram). The combined statistical and systematic uncertainties of the measurements are shown as the error bars of the unfolded spectra. The theoretical predictions are the sum of the differential cross sections of the $q \bar{q} \rightarrow 4 \ell$ and $g g \rightarrow 4 \ell$ processes, where the LO cross sections are used for the non-resonant $g g$-induced signals, and the cross sections of the on-shell Higgs boson and the $q \bar{q}$ production processes are corrected with the NNLO K-factors for the $m_{4 \ell}$ spectrum; except for the $p_{\mathrm{T}}^{4 \ell}$ where only the NLO and LO predictions are used for the $q \bar{q}$ and the $g g$ processes, respectively. The total theoretical uncertainties are shown as error bands evaluated by the sum in quadrature of the contributions from parton showers, QCD scales, PDF sets, and electroweak corrections. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The iterative Bayesian unfolding [42] is applied here. In the unfolding of binned data, the effects of the experimental acceptance and resolution are expressed in terms of a response matrix, where each element corresponds to the probability of an event in the i-th generator level bin being reconstructed in the j-th measurement bin. The response matrix is combined with the measured spectrum to form a likelihood, which is then multiplied by a prior distribution to produce the posterior probability of the true spectrum. The SM prediction is used as the initial prior, and once the posterior probability is obtained, it is used as the prior for the next iteration. The spectrum becomes insensitive to the initial prior after a few iterations. The differences between successive iterations are used to estimate the stability of the unfolding method. In this analysis four iterations are performed.

The unfolded distributions are shown in Fig. 4, where the differential cross section is presented as a function of $m_{4 \ell}$ and $p_{\mathrm{T}}^{4 \ell}$ and compared to theory predictions. The data points shown in the figures are the measurements with combined statistical and systematic uncertainties. The theoretical predictions are the sum of the differential cross sections of the $q \bar{q} \rightarrow 4 \ell$ and $g g \rightarrow 4 \ell$ processes. The LO cross sections are used for the non-resonant gg-induced signals. The cross sections of the on-shell Higgs boson are normalised to include the NNLO QCD and NLO EW effects as summarised in Ref. [19]. The $q \bar{q}$ production processes are corrected with NNLO QCD and the NLO EW K-factors for the $m_{4 \ell}$ spectrum
for $m_{4 \ell}>2 \times m_{Z}$. For the $p_{\mathrm{T}}^{4 \ell}$ spectrum, the $q \bar{q}$ signal prediction is calculated by POWHEG-BOX at NLO.

The uncertainties on the differential cross-section measurements are dominated by the statistical uncertainties of the data. For example, in the $m_{4 \ell}$ regions between the Z and Higgs boson peaks and between the Higgs-boson mass m_{H} and $m_{4 \ell}=180 \mathrm{GeV}$, the statistical uncertainties are of the order of 45% and 20%, respectively. In the high-mass region ($m_{4 \ell}>180 \mathrm{GeV}$) they are of the order of 10%. Furthermore, one should note that the NNLO QCD corrections are not available for the $q \bar{q} \rightarrow 4 \ell$ production calculation for the mass region $m_{4 \ell}<2 \times m_{Z}$.

In the $m_{4 \ell}$ bin of $120-130 \mathrm{GeV}$, which is dominated by the resonant Higgs-boson contribution, the ratio of data to the MC prediction is compatible with the ATLAS measurement [33] of the Higgs-boson signal strength of $\mu_{H}=1.44_{-0.33}^{+0.40}$. The data points in the $m_{4 \ell}$ spectrum between 140 and 180 GeV are slightly more than 1σ above the theoretical predictions, where the NNLO QCD correction is not yet available. Some discrepancy is also observed in the lowest bin and in the region between 30 and 50 GeV of the $p_{\mathrm{T}}^{4 \ell}$ spectrum.

8.3. Extraction of the gg signal contribution in the $m_{4 \ell}>180 \mathrm{GeV}$ region

The extraction of the signal strength of the non-resonant $g g \rightarrow 4 \ell$ production is performed in the high-mass region, $m_{4 \ell}>$

Fig. 5. Comparison of the $m_{4 \ell}$ spectra between the data (black points with error bars) and the prediction (red histogram) after the likelihood fit of $\mu_{g g}$. The non- $g g$ signal from the theoretical prediction (blue histogram) and the background (brown histogram) are also shown. The $g g$ contribution is the difference between data and the sum of the non- $g g$ signal and the background. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

180 GeV , where this production mode is dominated by the continuum $g g \rightarrow Z Z$ process through a quark-box diagram intermediate state (see Fig. 1(d)). Additional contributions come from the offshell Higgs-boson production and the interference between Higgs boson and continuum $Z Z$ production.

The $m_{4 \ell}$ spectrum is chosen as the discriminant to extract the $g g$ signal strength with respect to the LO $g g$ prediction: $\mu_{g g}=$ σ (data) $/ \sigma$ (LO).

The contribution of the $q \bar{q} \rightarrow Z Z$ production is constrained to the best theory knowledge (which accounts for QCD NNLO and EW NLO $m_{4 l}$-dependent corrections) and $\mu_{g g}$ is extracted from a likelihood fit using the reconstructed $m_{4 \ell}$ distributions. The experimental uncertainties are treated as fully correlated between $q \bar{q}$ and $g g$ processes. The theoretical uncertainties, including the uncertainties on the normalisation of the $q \bar{q} \rightarrow Z Z \rightarrow 4 \ell$, the shapes of 4ℓ spectra from both the $q \bar{q}$ and $g g$ initial states, and the acceptance, are taken into account. The $m_{4 \ell}$ distribution of the data, the fit, the expectation from non-gg signal processes and the background are shown in Fig. 5. The fit result is $\mu_{g g}=2.4 \pm 1.0$ (stat.) \pm 0.5 (syst.) ± 0.8 (theory). This result corresponds to a $g g$-initiated cross section of 3.1 fb , which has the same relative uncertainties as $\mu_{g g}$ itself in the inclusive fiducial volume as defined in Table 2 with the additional requirement of $m_{4 \ell}>180 \mathrm{GeV}$. The largest uncertainty is statistical. The theoretical uncertainty is mainly due to the normalisation uncertainty of the $q \bar{q} \rightarrow Z Z$ process.

The theoretical estimate of $m_{4 \ell}$-dependent K-factor for off-shell Higgs boson production given in Ref. [23] is in a range of 2.7-3.1 (with CT10NNLO PDF) and that given in Ref. [24] for the interference term is $2.05-2.45$. These theoretical studies confirm that the gluon soft-collinear approximation predicts similar K-factors for off-shell Higgs-boson and interference, hence supporting the assumption of a similar K-factor for the continuum $Z Z$ production. These theoretical calculated K-factors are compatible with the result obtained by this analysis, where the $g g$-initiated 4ℓ events are produced predominantly from the continuum $Z Z$ production.

Applying the higher-order corrections to both the cross section of the off-shell Higgs-boson production and the contribution of the interference term, while keeping the LO cross section for the continuum $g g \rightarrow Z Z$ production, the change of the $\mu_{g g}$ fit result is negligible (approximately, $\Delta \mu_{g g}=0.01$).

9. Conclusion

The measurement of four-lepton production in proton-proton collisions at $\sqrt{s}=8 \mathrm{TeV}$ is presented using data corresponding to an integrated luminosity of $20.3 \mathrm{fb}^{-1}$ collected with the ATLAS detector at the LHC. In total, 4764ℓ candidate events are observed, with a background expectation of 26.2 ± 3.6 events, in the fourlepton invariant mass range between 80 and 1000 GeV . The 4ℓ production cross sections are determined in both fiducial and extended phase spaces. The measured cross section in the extended phase space, defined by $80<m_{4 \ell}<1000 \mathrm{GeV}, m_{\ell^{+} \ell^{-}}>4 \mathrm{GeV}$, $p_{\mathrm{T}}^{Z_{1,2}}>2 \mathrm{GeV}$, four leptons each with $p_{\mathrm{T}}>5 \mathrm{GeV}$ and $|\eta|<2.8$, is found to be 73 ± 4 (stat.) ± 4 (syst.) ± 2 (lumi.) fb, and is compared to a SM prediction of $65 \pm 4 \mathrm{fb}$. The measurements of the 4ℓ differential cross sections are performed by unfolding the $m_{4 \ell}$ and the $p_{\mathrm{T}}^{4 \ell}$ spectra. In the mass range above 180 GeV , assuming the theoretical constraint on the $q \bar{q}$ production cross section calculated with perturbative NNLO QCD and NLO electroweak corrections, the signal strength of the gluon-fusion component with respect to the LO prediction is determined to be $\mu_{g g}=2.4 \pm 1.0$ (stat.) ± 0.5 (syst.) ± 0.8 (theory).

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie SkłodowskaCurie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

[1] ATLAS Collaboration, Measurements of four-lepton production at the Z resonance in $p p$ collisions at $\sqrt{s}=7$ and 8 TeV with ATLAS, Phys. Rev. Lett. 112 (2014) 231806, arXiv:1403.5657 [hep-ex].
[2] CMS Collaboration, Observation of Z decays to four leptons with the CMS detector at the LHC, J. High Energy Phys. 12 (2012) 034, arXiv:1210.3844 [hep-ex].
[3] ATLAS Collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1, arXiv:1207.7214 [hep-ex].
[4] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30, arXiv:1207.7235 [hep-ex].
[5] N. Kauer, G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, J. High Energy Phys. 1208 (2012) 116, arXiv:1206.4803 [hep-ph].
[6] F. Caola, K. Melnikov, Constraining the Higgs boson width with ZZ production at the LHC, Phys. Rev. D 88 (2013) 054024, arXiv:1307.4935 [hep-ph].
[7] S. Goria, G. Passarino, D. Rosco, The Higgs boson lineshape, Nucl. Phys. B 864 (2012) 530, arXiv:1112.5517 [hep-ph].
[8] ATLAS Collaboration, Constraints on the off-shell Higgs boson signal strength in the high-mass $Z Z$ and WW final states with the ATLAS detector, Eur. Phys. J. C 75 (2015) 335, arXiv:1503.01060 [hep-ex].
[9] CMS Collaboration, Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs, Phys. Lett. B 736 (2014) 64, arXiv: 1405.3455 [hep-ex].
[10] M. Grazzini, et al., Transverse-momentum resummation for vector-boson pair production at NNLL + NNLO, arXiv:1507.02565 [hep-ph], 2015.
[11] ATLAS Collaboration, The ATLAS experiment at the CERN Large Hadron Collider, J. Instrum. 3 (2008) S08003.
[12] T. Melia, et al., $W^{+} W^{-}, W Z$ and $Z Z$ production in the POWHEG BOX, J. High Energy Phys. 1111 (2011) 078, arXiv:1107.5051 [hep-ph].
[13] S. Alioli, et al., A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, J. High Energy Phys. 1006 (2010) 043, arXiv:1002.2581 [hep-ph].
[14] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, J. High Energy Phys. 0411 (2004) 040, arXiv:hep-ph/0409146.
[15] H.-L. Lai, et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024, arXiv:1007.2241 [hep-ph].
[16] F. Cascioli, et al., ZZ production at hadron colliders in NNLO QCD, Phys. Lett. B 735 (2014) 311, arXiv:1405.2219 [hep-ph].
[17] A. Bierweiler, T. Kasprzik, J.H. Kuhn, Vector-boson pair production at the LHC to $\mathcal{O}\left(\alpha^{3}\right)$ accuracy, J. High Energy Phys. 1312 (2013) 071, arXiv:1305.5402 [hep-ph].
[18] T. Sjostrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820 [hep-ph].
[19] LHC Higgs Cross Section Working Group, in: S. Heinemeyer (Ed.), Handbook of LHC Higgs cross sections: 3. Higgs properties, 2013, arXiv:1307.1347 [hep-ph].
[20] J.M. Campbell, R.K. Ellis, C. Williams, Bounding the Higgs width at the LHC using full analytic results for $g g \rightarrow e^{-} e^{+} \mu^{-} \mu^{+}$, J. High Energy Phys. 1404 (2014) 060, arXiv:1311.3589 [hep-ph].
[21] J. Gao, et al., CT10 next-to-next-to-leading order global analysis of QCD, Phys. Rev. D 89 (2014) 033009, arXiv:1302.6246 [hep-ph].
[22] J. Alwall, et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 1407 (2014) 079, arXiv:1405.0301 [hep-ph].
[23] G. Passarino, Higgs CAT, Eur. Phys. J. C 74 (2014) 2866, arXiv:1312.2397 [hep-ph].
[24] C.S. Li, et al., Soft gluon resummation in the signal-background interference process of $g g\left(\rightarrow h^{*}\right) \rightarrow Z Z$, J. High Energy Phys. 08 (2015) 065, arXiv: 1504.02388 [hep-ph].
[25] T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual, J. High Energy Phys. 05 (2006) 026, arXiv:hep-ph/0603175.
[26] T. Gleisberg, et al., Event generation with SHERPA 1.1, J. High Energy Phys. 0902 (2009) 007, arXiv:0811.4622 [hep-ph].
[27] M.L. Mangano, et al., ALPGEN, a generator for hard multiparton processes in hadronic collisions, J. High Energy Phys. 0307 (2003) 001, arXiv:hep-ph/ 0206293.
[28] G. Corcella, et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), J. High Energy Phys. 0101 (2001) 010, arXiv:hep-ph/0011363.
[29] J. Butterworth, J.R. Forshaw, M. Seymour, Multiparton interactions in photoproduction at HERA, Z. Phys. C 72 (1996) 637, arXiv:hep-ph/9601371.
[30] ATLAS Collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70 (2010) 823, arXiv:1005.4568 [physics.ins-det].
[31] S. Agostinelli, et al., GEANT4: a simulation toolkit, Nucl. Instrum. Methods A 506 (2003) 250.
[32] ATLAS Collaboration, Electron efficiency measurements with the ATLAS detector using the 2012 LHC proton-proton collision data, http://cdsweb.cern.ch/ record/1706245, 2014.
[33] ATLAS Collaboration, Measurements of Higgs boson production and couplings in the four-lepton channel in $p p$ collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 012006, arXiv:1408.5191 [hep-ex].
[34] ATLAS Collaboration, Measurement of $Z Z$ production in $p p$ collisions at $\sqrt{s}=$ 7 TeV and limits on anomalous $Z Z Z$ and $Z Z \gamma$ couplings with the ATLAS detector, J. High Energy Phys. 1303 (2013) 128, arXiv:1211.6096 [hep-ex].
[35] ATLAS Collaboration, Improved luminosity determination in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$ using the ATLAS detector at the LHC, Eur. Phys. J. C 73 (2013) 2518, arXiv:1302.4393 [hep-ex].
[36] ATLAS Collaboration, Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton-proton collision data, Eur. Phys. J. C 74 (2014) 3130, arXiv:1407.3935 [hep-ex].
[37] ATLAS Collaboration, Electron and photon energy calibration with the ATLAS detector using LHC run 1 data, Eur. Phys. J. C 74 (2014) 3071, arXiv:1407.5063 [hep-ex].
[38] ATLAS Collaboration, Electron reconstruction and identification efficiency measurements with the ATLAS detector using the 2011 LHC proton-proton collision data, Eur. Phys. J. C 74 (2014) 2941, arXiv:1404.2240 [hep-ex].
[39] M. Botje, et al., The PDF4LHC Working Group, Interim recommendations, arXiv: 1101.0538 [hep-ph], 2011.
[40] A. Martin, et al., Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189, arXiv:0901.0002 [hep-ph].
[41] R.D. Ball, et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244, arXiv:1207.1303 [hep-ph].
[42] G. D'Agostini, Improved iterative Bayesian unfolding, arXiv:1010.0632 [physics. data-an], 2010.

ATLAS Collaboration

G. Aad ${ }^{85}$, B. Abbott ${ }^{113}$, J. Abdallah ${ }^{151}$, O. Abdinov ${ }^{11}$, R. Aben ${ }^{107}$, M. Abolins ${ }^{90}$, O.S. AbouZeid ${ }^{158}$,
H. Abramowicz ${ }^{153}$, H. Abreu ${ }^{152}$, R. Abreu ${ }^{116}$, Y. Abulaiti ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$, B.S. Acharya ${ }^{164 \mathrm{a}, 164 \mathrm{~b}, a}$,
L. Adamczyk ${ }^{38 a}$, D.L. Adams ${ }^{25}$, J. Adelman ${ }^{108}$, S. Adomeit ${ }^{100}$, T. Adye ${ }^{131}$, A.A. Affolder ${ }^{74}$,
T. Agatonovic-Jovin ${ }^{13}$, J. Agricola ${ }^{54}$, J.A. Aguilar-Saavedra ${ }^{126 a, 126 f}$, S.P. Ahlen ${ }^{22}$, F. Ahmadov ${ }^{65, b}$, G. Aielli ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, H. Akerstedt ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$, T.P.A. Åkesson ${ }^{81}$, A.V. Akimov ${ }^{96}$, G.L. Alberghi ${ }^{20 \mathrm{a}, 20 \mathrm{~b}}$, J. Albert ${ }^{169}$, S. Albrand ${ }^{55}$, M.J. Alconada Verzini ${ }^{71}$, M. Aleksa ${ }^{30}$, I.N. Aleksandrov ${ }^{65}$, C. Alexa ${ }^{26 b}$, G. Alexander ${ }^{153}$, T. Alexopoulos ${ }^{10}$, M. Alhroob ${ }^{113}$, G. Alimonti ${ }^{91 a}$, L. Alio ${ }^{85}$, J. Alison ${ }^{31}$, S.P. Alkire ${ }^{35}$, B.M.M. Allbrooke ${ }^{149}$, P.P. Allport ${ }^{18}$, A. Aloisio ${ }^{104 a, 104 b}$, A. Alonso ${ }^{36}$, F. Alonso ${ }^{71}$, C. Alpigiani ${ }^{138}$, A. Altheimer ${ }^{35}$, B. Alvarez Gonzalez ${ }^{30}$, D. Álvarez Piqueras ${ }^{167}$, M.G. Alviggi ${ }^{104 a, 104 b}$, B.T. Amadio ${ }^{15}$, K. Amako ${ }^{66}$, Y. Amaral Coutinho ${ }^{24 a}$, C. Amelung ${ }^{23}$, D. Amidei ${ }^{89}$, S.P. Amor Dos Santos ${ }^{126 a, 126 \mathrm{c}}$, A. Amorim ${ }^{126 \mathrm{a}, 126 \mathrm{~b}}$, S. Amoroso ${ }^{48}$, N. Amram ${ }^{153}$, G. Amundsen ${ }^{23}$, C. Anastopoulos ${ }^{139}$, L.S. Ancu ${ }^{49}$, N. Andari ${ }^{108}$, T. Andeen ${ }^{35}$, C.F. Anders ${ }^{58 b}$, G. Anders ${ }^{30}$, J.K. Anders ${ }^{74}$, K.J. Anderson ${ }^{31}$, A. Andreazza ${ }^{91 a, 91 b}$, V. Andrei ${ }^{58 a}$, S. Angelidakis ${ }^{9}$, I. Angelozzi ${ }^{107}$, P. Anger ${ }^{44}$, A. Angerami ${ }^{35}$, F. Anghinolfi ${ }^{30}$, A.V. Anisenkov ${ }^{109},{ }^{\prime}$, N. Anjos ${ }^{12}$, A. Annovi ${ }^{124 a, 124 b}$, M. Antonelli ${ }^{47}$, A. Antonov ${ }^{98}$,
J. Antos ${ }^{144 b}$, F. Anulli ${ }^{132 a}$, M. Aoki ${ }^{66}$, L. Aperio Bella ${ }^{18}$, G. Arabidze ${ }^{90}$, Y. Arai ${ }^{66}$, J.P. Araque ${ }^{126 a}$, A.T.H. Arce ${ }^{45}$, F.A. Arduh ${ }^{71}$, J-F. Arguin ${ }^{95}$, S. Argyropoulos ${ }^{63}$, M. Arik ${ }^{19 a}$, A.J. Armbruster ${ }^{30}$, O. Arnaez ${ }^{30}$, H. Arnold ${ }^{48}$, M. Arratia ${ }^{28}$, O. Arslan ${ }^{21}$, A. Artamonov ${ }^{97}$, G. Artoni ${ }^{23}$, S. Asai ${ }^{155}$, N. Asbah ${ }^{42}$, A. Ashkenazi ${ }^{153}$, B. Åsman ${ }^{146 a, 146 b}$, L. Asquith ${ }^{149}$, K. Assamagan ${ }^{25}$, R. Astalos ${ }^{144 \mathrm{a}}$, M. Atkinson ${ }^{165}$, N.B. Atlay ${ }^{141}$, K. Augsten ${ }^{128}$, M. Aurousseau ${ }^{145 b}$, G. Avolio ${ }^{30}$, B. Axen ${ }^{15}$, M.K. Ayoub ${ }^{117}$, G. Azuelos ${ }^{95}$,d , M.A. Baak ${ }^{30}$, A.E. Baas ${ }^{58 \mathrm{a}}$, M.J. Baca ${ }^{18}$, C. Bacci ${ }^{134 a, 134 b}$, H. Bachacou ${ }^{136}$, K. Bachas ${ }^{154}$, M. Backes ${ }^{30}$, M. Backhaus ${ }^{30}$, P. Bagiacchi ${ }^{132 a, 132 b}$, P. Bagnaia ${ }^{132 a, 132 b}$, Y. Bai ${ }^{33 a}$, T. Bain ${ }^{35}$, J.T. Baines ${ }^{131}$, O.K. Baker ${ }^{176}$, E.M. Baldin ${ }^{109, c}$, P. Balek ${ }^{129}$, T. Balestri ${ }^{148}$, F. Balli ${ }^{84}$, W.K. Balunas ${ }^{122}$, E. Banas ${ }^{39}$, Sw. Banerjee ${ }^{173}$, A.A.E. Bannoura ${ }^{175}$, L. Barak ${ }^{30}$, E.L. Barberio ${ }^{88}$, D. Barberis ${ }^{50 a, 50 \mathrm{~b}}$, M. Barbero ${ }^{85}$, T. Barillari ${ }^{101}$, M. Barisonzi ${ }^{164 a, 164 b}$, T. Barklow ${ }^{143}$, N. Barlow ${ }^{28}$, S.L. Barnes ${ }^{84}$, B.M. Barnett ${ }^{131}$, R.M. Barnett ${ }^{15}$, Z. Barnovska ${ }^{5}$, A. Baroncelli ${ }^{134 a}$, G. Barone ${ }^{23}$, A.J. Barr ${ }^{120}$, F. Barreiro ${ }^{82}$, J. Barreiro Guimarães da Costa ${ }^{57}$, R. Bartoldus ${ }^{143}$, A.E. Barton ${ }^{72}$, P. Bartos ${ }^{144 a}$, A. Basalaev ${ }^{123}$, A. Bassalat ${ }^{117}$, A. Basye ${ }^{165}$, R.L. Bates ${ }^{53}$, S.J. Batista ${ }^{158}$, J.R. Batley ${ }^{28}$, M. Battaglia ${ }^{137}$, M. Bauce ${ }^{132 a, 132 b}$, F. Bauer ${ }^{136}$, H.S. Bawa ${ }^{143, e}$, J.B. Beacham ${ }^{111}$, M.D. Beattie ${ }^{72}$, T. Beau ${ }^{80}$, P.H. Beauchemin ${ }^{161}$, R. Beccherle ${ }^{124 a, 124 b}$, P. Bechtle ${ }^{21}$, H.P. Beck ${ }^{17, f}$, K. Becker ${ }^{120}$, M. Becker ${ }^{83}$, M. Beckingham ${ }^{170}$, C. Becot ${ }^{117}$, A.J. Beddall ${ }^{19 b}$, A. Beddall ${ }^{19 b}$, V.A. Bednyakov ${ }^{65}$, C.P. Bee ${ }^{148}$, L.J. Beemster ${ }^{107}$, T.A. Beermann ${ }^{30}$, M. Begel ${ }^{25}$, J.K. Behr ${ }^{120}$, C. Belanger-Champagne ${ }^{87}$, W.H. Bell ${ }^{49}$, G. Bella ${ }^{153}$, L. Bellagamba ${ }^{20 a}$, A. Bellerive ${ }^{29}$, M. Bellomo ${ }^{86}$, K. Belotskiy ${ }^{98}$, O. Beltramello ${ }^{30}$, O. Benary ${ }^{153}$, D. Benchekroun ${ }^{135 a}$, M. Bender ${ }^{100}$, K. Bendtz ${ }^{146 a, 146 b}$, N. Benekos ${ }^{10}$, Y. Benhammou ${ }^{153}$, E. Benhar Noccioli ${ }^{49}$, J.A. Benitez Garcia ${ }^{159 \mathrm{~b}}$, D.P. Benjamin ${ }^{45}$, J.R. Bensinger ${ }^{23}$, S. Bentvelsen ${ }^{107}$, L. Beresford ${ }^{120}$, M. Beretta ${ }^{47}$, D. Berge ${ }^{107}$, E. Bergeaas Kuutmann ${ }^{166}$, N. Berger ${ }^{5}$, F. Berghaus ${ }^{169}$, J. Beringer ${ }^{15}$, C. Bernard ${ }^{22}$, N.R. Bernard ${ }^{86}$, C. Bernius ${ }^{110}$, F.U. Bernlochner ${ }^{21}$, T. Berry ${ }^{77}$, P. Berta ${ }^{129}$, C. Bertella ${ }^{83}$, G. Bertoli ${ }^{146 a}$, 146b, F. Bertolucci ${ }^{124 a, 124 b}$, C. Bertsche ${ }^{113}$, D. Bertsche ${ }^{113}$, M.I. Besana ${ }^{91 a}$, G.J. Besjes ${ }^{36}$, O. Bessidskaia Bylund ${ }^{146 a, 146 \mathrm{~b}}$, M. Bessner ${ }^{42}$, N. Besson ${ }^{136}$, C. Betancourt ${ }^{48}$, S. Bethke ${ }^{101}$, A.J. Bevan ${ }^{76}$, W. Bhimji ${ }^{15}$, R.M. Bianchi ${ }^{125}$, L. Bianchini ${ }^{23}$, M. Bianco ${ }^{30}$, O. Biebel ${ }^{100}$, D. Biedermann ${ }^{16}$, S.P. Bieniek ${ }^{78}$, N.V. Biesuz ${ }^{124 a, 124 b}$, M. Biglietti ${ }^{134 a}$, J. Bilbao De Mendizabal ${ }^{49}$, H. Bilokon ${ }^{47}$, M. Bindi ${ }^{54}$, S. Binet ${ }^{117}$, A. Bingul ${ }^{19 \mathrm{~b}}$, C. Bini ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, S. Biondi ${ }^{\text {20a, 20b }}$, D.M. Bjergaard ${ }^{45}$, C.W. Black ${ }^{150}$, J.E. Black ${ }^{143}$, K.M. Black ${ }^{22}$, D. Blackburn ${ }^{138}$, R.E. Blair ${ }^{6}$, J.-B. Blanchard ${ }^{136}$, J.E. Blanco ${ }^{77}$, T. Blazek ${ }^{144 a}$, I. Bloch ${ }^{42}$, C. Blocker ${ }^{23}$, W. Blum ${ }^{83, *}$, U. Blumenschein ${ }^{54}$, S. Blunier ${ }^{32 \mathrm{a}}$, G.J. Bobbink ${ }^{107}$, V.S. Bobrovnikov ${ }^{109, c}$, S.S. Bocchetta ${ }^{81}$, A. Bocci ${ }^{45}$, C. Bock ${ }^{100}$, M. Boehler ${ }^{48}$, J.A. Bogaerts ${ }^{30}$, D. Bogavac ${ }^{13}$, A.G. Bogdanchikov ${ }^{109}$, C. Bohm ${ }^{146 a}$, V. Boisvert ${ }^{77}$, T. Bold ${ }^{38 \mathrm{a}}$, V. Boldea ${ }^{26 \mathrm{~b}}$, A.S. Boldyrev ${ }^{99}$, M. Bomben ${ }^{80}$, M. Bona ${ }^{76}$, M. Boonekamp ${ }^{136}$, A. Borisov ${ }^{130}$, G. Borissov ${ }^{72}$, S. Borroni ${ }^{42}$, J. Bortfeldt ${ }^{100}$, V. Bortolotto ${ }^{60 \mathrm{a}, 60 \mathrm{~b}, 60 \mathrm{c}}$, K. Bos ${ }^{107}$, D. Boscherini ${ }^{20 \mathrm{a}}$, M. Bosman ${ }^{12}$, J. Boudreau ${ }^{125}$, J. Bouffard ${ }^{2}$, E.V. Bouhova-Thacker ${ }^{72}$, D. Boumediene ${ }^{34}$, C. Bourdarios ${ }^{117}$, N. Bousson ${ }^{114}$, S.K. Boutle ${ }^{53}$, A. Boveia ${ }^{30}$, J. Boyd ${ }^{30}$, I.R. Boyko ${ }^{65}$, I. Bozic ${ }^{13}$, J. Bracinik ${ }^{18}$, A. Brandt ${ }^{8}$, G. Brandt ${ }^{54}$, O. Brandt ${ }^{58 \mathrm{a}}$, U. Bratzler ${ }^{156}$, B. Brau ${ }^{86}$, J.E. Brau ${ }^{116}$, H.M. Braun ${ }^{175, *}$, W.D. Breaden Madden ${ }^{53}$, K. Brendlinger ${ }^{122}$, A.J. Brennan ${ }^{88}$, L. Brenner ${ }^{107}$, R. Brenner ${ }^{166}$, S. Bressler ${ }^{172}$, K. Bristow ${ }^{145 c}$, T.M. Bristow ${ }^{46}$, D. Britton ${ }^{53}$, D. Britzger ${ }^{42}$, F.M. Brochu ${ }^{28}$, I. Brock ${ }^{21}$, R. Brock ${ }^{90}$, J. Bronner ${ }^{101}$, G. Brooijmans ${ }^{35}$, T. Brooks ${ }^{77}$, W.K. Brooks ${ }^{325}$, J. Brosamer ${ }^{15}$, E. Brost ${ }^{116}$, P.A. Bruckman de Renstrom ${ }^{39}$, D. Bruncko ${ }^{144 b}$, R. Bruneliere ${ }^{48}$, A. Bruni ${ }^{20 a}$, G. Bruni ${ }^{20 a}$, M. Bruschi ${ }^{20 a}$, N. Bruscino ${ }^{21}$, L. Bryngemark ${ }^{81}$, T. Buanes ${ }^{14}$, Q. Buat ${ }^{142}$, P. Buchholz ${ }^{141}$, A.G. Buckley ${ }^{53}$, S.I. Buda ${ }^{26 \mathrm{~b}}$, I.A. Budagov ${ }^{65}$, F. Buehrer ${ }^{48}$, L. Bugge ${ }^{119}$, M.K. Bugge ${ }^{119}$, O. Bulekov ${ }^{98}$, D. Bullock ${ }^{8}$, H. Burckhart ${ }^{30}$, S. Burdin ${ }^{74}$, C.D. Burgard ${ }^{48}$, B. Burghgrave ${ }^{108}$, S. Burke ${ }^{131}$, I. Burmeister ${ }^{43}$, E. Busato ${ }^{34}$, D. Büscher ${ }^{48}$, V. Büscher ${ }^{83}$, P. Bussey ${ }^{53}$, J.M. Butler ${ }^{22}$, A.I. Butt ${ }^{3}$, C.M. Buttar ${ }^{53}$, J.M. Butterworth ${ }^{78}$, P. Butti ${ }^{107}$, W. Buttinger ${ }^{25}$, A. Buzatu ${ }^{53}$, A.R. Buzykaev ${ }^{109, c}$, S. Cabrera Urbán ${ }^{167}$, D. Caforio ${ }^{128}$, V.M. Cairo ${ }^{37 a}$, $37{ }^{\prime}$, O. Cakir ${ }^{4 a}$, N. Calace ${ }^{49}$, P. Calafiura ${ }^{15}$, A. Calandri ${ }^{136}$, G. Calderini ${ }^{80}$, P. Calfayan ${ }^{100}$, L.P. Caloba ${ }^{24 a}$, D. Calvet ${ }^{34}$, S. Calvet ${ }^{34}$, R. Camacho Toro ${ }^{31}$, S. Camarda ${ }^{42}$, P. Camarri ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, D. Cameron ${ }^{119}$, R. Caminal Armadans ${ }^{165}$, S. Campana ${ }^{30}$, M. Campanelli ${ }^{78}$, A. Campoverde ${ }^{148}$, V. Canale ${ }^{104 a, 104 b}$, A. Canepa ${ }^{159 a}$, M. Cano Bret ${ }^{33 \mathrm{e}}$, J. Cantero ${ }^{82}$, R. Cantrill ${ }^{126 a}$, T. Cao ${ }^{40}$, M.D.M. Capeans Garrido ${ }^{30}$, I. Caprini ${ }^{26 b}$, M. Caprini ${ }^{26 b}$, M. Capua ${ }^{37 a, 37 b}$, R. Caputo ${ }^{83}$, R.M. Carbone ${ }^{35}$, R. Cardarelli ${ }^{133 a}$, F. Cardillo ${ }^{48}$, T. Carli ${ }^{30}$, G. Carlino ${ }^{104 a}$, L. Carminati ${ }^{91 a, 91 b}$, S. Caron ${ }^{106}$, E. Carquin ${ }^{32 \mathrm{a}}$, G.D. Carrillo-Montoya ${ }^{30}$, J.R. Carter ${ }^{28}$, J. Carvalho ${ }^{126 a, 126 c}$, D. Casadei ${ }^{78}$, M.P. Casado ${ }^{12}$, M. Casolino ${ }^{12}$, E. Castaneda-Miranda ${ }^{145 a}$, A. Castelli ${ }^{107}$, V. Castillo Gimenez ${ }^{167}$,
N.F. Castro ${ }^{126 a, g}$, P. Catastini ${ }^{57}$, A. Catinaccio ${ }^{30}$, J.R. Catmore ${ }^{119}$, A. Cattai ${ }^{30}$, J. Caudron ${ }^{83}$, V. Cavaliere ${ }^{165}$, D. Cavalli ${ }^{91 a}$, M. Cavalli-Sforza ${ }^{12}$, V. Cavasinni ${ }^{124 a, 124 b}$, F. Ceradini ${ }^{134 a}$, 134b , B.C. Cerio ${ }^{45}$, K. Cerny ${ }^{129}$, A.S. Cerqueira ${ }^{24 \mathrm{~b}}$, A. Cerri ${ }^{149}$, L. Cerrito ${ }^{76}$, F. Cerutti ${ }^{15}$, M. Cerv ${ }^{30}$, A. Cervelli ${ }^{17}$, S.A. Cetin ${ }^{19 \text { C }}$, A. Chafaq ${ }^{135 a}$, D. Chakraborty ${ }^{108}$, I. Chalupkova ${ }^{129}$, P. Chang ${ }^{165}$, J.D. Chapman ${ }^{28}$, D.G. Charlton ${ }^{18}$, C.C. Chau ${ }^{158}$, C.A. Chavez Barajas ${ }^{149}$, S. Cheatham ${ }^{152}$, A. Chegwidden ${ }^{90}$, S. Chekanov ${ }^{6}$, S.V. Chekulaev ${ }^{159 a}$, G.A. Chelkov ${ }^{65, h}$, M.A. Chelstowska ${ }^{89}$, C. Chen ${ }^{64}$, H. Chen ${ }^{25}$, K. Chen ${ }^{148}$, L. Chen ${ }^{33 \mathrm{~d}, i}$, S. Chen ${ }^{33 \mathrm{c}}$, S. Chen ${ }^{155}$, X. Chen ${ }^{33 \mathrm{f}}$, Y. Chen ${ }^{67}$, H.C. Cheng ${ }^{89}$, Y. Cheng ${ }^{31}$, A. Cheplakov ${ }^{65}$, E. Cheremushkina ${ }^{130}$, R. Cherkaoui El Moursli ${ }^{135 e}$, V. Chernyatin ${ }^{25, *}$, E. Cheu ${ }^{7}$, L. Chevalier ${ }^{136}$, V. Chiarella ${ }^{47}$, G. Chiarelli ${ }^{124 a, 124 b}$, G. Chiodini ${ }^{73 a}$, A.S. Chisholm ${ }^{18}$, R.T. Chislett ${ }^{78}$, A. Chitan ${ }^{26 b}$, M.V. Chizhov ${ }^{65}$, K. Choi ${ }^{61}$, S. Chouridou ${ }^{9}$, B.K.B. Chow ${ }^{100}$, V. Christodoulou ${ }^{78}$, D. Chromek-Burckhart ${ }^{30}$, J. Chudoba ${ }^{127}$, A.J. Chuinard ${ }^{87}$, J.J. Chwastowski ${ }^{39}$, L. Chytka ${ }^{115}$, G. Ciapetti ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, A.K. Ciftci ${ }^{4 \mathrm{a}}$, D. Cinca ${ }^{53}$, V. Cindro ${ }^{75}$, I.A. Cioara ${ }^{21}$, A. Ciocio ${ }^{15}$, F. Cirotto ${ }^{104 a, 104 b}$, Z.H. Citron ${ }^{172}$, M. Ciubancan ${ }^{26 b}$, A. Clark ${ }^{49}$, B.L. Clark ${ }^{57}$, P.J. Clark ${ }^{46}$, R.N. Clarke ${ }^{15}$, C. Clement ${ }^{146 a, 146 \mathrm{~b}}$, Y. Coadou ${ }^{85}$, M. Cobal ${ }^{164 a, 164 \mathrm{c}}$, A. Coccaro ${ }^{49}$, J. Cochran ${ }^{64}$, L. Coffey ${ }^{23}$, J.G. Cogan ${ }^{143}$, L. Colasurdo ${ }^{106}$, B. Cole ${ }^{35}$, S. Cole ${ }^{108}$, A.P. Colijn ${ }^{107}$, J. Collot ${ }^{55}$, T. Colombo ${ }^{58 \mathrm{C}}$, G. Compostella ${ }^{101}$, P. Conde Muiño ${ }^{126 a, 126 \mathrm{~b}}$, E. Coniavitis ${ }^{48}$, S.H. Connell ${ }^{145 \mathrm{~b}}$, I.A. Connelly ${ }^{77}$, V. Consorti ${ }^{48}$, S. Constantinescu ${ }^{26 \mathrm{~b}}$, C. Conta ${ }^{121 \mathrm{a}, 121 \mathrm{~b}}$, G. Conti ${ }^{30}$, F. Conventi ${ }^{104 a, j}$, M. Cooke ${ }^{15}$, B.D. Cooper ${ }^{78}$, A.M. Cooper-Sarkar ${ }^{120}$, T. Cornelissen ${ }^{175}$, M. Corradi ${ }^{200}$, F. Corriveau ${ }^{87, k}$, A. Corso-Radu ${ }^{163}$, A. Cortes-Gonzalez ${ }^{12}$, G. Cortiana ${ }^{101}$, G. Costa ${ }^{91 a}$, M.J. Costa ${ }^{167}$, D. Costanzo ${ }^{139}$, D. Côte ${ }^{8}$, G. Cottin ${ }^{28}$, G. Cowan ${ }^{77}$, B.E. Cox ${ }^{84}$, K. Cranmer ${ }^{110}$, G. Cree ${ }^{29}$, S. Crépé-Renaudin ${ }^{55}$, F. Crescioli ${ }^{80}$, W.A. Cribbs ${ }^{146 ́ a, 146 \mathrm{~b}}$, M. Crispin Ortuzar ${ }^{120}$, M. Cristinziani ${ }^{21}$, V. Croft ${ }^{106}$, G. Crosetti ${ }^{377,37 \mathrm{~b}}$, T. Cuhadar Donszelmann ${ }^{\text {133 }}$, J. Cummings ${ }^{176}$, M. Curatolo ${ }^{47}$, J. Cúth ${ }^{83}$, C. Cuthbert ${ }^{150}$, H. Czirr ${ }^{141}$, P. Czodrowski ${ }^{3}$, S. D'Auria ${ }^{53}$, M. D'Onofrio ${ }^{74}$, M.J. Da Cunha Sargedas De Sousa ${ }^{126 a, 126 b}$, C. Da Via ${ }^{84}$, W. Dabrowski ${ }^{38 a}$, A. Dafinca ${ }^{120}$, T. Dai ${ }^{89}$, O. Dale ${ }^{14}$, F. Dallaire ${ }^{95}$, C. Dallapiccola ${ }^{86}$, M. Dam ${ }^{36}$, J.R. Dandoy ${ }^{31}$, N.P. Dang ${ }^{48}$, A.C. Daniells ${ }^{18}$, M. Danninger ${ }^{168}$, M. Dano Hoffmann ${ }^{136}$, V. Dao ${ }^{48}$, G. Darbo ${ }^{50 a}$, S. Darmora ${ }^{8}$, J. Dassoulas ${ }^{3}$, A. Dattagupta ${ }^{61}$, W. Davey ${ }^{21}$, C. David ${ }^{169}$, T. Davidek ${ }^{129}$, E. Davies ${ }^{120, l}$, M. Davies ${ }^{153}$, P. Davison ${ }^{78}$, Y. Davygora ${ }^{58 a}$, E. Dawe ${ }^{88}$, I. Dawson ${ }^{139}$, R.K. Daya-Ishmukhametova ${ }^{86}$, K. De ${ }^{8}$, R. de Asmundis ${ }^{1044^{\prime}}$, A. De Benedetti ${ }^{113}$, S. De Castro ${ }^{20 a, 20 \mathrm{~b}}$, S. De Cecco ${ }^{80}$, N. De Groot ${ }^{106}$, P. de Jong ${ }^{107}$, H. De la Torre ${ }^{82}$, F. De Lorenzi ${ }^{64}$, D. De Pedis ${ }^{132 a}$, A. De Salvo ${ }^{132 a}$, U. De Sanctis ${ }^{149}$, A. De Santo ${ }^{149}$, J.B. De Vivie De Regie ${ }^{117}$, W.J. Dearnaley ${ }^{72}$, R. Debbe ${ }^{25}$, C. Debenedetti ${ }^{137}$, D.V. Dedovich ${ }^{65}$, I. Deigaard ${ }^{107}$, J. Del Peso ${ }^{82}$, T. Del Prete ${ }^{124 \mathrm{Aa}, 124 \mathrm{~b}}$, D. Delgove ${ }^{117}$, F. Deliot ${ }^{136}$, C.M. Delitzsch ${ }^{49}$, M. Deliyergiyev ${ }^{75}$, A. Dell'Acqua ${ }^{30}$, L. Dell'Asta ${ }^{22}$, M. Dell'Orso ${ }^{124 a, 124 b}$, M. Della Pietra ${ }^{104 a, j}$, D. della Volpe ${ }^{49}$, M. Delmastro ${ }^{5}$, P.A. Delsart ${ }^{55}$, C. Deluca ${ }^{107}$, D.A. DeMarco ${ }^{158}$, S. Demers ${ }^{176}$, M. Demichev ${ }^{65}$, A. Demilly ${ }^{80}$, S.P. Denisov ${ }^{130}$, D. Derendarz ${ }^{39}$, J.E. Derkaoui ${ }^{1355^{\prime}}$, F. Derue ${ }^{80}$, P. Dervan ${ }^{74}$, K. Desch ${ }^{21}$, C. Deterre ${ }^{42}$, P.O. Deviveiros ${ }^{30}$, A. Dewhurst ${ }^{131}$, S. Dhaliwal ${ }^{23}$, A. Di Ciaccio ${ }^{133 a, 133 \mathrm{~b}}$, L. Di Ciaccio ${ }^{5}$, A. Di Domenico ${ }^{132 \mathrm{a} a, 132 \mathrm{~b}}$, C. Di Donato ${ }^{104 a, 104 \mathrm{~b}}$, A. Di Girolamo ${ }^{30}$, B. Di Girolamo ${ }^{30}$, A. Di Mattia ${ }^{152}$, B. Di Micco ${ }^{134 a, 134 b}$, R. Di Nardo ${ }^{47}$, A. Di Simone ${ }^{48}$, R. Di Sipio ${ }^{158,}$, D. Di Valentino ${ }^{29}$, C. Diaconu ${ }^{85}$, M. Diamond ${ }^{158}$, F.A. Dias ${ }^{46}$, M.A. Diaz ${ }^{32 a}$, E.B. Diehl ${ }^{89}$, J. Dietrich ${ }^{16}$, S. Diglio ${ }^{85}$, A. Dimitrievska ${ }^{13}$, J. Dingfelder ${ }^{21}$, P. Dita ${ }^{26 \mathrm{~b}}$, S. Dita ${ }^{26 \mathrm{~b}}$, F. Dittus ${ }^{30}$, F. Djama ${ }^{85}$, T. Djobava ${ }^{51 b}$, J.I. Djuvsland ${ }^{58 \mathrm{a}}$, M.A.B. do Vale ${ }^{24 \mathrm{c}}$, D. Dobos ${ }^{30}$, M. Dobre ${ }^{26 \mathrm{~b}}$, C. Doglioni ${ }^{81}$, T. Dohmae ${ }^{155}$, J. Dolejsi ${ }^{129}$, Z. Dolezal ${ }^{129}$, B.A. Dolgoshein ${ }^{98, *}$, M. Donadelli' ${ }^{\prime 24 \mathrm{~d}}$, S. Donati ${ }^{124 a, 124 \mathrm{~b}}$, P. Dondero ${ }^{1211^{\prime}, 121 b}$, J. Donini ${ }^{34}$, J. Dopke ${ }^{\text {131 }}$, A. Doria ${ }^{104 a}$, M.T. Dova ${ }^{71}$, A.T. Doyle ${ }^{53}$, E. Drechsler ${ }^{54}$, M. Dris ${ }^{10}$, E. Dubreuil ${ }^{34}$, E. Duchovni ${ }^{172}$, G. Duckeck ${ }^{100}$, O.A. Ducu ${ }^{26 b, 85}$, D. Duda ${ }^{107}$, A. Dudarev ${ }^{30}$, L. Duflot ${ }^{117}$, L. Duguid ${ }^{77}$, M. Dührssen ${ }^{30}$, M. Dunford ${ }^{58 a}$, H. Duran Yildiz ${ }^{4 a}$, M. Düren ${ }^{52}$, A. Durglishvili ${ }^{51 \mathrm{~b}}$, D. Duschinger ${ }^{44}$, B. Dutta ${ }^{42}$, M. Dyndal ${ }^{38 \mathrm{a}}$, C. Eckardt ${ }^{42}$, K.M. Ecker ${ }^{101}$, R.C. Edgar ${ }^{89}$, W. Edson ${ }^{2}$, N.C. Edwards ${ }^{46}$, W. Ehrenfeld ${ }^{21}$, T. Eifert ${ }^{30}$, G. Eigen ${ }^{14}$, K. Einsweiler ${ }^{15}$, T. Ekelof ${ }^{166}$, M. El Kacimi ${ }^{135 \mathrm{c}}$, M. Ellert ${ }^{166}$, S. Elles ${ }^{5}$, F. Ellinghaus ${ }^{175}$, A.A. Elliot ${ }^{169}$, N. Ellis ${ }^{30}$, J. Elmsheuser ${ }^{100}$, M. Elsing ${ }^{30}$, D. Emeliyanov ${ }^{131}$, Y. Enari ${ }^{155}$, O.C. Endner ${ }^{83}$, M. Endo ${ }^{118}$, J. Erdmann ${ }^{43}$, A. Ereditato ${ }^{17}$, G. Ernis ${ }^{175}$, J. Ernst ${ }^{2}$, M. Ernst ${ }^{25}$, S. Errede ${ }^{165}$, E. Ertel ${ }^{83}$, M. Escalier ${ }^{117}$, H. Esch ${ }^{43}$, C. Escobar ${ }^{125}$, B. Esposito ${ }^{47}$, A.I. Etienvre ${ }^{136}$, E. Etzion ${ }^{153}$, H. Evans ${ }^{61}$, A. Ezhilov ${ }^{123}$, L. Fabbri ${ }^{20 a}$, ${ }^{201}$, G. Facini ${ }^{31}$, R.M. Fakhrutdinov ${ }^{130}$, S. Falciano ${ }^{132 a}$, R.J. Falla ${ }^{78}$, J. Faltova ${ }^{129}$, Y. Fang ${ }^{33 a}$, M. Fanti ${ }^{91 a}, 91 \mathrm{~b}$, A. Farbin ${ }^{8}$, A. Farilla ${ }^{134 a}$, T. Farooque ${ }^{12}$, S. Farrell ${ }^{15}$, S.M. Farrington ${ }^{170}$, P. Farthouat ${ }^{30}$, F. Fassi ${ }^{135 e}$, P. Fassnacht ${ }^{30}$,
D. Fassouliotis ${ }^{9}$, M. Faucci Giannelli ${ }^{77}$, A. Favareto ${ }^{50 a, 50 b}$, L. Fayard ${ }^{117}$, O.L. Fedin ${ }^{123, m}$, W. Fedorko ${ }^{168}$, S. Feigl ${ }^{30}$, L. Feligioni ${ }^{85}$, C. Feng ${ }^{33 \mathrm{~d}}$, E.J. Feng ${ }^{30}$, H. Feng ${ }^{89}$, A.B. Fenyuk ${ }^{130}$, L. Feremenga ${ }^{8}$, P. Fernandez Martinez ${ }^{167}$, S. Fernandez Perez ${ }^{30}$, J. Ferrando ${ }^{53}$, A. Ferrari ${ }^{166}$, P. Ferrari ${ }^{107}$, R. Ferrari ${ }^{121 a}$, D.E. Ferreira de Lima ${ }^{53}$, A. Ferrer ${ }^{167}$, D. Ferrere ${ }^{49}$, C. Ferretti ${ }^{89}$, A. Ferretto Parodi ${ }^{50 a}, 50$ b , M. Fiascaris ${ }^{31}$, F. Fiedler ${ }^{83}$, A. Filipčič ${ }^{75}$, M. Filipuzzi ${ }^{42}$, F. Filthaut ${ }^{106}$, M. Fincke-Keeler ${ }^{169}$, K.D. Finelli ${ }^{150}$, M.C.N. Fiolhais ${ }^{126 a, 126 c}$, L. Fiorini ${ }^{167}$, A. Firan ${ }^{40}$, A. Fischer ${ }^{2}$, C. Fischer ${ }^{12}$, J. Fischer ${ }^{175}$, W.C. Fisher ${ }^{90}$, N. Flaschel ${ }^{42}$, I. Fleck ${ }^{141}$, P. Fleischmann ${ }^{89}$, G.T. Fletcher ${ }^{139}$, G. Fletcher ${ }^{76}$, R.R.M. Fletcher ${ }^{122}$, T. Flick ${ }^{175}$, A. Floderus ${ }^{81}$, L.R. Flores Castillo ${ }^{60 a}$, M.J. Flowerdew ${ }^{101}$, A. Formica ${ }^{136}$, A. Forti ${ }^{84}$, D. Fournier ${ }^{117}$, H. Fox ${ }^{72}$, S. Fracchia ${ }^{12}$, P. Francavilla ${ }^{80}$, M. Franchini ${ }^{20 a}$, 20b, D. Francis ${ }^{30}$, L. Franconi ${ }^{119}$, M. Franklin ${ }^{57}$, M. Frate ${ }^{163}$, M. Fraternali ${ }^{121 a, 121 b}$, D. Freeborn ${ }^{78}$, S.T. French ${ }^{28}$, F. Friedrich ${ }^{44}$, D. Froidevaux ${ }^{30}$, J.A. Frost ${ }^{\text {120 }}$, C. Fukunaga ${ }^{156}$, E. Fullana Torregrosa ${ }^{83}$, B.G. Fulsom ${ }^{143}$, T. Fusayasu ${ }^{102}$, J. Fuster ${ }^{167}$, C. Gabaldon ${ }^{55}$, O. Gabizon ${ }^{175}$, A. Gabrielli ${ }^{20 a, 20 b}$, A. Gabrielli ${ }^{15}$, G.P. Gach ${ }^{18}$, S. Gadatsch ${ }^{30}$, S. Gadomski ${ }^{49}$, G. Gagliardi ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, P. Gagnon ${ }^{61}$, C. Galea ${ }^{106}$, B. Galhardo ${ }^{126 a, 126 \mathrm{c}}$, E.J. Gallas ${ }^{120}$, B.J. Gallop ${ }^{131}$, P. Gallus ${ }^{128}$, G. Galster ${ }^{36}$, K.K. Gan ${ }^{111}$, J. Gao ${ }^{33 b, 85}$, Y. Gao ${ }^{46}$, Y.S. Gao ${ }^{143, e}$, F.M. Garay Walls ${ }^{46}$, F. Garberson ${ }^{176}$, C. García ${ }^{167}$, J.E. García Navarro ${ }^{167}$, M. Garcia-Sciveres ${ }^{15}$, R.W. Gardner ${ }^{31}$, N. Garelli ${ }^{143}$, V. Garonne ${ }^{119}$, C. Gatti ${ }^{47}$, A. Gaudiello ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, G. Gaudio ${ }^{121 \mathrm{a}}$, B. Gaur ${ }^{141}$, L. Gauthier ${ }^{95}$, P. Gauzzi ${ }^{132 a, 132 b}$, I.L. Gavrilenko ${ }^{96}$, C. Gay ${ }^{168}$, G. Gaycken ${ }^{21}$, E.N. Gazis ${ }^{10}$, P. Ge ${ }^{33 \mathrm{~d}}$, Z. Gecse ${ }^{168}$, C.N.P. Gee ${ }^{131}$, Ch. Geich-Gimbel ${ }^{21}$, M.P. Geisler ${ }^{58 \mathrm{a}}$, C. Gemme ${ }^{50 \mathrm{a}}$, M.H. Genest ${ }^{55}$, S. Gentile ${ }^{132 a, 132 b}$, M. George ${ }^{54}$, S. George ${ }^{77}$, D. Gerbaudo ${ }^{163}$, A. Gershon ${ }^{153}$, S. Ghasemi ${ }^{141}$, H. Ghazlane ${ }^{135 \mathrm{~b}}$, B. Giacobbe ${ }^{20 \mathrm{a}}$, S. Giagu ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, V. Giangiobbe ${ }^{12}$, P. Giannetti ${ }^{124 \mathrm{a}, 124 \mathrm{~b}}$, B. Gibbard ${ }^{25}$, S.M. Gibson ${ }^{77}$, M. Gignac ${ }^{168}$, M. Gilchriese ${ }^{15}$, T.P.S. Gillam ${ }^{28}$, D. Gillberg ${ }^{30}$, G. Gilles ${ }^{34}$, D.M. Gingrich ${ }^{3, d}$, N. Giokaris ${ }^{9}$, M.P. Giordani ${ }^{164 a}{ }^{164 c}$, F.M. Giorgi ${ }^{20 a}$, F.M. Giorgi ${ }^{16}$, P.F. Giraud ${ }^{136}$, P. Giromini ${ }^{47}$, D. Giugni ${ }^{91 a}$, C. Giuliani ${ }^{48}$, M. Giulini ${ }^{58 \mathrm{~b}}$, B.K. Gjelsten ${ }^{119}$, S. Gkaitatzis ${ }^{154}$, I. Gkialas ${ }^{154}$, E.L. Gkougkousis ${ }^{117}$, L.K. Gladilin ${ }^{99}$, C. Glasman ${ }^{82}$, J. Glatzer ${ }^{30}$, P.C.F. Glaysher ${ }^{46}$, A. Glazov ${ }^{42}$, M. Goblirsch-Kolb ${ }^{101}$, J.R. Goddard ${ }^{76}$, J. Godlewski ${ }^{39}$, S. Goldfarb ${ }^{89}$, T. Golling ${ }^{49}$, D. Golubkov ${ }^{130}$, A. Gomes ${ }^{126 a, 126 b, 126 d}$, R. Gonçalo ${ }^{126 a}$, J. Goncalves Pinto Firmino Da Costa ${ }^{136}$, L. Gonella ${ }^{21}$, S. González de la Hoz^{167}, G. Gonzalez Parra ${ }^{12}$, S. Gonzalez-Sevilla ${ }^{49}$, L. Goossens ${ }^{30}$, P.A. Gorbounov ${ }^{97}$, H.A. Gordon ${ }^{25}$, I. Gorelov ${ }^{105}$, B. Gorini ${ }^{30}$, E. Gorini ${ }^{73 a, 73 b}$, A. Gorišek ${ }^{75}$, E. Gornicki ${ }^{39}$, A.T. Goshaw ${ }^{45}$, C. Gössling ${ }^{43}$, M.I. Gostkin ${ }^{65}$, D. Goujdami ${ }^{135 \mathrm{c}}$, A.G. Goussiou ${ }^{138}$, N. Govender ${ }^{145 \mathrm{~b}}$, E. Gozani ${ }^{152}$, H.M.X. Grabas ${ }^{137}$, L. Graber ${ }^{54}$, I. Grabowska-Bold ${ }^{38 \mathrm{a}}$, P.O.J. Gradin ${ }^{166}$, P. Grafström ${ }^{\text {20ad, 20b }}$, K-J. Grahn ${ }^{42}$, J. Gramling ${ }^{49}$, E. Gramstad ${ }^{119}$, S. Grancagnolo ${ }^{16}$, V. Gratchev ${ }^{123}$, H.M. Gray ${ }^{30}$, E. Graziani ${ }^{134 a}$, Z.D. Greenwood ${ }^{79, n}$, C. Grefe ${ }^{21}$, K. Gregersen ${ }^{78}$, I.M. Gregor ${ }^{42}$, P. Grenier ${ }^{143}$, J. Griffiths ${ }^{8}$, A.A. Grillo ${ }^{137}$, K. Grimm ${ }^{72}$, S. Grinstein ${ }^{12,0}$, Ph. Gris ${ }^{34}$, J.-F. Grivaz ${ }^{117}$, J.P. Grohs ${ }^{44}$, A. Grohsjean ${ }^{42}$, E. Gross ${ }^{172}$, J. Grosse-Knetter ${ }^{54}$, G.C. Grossi ${ }^{79}$, Z.J. Grout ${ }^{149}$, L. Guan ${ }^{89}$, J. Guenther ${ }^{128}$, F. Guescini ${ }^{49}$, D. Guest ${ }^{176}$, O. Gueta ${ }^{153}$, E. Guido ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, T. Guillemin ${ }^{117}$, S. Guindon ${ }^{2}$, U. Gul ${ }^{53}$, C. Gumpert ${ }^{44}$, J. Guo ${ }^{33 e}$, Y. Guo ${ }^{33 \mathrm{~b}, \mathrm{p}}$, S. Gupta ${ }^{120}$, G. Gustavino ${ }^{132 \mathrm{a}, 132 \text { 2b }}$, P. Gutierrez ${ }^{113}$, N.G. Gutierrez Ortiz ${ }^{78}$, C. Gutschow ${ }^{44}$, C. Guyot ${ }^{136}$, C. Gwenlan ${ }^{120}$, C.B. Gwilliam ${ }^{74}$, A. Haas ${ }^{110}$, C. Haber ${ }^{15}$, H.K. Hadavand ${ }^{8}$, N. Haddad ${ }^{135 e}$, P. Haefner ${ }^{21}$, S. Hageböck ${ }^{21}$, Z. Hajduk ${ }^{39}$, H. Hakobyan ${ }^{177}$, M. Haleem ${ }^{42}$, J. Haley ${ }^{114}$, D. Hall ${ }^{120}$, G. Halladjian ${ }^{90}$, G.D. Hallewell ${ }^{85}$, K. Hamacher ${ }^{175}$, P. Hamal ${ }^{115}$, K. Hamano ${ }^{169}$, A. Hamilton ${ }^{145 a}$, G.N. Hamity ${ }^{139}$, P.G. Hamnett ${ }^{42}$, L. Han ${ }^{33 \mathrm{~b}}$, K. Hanagaki ${ }^{66, q}$, K. Hanawa ${ }^{155}$, M. Hance ${ }^{137}$, B. Haney ${ }^{122}$, P. Hanke ${ }^{58 a}$, R. Hanna ${ }^{136}$, J.B. Hansen ${ }^{36}$, J.D. Hansen ${ }^{36}$, M.C. Hansen ${ }^{21}$, P.H. Hansen ${ }^{36}$, K. Hara ${ }^{160}$, A.S. Hard ${ }^{173}$, T. Harenberg ${ }^{175}$, F. Hariri ${ }^{117}$, S. Harkusha ${ }^{92}$, R.D. Harrington ${ }^{46}$, P.F. Harrison ${ }^{170}$, F. Hartjes ${ }^{107}$, M. Hasegawa ${ }^{67}$, Y. Hasegawa ${ }^{140}$, A. Hasib ${ }^{113}$, S. Hassani ${ }^{136}$, S. Haug ${ }^{17}$, R. Hauser ${ }^{90}$, L. Hauswald ${ }^{44}$, M. Havranek ${ }^{127}$, C.M. Hawkes ${ }^{18}$, R.J. Hawkings ${ }^{30}$, A.D. Hawkins ${ }^{81}$, T. Hayashi ${ }^{160}$, D. Hayden ${ }^{90}$, C.P. Hays ${ }^{120}$, J.M. Hays ${ }^{76}$, H.S. Hayward ${ }^{74}$, S.J. Haywood ${ }^{131}$, S.J. Head ${ }^{18}$, T. Heck ${ }^{83}$, V. Hedberg ${ }^{81}$, L. Heelan ${ }^{8}$, S. Heim ${ }^{122}$, T. Heim ${ }^{175}$, B. Heinemann ${ }^{15}$, L. Heinrich ${ }^{110}$, J. Hejbal ${ }^{127}$, L. Helary ${ }^{22}$, S. Hellman ${ }^{146 a, 146 b}$, D. Hellmich ${ }^{21}$, C. Helsens ${ }^{12}$, J. Henderson ${ }^{120}$, R.C.W. Henderson ${ }^{72}$, Y. Heng ${ }^{173}$, C. Hengler ${ }^{42}$, S. Henkelmann ${ }^{168}$, A. Henrichs ${ }^{176}$, A.M. Henriques Correia ${ }^{30}$,
S. Henrot-Versille ${ }^{117}$, G.H. Herbert ${ }^{16}$, Y. Hernández Jiménez ${ }^{167}$, G. Herten ${ }^{48}$, R. Hertenberger ${ }^{100}$, L. Hervas ${ }^{30}$, G.G. Hesketh ${ }^{78}$, N.P. Hessey ${ }^{107}$, J.W. Hetherly ${ }^{40}$, R. Hickling ${ }^{76}$, E. Higón-Rodriguez ${ }^{167}$, E. Hill ${ }^{169}$, J.C. Hill ${ }^{28}$, K.H. Hiller ${ }^{42}$, S.J. Hillier ${ }^{18}$, I. Hinchliffe ${ }^{15}$, E. Hines ${ }^{122}$, R.R. Hinman ${ }^{15}$, M. Hirose ${ }^{157}$, D. Hirschbuehl ${ }^{175}$, J. Hobbs ${ }^{148}$, N. Hod 107, M.C. Hodgkinson ${ }^{139}$, P. Hodgson ${ }^{139}$,
A. Hoecker ${ }^{30}$, M.R. Hoeferkamp ${ }^{105}$, F. Hoenig ${ }^{100}$, M. Hohlfeld ${ }^{83}$, D. Hohn ${ }^{21}$, T.R. Holmes ${ }^{15}$, M. Homann ${ }^{43}$, T.M. Hong ${ }^{125}$, W.H. Hopkins ${ }^{116}$, Y. Horii ${ }^{103}$, A.J. Horton ${ }^{142}$, J-Y. Hostachy ${ }^{55}$, S. Hou ${ }^{151}$, A. Hoummada ${ }^{135 a}$, J. Howard ${ }^{120}$, J. Howarth ${ }^{42}$, M. Hrabovsky ${ }^{115}$, I. Hristova ${ }^{16}$, J. Hrivnac ${ }^{117}$, T. Hryn'ova ${ }^{5}$, A. Hrynevich ${ }^{93}$, C. Hsu ${ }^{145 c}$, P.J. Hsu ${ }^{151, r}$, S.-C. Hsu ${ }^{138}$, D. Hu ${ }^{35}$, Q. Hu ${ }^{33 b}$, X. Hu ${ }^{89}$, Y. Huang ${ }^{42}$, Z. Hubacek ${ }^{128}$, F. Hubaut ${ }^{85}$, F. Huegging ${ }^{21}$, T.B. Huffman ${ }^{120}$, E.W. Hughes ${ }^{35}$, G. Hughes ${ }^{72}$, M. Huhtinen ${ }^{30}$, T.A. Hülsing ${ }^{83}$, N. Huseynov ${ }^{65, b}$, J. Huston ${ }^{90}$, J. Huth ${ }^{57}$, G. Iacobucci ${ }^{49}$, G. Iakovidis ${ }^{25}$, I. Ibragimov ${ }^{141}$, L. Iconomidou-Fayard ${ }^{117}$, E. Ideal ${ }^{176}$, Z. Idrissi ${ }^{135 e}$, P. Iengo ${ }^{30}$, O. Igonkina ${ }^{107}$, T. Iizawa ${ }^{171}$, Y. Ikegami ${ }^{66}$, K. Ikematsu ${ }^{141}$, M. Ikeno ${ }^{66}$, Y. Ilchenko ${ }^{31, s}$, D. Iliadis ${ }^{154}$, N. Ilic ${ }^{143}$, T. Ince ${ }^{101}$, G. Introzzi ${ }^{121 a, 121 b}$, P. Ioannou ${ }^{9}$, M. Iodice ${ }^{134 \mathrm{a}}$, K. Iordanidou ${ }^{35}$, V. Ippolito ${ }^{57}$, A. Irles Quiles ${ }^{167}$, C. Isaksson ${ }^{166}$, M. Ishino ${ }^{68}$, M. Ishitsuka ${ }^{157}$, R. Ishmukhametov ${ }^{111}$, C. Issever ${ }^{120}$, S. Istin ${ }^{19 a}$, J.M. Iturbe Ponce ${ }^{84}$, R. Iuppa ${ }^{133 a, 133 \mathrm{~b}}$, J. Ivarsson ${ }^{81}$, W. Iwanski ${ }^{39}$, H. Iwasaki ${ }^{66}$, J.M. Izen ${ }^{41}$, V. Izzo ${ }^{104 a}$, S. Jabbar ${ }^{3}$, B. Jackson ${ }^{122}$, M. Jackson ${ }^{74}$, P. Jackson ${ }^{1}$, M.R. Jaekel ${ }^{30}$, V. Jain ${ }^{2}$, K. Jakobs ${ }^{48}$, S. Jakobsen ${ }^{30}$, T. Jakoubek ${ }^{127}$, J. Jakubek ${ }^{128}$, D.O. Jamin ${ }^{114}$, D.K. Jana ${ }^{79}$, E. Jansen ${ }^{78}$, R. Jansky ${ }^{62}$, J. Janssen ${ }^{21}$, M. Janus ${ }^{54}$, G. Jarlskog ${ }^{81}$, N. Javadov ${ }^{65, b}$, T. Javůrek ${ }^{48}$, L. Jeanty ${ }^{15}$, J. Jejelava ${ }^{51 a, t}$, G.-Y. Jeng ${ }^{150}$, D. Jennens ${ }^{88}$, P. Jenni ${ }^{48, u}$, J. Jentzsch ${ }^{43}$, C. Jeske ${ }^{170}$, S. Jézéquel ${ }^{5}$, H. Ji ${ }^{173}$, J. Jia ${ }^{148}$, Y. Jiang ${ }^{33 b}$, S. Jiggins ${ }^{78}$, J. Jimenez Pena ${ }^{167}$, S. Jin ${ }^{33 a}$, A. Jinaru ${ }^{26 b}$, O. Jinnouchi ${ }^{157}$, M.D. Joergensen ${ }^{36}$, P. Johansson ${ }^{139}$, K.A. Johns ${ }^{7}$, W.J. Johnson ${ }^{138}$, K. Jon-And ${ }^{146 a, 146 \mathrm{~b}}$, G. Jones ${ }^{170}$, R.W.L. Jones ${ }^{72}$, T.J. Jones ${ }^{74}$, J. Jongmanns ${ }^{58 \mathrm{a}}$, P.M. Jorge ${ }^{126 \mathrm{a}, 126 \mathrm{~b}}$, K.D. Joshi ${ }^{84}$, J. Jovicevic ${ }^{159 \mathrm{a}}$, X. Ju ${ }^{173}$, P. Jussel ${ }^{62}$, A. Juste Rozas ${ }^{12,0}$, M. Kaci ${ }^{167}$, A. Kaczmarska ${ }^{39}$, M. Kado ${ }^{117}$, H. Kagan ${ }^{111}$, M. Kagan ${ }^{143}$, S.J. Kahn ${ }^{85}$, E. Kajomovitz ${ }^{45}$, C.W. Kalderon ${ }^{120}$, S. Kama ${ }^{40}$, A. Kamenshchikov ${ }^{130}$, N. Kanaya ${ }^{155}$, S. Kaneti ${ }^{28}$, V.A. Kantserov ${ }^{98}$, J. Kanzaki ${ }^{66}$, B. Kaplan ${ }^{110}$, L.S. Kaplan ${ }^{173}$, A. Kapliy ${ }^{31}$, D. Kar ${ }^{145 c}$, K. Karakostas ${ }^{10}$, A. Karamaoun ${ }^{3}$, N. Karastathis ${ }^{10,107}$, M.J. Kareem ${ }^{54}$, E. Karentzos ${ }^{10}$, M. Karnevskiy ${ }^{83}$, S.N. Karpov ${ }^{65}$, Z.M. Karpova ${ }^{65}$, K. Karthik ${ }^{110}$, V. Kartvelishvili ${ }^{72}$, A.N. Karyukhin ${ }^{130}$, K. Kasahara ${ }^{160}$, L. Kashif ${ }^{173}$, R.D. Kass ${ }^{111}$, A. Kastanas ${ }^{14}$, Y. Kataoka ${ }^{155}$, C. Kato ${ }^{155}$, A. Katre ${ }^{49}$, J. Katzy ${ }^{42}$, K. Kawade ${ }^{103}$, K. Kawagoe ${ }^{70}$, T. Kawamoto ${ }^{155}$, G. Kawamura ${ }^{54}$, S. Kazama ${ }^{155}$, V.F. Kazanin ${ }^{109}{ }^{\text {, }, ~ \text {, R. Keeler }}{ }^{169}$, R. Kehoe ${ }^{40}$, J.S. Keller ${ }^{42}$, J.J. Kempster ${ }^{77}$, H. Keoshkerian ${ }^{84}$, O. Kepka ${ }^{127}$, B.P. Kerševan ${ }^{75}$, S. Kersten ${ }^{175}$, R.A. Keyes ${ }^{87}$, F. Khalil-zada ${ }^{11}$, H. Khandanyan ${ }^{146 a, 146 b}$, A. Khanov ${ }^{114}$, A.G. Kharlamov ${ }^{109}$,, , T.J. Khoo ${ }^{28}$, V. Khovanskiy ${ }^{97}$, E. Khramov ${ }^{65}$, J. Khubua ${ }^{51 b, v}$, S. Kido ${ }^{67}$, H.Y. Kim ${ }^{8}$, S.H. Kim ${ }^{160}$, Y.K. Kim ${ }^{31}$, N. Kimura ${ }^{154}$, O.M. Kind ${ }^{16}$, B.T. King ${ }^{74}$, M. King ${ }^{167}$, S.B. King ${ }^{168}$, J. Kirk ${ }^{131}$, A.E. Kiryunin ${ }^{101}$, T. Kishimoto ${ }^{67}$, D. Kisielewska ${ }^{38 \mathrm{a}}$, F. Kiss ${ }^{48}$, K. Kiuchi ${ }^{160}$, O. Kivernyk ${ }^{136}$, E. Kladiva ${ }^{144 \mathrm{~b}}$, M.H. Klein ${ }^{35}$, M. Klein ${ }^{74}$, U. Klein ${ }^{74}$, K. Kleinknecht ${ }^{83}$, P. Klimek ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$, A. Klimentov ${ }^{25}$, R. Klingenberg ${ }^{43}$, J.A. Klinger ${ }^{139}$, T. Klioutchnikova ${ }^{30}$, E.-E. Kluge ${ }^{58 \mathrm{a}}$, P. Kluit ${ }^{107}$, S. Kluth ${ }^{101}$, J. Knapik ${ }^{39}$, E. Kneringer ${ }^{62}$, E.B.F.G. Knoops ${ }^{85}$, A. Knue ${ }^{53}$, A. Kobayashi ${ }^{155}$, D. Kobayashi ${ }^{157}$, T. Kobayashi ${ }^{155}$, M. Kobel ${ }^{44}$, M. Kocian ${ }^{143}$, P. Kodys ${ }^{129}$, T. Koffas ${ }^{29}$, E. Koffeman ${ }^{107}$, L.A. Kogan ${ }^{120}$, S. Kohlmann ${ }^{175}$, Z. Kohout ${ }^{128}$, T. Kohriki ${ }^{66}$, T. Koi 143, H. Kolanoski 16, M. Kolb ${ }^{58 b}$, I. Koletsou ${ }^{5}$, A.A. Komar ${ }^{96, *}$, Y. Komori ${ }^{155}$, T. Kondo ${ }^{66}$, N. Kondrashova ${ }^{42}$, K. Köneke ${ }^{48}$, A.C. König ${ }^{106}$, T. Kono ${ }^{66}$, R. Konoplich ${ }^{110, w}$, N. Konstantinidis ${ }^{78}$, R. Kopeliansky ${ }^{152}$, S. Koperny ${ }^{38 a}$, L. Köpke ${ }^{83}$, A.K. Kopp ${ }^{48}$, K. Korcyl ${ }^{39}$, K. Kordas ${ }^{154}$, A. Korn ${ }^{78}$, A.A. Korol ${ }^{109, c}$, I. Korolkov ${ }^{12}$, E.V. Korolkova ${ }^{139}$, O. Kortner ${ }^{101}$, S. Kortner ${ }^{101}$, T. Kosek ${ }^{129}$, V.V. Kostyukhin ${ }^{21}$, V.M. Kotov ${ }^{65}$, A. Kotwal ${ }^{45}$, A. Kourkoumeli-Charalampidi ${ }^{154}$, C. Kourkoumelis ${ }^{9}$, V. Kouskoura ${ }^{25}$, A. Koutsman ${ }^{159 a}$, R. Kowalewski ${ }^{169}$, T.Z. Kowalski ${ }^{\text {38a }}$, W. Kozanecki ${ }^{136}$, A.S. Kozhin ${ }^{130}$, V.A. Kramarenko ${ }^{99}$, G. Kramberger ${ }^{75}$, D. Krasnopevtsev ${ }^{98}$, M.W. Krasny ${ }^{80}$, A. Krasznahorkay ${ }^{30}$, J.K. Kraus ${ }^{21}$, A. Kravchenko ${ }^{25}$, S. Kreiss ${ }^{110}$, M. Kretz ${ }^{58 \text { ² }}$, J. Kretzschmar ${ }^{74}$, K. Kreutzfeldt ${ }^{52}$, P. Krieger ${ }^{158}$, K. Krizka ${ }^{31}$, K. Kroeninger ${ }^{43}$, H. Kroha ${ }^{101}$, J. Kroll ${ }^{122}$, J. Kroseberg ${ }^{21}$, J. Krstic ${ }^{13}$, U. Kruchonak ${ }^{65}$, H. Krüger ${ }^{21}$, N. Krumnack ${ }^{64}$, A. Kruse ${ }^{173}$, M.C. Kruse ${ }^{45}$, M. Kruskal ${ }^{22}$, T. Kubota ${ }^{88}$, H. Kucuk ${ }^{78}$, S. Kuday ${ }^{4 b}$, S. Kuehn ${ }^{48}$, A. Kugel ${ }^{58 \mathrm{C}}$, F. Kuger ${ }^{174}$, A. Kuhl ${ }^{137^{\prime}}$, T. Kuhl ${ }^{42}$, V. Kukhtin ${ }^{65}$, R. Kukla ${ }^{136}$, Y. Kulchitsky ${ }^{92}$, S. Kuleshov ${ }^{32 \mathrm{~b}}$, M. Kuna ${ }^{132 a, 132 b}$, T. Kunigo ${ }^{68}$, A. Kupco ${ }^{127}$, H. Kurashige ${ }^{67}$, Y.A. Kurochkin ${ }^{92}$, V. Kus ${ }^{127}$, E.S. Kuwertz ${ }^{169}$, M. Kuze ${ }^{157}$, J. Kvita ${ }^{115}$, T. Kwan ${ }^{169}$, D. Kyriazopoulos ${ }^{139}$, A. La Rosa ${ }^{137}$, J.L. La Rosa Navarro ${ }^{24 d}$, L. La Rotonda ${ }^{37 a}$, 37b , C. Lacasta ${ }^{167}$, F. Lacava ${ }^{132 a, 132 b}$, J. Lacey ${ }^{29}$, H. Lacker ${ }^{16}$, D. Lacour ${ }^{80}$, V.R. Lacuesta ${ }^{167}$, E. Ladygin ${ }^{65}$, R. Lafaye ${ }^{5}$, B. Laforge ${ }^{80}$, T. Lagouri ${ }^{176}$, S. Lai ${ }^{54}$, L. Lambourne ${ }^{78}$, S. Lammers ${ }^{61}$, C.L. Lampen ${ }^{7}$, W. Lampl ${ }^{7}$, E. Lançon ${ }^{136}$, U. Landgraf ${ }^{48}$, M.P.J. Landon ${ }^{76}$, V.S. Lang ${ }^{58 a}$, J.C. Lange ${ }^{12}$, A.J. Lankford ${ }^{163}$, F. Lanni ${ }^{25}$, K. Lantzsch ${ }^{21}$, A. Lanza ${ }^{121 a}$, S. Laplace ${ }^{80}$, C. Lapoire ${ }^{30}$, J.F. Laporte ${ }^{136}$, T. Lari ${ }^{91 a}$,
F. Lasagni Manghi ${ }^{20 a}{ }^{20 b}$, M. Lassnig ${ }^{30}$, P. Laurelli ${ }^{47}$, W. Lavrijsen ${ }^{15}$, A.T. Law ${ }^{137}$, P. Laycock ${ }^{74}$, T. Lazovich ${ }^{57}$, O. Le Dortz ${ }^{80}$, E. Le Guirriec ${ }^{85}$, E. Le Menedeu ${ }^{12}$, M. LeBlanc ${ }^{169}$, T. LeCompte ${ }^{6}$, F. Ledroit-Guillon ${ }^{55}$, C.A. Lee ${ }^{145 a}$, S.C. Lee ${ }^{151}$, L. Lee ${ }^{1}$, G. Lefebvre ${ }^{80}$, M. Lefebvre ${ }^{169}$, F. Legger ${ }^{100}$, C. Leggett ${ }^{15}$, A. Lehan ${ }^{74}$, G. Lehmann Miotto ${ }^{30}$, X. Lei ${ }^{7}$, W.A. Leight ${ }^{29}$, A. Leisos ${ }^{154, x}$, A.G. Leister ${ }^{176}$, M.A.L. Leite ${ }^{24 \mathrm{~d}}$, R. Leitner ${ }^{129}$, D. Lellouch ${ }^{172}$, B. Lemmer ${ }^{54}$, K.J.C. Leney ${ }^{78}$, T. Lenz ${ }^{21}$, B. Lenzi ${ }^{30}$, R. Leone ${ }^{7}$, S. Leone ${ }^{124 \mathrm{a}, 124 \mathrm{~b}}$, C. Leonidopoulos ${ }^{46}$, S. Leontsinis ${ }^{10}$, C. Leroy ${ }^{95}$, C.G. Lester ${ }^{28}$, M. Levchenko ${ }^{123}$, J. Levêque ${ }^{5}$, D. Levin ${ }^{89}$, L.J. Levinson ${ }^{172}$, M. Levy ${ }^{18}$, A. Lewis ${ }^{120}$, A.M. Leyko ${ }^{21}$, M. Leyton ${ }^{41}$, B. Li ${ }^{33 \mathrm{~b}, y}$, H. Li ${ }^{148}$, H.L. Li 31, L. Li ${ }^{45}$, L. Li ${ }^{33 \mathrm{e}}$, S. Li 45, X. Li ${ }^{84}$, Y. Li ${ }^{33 \mathrm{c}, z}$, Z. Liang ${ }^{137}$, H. Liao ${ }^{34}$, B. Liberti ${ }^{133 a}$, A. Liblong ${ }^{158}$, P. Lichard ${ }^{30}$, K. Lie ${ }^{165}$, J. Liebal ${ }^{21}$, W. Liebig ${ }^{14}$, C. Limbach ${ }^{21}$, A. Limosani ${ }^{150}$, S.C. Lin ${ }^{151, a a}$, T.H. Lin ${ }^{83}$, F. Linde ${ }^{107}$, B.E. Lindquist ${ }^{148}$, J.T. Linnemann ${ }^{90}$, E. Lipeles ${ }^{122}$, A. Lipniacka ${ }^{14}$, M. Lisovyi ${ }^{58 b}$, T.M. Liss ${ }^{165}$, D. Lissauer ${ }^{25}$, A. Lister ${ }^{168}$, A.M. Litke ${ }^{137}$, B. Liu ${ }^{151, a b}$, D. Liu ${ }^{151}$, H. Liu ${ }^{89}$, J. Liu ${ }^{85}$, J.B. Liu ${ }^{33 b}$, K. Liu ${ }^{85}$, L. Liu ${ }^{165}$, M. Liu ${ }^{45}$, M. Liu ${ }^{33 b}$, Y. Liu ${ }^{33 b}$, M. Livan ${ }^{121 a, 121 b}$, A. Lleres ${ }^{55}$, J. Llorente Merino ${ }^{82}$, S.L. Lloyd ${ }^{76}$, F. Lo Sterzo ${ }^{151}$, E. Lobodzinska ${ }^{42}$, P. Loch ${ }^{7}$, W.S. Lockman ${ }^{137}$, F.K. Loebinger ${ }^{84}$, A.E. Loevschall-Jensen ${ }^{36}$, K.M. Loew ${ }^{23}$, A. Loginov ${ }^{176}$, T. Lohse ${ }^{16}$, K. Lohwasser ${ }^{42}$, M. Lokajicek ${ }^{127}$, B.A. Long ${ }^{22}$, J.D. Long ${ }^{165}$, R.E. Long ${ }^{72}$, K.A. Looper ${ }^{111}$, L. Lopes ${ }^{126 a}$, D. Lopez Mateos ${ }^{57}$, B. Lopez Paredes ${ }^{139}$, I. Lopez Paz ${ }^{12}$, J. Lorenz ${ }^{100}$,
N. Lorenzo Martinez ${ }^{61}$, M. Losada ${ }^{162}$, P.J. Lösel ${ }^{100}$, X. Lou ${ }^{333}$, A. Lounis ${ }^{117}$, J. Love ${ }^{6}$, P.A. Love ${ }^{72}$, N. Lu ${ }^{89}$, H.J. Lubatti ${ }^{138}$, C. Luci ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, A. Lucotte ${ }^{55}$, C. Luedtke ${ }^{48}$, F. Luehring ${ }^{61}$, W. Lukas ${ }^{62}$, L. Luminari ${ }^{132 \mathrm{a}}$, O. Lundberg ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$, B. Lund-Jensen ${ }^{147}$, D. Lynn ${ }^{25}$, R. Lysak ${ }^{127}$, E. Lytken ${ }^{81}$, 'H. Ma ${ }^{25}$, L.L. Ma ${ }^{33 \mathrm{~d}}$, G. Maccarrone ${ }^{47}$, A. Macchiolo ${ }^{101}$, C.M. Macdonald ${ }^{139}$, B. Maček ${ }^{75}$,
J. Machado Miguens ${ }^{122,126 b}$, D. Macina ${ }^{30}$, D. Madaffari ${ }^{85}$, R. Madar ${ }^{34}$, H.J. Maddocks ${ }^{72}$, W.F. Mader ${ }^{44}$, A. Madsen ${ }^{166}$, J. Maeda ${ }^{67}$, S. Maeland ${ }^{14}$, T. Maeno ${ }^{25}$, A. Maevskiy ${ }^{99}$, E. Magradze ${ }^{54}$, K. Mahboubi ${ }^{48}$, J. Mahlstedt ${ }^{107}$, C. Maiani ${ }^{136}$, C. Maidantchik ${ }^{24 \mathrm{a}}$, A.A. Maier ${ }^{101}$, T. Maier ${ }^{100}$, A. Maio ${ }^{126 \mathrm{a}, 126 \mathrm{~b}, 126 \mathrm{~d}}$, S. Majewski ${ }^{116}$, Y. Makida ${ }^{66}$, N. Makovec ${ }^{117}$, B. Malaescu ${ }^{80}$, Pa. Malecki ${ }^{39}$, V.P. Maleev ${ }^{123}$, F. Malek ${ }^{55}$, U. Mallik ${ }^{63}$, D. Malon ${ }^{6}$, C. Malone ${ }^{143}$, S. Maltezos ${ }^{10}$, V.M. Malyshev ${ }^{109}$, S. Malyukov ${ }^{30}$, J. Mamuzic ${ }^{42}$, G. Mancini ${ }^{47}$, B. Mandelli ${ }^{30}$, L. Mandelli ${ }^{91 a}$, I. Mandić ${ }^{75}$, R. Mandrysch ${ }^{63}$, J. Maneira ${ }^{126 a}$, 126b , A. Manfredini ${ }^{101}$, L. Manhaes de Andrade Filho ${ }^{24 b}$, J. Manjarres Ramos ${ }^{159 \mathrm{~b}}$, A. Mann ${ }^{100}$, A. Manousakis-Katsikakis ${ }^{9}$, B. Mansoulie ${ }^{136}$, R. Mantifel ${ }^{87}$, M. Mantoani ${ }^{54}$, L. Mapelli ${ }^{30}$, L. March ${ }^{145 \mathrm{C}}$, G. Marchiori ${ }^{80}$, M. Marcisovsky ${ }^{127}$, C.P. Marino ${ }^{169}$, M. Marjanovic ${ }^{13}$, D.E. Marley ${ }^{89}$, F. Marroquim ${ }^{24 a}$, S.P. Marsden ${ }^{84}$, Z. Marshall ${ }^{15}$, L.F. Marti ${ }^{17}$, S. Marti-Garcia ${ }^{167}$, B. Martin ${ }^{90}$, T.A. Martin ${ }^{170}$, V.J. Martin ${ }^{46}$, B. Martin dit Latour ${ }^{14}$, M. Martinez ${ }^{12,0}$, S. Martin-Haugh ${ }^{131}$, V.S. Martoiu ${ }^{26 \mathrm{~b}}$, A.C. Martyniuk ${ }^{78}$, M. Marx ${ }^{138}$, F. Marzano ${ }^{132 \mathrm{a}}$, A. Marzin ${ }^{30}$, L. Masetti ${ }^{83}$, T. Mashimo ${ }^{155}$, R. Mashinistov ${ }^{96}$, J. Masik ${ }^{84}$, A.L. Maslennikov ${ }^{109, c}$, I. Massa ${ }^{20 a, 20 b}$, L. Massa ${ }^{20 a, 20 \mathrm{~b}}$, P. Mastrandrea ${ }^{5}$, A. Mastroberardino ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, T. Masubuchi ${ }^{155}$, P. Mättig ${ }^{175}$, J. Mattmann ${ }^{83}$, J. Maurer ${ }^{26 b}$, S.J. Maxfield ${ }^{74}$, D.A. Maximov ${ }^{109, c}$, R. Mazini ${ }^{151}$, S.M. Mazza ${ }^{91 a, 915}$, G. Mc Goldrick ${ }^{158}$, S.P. Mc Kee ${ }^{89}$, A. McCarn ${ }^{89}$, R.L. McCarthy ${ }^{148}$, T.G. McCarthy ${ }^{29}$, N.A. McCubbin ${ }^{131}$, K.W. McFarlane ${ }^{56, *}$, J.A. Mcfayden ${ }^{78}$, G. Mchedlidze ${ }^{54}$, S.J. McMahon ${ }^{131}$, R.A. McPherson ${ }^{169, k}$, M. Medinnis ${ }^{42}$, S. Meehan ${ }^{145 a}$, S. Mehlhase ${ }^{100}$, A. Mehta ${ }^{74}$, K. Meier ${ }^{58 \mathrm{a}}$, C. Meineck ${ }^{100}$, B. Meirose ${ }^{41}$, B.R. Mellado Garcia ${ }^{145 \mathrm{c}}$, F. Meloni ${ }^{17}$, A. Mengarelli ${ }^{20 a}$, 20b , S. Menke ${ }^{101}$, E. Meoni ${ }^{161}$, K.M. Mercurio ${ }^{57}$, S. Mergelmeyer ${ }^{21}$, P. Mermod ${ }^{49}$, L. Merola ${ }^{104 a, 104 \mathrm{~b}}$, C. Meroni ${ }^{91 a}$, F.S. Merritt ${ }^{\text {31 }}$, A. Messina ${ }^{132 a}{ }^{\text {, 132b }}$, J. Metcalfe ${ }^{25}$, A.S. Mete ${ }^{163}$, C. Meyer ${ }^{83}$, C. Meyer ${ }^{122}$, J-P. Meyer ${ }^{136}$, J. Meyer ${ }^{107}$, H. Meyer Zu Theenhausen ${ }^{58 a}$, R.P. Middleton ${ }^{131}$, S. Miglioranzi ${ }^{164 a, 164 \mathrm{c}}$, L. Mijović ${ }^{21}$, G. Mikenberg ${ }^{172}$, M. Mikestikova ${ }^{127}$, M. Mikuž ${ }^{\text {² }}$, M. Milesi ${ }^{88}$, A. Milic ${ }^{30}$, D.W. Miller ${ }^{31}$, C. Mills ${ }^{46}$, A. Milov ${ }^{172}$, D.A. Milstead ${ }^{146 a, 146 b}$, A.A. Minaenko ${ }^{130}$, Y. Minami ${ }^{155}$, I.A. Minashvili ${ }^{65}$, A.I. Mincer ${ }^{110}$, B. Mindur ${ }^{38 \mathrm{a}}$, M. Mineev ${ }^{65}$, Y. Ming ${ }^{173}$, L.M. Mir ${ }^{12}$, K.P. Mistry ${ }^{\text {122 }}$, T. Mitani ${ }^{171}$, J. Mitrevski ${ }^{100}$, V.A. Mitsou ${ }^{167}$, A. Miucci ${ }^{49}$, P.S. Miyagawa ${ }^{139}$, J.U. Mjörnmark ${ }^{81}$, T. Moa ${ }^{146 a, 146 ́ b}$, K. Mochizuki ${ }^{85}$, S. Mohapatra ${ }^{35}$, W. Mohr ${ }^{48}$, S. Molander ${ }^{146 a, 146 b}$, R. Moles-Valls ${ }^{21}$, R. Monden ${ }^{68}$, K. Mönig ${ }^{42}$, C. Monini ${ }^{55}$, J. Monk ${ }^{36}$, E. Monnier ${ }^{85}$, A. Montalbano ${ }^{148}$, J. Montejo Berlingen ${ }^{12}$, F. Monticelli ${ }^{71}$, S. Monzani ${ }^{132 a, 132 b}$, R.W. Moore ${ }^{3}$, N. Morange ${ }^{117}$, D. Moreno ${ }^{162}$, M. Moreno Llácer ${ }^{54}$, P. Morettini ${ }^{50 a}$, D. Mori ${ }^{142}$, T. Mori ${ }^{155}$, M. Morii ${ }^{57}$, M. Morinaga ${ }^{155}$, V. Morisbak ${ }^{119}$, S. Moritz ${ }^{83}$, A.K. Morley ${ }^{150}$, G. Mornacchi ${ }^{30}$, J.D. Morris ${ }^{76}$, S.S. Mortensen ${ }^{36}$, A. Morton ${ }^{53}$, L. Morvaj ${ }^{103}$, M. Mosidze ${ }^{51 b}$, J. Moss ${ }^{143}$, K. Motohashi ${ }^{157}$, R. Mount ${ }^{143}$, E. Mountricha ${ }^{25}$, S.V. Mouraviev ${ }^{966 *}$, E.J.W. Moyse ${ }^{86}$, S. Muanza ${ }^{85}$, R.D. Mudd ${ }^{18}$, F. Mueller ${ }^{101}$, J. Mueller ${ }^{125}$, R.S.P. Mueller ${ }^{100}$, T. Mueller ${ }^{28}$,
D. Muenstermann ${ }^{49}$, P. Mullen ${ }^{53}$, G.A. Mullier ${ }^{17}$, J.A. Murillo Quijada ${ }^{18}$, W.J. Murray ${ }^{170,131, ~}$ H. Musheghyan ${ }^{54}$, E. Musto ${ }^{152}$, A.G. Myagkov ${ }^{130, a c}$, M. Myska ${ }^{128}$, B.P. Nachman ${ }^{143}$, O. Nackenhorst ${ }^{54}$, J. Nadal ${ }^{54}$, K. Nagai ${ }^{120}$, R. Nagai ${ }^{157}$, Y. Nagai ${ }^{85}$, K. Nagano ${ }^{66}$, A. Nagarkar ${ }^{111}$, Y. Nagasaka ${ }^{59}$, K. Nagata ${ }^{160}$, M. Nagel ${ }^{101}$, E. Nagy ${ }^{85}$, A.M. Nairz ${ }^{30}$, Y. Nakahama ${ }^{30}$, K. Nakamura ${ }^{66}$, T. Nakamura ${ }^{155}$, I. Nakano ${ }^{112}$, H. Namasivayam ${ }^{41}$, R.F. Naranjo Garcia ${ }^{42}$, R. Narayan ${ }^{31}$, D.I. Narrias Villar ${ }^{58 a}$,
T. Naumann ${ }^{42}$, G. Navarro ${ }^{162}$, R. Nayyar ${ }^{7}$, H.A. Neal ${ }^{89}$, P.Yu. Nechaeva ${ }^{96}$, T.J. Neep ${ }^{84}$, P.D. Nef ${ }^{143}$, A. Negri ${ }^{121 a, 121 b}$, M. Negrini ${ }^{20 a}$, S. Nektarijevic ${ }^{106}$, C. Nellist ${ }^{117}$, A. Nelson ${ }^{163}$, S. Nemecek ${ }^{127}$, P. Nemethy ${ }^{110}$, A.A. Nepomuceno ${ }^{24 a}$, M. Nessi ${ }^{30, a d}$, M.S. Neubauer ${ }^{165}$, M. Neumann ${ }^{175}$, R.M. Neves ${ }^{110}$, P. Nevski ${ }^{25}$, P.R. Newman ${ }^{18}$, D.H. Nguyen ${ }^{6}$, R.B. Nickerson ${ }^{120}$, R. Nicolaidou ${ }^{136}$, B. Nicquevert ${ }^{30}$, J. Nielsen ${ }^{137}$, N. Nikiforou ${ }^{35}$, A. Nikiforov ${ }^{16}$, V. Nikolaenko ${ }^{130}$, ac , I. Nikolic-Audit ${ }^{80}$, K. Nikolopoulos ${ }^{18}$, J.K. Nilsen ${ }^{119}$, P. Nilsson ${ }^{25}$, Y. Ninomiya ${ }^{155}$, A. Nisati ${ }^{132 a}$, R. Nisius ${ }^{101}$, T. Nobe ${ }^{155}$, M. Nomachi ${ }^{118}$, I. Nomidis ${ }^{29}$, T. Nooney ${ }^{76}$, S. Norberg ${ }^{113}$, M. Nordberg ${ }^{30}$, O. Novgorodova ${ }^{44}$, S. Nowak ${ }^{101}$, M. Nozaki ${ }^{66}$, L. Nozka ${ }^{115}$, K. Ntekas ${ }^{10}$, G. Nunes Hanninger ${ }^{88}$, T. Nunnemann ${ }^{100}$, E. Nurse ${ }^{78}$, F. Nuti ${ }^{88}$, B.J. O’Brien ${ }^{46}$, F. O’grady ${ }^{7}$, D.C. O’Neil ${ }^{142}$, V. O’Shea ${ }^{53}$, F.G. Oakham ${ }^{29, d}$, H. Oberlack ${ }^{101}$, T. Obermann ${ }^{21}$, J. Ocariz ${ }^{80}$, A. Ochi ${ }^{67}$, I. Ochoa ${ }^{35}$, J.P. Ochoa-Ricoux ${ }^{32 a}$, S. Oda ${ }^{70}$, S. Odaka ${ }^{66}$, H. Ogren ${ }^{61}$, A. Oh ${ }^{84}$, S.H. Oh ${ }^{45}$, C.C. Ohm ${ }^{15}$, H. Ohman ${ }^{166}$, H. Oide ${ }^{30}$, W. Okamura ${ }^{118}$, H. Okawa ${ }^{160}$, Y. Okumura ${ }^{31}$, T. Okuyama ${ }^{66}$, A. Olariu ${ }^{26 b}$, S.A. Olivares Pino ${ }^{46}$, D. Oliveira Damazio ${ }^{25}$, A. Olszewski ${ }^{39}$, J. Olszowska ${ }^{39}$, A. Onofre ${ }^{126 a, 126 e}$, K. Onogi ${ }^{103}$, P.U.E. Onyisi ${ }^{31, s}$, C.J. Oram ${ }^{159 a}$, M.J. Oreglia ${ }^{31}$, Y. Oren ${ }^{153}$, D. Orestano ${ }^{134 a, 134 b}$, N. Orlando ${ }^{154}$, C. Oropeza Barrera ${ }^{53}$, R.S. Orr ${ }^{158}$, B. Osculati ${ }^{50 a}$, 50b , R. Ospanov ${ }^{84}$, G. Otero y Garzon ${ }^{27}$, H. Otono ${ }^{70}$, M. Ouchrif ${ }^{135 d}$, F. Ould-Saada ${ }^{119}$, A. Ouraou ${ }^{136}$, K.P. Oussoren ${ }^{107}$, Q. Ouyang ${ }^{33 a}$, A. Ovcharova ${ }^{15}$, M. Owen ${ }^{53}$, R.E. Owen ${ }^{18}$, V.E. Ozcan ${ }^{19 a}$, N. Ozturk ${ }^{8}$, K. Pachal ${ }^{142}$, A. Pacheco Pages ${ }^{12}$, C. Padilla Aranda ${ }^{12}$, M. Pagáčová ${ }^{48}$, S. Pagan Griso ${ }^{15}$, E. Paganis ${ }^{139}$, F. Paige ${ }^{25}$, P. Pais ${ }^{86}$, K. Pajchel ${ }^{119}$, G. Palacino ${ }^{159 b}$, S. Palestini ${ }^{30}$, M. Palka ${ }^{38 b}$, D. Pallin ${ }^{34}$, A. Palma ${ }^{126 a, 126 b}$, Y.B. Pan ${ }^{173}$, E. St. Panagiotopoulou ${ }^{10}$, C.E. Pandini ${ }^{80}$, J.G. Panduro Vazquez ${ }^{77}$, P. Pani ${ }^{146 a, 146 b,}$ S. Panitkin ${ }^{25}$, D. Pantea ${ }^{26 b}$, L. Paolozzi ${ }^{49}$, Th.D. Papadopoulou ${ }^{10}$, K. Papageorgiou ${ }^{154}$, A. Paramonov ${ }^{6}$, D. Paredes Hernandez ${ }^{154}$, M.A. Parker ${ }^{28}$, K.A. Parker ${ }^{139}$, F. Parodi ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, J.A. Parsons ${ }^{35}$, U. Parzefall ${ }^{48}$, E. Pasqualucci ${ }^{132 \mathrm{a}}$, S. Passaggio ${ }^{50 \mathrm{a}}$, F. Pastore ${ }^{134 \mathrm{a}, 134 \mathrm{~b}, *}$, Fr. Pastore ${ }^{77}$, G. Pásztor ${ }^{29}$, S. Pataraia ${ }^{175}$, N.D. Patel ${ }^{150}$, J.R. Pater ${ }^{84}$, T. Pauly ${ }^{30}$, J. Pearce ${ }^{169}$, B. Pearson ${ }^{113}$, L.E. Pedersen ${ }^{36}$, M. Pedersen ${ }^{119}$, S. Pedraza Lopez ${ }^{167}$, R. Pedro ${ }^{126 a, 126 b}$, S.V. Peleganchuk ${ }^{109, c}$, D. Pelikan ${ }^{166}$, O. Penc ${ }^{127}$, C. Peng ${ }^{33 a}$, H. Peng ${ }^{33 b}$, B. Penning ${ }^{31}$, J. Penwell ${ }^{61}$, D.V. Perepelitsa ${ }^{25}$, E. Perez Codina ${ }^{159 a}$, M.T. Pérez García-Estañ ${ }^{167}$, L. Perini ${ }^{91 a, 91 b}$, H. Pernegger ${ }^{30}$, S. Perrella ${ }^{104 a, 104 b}{ }^{\prime}$, R. Peschke ${ }^{42}$, V.D. Peshekhonov ${ }^{65}$, K. Peters ${ }^{30}$, R.F.Y. Peters ${ }^{84}$, B.A. Petersen ${ }^{30}$, T.C. Petersen ${ }^{36}$, E. Petit ${ }^{42}$, A. Petridis ${ }^{1}$, C. Petridou ${ }^{154}$, P. Petroff ${ }^{117}$, E. Petrolo ${ }^{132 a}$, F. Petrucci ${ }^{134 a, 134 b}$, N.E. Pettersson ${ }^{157}$, R. Pezoa ${ }^{32 b}$, P.W. Phillips ${ }^{131}$, G. Piacquadio ${ }^{143}$, E. Pianori ${ }^{170}$, A. Picazio ${ }^{49}$, E. Piccaro ${ }^{76}$, M. Piccinini ${ }^{20 a, 20 b}$,' M.A. Pickering ${ }^{120}$, R. Piegaia ${ }^{27}$, D.T. Pignotti ${ }^{111}$, J.E. Pilcher ${ }^{31}$, A.D. Pilkington ${ }^{84}$, A.W.J. Pin ${ }^{84}$, J. Pina ${ }^{126 a, 126 b, 126 d}$, M. Pinamonti ${ }^{164 a, 164 c, a e}$, J.L. Pinfold ${ }^{3}$, A. Pingel ${ }^{36}$, S. Pires ${ }^{80}$, H. Pirumov ${ }^{42}$, M. Pitt ${ }^{172}$, C. Pizio ${ }^{91 a, 91 b}$, L. Plazak ${ }^{144 a}$, M.-A. Pleier ${ }^{25}$, V. Pleskot ${ }^{129}$, E. Plotnikova ${ }^{65}$, P. Plucinski ${ }^{146 a, 146 b}$, D. Pluth ${ }^{64}$, R. Poettgen ${ }^{146 a, 146 b}$, L. Poggioli ${ }^{117}$, D. Pohl ${ }^{21}$, G. Polesello ${ }^{\text {121a }}$, A. Poley ${ }^{42}$, A. Policicchio ${ }^{37 a, 37 b}$, R. Polifka ${ }^{158}$, A. Polini ${ }^{20 a}$, C.S. Pollard ${ }^{53}$, V. Polychronakos ${ }^{25}$, K. Pommès ${ }^{30}$, L. Pontecorvo ${ }^{132 a}$, B.G. Pope ${ }^{90}$, G.A. Popeneciu ${ }^{26 c}$, D.S. Popovic ${ }^{13}$, A. Poppleton ${ }^{30}$, S. Pospisil ${ }^{128}$, K. Potamianos ${ }^{15}$, I.N. Potrap ${ }^{65}$, C.J. Potter 149, C.T. Potter ${ }^{116}$, G. Poulard ${ }^{30}$, J. Poveda ${ }^{30}$, V. Pozdnyakov ${ }^{65}$, P. Pralavorio ${ }^{85}$, A. Pranko ${ }^{15}$, S. Prasad ${ }^{30}$, S. Prell ${ }^{64}$, D. Price ${ }^{84}$, L.E. Price ${ }^{6}$, M. Primavera ${ }^{73 a}$, S. Prince ${ }^{87}$, M. Proissl ${ }^{46}$, K. Prokofiev ${ }^{60 c}$, F. Prokoshin ${ }^{32 b}$, E. Protopapadaki ${ }^{136}$, S. Protopopescu ${ }^{25}$, J. Proudfoot ${ }^{6}$, M. Przybycien ${ }^{38 a}$, E. Ptacek ${ }^{116}$, D. Puddu ${ }^{134 a, 134 b}$, E. Pueschel ${ }^{86}$, D. Puldon ${ }^{148}$, M. Purohit ${ }^{25}$, af , P. Puzo ${ }^{117}$, J. Qian ${ }^{89}$, G. Qin ${ }^{53}$, Y. Qin ${ }^{84}$, A. Quadt ${ }^{54}$, D.R. Quarrie ${ }^{15}$, W.B. Quayle 164a, 164b , M. Queitsch-Maitland ${ }^{84}$, D. Quilty ${ }^{53}$, S. Raddum ${ }^{119}$, V. Radeka ${ }^{25}$, V. Radescu ${ }^{42}$, S.K. Radhakrishnan ${ }^{148}$, P. Radloff ${ }^{116}$, P. Rados ${ }^{88}$, F. Ragusa ${ }^{91 a, 91 b}$, G. Rahal ${ }^{178}$, S. Rajagopalan ${ }^{25}$, M. Rammensee ${ }^{30}$, C. Rangel-Smith ${ }^{166}$, F. Rauscher ${ }^{100}$, S. Rave ${ }^{83}$, T. Ravenscroft ${ }^{53}$, M. Raymond ${ }^{30}$, A.L. Read ${ }^{119}$, N.P. Readioff ${ }^{74}$, D.M. Rebuzzi ${ }^{121 a, 121 b}$, A. Redelbach ${ }^{174}$, G. Redlinger ${ }^{25}$, R. Reece ${ }^{137}$, K. Reeves ${ }^{41}$, L. Rehnisch ${ }^{16}$, J. Reichert ${ }^{122}$, H. Reisin ${ }^{27}$, C. Rembser ${ }^{30}$, H. Ren ${ }^{33 a}$, A. Renaud ${ }^{117}$, M. Rescigno ${ }^{132 a}$, S. Resconi ${ }^{91 a}$, O.L. Rezanova ${ }^{109, ~}{ }^{\text {, P. Reznicek }}{ }^{129}$, R. Rezvani ${ }^{95}$, R. Richter ${ }^{101}$, S. Richter ${ }^{78}$, E. Richter-Was ${ }^{38 b}$, O. Ricken ${ }^{21}$, M. Ridel ${ }^{80}$, P. Rieck ${ }^{16}$, C.J. Riegel ${ }^{175}$, J. Rieger ${ }^{54}$, O. Rifki ${ }^{113}$,
M. Rijssenbeek ${ }^{148}$, A. Rimoldi ${ }^{121 a, 121 b}$, L. Rinaldi ${ }^{20 a}$, B. Ristić ${ }^{49}$, E. Ritsch ${ }^{30}$, I. Riu ${ }^{12}$, F. Rizatdinova ${ }^{114}$, E. Rizvi ${ }^{76}$, S.H. Robertson ${ }^{87, k}$, A. Robichaud-Veronneau ${ }^{87}$, D. Robinson ${ }^{28}$, J.E.M. Robinson ${ }^{42}$, A. Robson ${ }^{53}$, C. Roda ${ }^{124 a, 124 b}$, S. Roe ${ }^{30}$, O. Røhne ${ }^{119}$, S. Rolli ${ }^{161}$, A. Romaniouk ${ }^{98}$, M. Romano ${ }^{20 a}$, 20b , S.M. Romano Saez ${ }^{34}$, E. Romero Adam ${ }^{167}$, N. Rompotis ${ }^{138}$, M. Ronzani ${ }^{48}$, L. Roos ${ }^{80}$, E. Ros ${ }^{167}$, S. Rosati ${ }^{132 \mathrm{a}}$, K. Rosbach ${ }^{48}$, P. Rose ${ }^{137}$, P.L. Rosendahl ${ }^{14}$, O. Rosenthal ${ }^{141}$, V. Rossetti ${ }^{146 a, 146 \mathrm{~b}}$, E. Rossi ${ }^{104 a, 104 \mathrm{~b}}$, L.P. Rossi ${ }^{50 \mathrm{a}}$, J.H.N. Rosten ${ }^{28}$, R. Rosten ${ }^{138}$, M. Rotaru ${ }^{26 b}$, I. Roth ${ }^{172}$, J. Rothberg ${ }^{138}$, D. Rousseau ${ }^{117}$, C.R. Royon ${ }^{136}$, A. Rozanov ${ }^{85}$, Y. Rozen ${ }^{152}$, X. Ruan ${ }^{145 c}$, F. Rubbo ${ }^{143}$, I. Rubinskiy ${ }^{42}$, V.I. Rud ${ }^{99}$, C. Rudolph ${ }^{44}$, M.S. Rudolph ${ }^{158}$, F. Rühr ${ }^{48}$, A. Ruiz-Martinez ${ }^{30}$, Z. Rurikova ${ }^{48}$, N.A. Rusakovich ${ }^{65}$, A. Ruschke ${ }^{100}$, H.L. Russell ${ }^{138}$, J.P. Rutherfoord ${ }^{7}$, N. Ruthmann ${ }^{30}$, Y.F. Ryabov ${ }^{123}$, M. Rybar ${ }^{165}$, G. Rybkin ${ }^{117}$, N.C. Ryder ${ }^{120}$, A.F. Saavedra ${ }^{150}$, G. Sabato ${ }^{107}$, S. Sacerdoti ${ }^{27}$, A. Saddique ${ }^{3}$, H.F-W. Sadrozinski ${ }^{137}$, R. Sadykov ${ }^{65}$, F. Safai Tehrani ${ }^{132 a}$, P. Saha ${ }^{108}$, M. Sahinsoy ${ }^{58 a}$, M. Saimpert ${ }^{136}$, T. Saito ${ }^{155}$, H. Sakamoto ${ }^{155}$, Y. Sakurai ${ }^{171}$, G. Salamanna ${ }^{134 a, 134 b}$, A. Salamon ${ }^{133 a}$, J.E. Salazar Loyola ${ }^{32 b}$, M. Saleem ${ }^{113}$, D. Salek ${ }^{107}$, P.H. Sales De Bruin ${ }^{138}$, D. Salihagic ${ }^{101}$, A. Salnikov ${ }^{143}$, J. Salt ${ }^{167}$, D. Salvatore ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, F. Salvatore ${ }^{149}$, A. Salvucci ${ }^{60}$, A. Salzburger ${ }^{30}$, D. Sammel ${ }^{48}$, D. Sampsonidis ${ }^{154}$, A. Sanchez ${ }^{104 a, 104 b}$, J. Sánchez ${ }^{167}$, V. Sanchez Martinez ${ }^{167}$, H. Sandaker ${ }^{119}$, R.L. Sandbach ${ }^{76}$, H.G. Sander ${ }^{83}$, M.P. Sanders ${ }^{100}$, M. Sandhoff ${ }^{175}$, C. Sandoval ${ }^{162}$, R. Sandstroem ${ }^{101}$, D.P.C. Sankey ${ }^{131}$, M. Sannino ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, A. Sansoni ${ }^{47}$, C. Santoni ${ }^{34}$, R. Santonico ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, H. Santos ${ }^{126 \mathrm{a}}$, I. Santoyo Castillo ${ }^{149}$, K. Sapp ${ }^{125}$, A. Sapronov ${ }^{65}$, J.G. Saraiva ${ }^{126 a, 126 d,}$, B. Sarrazin ${ }^{21}$, O. Sasaki ${ }^{66}$, Y. Sasaki ${ }^{155}$, K. Sato ${ }^{160}$, G. Sauvage ${ }^{5, *}$, E. Sauvan ${ }^{5}$, G. Savage ${ }^{77}$, P. Savard ${ }^{158, d}$, C. Sawyer ${ }^{131}$, L. Sawyer ${ }^{79, n}$, J. Saxon ${ }^{31}$, C. Sbarra ${ }^{20 a}$, A. Sbrizzi ${ }^{20 a}$,20b, T. Scanlon ${ }^{78}$, D.A. Scannicchio ${ }^{163}$, M. Scarcella ${ }^{150}$, V. Scarfone ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, J. Schaarschmidt ${ }^{172}$, P. Schacht ${ }^{101}$, D. Schaefer ${ }^{30}$, R. Schaefer ${ }^{42}$, J. Schaeffer ${ }^{83}$, S. Schaepe ${ }^{21}$, S. Schaetzel ${ }^{58 \mathrm{~b}}$, U. Schäfer ${ }^{83}$, A.C. Schaffer ${ }^{117}$, D. Schaile ${ }^{100}$, R.D. Schamberger ${ }^{148}$, V. Scharf ${ }^{58 a}$,
 S. Schlenker ${ }^{30}$, K. Schmieden ${ }^{30}$, C. Schmitt ${ }^{83}$, S. Schmitt ${ }^{58 \mathrm{~b}}$, S. Schmitt ${ }^{42}$, B. Schneider ${ }^{\text {159a }}$, Y.J. Schnellbach ${ }^{74}$, U. Schnoor ${ }^{44}$, L. Schoeffel ${ }^{136}$, A. Schoening ${ }^{58 b}$, B.D. Schoenrock ${ }^{90}$, E. Schopf ${ }^{21}$, A.L.S. Schorlemmer ${ }^{54}$, M. Schott ${ }^{83}$, D. Schouten ${ }^{159 a}$, J. Schovancova ${ }^{8}$, S. Schramm ${ }^{49}$, M. Schreyer ${ }^{174}$, N. Schuh ${ }^{83}$, M.J. Schultens ${ }^{21}$, H.-C. Schultz-Coulon ${ }^{58 a}$, H. Schulz ${ }^{16}$, M. Schumacher ${ }^{48}$, B.A. Schumm ${ }^{137}$, Ph. Schune ${ }^{136}$, C. Schwanenberger ${ }^{84}$, A. Schwartzman ${ }^{143}$, T.A. Schwarz ${ }^{89}$, Ph. Schwegler ${ }^{101}$, H. Schweiger ${ }^{84}$, Ph. Schwemling ${ }^{136}$, R. Schwienhorst ${ }^{90}$, J. Schwindling ${ }^{136}$, T. Schwindt ${ }^{21}$, F.G. Sciacca ${ }^{17}$, E. Scifo ${ }^{117}$, G. Sciolla ${ }^{23}$, F. Scuri ${ }^{124 a, 124 b}$, F. Scutti ${ }^{21}$, J. Searcy ${ }^{89}$, G. Sedov ${ }^{42}$, E. Sedykh ${ }^{123}$, P. Seema ${ }^{21}$, S.C. Seidel ${ }^{105}$, A. Seiden ${ }^{137}$, F. Seifert ${ }^{128}$, J.M. Seixas ${ }^{24 a}$, G. Sekhniaidze ${ }^{104 a}$, K. Sekhon ${ }^{89}$, S.J. Sekula ${ }^{40}$, D.M. Seliverstov ${ }^{123, *}$, N. Semprini-Cesari ${ }^{20 a, 20 b}$, C. Serfon ${ }^{30}$, L. Serin ${ }^{117}$, L. Serkin ${ }^{164 a, 164 b}$, T. Serre ${ }^{85}$, M. Sessa ${ }^{134 a, 134 b}$, R. Seuster ${ }^{159 a}$, H. Severini ${ }^{113}$, T. Sfiligoj ${ }^{75}$, F. Sforza ${ }^{30}$, A. Sfyrla ${ }^{30}$, E. Shabalina ${ }^{54}$, M. Shamim ${ }^{116}$, L.Y. Shan ${ }^{33 a}$, R. Shang ${ }^{165}$, J.T. Shank ${ }^{22}$, M. Shapiro ${ }^{15}$, P.B. Shatalov ${ }^{97}$, K. Shaw ${ }^{164 a, 164 b}$, S.M. Shaw ${ }^{84}$, A. Shcherbakova ${ }^{146 a, 146 b}$, C.Y. Shehu ${ }^{149}$, P. Sherwood ${ }^{78}$, L. Shi ${ }^{151, a g}$, S. Shimizu ${ }^{67}$, C.O. Shimmin ${ }^{163}$, M. Shimojima ${ }^{102}$, M. Shiyakova ${ }^{65}$, A. Shmeleva ${ }^{96}$, D. Shoaleh Saadi ${ }^{95}$, M.J. Shochet ${ }^{31}$, S. Shojaii ${ }^{91 a, 91 b}$, S. Shrestha ${ }^{111}$, E. Shulga ${ }^{98}$, M.A. Shupe ${ }^{7}$, S. Shushkevich ${ }^{42}$, P. Sicho ${ }^{127}$, P.E. Sidebo ${ }^{147}$, O. Sidiropoulou ${ }^{174}$, D. Sidorov ${ }^{114}$, A. Sidoti ${ }^{20 a}, 20 \mathrm{~b}$, F. Siegert ${ }^{44}$, Dj. Sijacki ${ }^{13}$, J. Silva ${ }^{126 a}$, 126d , Y. Silver ${ }^{153}$, S.B. Silverstein ${ }^{146 a}$, V. Simak ${ }^{128}$, O. Simard ${ }^{5}$, Lj. Simic ${ }^{13}$, S. Simion ${ }^{117}$, E. Simioni ${ }^{83}$, B. Simmons ${ }^{78}$,
 S.Yu. Sivoklokov ${ }^{99}$, J. Sjölin ${ }^{146 a, 146 \mathrm{~b}}$, T.B. Sjursen ${ }^{14}$, M.B. Skinner ${ }^{72}$, H.P. Skottowe ${ }^{57}$, P. Skubic ${ }^{113}$, M. Slater ${ }^{18}$, T. Slavicek ${ }^{128}$, M. Slawinska ${ }^{107}$, K. Sliwa ${ }^{161}$, V. Smakhtin ${ }^{172}$, B.H. Smart ${ }^{46}$, L. Smestad ${ }^{14}$, S.Yu. Smirnov ${ }^{98}$, Y. Smirnov ${ }^{98}$, L.N. Smirnova ${ }^{99, a h}$, O. Smirnova ${ }^{81}$, M.N.K. Smith ${ }^{35}$, R.W. Smith ${ }^{35}$, M. Smizanska ${ }^{72}$, K. Smolek ${ }^{128}$, A.A. Snesarev ${ }^{96}$, G. Snidero ${ }^{76}$, S. Snyder ${ }^{25}$, R. Sobie ${ }^{169, k}$, F. Socher ${ }^{44}$, A. Soffer ${ }^{153}$, D.A. Soh ${ }^{151, a g}$, G. Sokhrannyi ${ }^{75}$, C.A. Solans ${ }^{30}$, M. Solar ${ }^{128}$, J. Solc ${ }^{128}$, E.Yu. Soldatov ${ }^{98}$, U. Soldevila ${ }^{167}$, A.A. Solodkov ${ }^{130}$, A. Soloshenko ${ }^{65}$, O.V. Solovyanov ${ }^{130}$, V. Solovyev ${ }^{123}$, P. Sommer ${ }^{48}$, H.Y. Song ${ }^{33 b, y}$, N. Soni ${ }^{1}$, A. Sood ${ }^{15}$, A. Sopczak ${ }^{128}$, B. Sopko ${ }^{128}$, V. Sopko ${ }^{128}$, V. Sorin ${ }^{12}$, D. Sosa ${ }^{58 b}$, M. Sosebee ${ }^{8}$, C.L. Sotiropoulou ${ }^{124 a, 124 b}$, R. Soualah ${ }^{164 a, 164 c}$, A.M. Soukharev ${ }^{109, c}$, D. South ${ }^{42}$, B.C. Sowden ${ }^{77}$, S. Spagnolo ${ }^{73 a, 73 b}$, M. Spalla ${ }^{124 a, 124 b}$, M. Spangenberg ${ }^{170}$, F. Spanò ${ }^{77}$, W.R. Spearman ${ }^{57}$, D. Sperlich ${ }^{16}$, F. Spettel ${ }^{101}$, R. Spighi ${ }^{20 a}$, G. Spigo ${ }^{30}$, L.A. Spiller ${ }^{88}$, M. Spousta ${ }^{129}$, R.D. St. Denis ${ }^{53, *}$, A. Stabile ${ }^{91 a}$, S. Staerz ${ }^{44}$, J. Stahlman ${ }^{122}$, R. Stamen ${ }^{58 a}$, S. Stamm ${ }^{16}$, E. Stanecka ${ }^{39}$, C. Stanescu ${ }^{134 a}$, M. Stanescu-Bellu ${ }^{42}$, M.M. Stanitzki ${ }^{42}$, S. Stapnes ${ }^{119}$, E.A. Starchenko ${ }^{130}$, J. Stark ${ }^{55}$, P. Staroba ${ }^{127}$,
P. Starovoitov ${ }^{58 a}$, R. Staszewski ${ }^{39}$, P. Steinberg ${ }^{25}$, B. Stelzer ${ }^{142}$, H.J. Stelzer ${ }^{30}$, O. Stelzer-Chilton ${ }^{159 a}$, H. Stenzel ${ }^{52}$, G.A. Stewart ${ }^{53}$, J.A. Stillings ${ }^{21}$, M.C. Stockton ${ }^{87}$, M. Stoebe ${ }^{87}$, G. Stoicea ${ }^{26 b}$, P. Stolte ${ }^{54}$, S. Stonjek ${ }^{101}$, A.R. Stradling ${ }^{8}$, A. Straessner ${ }^{44}$, M.E. Stramaglia ${ }^{17}$, J. Strandberg ${ }^{147}$, S. Strandberg ${ }^{146 a, 146 b}$, A. Strandlie ${ }^{119}$, E. Strauss ${ }^{143}$, M. Strauss ${ }^{113}$, P. Strizenec ${ }^{144 \mathrm{~b}}$, R. Ströhmer ${ }^{174}$, D.M. Strom ${ }^{116}$, R. Stroynowski ${ }^{40}$, A. Strubig ${ }^{106}$, S.A. Stucci ${ }^{17}$, B. Stugu ${ }^{14}$, N.A. Styles ${ }^{42}$, D. Su ${ }^{143}$, J. Su ${ }^{125}$, R. Subramaniam ${ }^{79}$, A. Succurro ${ }^{12}$, S. Suchek ${ }^{58 a}$, Y. Sugaya ${ }^{118}$, M. Suk ${ }^{128}$, V.V. Sulin ${ }^{96}$, S. Sultansoy ${ }^{4 c}$, T. Sumida ${ }^{68}$, S. Sun ${ }^{57}$, X. Sun ${ }^{33 a}$, J.E. Sundermann ${ }^{48}$, K. Suruliz ${ }^{149}$, G. Susinno ${ }^{37 a, 37 b}$, M.R. Sutton ${ }^{149}$, S. Suzuki ${ }^{66}$, M. Svatos ${ }^{127}$, M. Swiatlowski ${ }^{143}$, I. Sykora ${ }^{144 a}$, T. Sykora ${ }^{129}$, D. Ta ${ }^{48}$, C. Taccini ${ }^{134 a, 134 b}$, K. Tackmann ${ }^{42}$, J. Taenzer ${ }^{158}$, A. Taffard ${ }^{163}$, R. Tafirout ${ }^{159 a}$, N. Taiblum ${ }^{153}$, H. Takai ${ }^{25}$, R. Takashima ${ }^{69}$, H. Takeda ${ }^{67}$, T. Takeshita ${ }^{140}$, Y. Takubo ${ }^{66}$, M. Talby ${ }^{85}$, A.A. Talyshev ${ }^{109, c}$, J.Y.C. Tam ${ }^{174}$, K.G. Tan 88, J. Tanaka ${ }^{155}$, R. Tanaka ${ }^{117}$, S. Tanaka ${ }^{66}$, B.B. Tannenwald ${ }^{111}$, N. Tannoury ${ }^{21}$, S. Tapia Araya ${ }^{32 \mathrm{~b}}$, S. Tapprogge ${ }^{83}$, S. Tarem ${ }^{152}$, F. Tarrade ${ }^{29}$, G.F. Tartarelli ${ }^{91 a}$, P. Tas ${ }^{129}$, M. Tasevsky ${ }^{127}$, T. Tashiro ${ }^{68}$, E. Tassi ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, A. Tavares Delgado ${ }^{126 a, 126 \mathrm{~b}}$, Y. Tayalati ${ }^{135 \mathrm{~d}}$, F.E. Taylor ${ }^{94}$, G.N. Taylor ${ }^{88}$, P.T.E. Taylor ${ }^{88}$, W. Taylor ${ }^{159 b}$, F.A. Teischinger ${ }^{30}$, M. Teixeira Dias Castanheira ${ }^{76}$, P. Teixeira-Dias ${ }^{77}$, K.K. Temming ${ }^{48}$, D. Temple ${ }^{142}$, H. Ten Kate ${ }^{30}$, P.K. Teng ${ }^{151}$, J.J. Teoh ${ }^{118}$, F. Tepel ${ }^{175}$, S. Terada ${ }^{66}$, K. Terashi ${ }^{155}$, J. Terron ${ }^{82}$, S. Terzo ${ }^{101}$, M. Testa ${ }^{47}$, R.J. Teuscher ${ }^{158, k}$, T. Theveneaux-Pelzer ${ }^{34}$, J.P. Thomas ${ }^{18}$, J. Thomas-Wilsker ${ }^{77}$, E.N. Thompson ${ }^{35}$, P.D. Thompson ${ }^{18}$, R.J. Thompson ${ }^{84}$, A.S. Thompson ${ }^{53}$, L.A. Thomsen ${ }^{176}$, E. Thomson ${ }^{122}$, M. Thomson ${ }^{28}$, R.P. Thun ${ }^{89, *}$, M.J. Tibbetts ${ }^{15}$, R.E. Ticse Torres ${ }^{85}$, V.O. Tikhomirov ${ }^{96, a i}$, Yu.A. Tikhonov ${ }^{109, c}$, S. Timoshenko ${ }^{98}$, E. Tiouchichine ${ }^{85}$, P. Tipton ${ }^{176}$, S. Tisserant ${ }^{85}$, K. Todome ${ }^{157}$ T. Todorov ${ }^{5, *}$, S. Todorova-Nova ${ }^{129}$, J. Tojo ${ }^{70}$, S. Tokár ${ }^{144 \mathrm{a}}$, K. Tokushuku ${ }^{66}$, K. Tollefson ${ }^{90}$, E. Tolley ${ }^{57}$, L. Tomlinson ${ }^{84}$, M. Tomoto ${ }^{103}$, L. Tompkins ${ }^{143, a j}$, K. Toms ${ }^{105}$, E. Torrence ${ }^{116}$, H. Torres ${ }^{142}$, E. Torró Pastor ${ }^{138}$, J. Toth ${ }^{85, a k}$, F. Touchard ${ }^{85}$, D.R. Tovey ${ }^{139}$, T. Trefzger ${ }^{174}$, L. Tremblet ${ }^{30}$, A. Tricoli ${ }^{30}$, I.M. Trigger ${ }^{159 a}$, S. Trincaz-Duvoid ${ }^{80}$, M.F. Tripiana ${ }^{12}$, W. Trischuk ${ }^{158}$, B. Trocmé ${ }^{55}$, C. Troncon ${ }^{91 a}$, M. Trottier-McDonald ${ }^{15}$, M. Trovatelli ${ }^{169}$, L. Truong ${ }^{164 a, 164 \mathrm{c}}$, M. Trzebinski ${ }^{39}$, A. Trzupek ${ }^{39}$, C. Tsarouchas ${ }^{30}$, J.C-L. Tseng ${ }^{120}$, P.V. Tsiareshka ${ }^{92}$, D. Tsionou ${ }^{154}$, G. Tsipolitis ${ }^{10}$, N. Tsirintanis ${ }^{9}$, S. Tsiskaridze ${ }^{12}$, V. Tsiskaridze ${ }^{48}$, E.G. Tskhadadze ${ }^{51 a}$, I.I. Tsukerman ${ }^{97}$, V. Tsulaia ${ }^{15}$, S. Tsuno ${ }^{66}$, D. Tsybychev ${ }^{148}$, A. Tudorache ${ }^{26 b}$, V. Tudorache ${ }^{26 b}$, A.N. Tuna ${ }^{57}$, S.A. Tupputi ${ }^{20 a}{ }^{200}$, S. Turchikhin ${ }^{99, a h}$, D. Turecek ${ }^{128}$, R. Turra ${ }^{91 a, 91 b}$, A.J. Turvey ${ }^{40}$, P.M. Tuts ${ }^{35}$, A. Tykhonov ${ }^{49}$, M. Tylmad ${ }^{146 a, 146 b}$, M. Tyndel ${ }^{131}$, I. Ueda ${ }^{155}$, R. Ueno ${ }^{29}$, M. Ughetto ${ }^{146 a, 146 b}$, M. Ugland ${ }^{14}$, F. Ukegawa ${ }^{160}$, G. Unal ${ }^{30}$, A. Undrus ${ }^{25}$, G. Unel ${ }^{163}$, F.C. Ungaro ${ }^{48}$, Y. Unno ${ }^{66}$, C. Unverdorben ${ }^{100}$, J. Urban ${ }^{144 \mathrm{~b}}$, P. Urquijo ${ }^{88}$,' P. Urrejola ${ }^{83}$, G. Usai ${ }^{8}$, A. Usanova ${ }^{62}$, L. Vacavant ${ }^{85}$, V. Vacek ${ }^{128}$, B. Vachon ${ }^{87}$, C. Valderanis ${ }^{83}$, N. Valencic ${ }^{107}$, S. Valentinetti ${ }^{20 a, 20 b}$, A. Valero ${ }^{167}$, L. Valery ${ }^{12}$, S. Valkar ${ }^{129}$, S. Vallecorsa ${ }^{49}$, J.A. Valls Ferrer ${ }^{167}$, W. Van Den Wollenberg ${ }^{107}$, P.C. Van Der Deijl ${ }^{107}$, R. van der Geer ${ }^{107}$, H. van der Graaf ${ }^{107}$, N. van Eldik ${ }^{152}$, P. van Gemmeren ${ }^{6}$, J. Van Nieuwkoop ${ }^{142}$, I. van Vulpen ${ }^{107}$, M.C. van Woerden ${ }^{30}$, M. Vanadia ${ }^{132 a, 132 b}$, W. Vandelli ${ }^{30}$, R. Vanguri ${ }^{122}$, A. Vaniachine ${ }^{6}$, F. Vannucci ${ }^{80}$, G. Vardanyan ${ }^{177}$, R. Vari ${ }^{132 a}$, E.W. Varnes ${ }^{7}$, T. Varol ${ }^{40}$, D. Varouchas ${ }^{80}$, A. Vartapetian ${ }^{8}$, K.E. Varvell ${ }^{150}$, F. Vazeille ${ }^{34}$, T. Vazquez Schroeder ${ }^{87}$, J. Veatch ${ }^{7}$, L.M. Veloce ${ }^{158}$, F. Veloso ${ }^{126 a, 126 c}$, T. Velz ${ }^{21}$, S. Veneziano ${ }^{132 \mathrm{a}}$, A. Ventura ${ }^{73 \mathrm{a}, 73 \mathrm{~b}}$, D. Ventura ${ }^{86}$, M. Venturi ${ }^{169}$, N. Venturi ${ }^{158}$, A. Venturini ${ }^{23}$, V. Vercesi ${ }^{121 a}$, M. Verducci ${ }^{132 a, 132 b}$, W. Verkerke ${ }^{\text {107 }}$, J.C. Vermeulen ${ }^{107}$, A. Vest ${ }^{44}$, M.C. Vetterli ${ }^{142, d,}$ O. Viazlo ${ }^{81}$, I. Vichou ${ }^{165}$, T. Vickey ${ }^{139}$, O.E. Vickey Boeriu ${ }^{139}$, G.H.A. Viehhauser ${ }^{120}$, S. Viel ${ }^{15}$, R. Vigne ${ }^{62}$, M. Villa ${ }^{20 a, 20 ̉ b}$, M. Villaplana Perez ${ }^{91 a, 91 b}$, E. Vilucchi ${ }^{47}$, M.G. Vincter ${ }^{29}$, V.B. Vinogradov ${ }^{65}$, I. Vivarelli ${ }^{149}$, F. Vives Vaque ${ }^{3}$, S. Vlachos ${ }^{10}$, D. Vladoiu ${ }^{100}$, M. Vlasak ${ }^{128}$, M. Vogel ${ }^{32 \mathrm{a}}$, P. Vokac ${ }^{128}$, G. Volpi ${ }^{124 a, 124 b}$, M. Volpi ${ }^{88}$, H. von der Schmitt ${ }^{101}$, H. von Radziewski ${ }^{48}$, E. von Toerne ${ }^{21}$, V. Vorobel ${ }^{129}$, K. Vorobev ${ }^{98}$, M. Vos ${ }^{167}$, R. Voss ${ }^{30}$, J.H. Vossebeld ${ }^{74}$, N. Vranjes ${ }^{13}$, M. Vranjes Milosavljevic ${ }^{13}$, V. Vrba ${ }^{127}$, M. Vreeswijk ${ }^{107}$, R. Vuillermet ${ }^{30}$, I. Vukotic ${ }^{31}$, Z. Vykydal ${ }^{128}$, P. Wagner ${ }^{21}$, W. Wagner ${ }^{175}$, H. Wahlberg ${ }^{71}$, S. Wahrmund ${ }^{44}$, J. Wakabayashi ${ }^{103}$, J. Walder ${ }^{72}$, R. Walker ${ }^{100}$, W. Walkowiak ${ }^{141}$, C. Wang ${ }^{151}$, F. Wang ${ }^{173}$, H. Wang ${ }^{15}$, H. Wang ${ }^{40}$, J. Wang ${ }^{42}$, J. Wang ${ }^{150}$, K. Wang ${ }^{87}$, R. Wang ${ }^{6}$, S.M. Wang ${ }^{151}$, T. Wang ${ }^{21}$, T. Wang ${ }^{35}$, X. Wang ${ }^{176}$, C. Wanotayaroj ${ }^{116}$, A. Warburton ${ }^{87}$, C.P. Ward ${ }^{28}$, D.R. Wardrope ${ }^{78}$, A. Washbrook ${ }^{46}$, C. Wasicki ${ }^{42}$, P.M. Watkins ${ }^{18}$, A.T. Watson ${ }^{18}$, I.J. Watson ${ }^{150}$, M.F. Watson ${ }^{18}$, G. Watts ${ }^{138}$, S. Watts ${ }^{84}$, B.M. Waugh ${ }^{78}$, S. Webb ${ }^{84}$, M.S. Weber ${ }^{17}$, S.W. Weber ${ }^{174}$, J.S. Webster ${ }^{31}$, A.R. Weidberg ${ }^{120}$, B. Weinert ${ }^{61}$, J. Weingarten ${ }^{54}$, C. Weiser ${ }^{48}$, H. Weits ${ }^{107}$, P.S. Wells ${ }^{30}$, T. Wenaus ${ }^{25}$, T. Wengler ${ }^{30}$, S. Wenig ${ }^{30}$,
N. Wermes ${ }^{21}$, M. Werner ${ }^{48}$, P. Werner ${ }^{30}$, M. Wessels ${ }^{58 \mathrm{a}}$, J. Wetter ${ }^{161}$, K. Whalen ${ }^{116}$, A.M. Wharton ${ }^{72}$, A. White ${ }^{8}$, M.J. White ${ }^{1}$, R. White ${ }^{32 \mathrm{~b}}$, S. White ${ }^{124 a, 124 b}$, D. Whiteson ${ }^{163}$, F.J. Wickens ${ }^{131}$, W. Wiedenmann ${ }^{173}$, M. Wielers ${ }^{131}$, P. Wienemann ${ }^{21}$, C. Wiglesworth ${ }^{36}$, L.A.M. Wiik-Fuchs ${ }^{21}$, A. Wildauer ${ }^{101}$, H.G. Wilkens ${ }^{30}$, H.H. Williams ${ }^{122}$, S. Williams ${ }^{107}$, C. Willis ${ }^{90}$, S. Willocq ${ }^{86}$, A. Wilson ${ }^{89}$, J.A. Wilson ${ }^{18}$, I. Wingerter-Seez ${ }^{5}$, F. Winklmeier ${ }^{116}$, B.T. Winter ${ }^{21}$, M. Wittgen ${ }^{143}$, J. Wittkowski ${ }^{100}$, S.J. Wollstadt ${ }^{83}$, M.W. Wolter ${ }^{39}$, H. Wolters ${ }^{126 a, 126 c}$, B.K. Wosiek ${ }^{39}$, J. Wotschack ${ }^{30}$, M.J. Woudstra ${ }^{84}$, K.W. Wozniak ${ }^{39}$, M. Wu^{55}, M. Wu ${ }^{31}$, S.L. Wu^{173}, X. Wu ${ }^{49}$, Y. Wu^{89}, T.R. Wyatt ${ }^{84}$, B.M. Wynne ${ }^{46}$, S. Xella ${ }^{36}$, D. Xu ${ }^{\text {33a }}$, L. Xu ${ }^{25}$, B. Yabsley ${ }^{150}$, S. Yacoob ${ }^{145 a}$, R. Yakabe ${ }^{\text {67 }}$, M. Yamada ${ }^{66}$, D. Yamaguchi ${ }^{157}$, Y. Yamaguchi ${ }^{118}$, A. Yamamoto ${ }^{66}$, S. Yamamoto ${ }^{155}$, T. Yamanaka ${ }^{155}$, K. Yamauchi ${ }^{103}$, Y. Yamazaki ${ }^{67}$, Z. Yan ${ }^{22}$, H. Yang ${ }^{33 e}$, H. Yang ${ }^{173}$, Y. Yang ${ }^{151}$, W-M. Yao ${ }^{15}$, Y. Yasu ${ }^{66}$, E. Yatsenko ${ }^{5}$, K.H. Yau Wong ${ }^{21}$, J. Ye ${ }^{40}$, S. Ye ${ }^{25}$, I. Yeletskikh ${ }^{65}$, A.L. Yen ${ }^{57}$, E. Yildirim ${ }^{42}$, K. Yorita ${ }^{171}$, R. Yoshida ${ }^{6}$, K. Yoshihara ${ }^{122}$, C. Young ${ }^{143}$, C.J.S. Young ${ }^{30}$, S. Youssef ${ }^{22}$, D.R. Yu ${ }^{15}$, J. Yu ${ }^{8}$, J.M. Yu ${ }^{89}$, J. Yu ${ }^{114}$, L. Yuan ${ }^{67}$, S.P.Y. Yuen ${ }^{21}$, A. Yurkewicz ${ }^{108}$, I. Yusuff ${ }^{28, a l}$, B. Zabinski ${ }^{39}$, R. Zaidan ${ }^{63}$, A.M. Zaitsev ${ }^{130, a c}$, J. Zalieckas ${ }^{14}$, A. Zaman ${ }^{148}$, S. Zambito ${ }^{57}$, L. Zanello ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, D. Zanzi ${ }^{88}$, C. Zeitnitz ${ }^{175}$, M. Zeman ${ }^{128}$, A. Zemla ${ }^{38 \mathrm{a}}$, Q. Zeng ${ }^{143}$, K. Zengel ${ }^{23}$, O. Zenin ${ }^{130}$, T. Ženiš ${ }^{144 \mathrm{a}}$, D. Zerwas ${ }^{117}$, D. Zhang ${ }^{89}$, F. Zhang ${ }^{173}$, G. Zhang ${ }^{33 \mathrm{~b}}$, H. Zhang ${ }^{33 \mathrm{c}}$, J. Zhang ${ }^{6}$, L. Zhang ${ }^{48}$, R. Zhang ${ }^{33 b, i}$, X. Zhang ${ }^{33 d}$, Z. Zhang ${ }^{117}$, X. Zhao ${ }^{40}$, Y. Zhao ${ }^{33 d, 117}$, Z. Zhao ${ }^{33 \mathrm{D}}$, A. Zhemchugov ${ }^{65}$, J. Zhong ${ }^{120}$, B. Zhou ${ }^{89}$, C. Zhou ${ }^{45}$, L. Zhou ${ }^{35}$, L. Zhou ${ }^{40}$, M. Zhou ${ }^{148}$, N. Zhou ${ }^{33 f}$, C.G. Zhu ${ }^{33 d}$, H. Zhu ${ }^{33 \mathrm{a}}$, J. Zhu ${ }^{89}$, Y. Zhu ${ }^{33 \mathrm{~b}}$, X. Zhuang ${ }^{33 \mathrm{a}}$, K. Zhukov ${ }^{96}$, A. Zibell ${ }^{174}$, D. Zieminska ${ }^{61}$, N.I. Zimine ${ }^{65}$, C. Zimmermann ${ }^{83}$, S. Zimmermann ${ }^{48}$, Z. Zinonos ${ }^{54}$, M. Zinser ${ }^{83}$, M. Ziolkowski ${ }^{141}$, L. Živković ${ }^{13}$, G. Zobernig ${ }^{173}$, A. Zoccoli ${ }^{20 a, 20 b}$, M. zur Nedden ${ }^{16}$, G. Zurzolo ${ }^{104 a, 104 b}$, L. Zwalinski ${ }^{30}$
${ }^{1}$ Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany NY, United States
${ }^{3}$ Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; ${ }^{(b)}$ Istanbul Aydin University, Istanbul; ${ }^{(c)}$ Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
${ }^{5}$ LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
${ }^{6}$ High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States
${ }^{7}$ Department of Physics, University of Arizona, Tucson AZ, United States
${ }^{8}$ Department of Physics, The University of Texas at Arlington, Arlington TX, United States
${ }^{9}$ Physics Department, University of Athens, Athens, Greece
${ }^{10}$ Physics Department, National Technical University of Athens, Zografou, Greece
${ }^{11}$ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{12}$ Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
${ }^{13}$ Institute of Physics, University of Belgrade, Belgrade, Serbia
${ }^{14}$ Department for Physics and Technology, University of Bergen, Bergen, Norway
${ }^{15}$ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States
${ }^{16}$ Department of Physics, Humboldt University, Berlin, Germany
${ }^{17}$ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
${ }^{18}$ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; ${ }^{(b)}$ Department of Physics Engineering, Gaziantep University, Gaziantep; (c) Department of Physics, Dogus University, Istanbul, Turkey
20 (a) INFN Sezione di Bologna; ${ }^{(b)}$ Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
${ }^{21}$ Physikalisches Institut, University of Bonn, Bonn, Germany
${ }^{22}$ Department of Physics, Boston University, Boston MA, United States
${ }^{23}$ Department of Physics, Brandeis University, Waltham MA, United States
24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; ${ }^{(b)}$ Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; ${ }^{(c)}$ Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; ${ }^{(d)}$ Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
${ }^{25}$ Physics Department, Brookhaven National Laboratory, Upton NY, United States
$26{ }^{(a)}$ Transilvania University of Brasov, Brasov; ${ }^{\left({ }^{(b)}\right)}$ National Institute of Physics and Nuclear Engineering, Bucharest; ${ }^{\left({ }^{(c)}\right.}$ National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; ${ }^{(d)}$ University Politehnica Bucharest, Bucharest; ${ }^{(e)}$ West University in Timisoara, Timisoara, Romania
${ }^{27}$ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{28}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
${ }^{29}$ Department of Physics, Carleton University, Ottawa ON, Canada
${ }^{30}$ CERN, Geneva, Switzerland
${ }^{31}$ Enrico Fermi Institute, University of Chicago, Chicago IL, United States
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; ${ }^{(b)}$ Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ${ }^{(b)}$ Department of Modern Physics, University of Science and Technology of China, Anhui; ${ }^{(c)}$ Department of Physics, Nanjing University, Jiangsu; ${ }^{(d)}$ School of Physics, Shandong University, Shandong; ${ }^{(e)}$ Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai; (f) Physics Department, Tsinghua University, Beijing 100084, China
${ }^{34}$ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
${ }^{35}$ Nevis Laboratory, Columbia University, Irvington NY, United States
${ }^{36}$ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; ${ }^{(b)}$ Dipartimento di Fisica, Università della Calabria, Rende, Italy
$38{ }^{(a)}$ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; ${ }^{(b)}$ Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
${ }^{40}$ Physics Department, Southern Methodist University, Dallas TX, United States
${ }^{41}$ Physics Department, University of Texas at Dallas, Richardson TX, United States
${ }^{42}$ DESY, Hamburg and Zeuthen, Germany
${ }^{43}$ Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
${ }^{44}$ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
${ }^{45}$ Department of Physics, Duke University, Durham NC, United States
${ }^{46}$ SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
${ }^{47}$ INFN Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{48}$ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
${ }^{49}$ Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; ${ }^{(b)}$ Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; ${ }^{(b)}$ High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
${ }^{52}$ II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
${ }^{53}$ SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
${ }^{54}$ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
${ }^{55}$ Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
${ }^{56}$ Department of Physics, Hampton University, Hampton VA, United States
${ }^{57}$ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; ${ }^{(b)}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; ${ }^{(c)}$ ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
${ }^{59}$ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
$60{ }^{(a)}$ Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; ${ }^{(b)}$ Department of Physics, The University of Hong Kong, Hong Kong; ${ }^{(c)}$ Department of Physics,
The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
${ }^{61}$ Department of Physics, Indiana University, Bloomington IN, United States
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
${ }^{63}$ University of Iowa, Iowa City IA, United States
${ }^{64}$ Department of Physics and Astronomy, Iowa State University, Ames IA, United States
${ }^{65}$ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
${ }^{66}$ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
${ }^{67}$ Graduate School of Science, Kobe University, Kobe, Japan
${ }^{68}$ Faculty of Science, Kyoto University, Kyoto, Japan
${ }^{69}$ Kyoto University of Education, Kyoto, Japan
${ }^{70}$ Department of Physics, Kyushu University, Fukuoka, Japan
${ }^{71}$ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
${ }^{72}$ Physics Department, Lancaster University, Lancaster, United Kingdom
$73{ }^{(a)}$ INFN Sezione di Lecce; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
74 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
${ }^{75}$ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
${ }^{76}$ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
${ }^{77}$ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
78 Department of Physics and Astronomy, University College London, London, United Kingdom
${ }^{79}$ Louisiana Tech University, Ruston LA, United States
${ }^{80}$ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
${ }^{81}$ Fysiska institutionen, Lunds universitet, Lund, Sweden
82 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
${ }^{83}$ Institut für Physik, Universität Mainz, Mainz, Germany
${ }^{84}$ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
${ }^{85}$ CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
${ }^{86}$ Department of Physics, University of Massachusetts, Amherst MA, United States
${ }^{87}$ Department of Physics, McGill University, Montreal QC, Canada
${ }^{88}$ School of Physics, University of Melbourne, Victoria, Australia
${ }^{89}$ Department of Physics, The University of Michigan, Ann Arbor MI, United States
${ }^{90}$ Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States
91 (a) INFN Sezione di Milano; ${ }^{(b)}$ Dipartimento di Fisica, Università di Milano, Milano, Italy
${ }^{92}$ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
${ }^{93}$ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus
${ }^{94}$ Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States
${ }^{95}$ Group of Particle Physics, University of Montreal, Montreal QC, Canada
${ }^{96}$ P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
${ }^{97}$ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
${ }^{98}$ National Research Nuclear University MEPhI, Moscow, Russia
${ }^{99}$ D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
${ }^{100}$ Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
${ }^{101}$ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
102 Nagasaki Institute of Applied Science, Nagasaki, Japan
103 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
$104{ }^{(a)}$ INFN Sezione di Napoli; ${ }^{(b)}$ Dipartimento di Fisica, Università di Napoli, Napoli, Italy
${ }^{105}$ Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States
${ }^{106}$ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
107 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
108 Department of Physics, Northern Illinois University, DeKalb IL, United States
109 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
${ }^{110}$ Department of Physics, New York University, New York NY, United States
111 Ohio State University, Columbus OH, United States
${ }^{112}$ Faculty of Science, Okayama University, Okayama, Japan
${ }^{113}$ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States
114 Department of Physics, Oklahoma State University, Stillwater OK, United States
115 Palacký University, RCPTM, Olomouc, Czech Republic
${ }^{116}$ Center for High Energy Physics, University of Oregon, Eugene OR, United States
117 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
118 Graduate School of Science, Osaka University, Osaka, Japan
${ }^{119}$ Department of Physics, University of Oslo, Oslo, Norway

120 Department of Physics, Oxford University, Oxford, United Kingdom
121 (a) INFN Sezione di Pavia; ${ }^{(b)}$ Dipartimento di Fisica, Università di Pavia, Pavia, Italy
122 Department of Physics, University of Pennsylvania, Philadelphia PA, United States
123 National Research Centre 'Kurchatov Institute’ B.P. Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
124 (a) INFN Sezione di Pisa; ${ }^{(b)}$ Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
125 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States
126 (a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; ${ }^{(b)}$ Faculdade de Ciências, Universidade de Lisboa, Lisboa; ${ }^{(c)}$ Department of Physics, University of Coimbra, Coimbra; ${ }^{(d)}$ Centro de Física Nuclear da Universidade de Lisboa, Lisboa; ${ }^{(e)}$ Departamento de Fisica, Universidade do Minho, Braga; ${ }^{(f)}$ Departamento de Fisica Teorica y del
Cosmos and CAFPE, Universidad de Granada, Granada (Spain); ${ }^{(g)}$ Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portuga
127 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
128 Czech Technical University in Prague, Praha, Czech Republic
129 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
130 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia
131 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
132 (a) INFN Sezione di Roma; ${ }^{(b)}$ Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
133 (a) INFN Sezione di Roma Tor Vergata; ${ }^{(b)}$ Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134 (a) INFN Sezione di Roma Tre; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
135 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; ${ }^{(c)}$ Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; ${ }^{(d)}$ Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; ${ }^{(e)}$ Faculté des sciences, Université Mohammed V, Rabat, Morocco
${ }^{136}$ DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat à l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
${ }^{137}$ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States
138 Department of Physics, University of Washington, Seattle WA, United States
39 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
${ }^{140}$ Department of Physics, Shinshu University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby BC, Canada
143 SLAC National Accelerator Laboratory, Stanford CA, United States
144 (a) Faculty of Mathematics, Physics E Informatics, Comenius University, Bratislava; ${ }^{(b)}$ Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145 (a) Department of Physics, University of Cape Town, Cape Town; ${ }^{(b)}$ Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the
Witwatersrand, Johannesburg, South Africa
146 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Departments of Physics \mathcal{E} ' Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States
149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150 School of Physics, University of Sydney, Sydney, Australia
151 Institute of Physics, Academia Sinica, Taipei, Taiwan
152 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
55 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, University of Toronto, Toronto ON, Canada
159 (a) TRIUMF, Vancouver BC; ${ }^{(b)}$ Department of Physics and Astronomy, York University, Toronto ON, Canada
${ }^{160}$ Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan
161 Department of Physics and Astronomy, Tufts University, Medford MA, United States
162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
163 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States
164 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; ${ }^{(b)}$ ICTP, Trieste; ${ }^{(c)}$ Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
165 Department of Physics, University of Illinois, Urbana IL, United States
166 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
168 Department of Physics, University of British Columbia, Vancouver BC, Canada
169 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
170 Department of Physics, University of Warwick, Coventry, United Kingdom
171 Waseda University, Tokyo, Japan
172 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
173 Department of Physics, University of Wisconsin, Madison WI, United States
174 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
${ }^{175}$ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
176 Department of Physics, Yale University, New Haven CT, United States
177 Yerevan Physics Institute, Yerevan, Armenia
178 Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
${ }^{a}$ Also at Department of Physics, King's College London, London, United Kingdom.
${ }^{b}$ Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
${ }^{c}$ Also at Novosibirsk State University, Novosibirsk, Russia.
${ }^{d}$ Also at TRIUMF, Vancouver, BC, Canada.
e Also at Department of Physics, California State University, Fresno, CA, United States.
f Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
g Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal.
${ }^{h}$ Also at Tomsk State University, Tomsk, Russia.
${ }^{i}$ Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
${ }_{j}$ Also at Universita di Napoli Parthenope, Napoli, Italy.
${ }^{k}$ Also at Institute of Particle Physics (IPP), Canada.
${ }^{I}$ Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
${ }^{m}$ Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
${ }^{n}$ Also at Louisiana Tech University, Ruston, LA, United States.
${ }^{0}$ Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
${ }^{p}$ Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.
${ }^{q}$ Also at Graduate School of Science, Osaka University, Osaka, Japan.
${ }^{r}$ Also at Department of Physics, National Tsing Hua University, Taiwan.
${ }^{s}$ Also at Department of Physics, The University of Texas at Austin, Austin, TX, United States.
${ }^{t}$ Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
${ }^{u}$ Also at CERN, Geneva, Switzerland.
${ }^{v}$ Also at Georgian Technical University (GTU), Tbilisi, Georgia.
${ }^{w}$ Also at Manhattan College, New York, NY, United States.
${ }^{x}$ Also at Hellenic Open University, Patras, Greece.
${ }^{y}$ Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
${ }^{z}$ Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.
aa Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
${ }^{a b}$ Also at School of Physics, Shandong University, Shandong, China.
ac Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
${ }^{\text {ad }}$ Also at Section de Physique, Université de Genève, Geneva, Switzerland.
ae Also at International School for Advanced Studies (SISSA), Trieste, Italy.
af Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
${ }^{a g}$ Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
${ }^{a h}$ Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
${ }^{\text {ai }}$ Also at National Research Nuclear University MEPhI, Moscow, Russia.
${ }^{\text {aj }}$ Also at Department of Physics, Stanford University, Stanford, CA, United States.
${ }^{a k}$ Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
${ }^{\text {al }}$ Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.

* Deceased.

[^0]: * E-mail address: atlas.publications@cern.ch.

[^1]: ${ }^{1}$ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta=-\ln \tan (\theta / 2)$.

