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Highlights 

 SR-FTIR microspectroscopy to examine benign breast tissue 

 PCA-LDA of IR spectra show inter-individual and age-related epithelial 

differences 

 A subset of spectrally-distinct epithelial cells point to putative stem cells 

 Spectral changes that may occur several years prior to onset of breast cancer 

 Novel approach to shed insights into aetiology of breast cancer  
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Abstract  

 

Epidemiological evidence suggests that cancers attributable to exogenous 

carcinogenic agents may appear decades after initial exposures. Environmental factors 

including lifestyle and/or diet have been implicated in the aetiology of breast cancer. 

Breast tissue undergoes continuous molecular and morphological changes from the 

time of thelarche to menopause and thereafter. These alterations are both cyclical and 

longitudinal, and can be influenced by several environmental factors including 

exposure to oestrogens. Research into the latent period leading to breast 

carcinogenesis has been mostly limited to when hyperplastic lesions are present. 

Investigations to identify a biomarker of commitment to disease in normal breast 

tissue are hindered by the molecular and histological diversity of disease-free breast 

tissue. Benign tissue from reduction mammoplasties provides an opportunity to study 

biochemical differences between women of similar ages as well as alterations with 

advancing age. Herein, synchrotron radiation-based Fourier-transform infrared (SR-

FTIR) microspectroscopy was used to examine the terminal ductal lobular epithelium 

(TDLU) and, intra- and inter-lobular epithelium to identify spatial and temporal 

changes within these areas. Principal component analysis (PCA) followed by linear 

discriminant analysis of mid-infrared spectra revealed unambiguous inter-individual 

as well as age-related differences in each histological compartment interrogated. 

Moreover, exploratory PCA of luminal and myoepithelial cells within the TDLU 

indicated the presence of specific cells, potentially stem cells. Understanding 

alterations within benign tissue may assist in the identification of alterations in latent 

pre-clinical stages of breast cancer. 

 

 

Keywords Aetiology; Biospectroscopy; Breast cancer; Multivariate analysis; 

Synchrotron radiation-based Fourier-transform infrared (SR-FTIR) 

microspectroscopy; Terminal ductal lobular unit 
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Introduction 

The clinical manifestation of breast cancer is the final expression of a complex 

sequential process that begins with exposure to a causative agent [1]. Tumour 

formation involves temporal alterations in genetic morphology or expression, which 

directly or indirectly disturbs normal cellular regulation of proliferation and growth 

inhibition, leading to malignancy [2]. The period from an initiating event to tumour 

formation is termed the “latency period” [3]. This definition implies that cancers in 

which environmental exposures play a role arise several years after initiating 

exposures [1, 4]. This latency period may be of different lengths depending on the 

type, timing and length of exposure as well as inherent predisposition to the particular 

type of cancer [5]. 

 Exposure to carcinogens will certainly vary significantly between individuals 

as will their response to such agents [6, 7]. Factors that predispose women to a risk of 

breast cancer include early menarche, late menopause, nulliparity or delayed parity 

and, use of contraception and hormone replacement therapy [8, 9]. Such 

characteristics are associated with increased oestrogen exposure. It is now accepted 

that “Westernized” lifestyle either through immigration or adoption of Western diet 

are likely causative factors for breast or other hormone-dependent cancers [1, 10]. 

 Little is known regarding the molecular changes that may develop before the 

appearance of pre-clinical or clinical breast cancer [11]. Changes that appear at the 

initiation stage or during the latency period may provide useful biomarkers for early 

identification of at-risk women. Also, these changes may be temporary, regressive, 

permanent or progressive [11, 12]. Biomarkers that could identify lesions with a low 

risk of progression towards malignancy or even the chance of regression would be 
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advantageous [13-15]. Women exhibiting high-risk alterations might be encouraged 

to make appropriate lifestyle alterations to “rectify” such changes [16]. 

 To facilitate understanding of pathological processes involved in breast 

carcinogenesis, we first need to identify physiological differences within tissues from 

similarly-aged women as well as age-related alterations. The areas wherein these 

variations are most likely to occur are within the terminal ductal lobular unit (TDLU) 

along with the supporting intra- and inter-lobular stroma (Figure 1a). These areas are 

thought to be responsible for cancer initiation processes [11, 17, 18]. The TDLU 

consists of terminal ductules ending in acini, bounded by luminal epithelial cells, 

which are surrounded by myoepithelial cells (Figure 1b). TDLUs have different 

compositions depending on their developmental stage from pre-puberty to menopause 

(Figure 1c). The pre-pubertal “simple” TDLU consists of one central ductule with 

three or four branches. After menarche, the TDLU’s morphology depends on the 

stage of the menstrual cycle with luminal cells growing in size as the cycle progresses 

from the follicular to the luteal phase. During pregnancy or lactation, the TDLU 

hypertrophies and remains in a similar state to the luteal phase. Post-menopausally, 

the lobule has fewer ductules and a denser intralobular stroma. With advancing age, 

the TDLU undergoes complete atrophy but the branching duct tree remains. In cancer, 

the micro-architecture of the TDLU is disturbed. 

 Breast tissue from reduction mammoplasties provides an opportunity to study 

spatial and temporal variations that may exist within the TDLU and surrounding areas 

of the mammary gland when there is no evidence of malignant or pre-malignant 

changes. The cancer risk in this population is comparable or marginally reduced 

relative to the general population [19, 20]. Biospectroscopy techniques can lend novel 

insights into structural alterations in target cells [21, 22]. This approach has been 
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employed to detect alterations associated with cancer in various tissues [23-27]. Its 

potential in identifying biomarkers that can be used in cancer screening has also been 

examined [28, 29]. 

Synchrotron radiation-based Fourier-transform infrared (SR-FTIR) 

microspectroscopy is superior to conventional bench-top systems in that it gives 

enhanced spectral signal-to-noise ratio (SNR) with greater spatial resolution. The 

main reason is that a synchrotron source emits a collimated light beam that is more 

brilliant than that of a typical globar source found in a bench-top spectrometer. This 

provides an excellent SNR that is 1000 times greater to that of conventional IR 

sources and allows spatial resolutions as small as 10 μm [23, 30]. 

Interrogation of biological tissues by IR spectroscopy can results in thousands 

of spectra, necessary due to the complex chemical composition of cells. Such a large 

amount of data obtained in an increasingly typical spectrochemical experiment may 

be analysed using multivariate analysis [31, 32]. This allows data simplification for 

visual representation and exploratory analysis. Two of the commonly utilised 

multivariate analysis approaches are: principal component analysis (PCA) and linear 

discriminant analysis (LDA) or a combination of both [33]. This study aimed to 

identify spectral differences in breast tissue of women of similar ages as well as 

changes with increasing age. This could be a first step towards the recognition of the 

initiation/early promotion stages of breast cancer. 

Materials and Methods 

Sample preparation 

Human breast tissue was obtained from eleven patients who had undergone reduction 

mammoplasty for indications other than breast-related pathology. Consent was taken 

with ethical approval (Research Ethics Committee reference: 10/H0308/75) according 
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to the Declaration of Helsinki. Five individuals were aged 20 to 29 y, three were aged 

30 to 39 y and three were aged 40 to 49 y. Breast tissue samples obtained were 

formalin-fixed and paraffin-embedded. Ten-μm-thick tissue sections were floated 

onto 1 cm × 1 cm BaF2 slides (Photox Optical Systems). These were de-waxed by 

serial immersion in sequential fresh xylene baths (×3) for 5 min and washed in an 

acetone bath for another 5 min. Resulting samples were allowed to air-dry and then 

placed in a desiccator until processing. Four-μm-thick parallel tissue sections were 

stained with H&E. These assisted with correct identification of the different cell types 

when overlaying mapping grids on the micrographs visualized through the SR-FTIR 

microscope (Figure 1d). 

Synchrotron radiation-based FTIR micro-spectroscopy 

Spectral images were acquired using a Bruker Vertex 80v spectrometer coupled to a 

Bruker Hyperion 3000 microscope containing a mercury cadmium telluride detector 

cooled with liquid nitrogen, on the Multimode InfraRed Imaging and 

Microspectroscopy (MIRIAM) Beamline B22 at the Diamond Light Source Ltd, UK 

(www.diamond.ac.uk). Spectra were collected in transmission mode via a 36× 

objective lens employing an aperture of 10 μm × 10 μm with a step size of 10 μm 

intervals, 256 co-additions were acquired; all maps were generated within a total 

acquisition time of 6 h. Background spectra were taken every 10 spectra to 

compensate for beam and atmospheric alterations. Spectra were then converted to 

absorbance using OPUS 8 software from Bruker Optics. 

Spectral pre-processing 

Absorbance spectral images were converted to suitable digital files (.txt) for input to 

Matalab software. Computational analysis was carried out using in-house written 

scripts for Matlab [34].  The wavenumber regions inputted were between 4,000 cm
-1 

http://www.diamond.ac.uk/
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and 600 cm
-1

. Spectra were then cut to include the regions between 1,800-900 cm
-1

 as 

this is the spectral region most associated with biologically active molecules [35]. 

They were smoothed using the first derivative Savitzky-Golay filter, rubberband 

baseline corrected and normalized to Amide I (1650 cm
-1

). 

Computational analysis 

Pre-processed spectral data were explored using PCA. This was carried out as an 

unsupervised technique using the first 10 principal components (PCs). Generally, the 

first 10 PCs account for approximately 99% of the variance within a sample 

population, without introducing excessive noise [33]. The output from PCA was 

inputted into LDA. LDA is a supervised technique that maximizes inter-category 

variance. The software analyses 90% of the data while using 10% of the data to train 

itself. This process is repeated 10 times in a cyclical fashion, so that all data are used 

for both analysis and system supervision. The statistical significance of each PC and 

LDA contributing to class segregation was determined by the ANOVA test in 

Graphpad 7 when >2 classes were present. For visualization purposes, scores plots 

and loadings curves were generated. 

Scores plots, derived from PCA-LDA allow visualization of a spectrum as a 

single point, whose coordinates are its scores on a number of axes. This simplifies 

visualization of potential differences between the particular classes as well as identify 

co-clustering of similar spectral signatures. Loading curves allow identification of 

distinguishing wavenumbers between classes. The x-axis represents wavenumbers 

from 900 to 1800 cm
-1

. The y-axis represents the absorbance coefficient; the highest 

peaks and troughs on this axis identify the wavenumbers that are most responsible for 

separation between selected classes. The 6 greatest absorbance coefficient deviations 

were selected. These wavenumbers were then compiled onto tables alongside 
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tentative assignments. The resulting tables point to biochemical entities responsible 

for class segregation. 

Results 

Breast tissue sections from 11 patients were interrogated using SR-FTIR 

microspectroscopy. This allowed a high SNR with apertures close to the diffraction 

limit; the spatial resolution was 10 μm × 10 μm. A raster scan approach was applied 

to include TDLU regions within the specimens. The high resolution allowed 

separation of histologically different layers of the TDLUs and surrounding regions. A 

photomicrograph of involved areas with overlaid markers was used for identification 

of specific regions from which spectra were acquired. Following interrogation, 

spectral differences were apparent between the various location-derived spectra 

(Figure 1d). These differences allowed classification into inter-lobular stroma, intra-

lobular stroma and TDLUs; the latter were further classified into myoepithelial cell 

and luminal cell layers. Correlation with parallel H&E tissue sections ensured correct 

selection of different cell classes. 

 In total there were n=539 spectra within the inter-lobular stromal class, n=442 

spectra within the intra-lobular stromal class and n=591 spectra within the TDLU 

class. Within the TDLU class there were n=155 spectra from the luminal cell layer 

and n=436 from the myoepithelial layer. The very large number of individual spectra 

would impede easy visualization in scores plots. Therefore, for most classes every 

two, three or five spectra in chronological order were averaged (Table 1). The 

different areas were interrogated individually to identify putative spatial and temporal 

differences within or between the age groups. Furthermore, the myoepithelial and 

luminal cell layers within TDLUs were separately examined to identify the possible 

presence of cells with divergent spectral signatures indicative of disease [36]. 
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Inter-individual variations 

IR spectra derived from synchrotron maps were extracted and assigned to their pre-

defined histological location (TDLU, inter-lobular stroma and intra-lobular stroma). 

IR spectra from each individual woman represented a separate class. These classes 

were allocated to their designated age group: 3
rd

, 4
th

 or 5
th

 decade of life. Each 

location was analysed separately for each individual within every age group to 

investigate the existence of inter-individual variation and identify responsible 

wavenumbers. PCA-LDA cascade analysis was used to reduce each spectrum to a 

single point at the same time as maximizing inter-category differences. Scores plots 

identified clustering of spectra taken from the same individual independent of location 

(Figure 2). Moreover, they identified clear separation between individuals of similar 

ages for all histological classes. This separation was highly significant and associated 

with different wavenumbers for different ages and histological locations. 

 Figure 3 shows the loadings curves containing the 6 principal discriminating 

wavenumbers for each category. Table 2 illustrates the discriminating wavenumbers 

for each location and age category alongside tentative assignments. Different spectral 

signatures were responsible for maximum segregation between individuals for the 

different histological classes. Two spectral biomarkers were responsible for inter-

individual variation in all age groups: righthand side (RHS) Amide I (1,630 cm
-1

)
 
was 

responsible for segregation between TDLUs and DNA/RNA (1,080 cm
-1

)
 
for 

segregation between intra-lobular stromata of individuals of all ages. 

Temporal variations 

Following the observation that discriminating wavenumbers segregating TDLUs and 

intra-LS between individuals were consistent over all age groups, IR spectra were 

examined to determine the existence of variation between ages for the selected 
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histological areas. This was performed using the same parameters and method of 

analysis (i.e., PCA-LDA using the first 10 PCs). Pre-processed spectral data was 

classified according to allocated histological locations and age groups (instead of 

individuals within a group). Resulting scores plots  (Figure 4) reveal clustering within 

age groups but not as much segregation as might be expected. Despite overlap, the 

classes were significantly segregated (P <00001). 

 Corresponding loadings plots (Figure 4) highlight the 6 wavenumbers most 

responsible for segregation between age groups for each histological location. 

Another spectral biomarker corresponding to RHS Amide II (1,456 cm
-1

) was a major 

segregating wavenumber for TDLUs. Therefore, RHS Amide II was responsible for 

segregation between individuals as well as between age groups within TDLUs. In the 

case of Intra-LS, DNA/RNA (1,080 cm
-1

) alterations were not found to be responsible 

for segregation between age groups. Instead the principal segregating wavenumber 

was associated with ring base (1,554 cm
-1

). All age groups were segregated in every 

histological class by glycogen (1040 cm
-1

). 

Inter-individual and temporal variations within the TDLU 

Concentrating on TDLUs, spectra derived from point maps acquired via the 10 μm × 

10 μm beam aperture were extracted and assigned as either myoepithelial or luminal 

cell classes. These spectra were classified initially according to individuals within age 

groups and analysed using PCA-LDA to identify wavenumbers responsible for 

segregation between these cell types. Despite some overlap, there was apparent 

segregation between the different cell classes, and this was significant (P <0.0002) in 

all age groups (Figure 5). 

 After confirmation that luminal and myoepithelial cells are segregated, each 

location was separately analysed to identify discriminating wavenumbers between age 
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groups (Figure 6). Amide I again featured as one of the significant discriminating 

wavenumbers in between the two cell layers. Interestingly, within the myoepithelial 

layer a principal discriminating wavenumber was for νsPO2
-
 (1,094 cm

-1
). This 

wavenumber has been found to be associated with stem cells in a variety of tissues 

including TDLUs in previous studies [19, 37]. 

Exploratory PCA within the myoepithelial and luminal layers 

To further investigate the existence of spectral discriminating factors within the 

myoepithelial and luminal layers, IR spectra taken via the 10 μm × 10 μm aperture 

were extracted from the image maps of all individuals. These spectra were not 

averaged. They underwent exploratory PCA using the first 10 PCs, which accounted 

for ≈99% of variance. Three-dimensional scores plots were extracted representing the 

3 first PCs (Figure 7a). Each point in the resulting scores plots represent a single 

spectral point in the image maps. Both plots identify spectral points that segregated 

away from the majority of clustered spectra. These “outliers” were particularly 

obvious along the PC3 axis in the case of myoepithelial cells. Loadings plots for PC3 

identified the wavenumbers responsible for the separation of “outliers” from the 

clustered spectra (Figure 7b). In a similar fashion, PC1 was most responsible for these 

spectral points segregating away from clustered spectra in PCA scores plots for 

luminal cells. Loadings plots for PC1 were used to extract the top 6 segregating 

wavenumbers. The major discriminating factor in both cases was Amide I. 

Discussion 

The purpose of this study was to identify spectral differences within normal breast 

tissue of women of similar ages as well as age-related alterations. Using the IR 

radiation beam of a synchrotron facility, normal breast tissues from eleven healthy 

women were examined. Specifically the areas interrogated were TDLUs and 

surrounding intra-lobular and inter-lobular stroma. Morphological and molecular 
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alterations within these areas have been shown to be directly associated with breast 

carcinogenesis [11, 38]. Spectroscopic analysis of these areas in healthy individuals 

may reveal specific molecular causes of the vast heterogeneity that exists within 

breast tissues. It may also reveal alterations that predate carcinogenesis such as 

primary pre-cancerous changes including hyperplasia, premalignant changes and 

carcinoma in situ [38]. SR-FTIR spectra obtained were from the mid-IR region (900 

to 1800 cm
-1

) within which most bio-molecules can be identified [35]. 

Computational analysis of spectra highlighted significant differences between 

similarly aged individuals. Some of the discriminating wavenumbers responsible for 

this variation are also responsible for variation between age groups. Namely, Amide I 

was responsible for inter-individual variability in TDLUs while DNA/RNA (O-P-O 

stretching) was responsible for spectral separation of INTRA-LS in all age categories. 

Other spectral bio-molecular signatures were associated with separation of specific 

histological locations only in one age group (Table 2). Also, certain wavenumbers 

could identify inter-individual variations within age groups while others could 

identify inter-individual variation in all age groups, illustrating the vast heterogeneity 

that exists. Factors that contribute to this heterogeneity include: previous history of 

breast cancer, positive family history with or without BRCA mutations, nulliparity, 

late parity, high body mass index, use of hormonal contraception or hormone 

replacement therapy and menopausal status [39-41]. 

When analysing spectral signatures of the same histological areas for temporal 

variations between the three defined age groups it was noted that there was co-

clustering of spectra from the same age groups and segregation between groups for all 

areas (Figure 4). Histologically, breast tissue undergoes several changes with age. 

These changes start at thelarche with the branching of the lactiferous ducts and reach 
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maturity in puberty with the formation of the adult TDLU. Changes continue in a 

cyclical fashion with menstrual cycles. Pregnancy and lactation cause hyperplasia of 

the TDLU. After menopause the TDLU involutes but the pattern of involution is 

different for nulliparous and parous women. The morphological and functional 

differentiation of the mammary epithelium is directly dependent on systemic 

hormones (mainly oestrogen and progesterone) but also by local signalling from the 

adjacent stroma [42]. Our study identified potential spectral alterations that may be 

associated with age-related histological changes. Some alterations were unique to 

particular histological areas (TDLU, Inter-LS or Intra-LS) with some responsible for 

age-related differences (Table 3). Spectral alterations within TDLUs and surrounding 

stroma may provide evidence to support age-related changes in functional interactions 

between these areas. Furthermore, it will be interesting to determine if such 

alterations may be associated with breast carcinogenesis [17, 42, 43, 44]. 

It is widely accepted that that the first morphological changes associated with 

cancer occur in the bi-layered TDLU epithelium [45]. It has also been hypothesized 

that micro-anatomical changes predating pre-cancerous changes reside in the same 

areas [46]. In order to further examine the role of IR spectroscopy in identifying such 

changes within each layer of the TDLU, IR spectra taken from this location were 

reclassified into luminal and myoepithelial cell categories. These spectra were 

analysed using multivariate analysis as before. When investigating inter-individual 

variations, the resultant 1-D scores plots revealed significant separation between the 

two layers in all age groups. Related loadings curves identified the responsible 

wavenumbers and their corresponding molecules are presented in Figure 6. These 

spectral variations may be associated with morphological differences that are specific 
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to a particular cellular layer of the TDLU rather than the whole TDLU structure. They 

may be used to pinpoint the cells associated with the increase in breast cancer risk. 

The same two layers were examined for spectral variation between age groups. 

2-D scores plots identified some segregation between age groups for both cellular 

layers. Amide I featured as a major discriminatory molecule for both cell types as 

well as for the whole TDLU. Unsupervised exploratory PCA of the luminal and 

myoepithelial cells identified aberrant spectral signatures in both layers. These 

signatures may represent multi-potent or uni-potent stem cells responsive are either 

age related or hormone dependent alterations. Indeed, there is expanding evidence 

that FTIR is capable of identifying stem cells in several tissues including cornea, 

epidermis and intestine [47-51]. Similarly stem cells within the mammary gland may 

undergo continuous differentiation under hormonal or micro-environmental 

influences and account on the diversity of breast tissue [42]. They may also represent 

pluripotent progenitor cells whose abnormal differentiation under oxidative stress in 

adjacent stroma can lead to carcinogenesis [42, 44, 45, 52]. 

Conclusion 

With this study we demonstrated that ST-FTIR micro-spectroscopy coupled with 

multivariate computational analysis might be to identify discriminating biomarkers 

for both inter-individual and temporal variation within breast tissue. We also 

demonstrated the histological locations where this variation potentially occurs. This is 

particularly important as it demonstrates the potential interplay between external 

environmental influences, endogenous hormonal control and micro-environmental 

communication with the epithelial cells of the TDLU similarly to other tissues [17, 44, 

53, 54, 55]. Although specific molecular changes associated with the vast variability 
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encountered in the mammary gland remains elusive spectral imaging is able to 

identify classes of molecules that may be used in the search for biomarkers associated 

with the initiation of breast disease. In the future, FTIR spectroscopy may be able to 

track molecular changes within particular cell layers involved in disease to produce a 

database of related biomarkers [56]. Moreover spectroscopy involves non-destructive 

procedures that do not produce oxidative radiation, as is the case with mammography 

[57]. Therefore it can be used to obtain molecular profiles of cell populations in situ 

[37]. Identification of such biomarkers may be followed by the application of bio-

spectroscopic techniques in clinical practice. Spectral alterations associated with 

increased risk of breast cancer in a healthy population, may be used as biomarkers in 

potential population-screening programs without the need to identify high-risk 

individuals for inclusion to such a program. Further research in the field is required to 

assess spectroscopic applications in the search for biomarkers for screening for breast 

disease. Once specific biomarkers are established similar techniques may translate 

into clinical practice for the evaluation biomarkers within live breast tissue. 
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Legends to Figures 

 

Figure 1 Study overview. (a) Diagram representing a lactiferous duct with an 

aggregation of TDLUs. The space between acini within the TDLU is occupied by 

intra-lobular stroma while the space between different TDLUs is occupied by inter-

lobular stroma. (b) Diagrammatic interpretation of the terminal ductal lobular unit 

(TDLU), illustrating the types of cells that surround an acinus. (c) Diagrammatic 

description of the developmental progression of the TDLU with advancing age. (i) 

pre-pubertal, (ii) pubertal, (iii) Mature, (iv) lactating, (v) post-menopausal. (d) 

Example of principal component analysis and linear discriminant analysis (PCA-

LDA) of TDLU, intra-lobular stroma and inter-lobular stroma. The tissue section was 

selected from a subject within the 40-49 y age group. (1) Parallel sections were 

stained with H&E for histological representation. (2) Numbered grid overlays were 

added to micrographs of the sections to aid spectral selection. (3) Image maps were 

produced from which spectra were extracted. (4) Class means representing spectral 

differences between different cell types. (5) PCA-LDA scores plots of different cells 

where each spectral point is derived from the average of 5 IR spectra. 

 

Figure 2. PCA-LDA scores plots showing separation in every histological 

compartment tested between individuals in all age groups. The x-axis represents LD1 

and the y-axis LD2.  Each spectral point is derived from PCA-LDA of the average of 

5 spectra. TDLU, Intra-lobular stroma and Inter-lobular stroma were examined 

separately. Each individual was processed as an independent category. 

 

Figure 3. Loadings (LD1) plots derived from PCA-LDA comparing individuals from 

each age group for differences within each histological compartment. The x-axis is 

cm
-1

 and the y-axis represents absorbance coefficient.  The five wavenumbers 

contributing to the most segregation were derived from the points furthest away from 

the x-axis. 

 

Figure 4. Temporal changes in breast tissue. (A) PCA-LDA scores plots showing 

separation between age groups in every histological compartment. The x-axis 

represents LD1 and the y-axis LD2. (B) Loadings plots (LD1) showing the principal 

discriminating wavenumbers in graphical form. The x-axis is cm
-1

 and the y-axis 

represents absorbance coefficient. 

 

Figure 5. Distinguishing cell types in TDLUs. (A) PCA-LDA 1D scores plots 

showing some separation between luminal and myoepithelial cells within the TDLU 

for the different age groups. The x-axis represents LD1 (B) loadings plots showing the 

principal discriminating numbers. The x-axis is cm
-1

 and the y-axis represents 

absorbance coefficient. (C) Tables of discriminating wavenumbers with their 

corresponding biochemical markers. 
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Figure 6. Temporal changes in individual cell populations in breast tissue. (A) PCA-

LDA scores plots showing separation between different age groups for the TDLU 

compartment with a table of the principal discriminating wavenumbers and 

corresponding biochemical markers. (B) PCA-LDA scores plots showing separation 

between different age groups for the luminal and myoepithelial cell regions. The x-

axis represents LD1 and the y-axis LD2. (C) Tables show the 5 major segregating 

wavenumbers with their corresponding biochemical markers. 

 

Figure 7. Distinguishing putative stem cells. (A) 3-D scores plots of exploratory PCA 

using 10 first PCs examining luminal and myoepithelial cells separately to identify 

outliers which may represent residing stem cells. (B) Corresponding loadings plots for 

PC1 for luminal cells and PC3 for myoepithelial cells identify the major segregating 

wavenumbers. (C) Tables show the 6 major segregating wavenumbers with their 

corresponding biochemical markers. 
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Table 1. Spectra for each histological compartment for most patients were averaged 

by a factor of 2, 3 or 5 to aid visualisation in scores plots. 

Patient/Averaging        

factor 

TDLU Inter-LS Intra-LS Myo-

epithelial 

Luminal 

P1 2 1 1 2 1 

P2 3 2 2 2 1 

P3 3 2 2 2 1 

P4 5 5 5 2 1 

P5 5 5 5 2 1 

P6 5 5 5 2 2 

P7 5 5 5 2 2 

P8 1 1 1 1 1 

P9 2 1 5 1 1 

P10 5 5 5 2 1 

P11 1 2 1 1 1 
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Table 2. Principal segregating wavenumbers between individuals of each age group 

for each histological compartment. All wavenumbers were tested for significance 

using the ANOVA test with P <0.0001 

 20-29 y 30-39 y 40-49 y 

Wavenumber 

(cm
-1

)/ Area 

TDLU Intra-

LS 

Inter-

LS 

TDLU Intra-

LS 

Inter-

LS 

TDLU Intra-

LS 

Inter-

LS 

1,780*      X  X  

1,709: C=O     X     

1,693: Amide I 

(C=O) 

         

1,671: Amide I 

(C=C) 

 X     X   

1,650: Amide I 

(C=O stretch 

and C-N stretch) 

      X  X 

1,630: RHS 

Amide I (C=O 

stretch and C-N 

stretch) 

X   X X  X  X 

1,550: Amide II 

(N-H bend and 

C-N stretch) 

  X X     X 

1,470-1,473: 

CH2 bend 

X X  X X     

1,451: CH3 X    X    X 

1,375: (C-N: 

cytosine, 

guanine) 

 X    X  X  

1,232:  νasPO2
-
     X    X 
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1,225: DNA 

νasPO2
-
 

X    X    X 

1,200-1,210: 

RNA Ribose 

(C-O stretching) 

  X    X  X 

1,140: 

Phosphate/ 

oligosaccharides 

  X   X  X  

1,080: 

DNA/RNA 

( νsPO2
-
) 

 X   X X X X  

1,053-1,063: 

(C-O: 

carbohydrates) 

 X     X   

1,040: Glycogen 

(C-O-H bond) 

 X     X   

1,018: (C-O, C-

C, OCH) 

 X X X      

922: (Left 

Handed DNA) 

     X  X  
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Table 3. Principal segregating wavenumbers between age groups for each histological 

compartment. All wavenumbers were tested for significance using the Anova test 

with P <0.0001. 

 

  

Wavenumber (cm
-1

) TDLU Intra-LS Inter-LS 

1,680: Amide I   X 

1,650: Amide I  (C=O stretch and C-N stretch) X X  

1,550: Amide II (N-H bend and C-N stretch)  X X 

1,495: C=C   X 

1,456- 1,460: CH3 methyl groups X X  

1,375: C-N cytosine guanine  X  

1,238-1,242: νasPO2
-
 X  X 

1,225: DNA (O-P-O asymmetric stretch) X   

1,219:  νasPO2
-
   X 

1,200: RNA Ribose (C-O stretching)    

1,080: DNA/RNA (O-P-O stretching) X   

1.061: C-O deoxyribose   X 

1,040: Glycogen (C-O-H bond) X X  
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 

 

 

 

 


