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Abstract 18 

We have known about the processes of methanogenesis and methanotrophy for over 100 19 

years, since the days of Winogradsky, yet their contributions to the carbon cycle were 20 

deemed to be of negligible importance for the majority of that period. It is only in the last two 21 

decades that methane has been appreciated for its role in the global carbon cycle, and stable 22 

isotopes have come to the forefront as tools for identifying and tracking the fate of methane-23 

derived carbon within food webs, especially within aquatic ecosystems. While it is not 24 

surprising that chemosynthetic processes dominate and contribute almost 100% to the 25 

biomass of organisms residing within extreme habitats like deep ocean hydrothermal vents 26 

and seeps, way below the reach of photosynthetically active radiation, it is perhaps 27 

counterintuitive to find reliance upon methane-derived carbon in shallow, well-lit, well-28 

oxygenated streams. Yet, apparently, methane-derived carbon contributes to varying degrees 29 

across the spectrum from point sources to extremely diffuse sources. Certainly a good 30 

proportion of the evidence for methane-derived carbon contributing to freshwater food webs 31 

comes from somewhere in the middle of that spectrum; from studies of seasonally stratifying 32 

lakes (mono- or dimictic) wherein, there is a defined gradient or boundary at which anoxic 33 

meet oxic conditions and consequently allows for close coupling of methanogenesis and 34 

methanotrophy. However, even seemingly well-mixed (polymictic) lakes have a contribution 35 

of methane-derived carbon contributing to the benthic biomass, despite an almost continual 36 

supply of photosynthetic carbon being delivered from the surface. 37 

Aside from the fundamental importance of identifying the carbon sources fuelling biomass 38 

production, stable isotopes have been integral in the tool box of palaeolimnologists seeking to 39 

identify how contributions from methane have waxed and waned over time. Here, we 40 
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synthesise the current state of knowledge in the use of stable isotopes to trace methane-41 

derived carbon in primarily freshwater ecosystems. 42 
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A brief synopsis on the global importance of methane in aquatic systems, and particularly in 52 

freshwaters 53 

The global carbon cycle was considered, until relatively recently, to be solely the flux and 54 

storage of carbon between the atmosphere, and terrestrial and oceanic pools. Within the total 55 

carbon budget, it has been noted that despite their relatively small area, inland freshwaters 56 

make a considerable contribution to the global methane (CH4) budget with emissions of CH4 57 

from freshwaters being at least comparable to the terrestrial CH4 sink (Battin et al., 2009). 58 

However, there is a considerable bias toward data from lakes and other wetlands, and the role 59 

of rivers remains poorly defined (Bastviken et al., 2011). Emissions of CH4 may be small in 60 

terms of carbon, but one must consider that CH4 is a more potent greenhouse gas than CO2 61 

over century time scales; (Bastviken et al., 2011) estimated that global CH4 emissions 62 

expressed as CO2 equivalents correspond to at least 25% of the estimated terrestrial 63 

greenhouse gas sink. Our understanding of the global carbon cycle will only be complete if 64 

we include the flux of carbon through inland freshwaters (Battin et al., 2009); (Cole et al., 65 

2007); Trimmer et al., 2012); getting to grips with methane-fuelling of food webs is an 66 

interesting and important component of this. Indeed, (Cole, 2013) noted that “the role of 67 

methane in supporting food webs in lakes, and perhaps even beyond their shores, has come as 68 

a surprise” and that “the notion that lake methane partially supports higher organisms in 69 

surrounding terrestrial environments fundamentally changes our understanding of how 70 

aquatic food webs work”. 71 

Methanogenesis is a universal terminal degradation process of organic matter in anoxic 72 

aquatic sediments when inorganic oxidants such as nitrate, ferric iron or sulphate are depleted 73 

(Conrad, 2005). Hence, in marine systems where there is typically a high concentration of 74 

sulphate, the sulphur cycle tends to dominate chemosynthesis, but in freshwaters where 75 

sulphate concentrations are typically lower (Hobbie, 1988) then methanogenesis dominates. 76 

Stable isotopes have been an incredibly useful tool in the identification and quantification of 77 

methanogenic and methanotrophic pathways (Conrad, 2005) and further identifying the 78 

constituents of the complex microbial community that is actively involved via stable isotope 79 

probing (SIP; e.g. (He et al., 2012), but those aspects are not the focus of this review. 80 

Methane may be lost directly from the system via ebullition or the recently hypothesised 81 

micro-bubble pathway, stochastic processes notoriously difficult to quantify (Prairie and del 82 

Giorgio, 2013) or be effectively ‘piped’ to the surface via plants (Bergstrom et al., 2007); 83 

(Sanders et al., 2007). Alternatively, or in addition, it may subsequently serve as an energy 84 

and C source for methanotrophs (methane oxidising bacteria; MOB), typically at oxic-anoxic 85 

boundaries (if anaerobic CH4 oxidation is excluded) in the sediment, or in the water column 86 

(Rudd and Taylor, 1980; (Kankaala et al., 2007). It is essentially from this point in the cycle 87 

that stable isotopes have been key in tracing the use of methane-derived carbon (MDC) into, 88 

and through, food webs, particularly in freshwaters (Jones and Grey, 2011). A schematic of 89 

potential routes by which CH4 produced in anoxic freshwater sediments may either by-pass 90 

or become incorporated into food webs is shown in Figure 1.  91 

 92 

Could a methane pathway be important to secondary production in food webs?  93 

Anoxic water and sediments are typically rich in organic matter compared to the overlying 94 

oxic water, and anoxic metabolism may account for a substantial part (20–60%) of the carbon 95 



metabolism and the heterotrophic microbial production within freshwater environments 96 

(Hessen and Nygaard, 1992). Methanogenesis in lakes has been reported corresponding to 97 

30-80% of the anaerobic mineralisation in waters and sediments (Bastviken, 2009). While 98 

seasonal variability in CH4 oxidation is known to be considerable, especially in dimictic 99 

lakes, between 30-94% of the CH4 reaching oxygenated layers is reputedly oxidised (Casper 100 

et al., 2000); (Morana et al., 2015). In essence then, CH4 is a major product of the C 101 

mineralisation in lakes, and a large proportion may be converted to microbial biomass 102 

equivalent in some instances to the total C fixation by heterotrophic bacteria and a significant 103 

proportion of primary production (Hessen and Nygaard, 1992; Bastviken et al., 2003). Again, 104 

data from rivers are lacking, but across 15 rivers, in late summer, i.e. when one might expect 105 

the greatest contribution from photosynthesis, (Shelley et al., 2014) conservatively calculated 106 

that net methanotrophy was equivalent to between 1% and 46% of benthic net photosynthetic 107 

production within the gravel beds of chalkstreams. Couple this to the apparently high (50%) 108 

carbon conversion efficiency of methanotrophs (relative to 10-30%, typical for bacteria in 109 

detrital-based food webs), regardless of marked spatial and temporal changes in ambient 110 

methane concentration, and it suggests that methanotrophs can sustain net production 111 

throughout the year (Trimmer et al., 2015)). 112 

The importance of a CH4 pathway to food webs might yet increase further under climate 113 

change. Increases in temperature forecast for the coming decades may have profound 114 

implications for the cycling of carbon in aquatic ecosystems due to the differential 115 

temperature dependencies of carbon fixation by gross primary production (GPP) and carbon 116 

mineralisation by ecosystem respiration (ER). For example, (Yvon-Durocher et al., 2010) 117 

showed that warming of 4°C reduced the carbon sequestration capacity of freshwater 118 

mesocosms by 13%, shifting them towards net heterotrophy (i.e. net sources of CO2 to the 119 

atmosphere) because ER responded more strongly to temperature than GPP. They also found 120 

that methanogenesis responded even more strongly than ER or GPP, with 20% more of the 121 

GPP being accounted for by CH4 emissions with 4°C of warming (Yvon-Durocher et al., 122 

2011). Benthic community structure and how that contributes to a host of ecosystem 123 

processes, including microbial and macrofaunal decomposition rates, was also clearly 124 

affected by such warming (Dossena et al., 2012). If it is assumed that delivery of organic 125 

matter does not change but temperature increases as predicted, then for example, the 126 

increased mineralisation will equate to a 4-27% (0.9-6.4 Tg C y-1) decrease in organic carbon 127 

burial in boreal lakes (Gudasz et al., 2010). However, very recent work in rivers suggests that 128 

methanotrophy has the potential to match methanogenesis enhanced by warming (Shelley et 129 

al., 2015). How climate change might impact upon food web mediation of methane-derived 130 

carbon will be returned to later. 131 

 132 

Why are stable carbon and hydrogen such useful tracers of methane? 133 

Isotopic signatures of environmental CH4, both 13C/12C and 2H/1H, have been compiled by 134 

(Whiticar et al., 1986) and (Bréas et al., 2001) amongst others. An important characteristic of 135 

biogenic methane is that its carbon stable isotope composition is typically markedly 13C-136 

deplete compared to other putative basal resources in a food web. So, for freshwater lakes, 137 

CH4 
13C may be as low as -110‰ to -50‰ dependent upon formation pathway; (Whiticar, 138 

1999); (Deines and Grey, 2006); (Taipale et al., 2007) relative to either allochthonous 139 



terrestrial plant detritus (13C value from C3 plants typically -28‰ to -26‰ (Peterson and 140 

Fry, 1987); or autochthonous phytoplankton (13C typically between -35 to -25‰; (Grey et 141 

al., 2000, Vuorio et al., 2006) but acknowledging that components of the phytoplankton such 142 

as their fatty acids may be ~10‰ further 13C-depleted e.g. (Taipale et al., 2015)). However, 143 

CH4 
13C values reported from sediments are not necessarily linked to the 13C values of 144 

sedimentary organic matter; instead they may be strongly influenced by the quality of the 145 

organic matter substrate and/or the predominant methanogenic pathway (Rinta et al., 2015), 146 

and of course to a certain extent as to whether some of the CH4 has already been oxidised by 147 

MOB prior to analysis (Coleman et al., 1981). In marine hydrocarbon seep communities, 148 

13C has been the primary isotope value examined, used to differentiate between animals with 149 

chemoautotrophic symbionts (–40‰ to –20‰) from those with methanotrophic symbionts 150 

(≤–40‰) (Brooks et al., 1987) and to identify the source CH4 pool as either thermogenic 151 

(13C = -45‰ to -40‰) or biogenic (13C <-45‰) CH4 (Sassen et al., 1999). 152 

Isotopic fractionation during the use of CH4 by MOB typically leads to further 13C-depletion 153 

(by 0-30‰; (Summons et al., 1994, Templeton et al., 2006). For example, CH4-consuming 154 

archaea isolated from anoxic marine sediments have been reported with 13C values as low as 155 

-96‰ (Orphan et al., 2001), while biomarkers (e.g., archaeol and hydroxyarchaeol) from such 156 

archaea within a CH4-supported benthic microbial community in cold-seep sediments 157 

exhibited 13C values as low as -111‰ (Werne et al., 2002). Hence, the MOB biomass 158 

available to consumers has a strikingly low 13C and, because stable carbon isotope ratios 159 

differ little between consumers and their diets, assuming no selective assimilation or 160 

substantial biosynthesis (McCutchan Jr et al., 2003, Grey, 2006), this should allow its 161 

contribution to consumer biomass to be rather readily traced.  162 

Hydrogen isotope effects during methanogenesis of methylated substrates can lead to 163 

deuterium depletions as large as -531‰, whereas, bacterial D/H discrimination for the CO2-164 

reduction pathway is significantly less (-250‰ to -170‰; Whiticar, 1999). Very little is 165 

known regarding the D values of MOB. However, when compared to typical values of 166 

autochthonous (-290‰ to -215‰) and allochthonous (-160‰ to -125‰) resources, there is 167 

still great scope for the use of D to trace CH4-derived production (Doucett et al., 2007, Estep 168 

and Dabrowski, 1980), especially when in combination with 13C (e.g. (Deines et al., 2009)). 169 

The more distinct the sources, and indeed, the more tracers used, the more confidence can be 170 

assigned to estimates of contribution to diet derived from any of the recently published 171 

mixing models (e.g. (Parnell et al., 2013)). Problems arise using isotopic tracers when a 172 

relatively minor contribution from MDC results in  values that could be arrived at via 173 

alternative pathways (see ‘The zone of contention’ section below). 174 

 175 

Methane use across a spectrum of sources 176 

As appreciation of the possibility of MDC providing an alternative energy source to food 177 

webs has grown, so the emphasis on research has shifted from point sources to ever more 178 

diffuse sources, and less intuitively obvious locations where it might be relevant. The 179 

proportion of MDC contributing to food webs at more diffuse sources may well be smaller 180 

(but still of significance); as such, there is likely to be greater ambiguity in the stable isotope 181 



signal, and so the importance of MDC might have been overlooked in many of these systems 182 

(Figure 2).  183 

It is perhaps unsurprising that the use of CH4 (amongst other chemosynthetic production) is 184 

strongly evident at point sources such as deep-sea vents and seeps, whale, kelp and wood 185 

falls, and some sewage outflows, typically far beyond the direct reach of photosynthetically 186 

active radiation (although of course photosynthetic production can ‘fall-out’ of the water 187 

column to benthic communities). The potential for chemosynthesis to fuel entire animal 188 

communities in the ocean was first noted around 35 years ago (e.g. (Rau and Hedges, 1979)). 189 

Early attention focussed on megafaunal or epifaunal taxa such as molluscs or pogonophorans 190 

but there was a broad suite of smaller infaunal deposit feeding and omnivorous invertebrates 191 

whose mode of nutrition remained largely ignored until the application of stable isotope 192 

analyses by the likes of (Van Dover and Fry, 1994), (Colaço et al., 2002) and (Levin and 193 

Michener, 2002).  For example, Levin and Michener (2002) looked at a variety of sites 194 

including CH4 seeps in the Gulf of Alaska, on the Oregon margin, and on the northern 195 

California slope and found that seep macrofauna exhibited lighter 13C (and 15N) values 196 

than those in non-seep sediments. Significant contributions were found from MDC to 197 

macrofaunal biomass from sediments of pogonophoran fields (32%–51%) and clam beds 198 

(12%–40%) in the  Gulf  of  Alaska,  and  in  microbial  mat  sediments  on  the  Oregon  199 

margin  (20%–44%). Some polychaetes exhibited extremely low values of 13C (-90.6‰) at 200 

these point sources (see Figure 2a).   201 

Within the last 15 years, research on MDC and food webs primarily focussed on lakes, 202 

particularly stratifying lakes in temperate and boreal systems, and much of this work has been 203 

extensively reviewed by Jones & Grey (2011). Tube-dwelling chironomid larvae appear key 204 

in lake sediments. Field studies from lakes across Alaska, England, Finland and Germany 205 

(amongst others) have demonstrated that chironomids can assimilate MDC extensively (up to 206 

70% of larval biomass; (Jones et al., 2008). The degree to which they do may vary within 207 

lakes on a temporal (Deines et al., 2007c, Grey et al., 2004c) or spatial (Deines and Grey, 208 

2006; (Gentzel et al., 2012) scale, or by taxa (Jones and Grey, 2004, Kelly et al., 2004, Jones 209 

et al., 2008), and among lakes with ‘strength’ of stratification (Grey et al., 2004c, Deines et 210 

al., 2007b, Hershey et al., 2015). Chironomid larvae are bioengineers; they bioturbate the 211 

sediment while ‘digging’ and maintaining their burrows and draw down oxygenated water, 212 

bringing it into contact with anoxic sediment. The sediments on the burrow walls have been 213 

shown to exhibit higher methane oxidation rates and higher densities of MOB than the 214 

surrounding bulk or surficial sediments (Kajan and Frenzel, 1999); Gentzel et al., 2012). 215 

Larvae thereby appear to create the perfect micro-niche for the coupling of methanogenesis 216 

and methanotrophy (Deines et al., 2007a); (Kelly et al., 2004); see route 3 in Figure 1).  217 

It was assumed from field studies that the low 13C values for taxa such as Chironomus 218 

plumosus (e.g. -70‰ to -50‰; (Jones et al., 2008)) reflected ingestion of the MOB on their 219 

burrow walls (Deines et al., 2007a) akin to ‘gardening’ by trichopteran caddis flies on the 220 

biofilms that develop on caddis cases (also studied by using stable isotopes; (Ings et al., 221 

2012). By using 13C-labelled CH4 additions directly into sediments housing chironomid 222 

larvae under controlled experimental settings, Deines et al., (2007a) have elegantly 223 

demonstrated that larvae assimilate MDC via MOB; this was further supported by 224 

phospholipid fatty acids diagnostic for MOB and significantly enriched by the 13C-labelled 225 

methane being detected in the larval tissues. In a series of parallel experiments, they showed 226 



that larvae could also obtain MDC via 13C-labelled Type II MOB introduced into the water 227 

column above sediments. Type I and Type II MOB use different pathways for formaldehyde 228 

assimilation (ribulose monophosphate and serine, respectively) and typically favour different 229 

environmental conditions; Type I appear to be dominant in environments in which CH4 is 230 

limiting and combined nitrogen and copper concentrations are relatively high, whereas Type 231 

II appear where there are high CH4 concentrations, low dissolved oxygen, and limiting 232 

concentrations of combined nitrogen and/or copper (Hanson and Hanson, 1996). The ability 233 

to access MDC via two discrete routes might account for some of the incredible inter-234 

individual variability that has been observed in chironomid stable isotope ratios (e.g. (Grey et 235 

al., 2004b); Figure 2).  236 

When stratification of the water column becomes too pronounced, generally in duration, and 237 

the benthic sediments become inhospitable even for the hypoxic tolerant chironomid larvae, 238 

Jones & Grey (2011) hypothesised that MDC is more likely to be taken up in the water 239 

column at the oxic-anoxic boundary by zooplankton. Again, evidence for this is mostly 240 

derived from the field from small Finnish boreal lakes with marked oxyclines (e.g.(Jones et 241 

al., 1999); (Taipale et al., 2007, Taipale et al., 2008), but see (Bastviken et al., 2003); (Santer 242 

et al., 2006); (Schilder et al., 2015a). Pelagic zooplankton 13C values are typically not as low 243 

as those reported from similar lakes for benthic chironomids, perhaps again reflecting the 244 

more diffuse nature of the source CH4, and / or the more mobile feeding capability of 245 

zooplankton in the water column relative to tube dwelling chironomids in the sediments. 246 

Some of the lowest values reported are for Daphnia spp. from small, strongly stratifying 247 

lakes with anoxic hypolimnia; for example, -47‰ in a kettle lake, Plußsee (Harrod and Grey, 248 

2006), or -46‰ from Mekkojarvi (Taipale et al., 2008). Laboratory support for zooplankton 249 

uptake of MOB is sparse, but (Kankaala et al., 2006) measured growth rates of Daphnia in 250 

replicated cultures fed microbial suspensions with or without addition of CH4 and found that 251 

their 13C values indicated consumption of 13C-depleted MOB, as have (Deines and Fink, 252 

2011) using 13C-labelling of CH4. 253 

Evidence of MDC contributions to biomass in polymictic (permanently mixed) lakes is rarer. 254 

Such lakes are often shallow and contain considerable stands of macrophytes; while 255 

methanogenesis is certainly proceeding in the sediments, much of the CH4 produced might be 256 

routed via the plant stems and via ebullition (routes 1&2 in Figure 1) and hence, side-step 257 

incorporation into the food web (although see reference to (Agasild et al., 2014), below). 258 

Since the whole water column is well oxygenated, there is no distinct boundary where MOB 259 

will accumulate and thus it is unlikely that zooplankton will feed heavily upon MOB (Jones 260 

and Grey, 2011). In the benthos, there is also typically a more consistent supply of 13C-261 

enriched phytoplankton production from above which will ‘swamp’ the lower 13C values 262 

from MOB. Examples of such lakes with permanently oxic sediment surface layers in which 263 

MDC has been shown to make only a limited (maximum ~20%) or negligible contribution to 264 

chironomid biomass include Großer Binnensee and Schöhsee in north Germany (Grey et al., 265 

2004c, Deines et al., 2007c), Lough Neagh and Rostherne Mere in the UK (Kelly et al., 266 

2004), Izunuma in Japan (Yasuno et al., 2012), and Võrtsjärv in Estonia (Agasild et al., 2014, 267 

Cremona et al., 2014). Interestingly, the latter lake was sampled at various sites and it was 268 

only at one particular site dominated by vegetation that low 13C values were recorded in 269 

both zooplankton and chironomids. Agasild et al. (2014) postulated that the stands of 270 

macrophytes prevented wind mixing from disturbing the sediments, and that dissolved 271 



oxygen in the water column was reduced by the restricted circulation of water and gas 272 

exchange between the water surface and the atmosphere and by increased oxygen demand 273 

from the decomposition of organic matter; all processes which would lead to greater MDC 274 

being available to the food web.  275 

Within the last five years has come the first convincing evidence of MDC contributing to 276 

food webs in free-flowing, well oxygenated streams and rivers, where because of the 277 

turbulent nature, the source of CH4 could be considered to be most diffuse. One of the first 278 

studies claiming a river food web to be fuelled by MDC was by (Kohzu et al., 2004) who 279 

reported Helodes sp. beetle larvae and adults with 13C values as low as -69.8‰ but these 280 

were from stagnant backwater pools akin to stratifying lakes, and while these may be 281 

important habitats on some lotic systems, they were not from the free flowing, main-stem 282 

river food web. Since then, considerable research on the chalk streams of the UK, highly 283 

productive, ground water fed systems has revealed that trichopteran larvae may play a similar 284 

role to chironomids in lakes, the main conduit for MDC to route into the wider food web (e.g. 285 

(Trimmer et al., 2009, Trimmer et al., 2010). In contrast, (Mbaka et al., 2014) studied small 286 

inline impoundments with extremely short residence times on a river system in Germany but 287 

could find negligible evidence of MDC contributing to chironomids from the sediments there. 288 

How MDC might contribute significantly to river food webs clearly requires more research.   289 

Unless there is almost 100% trophic transfer of MDC higher into the food web, then 290 
obviously mixing with non-MDC food sources results in a dilution of the indicator isotope in 291 
question, and the ability to trace MDC further using stable isotopes alone is weakened (see 292 

below). An apparent gradient is thus evident from point to diffuse source of methane. For 293 
example, on a species-specific basis, some mobile benthic predators (eels, sea stars, and 294 

predatory snails) have been shown on the basis of their low 13C (and 15N & 34S) values to 295 

obtain close to 100% of their nutrition from CH4 seep production in the Gulf of Mexico 296 
(MacAvoy et al., 2002). From stratifying lakes, (Harrod and Grey, 2006) and (Ravinet et al., 297 
2010) have found isotopic evidence of MDC contributing (up to ~12%) to bream (Abramis 298 

brama) and to ruffe (Gymnocephalus cernuus), respectively, while in a shallow, well-mixed 299 
Pantanal (tropical) wetland lake (Sanseverino et al., 2012) could trace MDC into various fish 300 
species. Even from the very shallow lake Võrtsjärv, Agasild et al. (2014) reported that at sites 301 

amongst the macrophytes where zooplankton and chironomid larvae were most 13C-deplete, 302 

there was a corresponding decrease in 13C for roach (Rutilus rutilus), perch (Perca 303 
fluviatilis) and the apex predator, pike (Esox lucius), indicative of trophic transfer of MDC to 304 

the very top of the food web. To date, evidence from rivers has not been reported, but given 305 
the extremely abundant nature of the primary consumers (particularly cased caddis flies) that 306 
appear key to linking MOB into the food web in such systems, the pathway is certainly in 307 
place (Trimmer et al., 2012). Evidence of the transfer of MDC across ecosystem boundaries 308 

is still limited. Aquatic invertebrates such as Helodes sp., Chloroperlidae spp., Leuctridae 309 
spp. and Sialis sp. have all been recorded from Malaise traps on stream banks, i.e. post 310 

emergence, with 13C values from -69.8 to -51.8‰ (Kohzu et al., 2004) but there has still 311 
been only one study quantifying transfer of MDC and that was into riparian spiders (up to 312 

18% of their biomass) mediated by emerging chironomid imagos from stratifying lakes 313 
(Jones and Grey 2011). The potential is clear to see for vertebrate predators as well, such as 314 

barn swallows (Hirundo rustica) which, using stable isotopes, have been identified as 315 
prioritising such abundant prey at specific times of the year (Parnell et al., 2013). Of course, 316 
we should also consider how alteration of a food web, for example by introduction of a top 317 
predator for recreation or as a function of range expansion might cause cascading effects 318 



down to biogeochemical cycling near the base of a food web. By experimentally 319 

manipulating fish density in a previously fish-less lake, (Devlin et al., 2015) showed that a 320 
trophic cascade from fish to microbes affected methane efflux to the atmosphere and reduced 321 
the amount of MDC assimilated into the biomass of zooplankton that remained (assessed 322 

from Daphnia 13C values). It may well be that such improved quantitative understanding of 323 
the influence of higher trophic consumers on carbon budgets creates future opportunity for 324 
management and policy to identify and implement new options for mitigating greenhouse gas 325 

release at regional scales (Schmitz et al., 2014). 326 

     327 

The zone of contention 328 

Various authors (e.g. (Deines et al., 2009)) have acknowledged that confidence in the use of 329 
isotopic tracers of MDC from field studies must be tempered where/when alternative 330 

explanations for such isotope values can arise. The ‘zone of contention’ for 13C from 331 
consumers in freshwater lakes for example typically occurs between -40‰ and -30‰. 332 
Chironomid larvae could exhibit such a value if they assimilated: a) a small percentage from 333 

very low 13C MOB and a greater percentage from relatively high 13C phytoplankton (e.g. 334 
(Grey et al., 2004b)); b) alternative chemosynthetic sources of carbon such as sulphur 335 

bacteria (e.g. (Deines et al., 2009); (Roach et al., 2011)); or c) phytoplankton with very low 336 

13C. It should be remembered that these scenarios are not mutually exclusive. Scenario c 337 

may arise because a substantial part of the dissolved CO2 pool may originate from respiration 338 

of autochthonous and allochthonous organic matter and have low 13C (from -20‰ to -15‰: 339 
(Lennon et al., 2006); (Kankaala et al., 2010)). The degree of fractionation of that CO2 by 340 
phytoplankton is uncertain and extremely variable, but in lakes might range from 0‰ to 15‰ 341 
(with values near the upper end of the range probably most widespread; (Bade et al., 2006)). 342 

Therefore, it is not uncommon to find 13C values for lake phytoplankton of < -30‰ (e.g. 343 

(Grey et al., 2000); (Vuorio et al., 2006)), and anything feeding selectively on 13C-depleted 344 
phytoplankton (or assimilating selectively from components thereof such as fatty acids) will 345 

show correspondingly low 13C values (Pel et al., 2003). The same has been shown for rivers 346 

(Finlay et al., 1999). The situation is even more complex when a proportion of the low 13C 347 

values for CO2 could have originated from the oxidation of CH4, and hence in effect, be an 348 
indirect contribution from MDC (Route 5 in Figure 1). Further dilution of the MDC signal 349 

with trophic transfer up the food web has already been mentioned. 350 

In such scenarios, only with the addition of alternative but complementary tracers can the 351 
assimilation of MDC be assigned with confidence. Hence, the addition of further stable 352 

isotopes such as D (e.g. (Belle et al., 2015, Deines et al., 2009, van Hardenbroek et al., 353 

2015), 34S (Grey and Deines, 2005), and to a certain extent 15N (Grey et al., 2004b, 354 

Stephen et al., 2002); see later discussion), have proved useful in ascertaining the use of 355 

MDC. Radio isotopes might offer some support under certain situations; for example. 356 
(Opsahl and Chanton, 2006) studied the food webs of troglobitic organisms in the Upper 357 
Floridian aquifer and found that crayfish trapped from remote sinkhole conduits were not 358 
only on average ~10‰ 13C-depleted relative to their counterparts at accessible springs at the 359 

surface but that there was a strong correlation with radiocarbon (14C) depletion relative to 360 
modern values, indicative of a chemosynthetic food source. Concurrent analysis of 361 

phospholipid fatty acids (PLFAs) which are diagnostic for MOB, as well as compound-362 
specific analysis of the isotope ratios of those PLFAs has also been invaluable. For example, 363 

(Taipale et al., 2009) demonstrated a strong relationship between the 13C values of Daphnia 364 



and the proportion of MOB-specific PLFAs in Daphnia. These methods have also 365 

highlighted the indirect route via methane-oxidation and uptake of the resulting 13C-depleted 366 
CO2 by autotrophs (Route 5 in Figure 1). For bog-pool food webs in Estonia, (Duinen et al., 367 

2013) suggested that the most parsimonious explanation for relatively low 13C values of 368 
algae-derived polyunsaturated fatty acids found in insects was that MOB were creating CO2 369 
from the oxidation of CH4 which was assimilated by their direct algal ‘neighbours’ within the 370 
biofilm community. (Sanseverino et al., 2012) used the presence of MOB-diagnostic PLFAs 371 

in various benthivorous and detritivorous fishes to support claims of MDC assimilation in 372 

Brazilian wetlands as the fish 13C values were <-36‰; low relative to the other food web 373 

components in question but clearly not the marked 13C-depletion classically associated with 374 
CH4. Further correlative evidence may be provided by concurrent assessment of the 375 
methanogen / methanotroph community by molecular methods. (Eller et al., 2005) reported 376 
zones of aerobic and anaerobic CH4 oxidation in the water column of a strongly stratifying 377 
lake, where high cell numbers of MOB were also detected by fluorescence in situ 378 

hybridisation techniques. It was around this depth in the same lake that (Santer et al., 2006) 379 
found that one of the cyclopoid copepod species, Diacyclops bicuspidatus, consistently 380 

maintained highest density and exhibited 13C values ~10‰ lower than epilimnetic species 381 
and the photosynthetic particulate organic matter sampled during the same time interval, and 382 

proposed the role of MDC in its diet.  383 
 384 

Looking back: hindcasting 385 

A particular area of research related to CH4-fuelling of food webs that has emerged most 386 

recently aims to identify or determine past ‘methane environments’, predominantly in lakes. 387 

Insight into past variations of CH4 availability in lakes would further our understanding of the 388 

timing and magnitude of the response of lake CH4 production and emissions to changing 389 

environmental conditions. Palaeolimnologists have long recognised that recalcitrant remains 390 

of organisms such as the strongly sclerotized head capsules of chironomids or the ephippia of 391 

daphniids, can be found in abundance and well preserved in most lake sediment records. 392 

Chironomid remains, especially the larval head capsules, can be found abundantly in lake 393 

sediments. Indeed,  exoskeleton fragments originating from moulting and deceased larvae, or 394 

zooplankton resting eggs, are preserved for tens to hundreds of thousands of years at a quality 395 

which allows microscopic identification usually to genus, or species morphotype, but 396 

sometimes also to species level (van Hardenbroek et al., 2011). Since lake sediments can be 397 

dated using radiometric and / or other dating methods, these remains can be used to 398 

reconstruct historical community composition and by inference the water quality, ambient 399 

temperature, or a particular habitat structure (Eggermont and Heiri, 2012). Head capsules and 400 

exoskeletons comprise mainly chitin and proteins and, on the basis that their chemical 401 

composition does not seem to be strongly affected by decomposition processes, they can be 402 

used to develop palaeo-environmental reconstructions based upon stable isotope composition 403 

(Perga, 2010, Perga, 2011); (Heiri et al., 2012). 404 

(Heiri et al., 2012) recently reviewed the available stable isotope studies based on fossil 405 

chironomids (which had mainly examined the elements C, N, H and O), and identified four 406 

key areas: (1) developing the methodology for preparing samples for isotopic analysis, (2) 407 

studies rearing chironomid larvae under controlled laboratory conditions to determine those 408 

factors affecting stable isotope composition, (3) ecosystem-scale studies relating stable 409 

isotope measurements of fossil chironomid assemblages to environmental conditions, and (4) 410 



developing the first down-core records describing past changes in the stable isotope 411 

composition of chironomid assemblages. In a relatively short period of time since that 412 

review, a number of publications have arisen expanding upon those areas, further 413 

demonstrating the usefulness of the technique, and including other complementary tracer 414 

evidence to support suppositions when the stable isotopes alone might prove ambiguous.    415 

Firstly, it is important to determine whether there is any isotopic offset between the 416 
recalcitrant parts of organisms recovered from palaeolimnological samples and the whole 417 
body that is typically analysed for the study of contemporary relationships in food webs. It is 418 
also important to determine whether the ‘clean up’ protocols that palaeo-samples typically 419 
require have any significant effect upon isotopic integrity. To answer both of these questions 420 

for chironomid head capsules, (van Hardenbroek et al., 2010) trialled various commonly used 421 
chemical methods for sediment processing and found that treatment with 10% KOH, 10% 422 

HCl, or 40% HF showed no detectable effect on 13C, whereas, perhaps unsurprisingly,  a 423 

combination of boiling, accelerated solvent extraction and heavy chemical oxidation resulted 424 

in a small but statistically significant decrease in 13C values (0.2‰). Then, using a 425 
modification of the culturing experimental protocol by (Deines et al., 2007a), they 426 
demonstrated with MOB grown on 13C-labelled methane, that methanogenic carbon is 427 

transferred into chironomid head capsules (van Hardenbroek et al., 2010). (Frossard et al., 428 

2013) have also looked at head capsule to whole organism isotopic offsets for chironomid 429 
larvae and reported from experimental rearing on three different diets that the head capsules 430 

were 13C-depleted by 0.9‰ relative to whole biomass. For zooplankton, Perga (2010) has 431 
shown that the C and N stable isotope compositions of the daphniid exoskeleton and those of 432 

the whole body are strongly correlated. Exoskeleton 13C values were similar to those of the 433 
whole body but were strongly depleted in 15N (-7.9‰), reflecting its derivation from 434 
excretory ammonia of dietary origin, known to be 15N-depleted compared with dietary 435 

organic nitrogen (Schimmelmann, 2011). Further elegant experiments have shown that the 436 
stable isotopic composition of Daphnia ephippia provides information on that of the parent 437 

Daphnia, and of the food and water they were exposed to during formation. (Schilder et al., 438 
2015b) demonstrated that there were only small offsets between Daphnia and ephippia 439 

relative to the range of variation in Daphnia stable isotopic composition reported from down-440 
core studies. Interestingly however, their work also indicated that temperature may have a 441 

minor influence on the 13C, 15N and 18O values of Daphnia body tissue and ephippia 442 

which has implications for water temperature reconstruction work using oxygen isotopes, as 443 
well as highlighting the care with which controlled feeding experiments need to be conducted 444 
(sensu (Perga and Grey, 2010). The suite of organism remains has been further extended 445 
recently, as it now appears bryozoan statoblasts and zooids have the potential to act as 446 
indicators of MDC (van Hardenbroek et al., 2015). 447 
 448 
Prior to the interest in palaeo-reconstruction, site-specific, and hence, differing CH4 449 

production potential and oxidation had only been linked to living chironomid larvae (e.g. 450 

(Deines and Grey, 2006). More confidence in the potential of recalcitrant remains to provide 451 

information about past changes in CH4 availability in lakes using sediment records has arisen 452 

since studies have been conducted across lake types and actually using remains from surficial 453 

sediments i.e. reflecting the most recent CH4 history that can be measured concurrently. In a 454 

study of seven Swedish lakes, (van Hardenbroek et al., 2012)  observed significant negative 455 

correlations between the 13C of Chironomini and both CH4 fluxes at the lake surface, and 456 

CH4 releases from the sediment. That dataset was built upon by incorporating samples from 457 

10 Siberian lakes and expanding the suite of remains to include those of Daphnia and 458 



Tanytarsini; the 13C of all three groups were correlated significantly with diffusive CH4 flux 459 

in the combined Siberian and Swedish dataset suggesting that 13C in the biomass of these 460 

invertebrates was affected by CH4 availability (van Hardenbroek et al., 2013). (Schilder et al., 461 

2015a) measured Daphnia ephippial 13C values from the surface sediments of 15 small 462 

European lakes, and found a strong correlation to the late summer aqueous CH4 concentration 463 

in both the surface water and above the sediment.  464 

Down-core work is providing some tantalising evidence of past CH4 variability over time. 465 

Adding to their proof-of-concept work on which invertebrate remains are useful tracers of 466 

methane-derived carbon  (van Hardenbroek et al., 2013) went on to measure the 13C of 467 

invertebrate remains from a sediment record (covering the past ~1000 years) of a shallow 468 

thermokarst lake in northeast Siberia. Those taxa most sensitive to CH4 availability 469 

(Chironomini, Tanytarsini, and Daphnia) exhibited the lowest 13C values in sediments 470 

deposited from ca AD 1250 to ca AD 1500, and after AD 1970, which coincided with periods 471 

of warmer climate (indicated by an independent local temperature record). As a consequence, 472 

the discrepancy in 13C between CH4-sensitive taxa and bulk organic matter was higher in 473 

these sections than in other parts of the core, whereas the 13C of other invertebrate taxa did 474 

not show the same trend. They concluded that there was higher CH4 availability in the study 475 

lake during warmer periods and that the energy sources of some key benthic invertebrates 476 

changed accordingly. (Wooller et al., 2012) managed to reconstruct the CH4 history of 477 

Qalluuraq Lake, a shallow Alaskan tundra lake, over a period ~12,000y in this manner, and 478 

similar work has been conducted on large, deep sub-alpine lakes, particularly in France. A 479 

change from oligotrophic status associated with anthropogenic nutrient enrichment over the 480 

last 150 years was examined for associated shifts in the basal resources available to the 481 

benthic food web (Frossard et al., 2015). Chironomid head capsule δ13C values started to 482 

decrease with the onset of eutrophication in both Lake Annecy and Lake Bourget; the 483 

estimates of the MDC contribution to chironomid biomass ranged from <5% prior to the 484 

1930s to nearly 30% in recent years.  485 

To date, values for chironomid head capsules have not been reported as 13C-depleted as for 486 

live organisms. This is in part a frustrating function of the requirement for multiple head 487 

capsules to be pooled to provide sufficient material for elemental and isotopic analysis. It is 488 

also likely associated with the fact that the sampling of the remains of organisms at a specific 489 

location (depth) might not truly reflect the location where the animal assimilated its diet, due 490 

perhaps to resuspension of sediments and/or focussing of material (Battarbee, 1999). Hence, 491 

the ‘strength’ of a MDC signal that one can find in a contemporary sample derived from fresh 492 

larvae with values for individuals <-70‰, will always be dampened (i.e. less 13C-depleted) 493 

by pooling and/or dilution effects in palaeolimnological samples. As a consequence, the 494 

usefulness of 13C alone as a tracer deteriorates (see the zone of contention section above). 495 

One very promising approach is the analysis of ancient DNA (aDNA) from the methanotroph 496 

community. (Belle et al., 2014) has elegantly demonstrated how aDNA can be used to 497 

complement stable isotopes in a study of a sediment core from the deepest zone of Lake 498 

Narlay, representing the last 1500 years of sediment accumulation. A significant change was 499 

noted since ca AD1600, with an increase in the proportion of MOB in the total bacteria 500 

community, and a corresponding decrease in chironomid head capsule 13C. These trends 501 

suggest that assimilation of MOB may account for up to 36% of chironomid biomass, with 502 

evidence for preferential assimilation of methanotroph type I and the NC10 phylum. Parallel 503 



strands of evidence are clearly required whenever there is ambiguity in stable isotope data, 504 

and the development of aDNA will surely grow in this particular field. 505 

 506 

Looking forward: knowledge gaps 507 

To date, the majority of studies on CH4 in food webs have solely concentrated on the stable 508 
carbon isotopes as a tracer. However, equally evident to the very low and varying δ13C values 509 

in consumers part-fuelled by biogenic CH4 have been low and highly variable δ15N values; 510 
indeed, one of the most striking patterns to emerge from studies involving chironomids and 511 

CH4 is the strong, positive relationship between 13C and15N (Grey et al., 2004a) which 512 
appears to have some species-specific basis (Kelly et al., 2004).  These relationships appear 513 
consistent and widespread (Figure 3) and while most likely linked to assimilation of MOB, a 514 
test of the potential mechanisms underpinning such low δ15N values in consumer tissues is 515 

currently lacking.  516 

In Grey et al. (2004a), it was postulated that nitrogen within chironomid tubes may be 517 
continuously cycled between the larva and microbial consortia; for example, chironomids 518 

excrete nitrogen in the form of ammonium directly into their tubes and the overlying water 519 

(Devine and Vanni, 2002), and via essential fractionation of ammonia, any microbial 520 
community taking up that nitrogen source would be 15N-depleted (Macko et al., 1987, Ings et 521 
al., 2012). More specifically, both Type I and II MOB can fix atmospheric N2 into 522 

ammonium and share similar pathways to oxidize ammonia/ammonium as autotrophic 523 
ammonium oxidizing bacteria (Lee and Childress, 1994) and thus, are likely to exhibit 524 

correspondingly low 15N values. However, ammonium oxidation rates are typically low and 525 
high ammonium concentrations may inhibit CH4 oxidation. In addition, some MOB can 526 

convert nitrate back to N2 and such denitrifying methanotrophs may outcompete other MOB 527 

in nitrogen-rich, low oxygen environments (Stein and Klotz, 2011), which are characteristic 528 

of many of the lakes where low δ13C and δ15N values in chironomids have been found (Jones 529 
et al., 2008). To examine the underlying causal mechanisms for the strong, consistent, and 530 

widespread relationship between chironomid δ13C and 15N values, more research is required 531 
to characterise the stable isotope values of potential nitrogen sources, to measure potential N-532 

fractionation by MOB, and to use complementary methods such as molecular biomarker 533 
profiling (PLFAs and 16S rRNA genes) of chironomid gut contents.  534 

While 13C values for dissolved CH4 are relatively easily measured in the lab as well as in the 535 
field nowadays, and hence are available from a wide range of aquatic environments, more 536 
robust end-member values for MOB are required if we are to improve estimates for the 537 
quantitative contribution of CH4-carbon to total carbon budgets and production figures for 538 
different ecosystems. To date, such estimates have relied on some of the earliest simple two-539 

source mixing models (i.e. only using one stable isotope: carbon) by applying a range of 540 
trophic fractionation factors for MOB (reported from a very small number of laboratory 541 

experiments) to values of CH4 gas to derive one end-member. Direct measures of MOB 13C 542 

from aquatic environments are badly needed. Currently, it is possible to measure the 13C of 543 
MOB-specific PLFAs extracted from aquatic sediments, but how these relate to the values 544 
from whole MOB cells still needs to be established. More laboratory studies of how carbon 545 
isotope fractionation between CH4 and MOB may vary with different environmental and cell 546 
growth conditions would be extremely useful, acknowledging that ‘controlling’ every 547 
parameter even in the lab can be extremely difficult (e.g. Perga & Grey, 2010).  548 



The geographic range of studies of MDC in food webs is still rather limited. Within 549 

freshwaters, Jones et al. (2008) is the only paper to synthesise data from across a wide 550 

latitudinal gradient and a distinct knowledge gap exists for the lower latitudes. Tropical 551 

regions are responsible for approximately half of the estimated CH4 emissions from 552 

freshwater ecosystems to the atmosphere, although they have been consistently under-553 

sampled (Bastviken et al., 2011). Indeed, the permanently stratified (meromictic) Lake 554 

Kivu, within the western branch of the East African Rift, is one of the largest freshwater 555 

reservoirs of dissolved methane (CH4) on Earth. Given the relatively high magnitude of 556 

MOB production integrated over the entire water column reported by (Morana et al., 557 

2015) (equivalent to 16–60% of the average photosynthetic primary production), and the 558 

substantial contribution of MDC to the overall biomass in the oxycline, suggest that MOB 559 

could potentially sustain a significant fraction of the pelagic food web in this lake. With 560 

few exceptions (like Lake Kivu), it should also be noted that the majority of studies have 561 

focussed upon relatively small stratifying stillwaters with strong oxygen gradients. The use of 562 
MDC in river food webs – substantial quantities of CH4 are oxidised in large riverine 563 
systems, including the Amazon and the Hudson River (de Angelis and Scranton, 1993, 564 
Melack et al., 2004) – may prove to be a more widespread and significant ecosystem process 565 
than given credit at present (Trimmer et al., 2012). Whilst acknowledging that other 566 

chemosynthetic processes tend to dominate in marine systems, the use of MDC at pelagic 567 

boundaries, such as above the oxygen minimum zones of the various oceans, might well be 568 
locally important (but over vast areas) to zooplankton as it is in stratifying lakes subject to 569 
similar chemical gradients. There is very recent evidence for substantial oxidation of CH4 570 

within the water column above seeps off Svalbard, and carbon isotopic evidence that 571 
atmospheric methane above those seeps is not influenced by contributions from the seafloor 572 

source (Graves et al., 2015). Clearly then there must be MOB biomass accruing between the 573 
sediment and the surface that could be incorporated into food webs, a pathway that is only 574 

likely to increase in importance if gas hydrate destabilisation is promoted by warming of 575 
bottom waters.  576 
 577 

Analyses of long-term data series from lakes demonstrate that many are subject to increasing 578 

average water temperature (Hampton et al., 2008, Schindler et al., 1990). While temperature 579 
exerts a strong control on CH4 efflux via the physiological stimulation of microbial 580 

metabolism (Gedney et al., 2004, Yvon-Durocher et al., 2011), increasingly warm summer 581 
surface water temperatures may also increase the duration of stratification, Schmidt stability 582 

and hypolimnetic oxygen depletion (e.g. (Jankowski et al., 2006)), all of which will have 583 
ramifications for CH4 dynamics and the routing of MDC into biomass (Jones and Grey, 584 
2011). Some limited yet tantalising empirical evidence for this arose from the physical 585 
manipulation of the depth of the thermocline in a lake (compared to a nearby reference lake) 586 
by installation of an impellor system (Forsius et al., 2010). As a consequence of deepening 587 

the thermocline, the dominant fish species, perch (Perca fluviatilis) were observed to become 588 
more 13C-depleted; a function of increased surface area of sediment adjacent to oxygenated 589 

water ideal for chironomid uptake of MOB (route 3 in Figure 1), and the oxygenated water 590 
allowing perch to forage on the benthos (Rask et al., 2010). Further manifestations of climate 591 
change, such as an increase in both the frequency and severity of storms, could affect both the 592 
strength and duration of stratification in lakes, and increase the flux of carbon from the 593 
catchment. Not only might erosion from the terrestrial ecosystem provide the substrate for 594 

methanogenesis in aquatic ecosystems (e.g. Sanders et al. 2007), but increased concentration 595 
and use of dissolved organic and inorganic carbon in lakes and rivers (Schindler et al., 1997, 596 
Evans et al., 2005, Jones et al., 2001, Worrall et al., 2004) will shift the balance toward 597 



heterotrophic rather than autotrophic functioning. Stable isotope tracers will remain key to 598 

unravelling the extent of MDC use in such food webs in future research. 599 
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Figure legends 967 

Figure 1. Methane produced in anoxic sediments may be routed through plants (1) or lost 968 

from the sediments to the atmosphere via ebullition or micro-bubbles (2). If it reaches a 969 

boundary with oxygen at the sediment-water interface (under mixed or weakly stratified 970 

conditions), MOB oxidise it and create biomass which routes via benthic macroinvertebrates 971 

into benthic, pelagic, and terrestrial predators (3). Under strongly or permanently stratified 972 

conditions, methane will diffuse upwards through the water-column, and oxygen (and MOB) 973 

might first be encountered at the metalimnion, where zooplankton link MDC into higher 974 

predators (4). An indirect route for MDC could be via CO2 derived from the oxidation of CH4 975 

might then be cycled through phytoplankton, and hence on to zooplankton (5), or indeed via 976 

sedimentation back down to benthic macroinvertebrates. 977 

 978 

Figure 2. Stable isotope bi-plots of food webs across a spectrum of point to diffuse sources of 979 

methane with corresponding decrease in strength of 13C value as a tracer of methane-derived 980 
carbon (MDC); blue boxes indicate components of the food web with small / negligible 981 
influence of MDC. (a) Gulf of Alaska (redrawn with permission from Levin and Michener, 982 

2002): solid symbols – pogonophoran field infauna; open symbols – clam field infauna. (b) 983 

Plußsee (strongly stratifying small lake, data from Harrod and Grey, 2006): open circles – 984 
fish; solid circles – macroinvertebrates; open squares – chironomid larvae. (c) Loch Ness 985 
(weakly stratifying large lake, data from Jones and Grey 2011): open circles – fish; solid 986 

circles – invertebrate & basal resources; open squares – chironomid larvae.  987 
 988 

 989 
Figure 3. Stable carbon and nitrogen isotope ratios of benthic chironomid larvae collected 990 
from stratifying lakes in Germany, England and Finland (data derived from Grey et al. 991 

(2004a&b), Deines et al. (2007a), Ravinet et al. (2010). Individuals were collected from a 992 

specific depth in each lake and on one date (except for Holzsee where the data are compiled 993 
from 12 sampling events in one year). Species are Chironomus plumosus (filled black 994 
markers, solid line), Chironomus anthracinus (filled grey markers, dashed line), 995 

Propsilocerus jacuticus (Jyväsjärvi only; open triangle, dashed line) and Chironomus 996 
teniustylus (Halsjärvi only; open marker, dashed line). Lines are least squares regressions for 997 
illustrative purposes only. 998 
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