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ABSTRACT

Unease over data privacy will retard consumer acceptance of loT
deployments. The primary source of discomfort is a lack of user
control over raw data that is streamed directly from sensors to the
cloud. This is a direct consequence of the over-centralization of
today’s cloud-based loT hub designs. We propose a solution that
interposes a locally-controlled software component called a privacy
mediator on every raw sensor stream. Each mediator is in the same
administrative domain as the sensors whose data is being collected,
and dynamically enforces the current privacy policies of the owners
of the sensors or mobile users within the domain. This solution ne-
cessitates a logical point of presence for mediators within the admin-
istrative boundaries of each organization. Such points of presence
are provided by cloudlets, which are small locally-administered data
centers at the edge of the Internet that can support code mobility.
The use of cloudlet-based mediators aligns well with natural personal
and organizational boundaries of trust and responsibility.

1. Introduction

In “Crossing the Chasm” [16], Geoffrey Moore warns of a
large discontinuity awaiting every new technology as it tries
to expand from a small user base of “Innovators” and “Early
Adoptors” (Figure 1). In contrast to those early enthusiasts,
mainstream users are clear-eyed about the shortcomings of
the new technology and seek a net win. Reducing the neg-
atives will increase the chances of success.

The Internet of Things (IoT) is now approaching this
chasm, as public awareness of privacy risks grow. In their
June 2015 report on consumer perceptions of privacy in
IoT [11], Groopman et al state that “Consumers are highly
anxious about companies sharing their data: 78% of con-
sumers are highly concerned about companies selling their
data to third parties.” They also state that “While older
generations show higher concern, strong discomfort with the
use and sale of connected device data is pervasive across
all age groups, including millennials.” A January 2015 re-
port [10] by the U.S. Federal Trade Commission notes that
“...perceived risks to privacy and security, even if not re-
alized, could undermine the consumer confidence necessary
for the technologies to meet their full potential, and may
result in less widespread adoption.” A June 2015 blog en-
try [25] notes that “TelecomTV also recently reported a
marked slowdown at the fluffy end of the IoT market —
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Figure 1: Technology Adoption Chasm (Adapted from
Moore [16])

people have already had enough (it seems) of home IoT gad-
gets, so those privacy worries might already be hitting hard.”
Want et al [29] identify privacy and security as major con-
cerns in IoT.

In this position paper, we put forth the view that con-
cern over data privacy arising from the over-centralization
of IoT systems is a critical obstacle to their growth. There
is growing reluctance to expose raw sensor data to a cloud-
based IoT entity. IoT deployments today are typically in
silos within organisations, or in niche vertical markets. The
vision of a rich ecosystem in which shared data is leveraged
by a wide range of new applications is yet to be realized.

Our solution is a plug-in architecture with trusted soft-
ware modules called privacy mediators inserted into the data
distribution pipeline. A privacy mediator (or, just “medi-
ator”) performs data redaction and privacy policy enforce-
ment before data is released from the user’s direct control. Its
platform integrity is ensured by execution on a cloudlet [22]
in the trust domain of the data owner. This approach deliv-
ers a scalable and secure solution at the edge of the cloud,
and aligns well with natural organizational boundaries of
trust and responsibility. It also scales well to deployments
of sensors that have high data rates (e.g., video cameras).

We make the following contributions in this position pa-
per. First, we enunciate an important design principle:
namely, that users should have the first option to control
the fidelity and distribution of their data. Second, to im-
plement this design principle, we propose an architectural
framework that offers a rich set of privacy controls. In our
plugin architecture, a small set of trusted third parties (pri-
vacy experts) provide the mediation code, thereby reducing
the privacy burden on third party app developers. Third,
we propose the use of cloudlets (rather than the cloud) to
ensure the platform integrity of mediators in the user’s eyes.

2. Privacy Control Requirements

Users typically develop a keen sense of what they want
from a specific technology only after they have had expe-
rience using it. However, in surveys users repeatedly make
comments along the lines of “I should get to decide how
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much of my data a service or application gets to see” and “I
should get to decide who my data is shared with” [11]. Users
have major angst about continuous ongoing monitoring [25]
in which sensors collect measurements at small time scales
(such as every minute) and can store seemingly infinite sen-
sor history in the cloud.

Sensors are also becoming increasingly sophisticated. In
the future, many of the “things” in the Internet of Things
(IoT) will be video cameras. In 2013, it was estimated that
there was one surveillance camera for every 11 people in the
UK [5]. The report of the 2013 NSF Workshop on Future
Directions in Wireless Networking [4] predicts that “It will
soon be possible to find a camera on every human body, in
every room, on every street, and in every vehicle.” Such om-
nipresent video recorders raise significant privacy concerns.
Similar concerns have already been expressed by consumers
about audio recorders found in smart TVs [20], smartphones,
cars, connected toys [21] and game devices. The capture of
video and audio streams in private spaces without informed
consent can catch consumers unaware, and lead to reputa-
tion damage when stories hit the press [20, 21].

While the [oT privacy landscape is complex, a simple prin-
ciple can serve as a touchstone: users should be able to con-
trol the release of their own data. This translates into the
following privacy control requirements for IoT.

Deletion and denaturing: Users want clear deletion
capabilities: they need to be able to see (or hear) their data
and have the option to delete segments of it. In situations
where outright deletion is not required users may still wish
to be able to denature the data: that is, obscure or modify
its sensitive aspects so that it is safe to release to the out-
side world. For example, faces in images and videos can be
blurred[24, 27], and sensor readings coarsely aggregated or
omitted at certain times of day or night. Denaturing audio
and video is important in many scenarios, especially those
involving vulnerable participants (e.g. events involving chil-
dren, political protests in totalitarian regimes).

Summarization: Providing simple summaries of data
for scalar sensors is also possible. For example, a user with a
watch sensor might prefer to release only the maximum and
minimum heartbeat counts for a day, rather than per-minute
measurements. Similarly some users may prefer to release
daily or weekly totals of building energy usage rather than
per-minute measurements. These are examples of temporal
summaries. Another kind of aggregation involves spatial
summaries such as releasing location data at the zip code
level rather than raw GPS readings.

Inference: Users want control over how their data is
used. For example, if temperature or light sensors are used
to derive room occupancy as a virtual sensor [30], the oc-
cupants may want control over the latter sensor too. This
concept of a derived virtual sensor applies to many sensors
that may not appear too intrusive on their own. However
regular readings from such sensors could provide significant
insights into the behaviour of the occupants of the house
such as their waking times, and levels of physical mobility.
Over time, as these virtual sensors get exposed (via the me-
dia), users may demand control over them too.

Anonymization: Users may wish to submit data for a
societal good, but may prefer to do so anonymously. Exam-
ples include data for medical research, and crowd-sourced air
quality measurements from smartphones [31] used to mon-
itor specific neighborhoods. A privacy architecture should

therefore provide a capability for users to do anonymization.

Mobility: Users may also wish to control the flow of
data from sensors they briefly encounter in the course of
their daily life, for example, in a meeting room or a public
space. While not requiring new data filtering, supporting
this user mobility places significant demands on any under-
lying architecture.

Ease of Use: Studies have shown that users often don’t
understand privacy controls. Although the explicit function-
ality listed above is needed, users are unlikely to be offered
choices defined as above. Instead they would need to be
shown a semantic representation of what releasing data at
a given granularity could mean. For example, rather than
ask users about time granularity for their temperature data,
they could be asked if they agree for “room occupancy” to
be computed. If they deny this option, data might only be
released in a highly aggregated form (e.g. daily total). At
the same time, it important not to overwhelm users with too
many choices. We further discuss these issues and promising
recent efforts in Section 3.5. We believe that it is important
to solve the problem of making it easy for users to express
and to enforce the controls they need and want.

3. Architectural Approach

The architectural solution we propose is shown in Fig-
ure 2. At its heart are privacy mediators — pieces of soft-
ware that run on users’ local cloudlets. A mediator is the
first point of contact for all data produced by an IoT sen-
sor. It is the mechanism that enforces the privacy policy
specified for that sensor. Enforcement occurs in the user’s
own trusted domain. We describe the components of this
architecture in the sections below.

3.1 Cloudlets

Key to our architectural approach is the use of cloudlets:
small data centers located at the edge of the Internet, in close
proximity to associated sensors and mobile devices [22, 23].
Cloudlets enable cloud services to be virtualised and then
instantiated close to their point of use, rather than in the
distant cloud. Multiple deployment scenarios are possible.
In one option, cloudlets are physically installed in homes,
schools or small businesses. It may be possible to install a
cloudlet on a high-end Wi-Fi access point, or alternatively
on a rack-mounted computer in a wiring closet. Performance
studies need to be done to explore these options, but as we
show in Section 5.2, a high-end laptop can suffice even for
some demanding use cases. An alternate deployment option
is for entities such as local telephone companies or cloud
service providers to host cloudlets on behalf of home own-
ers. Regardless of deployment model, a cloudlet is always
logically within the trust domain of the end user.

3.2 Privacy Mediators

Mediators implement the various types of data privacy
controls described in Section 2, and are an integral part of
the processing pipeline for IoT sensor data prior to release.
We expect mediators to be far more diverse and powerful
than the types of simple reverse firewalls and outbound fil-
tering typically deployed at the network edge of many large
organizations. Mediators may be specific to a single class of
IoT sensor (e.g. a temperature sensor) or may be designed to
operate over data produced by many different IoT sensors.

Since sensors may produce data in proprietary formats, we
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Figure 2: Privacy Architecture

expect that many sensors will require a conversion layer prior
to mediation. In our architecture, sensor developers can
provide sensor drivers (analogous to printer drivers) that
convert data into standard or common formats.

Users are able to create policies that control the routing of
sensor data to mediators and the configuration of individ-
ual mediators. In addition to filtering outbound data, we
anticipate that in many cases it will be necessary to store
local sensor data in order to perform mediation and access
control. The granularity at which data is stored can also
be determined by user policy and access to this storage is
managed by our privacy policy component. By adhering to
the good design principle of separation between policy and
mechanism we gain flexibility, such as having mechanisms
(e.g. video denaturing) being allowed for some apps or ser-
vices, but not others.

Since cloudlets are small data centers, virtual machine
(VM) encapsulation of a mediator is expected to be the
norm. However, in a high-trust deployment, a lighter-weight
container such as Docker may be used instead of a VM for
encapsulation. The tradeoff is one of increased memory foot-
print and processor overhead versus superior isolation, safety
and smaller attack surface. We expect most mediators to
run on a cloudlet within a user’s domain. However, our pri-
vacy architecture enables dynamic instantiation of mediators
on other cloudlets for users that are on the move and need
such functionality outside of their usual home or workplace.
The use of cloudlets also enables post-mediator application-
specific preprocessing of sensor data. This will be important
in solving the scalability problem that metro-area networks
will face when their input data rates reach excessive volumes
due to the proliferation of video capture devices. The com-
bination of mediators and cloudlets thus enables a complete
solution to be deployed close to the user, with the attendant
benefits in terms of trust, privacy, performance and scala-
bility through reduced latency and bandwidth demands.

3.3 Mediators and Trust

An important design consideration is how mediators and
their associated device drivers are produced and deployed.
If mediators are produced by the same organisations that
supply the sensors and associated cloud services then there
is little for the user to gain in terms of privacy guarantees
— they would still have to place total trust in the integrity
of these organisations’ solutions. As a result we expect that

mediators will largely be developed by independent third-
parties in much the same way as virus checking software is
produced today. While some may be proprietary we also ex-
pect a significant number of open source mediators to emerge
that will benefit from rigorous inspection by the community.
Such mediators could obtain trusted reputations by subject-
ing their code to organizations that give out certifications or
seals of approval after inspecting and evaluating a product.

Thus a significant advantage of our architecture is that it
could help spur the rich ecosystem vision in which numerous
third party developers build applications on top of sensors
deployed in the home. One challenge facing such develop-
ers is the need to carefully manage user data and try to
minimize the occurrence of privacy incidents. Privacy inci-
dents can occur for a variety of reasons, including leakage
of private data when a service provider is hacked [28], rogue
employees, one company selling data to another who in turn
exposes it, communications eavesdropping when insufficient
encryption is used [19], or if data gets subpoenaed. Privacy
incidents can also occur when a company’s transparency in
their privacy policy poorly communicates what data is col-
lected [20].

Maintaining up to date security and privacy best practices
is challenging, as it requires specific skills and constant vig-
ilance. Some companies achieve this but others do not. It
thus seems prudent for less experienced companies to leave
part of the privacy responsibility to those who make it a pri-
ority and obtain certifications of trust. Our approach creates
a data processing pipeline that sits between third party ap-
plications and the raw sensor data. Applications obtain data
by interacting with mediators via APIs. A privacy cloudlet
provides a solution offering privacy functionality that devel-
opers could leverage - meaning that they wouldn’t need to
implement functionality such as denaturing, data aggrega-
tion, and policy enforcement, themselves.

In this model, users need to place their trust in a limited
number of mediators and the privacy cloudlet service, rather
than the hundreds of applications and services they are likely
to use. In essence, it reduces the privacy risk surface by
limiting the number of players that need to be trusted.

By interacting with user sensor data via the cloudlet, third
party applications reduce their own risk and would not have
any data that the users has not explicitly consented to re-
lease. Note that existing privacy policies do not achieve the
same effect in terms of obtaining user consent since users
are only given the choice to accept or decline the sharing of
a particular sensor’s data, i.e. today they are not given the
choice to control the granularity of the data released.

3.4 Data Storage

In keeping with our basic philosophy of minimizing the
threat surface for IoT data we expect that each mediator
will maintain its own data buffer. Our architecture does not
provide mediators with access to all IoT data on a cloudlet.
Rather, mediators are connected to one or more incoming
sensor streams and it is only this data that they can access.
In this way rogue mediators can only compromise data that
have been explicitly granted access to rather than potentially
exposing a wider range of a user’s IoT data.

In a system that releases only summarized sensor data,
the corresponding raw data could be deleted immediately.
Alternatively, it could be buffered in the cloudlet for a lim-
ited period in case it proves helpful later, e.g., video footage



in a home could be useful in identifying unlawful intrusion.
Simoens et al [27] show how a good balance can be achieved
between privacy and performance by encrypting and storing
raw video sensor data using a randomly-generated private
key that is only present within the VM instance (i.e., medi-
ator) for that sensor. Encrypted data can be decrypted on
demand, with proper authorization, by the mediator.

3.5 User Policies

A key consideration in the design of our system is how
users express their IoT privacy policies in a form that can
be enacted using mediators. Specifying such policies has
been subject to extensive UbiComp research, with many
approaches having a basis in policy languages designed for
managing privacy in the web (e.g. P3P and APPEL).

Myles et al. [18] explored location data management — ap-
plications wishing to access user locations submit a request
that also includes a privacy policy (defined in APPEL), user-
registered validators then determine if the requested infor-
mation can be made available and if any transformations are
needed to reduce the granularity of the data. Another policy
language, Rei [13], defined four policy object types: rights
(permissions an entity has to complete a specified action),
prohibitions (explicit records that indicate that an entity
cannot complete a specified action), obligations (actions an
entity must perform), and dispensations (waivers that ex-
cuse an entity from obligations). Since [13] was mainly used
for security policies, and [18] was applied only to location
data, these approaches need to be explored to understand
their extensibility to a broader use for privacy in IoT.

Extending policy languages for privacy in the IoT poses
several key challenges, due to the scale of IoT sensors and
services, and the issue that users typically struggle to en-
gage with privacy policies in other contexts. First, the large
volume of deployed services, means that engaging users each
time they encounter a new service is simply not viable. Hav-
ing policies defined per sensor rather than per app results
in fewer privacy policies than the per application model we
have today on smartphones. However one policy per sensor
will still be too much; thus new approaches such as defining
policies by class of sensor, hierarchically or other groupings
of sensors, needs to be explored. Second, users may want to
have recipient-specific preferences. A user’s policy for sen-
sors is likely to vary depending on the data recipient, and
the perceived value or risk of sharing with that recipient.
For example, a home owner may be willing to share detailed
data with their energy supplier (for the purpose of improv-
ing the provided service or managing billing), but may only
wish to share summarizations with a local government or
third-party application.

To overcome these challenges and abstract over specific
IoT devices and services we suggest the use of high-level
privacy goals that can then be translated into mediator re-
quests. Based on overall privacy and service goals, we pro-
pose that users maintain general profiles consisting of reusable
policies that apply to classes of application or device.

However, expressing these high-level goals and profiles
still requires input from users. Current privacy literature
suggests two approaches for encouraging users to maintain
their privacy goals and profiles. We need to determine a
set of smart default privacy profiles that capture a range of
opinions about privacy. In the context of permission man-
agement for Android applications, Liu et al. [15] showed

that it is possible to find a small set of (4-6) default privacy
profiles that capture the preferences of many users and al-
low for simple customizations. Each default profile in [15]
contains a list of permissions typically declined, along with
those typically accepted. Employing smart default profiles
means that users only need to engage when something out-
side of their base profile occurs. A second approach is to use
an active privacy assistant [1] that advises users what to do
only when things they might be concerned about arise. This
work showed that when users are nudged with one privacy
question per day, 60% of users were responsive and actively
changed permission settings. Clearly much work remains,
but the initial success of these approaches is encouraging.

4. Business Models

Our focus so far has been largely on home scenarios de-
ploying third party applications and services. Clearly there
are other business models for home services based on first
party applications in which users buy a sensor directly from
the service provider for a particular service - such as Opower
and Fitbit. Such services can co-exist in a home deploying
a private cloudlet by simply bypassing the cloudlet (as de-
picted in Figure 2 by the blue arrow on the left).

Our architecture is also well suited to meet the needs of
businesses in which privacy policy may be delegated to ad-
ministrators within a larger organization. In schools and
university settings, privacy policy would likely be set by an
administrator or a particular teacher. For example, elemen-
tary schools with video cameras in the classroom, might elect
to release videos with the faces of children blurred - this
could be useful if a school district wanted to evaluate the
effectiveness of teaching tools while simultaneously protect-
ing the privacy of individual children. Schools employ third
party applications to supplement teaching materials and our
architecture makes it easy for third party applications to be
compliant with school privacy policies around data use.

There are many businesses from small to large that will be
managing IoT sensors in buildings of a workplace. Different
companies will have different sensitivities and rules. For ex-
ample, medical establishments, financial establishments and
law firms have different legal requirements around patient
and client data. Lawyers need to be sure that accidental
audio recording is not moved to the wrong place when in-
teracting with clients. Dueling needs of hospitals are well
known - they must protect patient privacy, but at the same
time would like to release summarized data to improve med-
ical research. They could instantiate our privacy cloudlet by
having the storage and mediator capabilities run on a hos-
pital’s IT infrastructure and have research efforts get data
via interaction with mediators.

While our architecture is able to support a range of exist-
ing IoT business models we note that it may also stimulate
entirely new areas of economic activity such as the supply
and validation of mediators and associated drivers.

5. Challenging Use Cases

5.1 Human Augmentation

An area of intense research interest at present is the use of
pervasive technologies to augment human capabilities such
as memory [9]. Cameras, microphones and other environ-
mental sensors can be coupled with wearable devices such



as lifelogging cameras to provide rich datasets relating to a
user’s experiences. This data can potentially be processed
and then used to cue recall of memories as required. Appli-
cations range from behaviour change and increased learning
capacity to support for failing memories. To understand
the challenges of such systems the authors conducted the
RECALL experiment in which twenty researchers, wearing
a range of lifelogging devices, spent two days in an instru-
mented hostel to capture a test dataset for memory augmen-
tation [7]. Fixed infrastructure cameras throughout public
areas of the hostel recorded a continuous video stream and
participants were equipped with wearables such as smart-
phones, GoPros, Narrative Clips, SenseCams and DSLR
cameras. Over 280GB of data was captured including 42,959
images and 248.15 hours of video and location data.

Clearly such a scenario raises a number of significant pri-
vacy concerns with potentially very large amounts of data
being captured and users interacting with a wide range of
sensors in the infrastructure [9]. However, the proposed ar-
chitecture begins to provide an insight into how such systems
could emerge while providing user control over privacy. For
example, mediators running on a local cloudlet could redact
a video feed to a few still images that are used as the basis of
memory cues. To support memory augmentation more gen-
erally, mediators could eventually become complex pieces of
software that locally determine which few elements of the
sensor data needed to be exported — enabling most of the
data to remain private within the user’s local cloudlet.

While our architecture offers an obvious solution for do-
mestic and work spaces, scenarios such as memory augmen-
tation highlight the challenge of mobile users that wish to
control the capture of data relating to them as they move be-
tween instrumented spaces. Our approach of using cloudlets
to support code mobility provides a robust, scalable and se-
cure means of allowing users to dynamically instantiate me-
diators into spaces that they temporarily access. Clearly
trust relationships still need to exist between users and the
spaces themselves but this is always likely to be the case
(it is not possible to prevent, for example, a space owner
deploying hidden cameras). However, where such trust re-
lationships exist cloudlets would provide a natural way to
support the dynamic instantiation of one or more media-
tors for a user that has temporarily appropriated a physical
space such as a meeting room.

5.2 Omnipresent Video

Today, most video is stored in silos close to the point of
capture. In the future, we envision many use cases in which
analysis of multiple video streams and fusion of extracted
information offers powerful benefits to users [24]. This re-
quires today’s isolated video cameras to be integrated into
an [oT framework, posing challenges for scalability as well as
privacy. The high cumulative data rate of incoming videos
from many cameras is a key scalability challenge.

Our privacy architecture can also solve this scalability
challenge by running video analytics on cloudlets. Simoens
et al [27] have shown that denaturing and video analytics
at throughput acceptable for a typical home are feasible on
cloudlets of modest computational power. They recommend
sampling an input video stream at a lower rate than the
capture rate, and to perform video analytics and denatur-
ing only on the sampled frames. They also suggest that
raw video be stored encrypted on the cloudlet, and only de-

crypted and analyzed if an explicit need to examine that
video is identified. All this functionality is supported by our
architecture. Shipping the extracted tags and meta-data to
the cloud only requires modest bandwidth.

Denaturing has to strike a balance between privacy and
value. At one extreme is a blank video: perfect privacy, but
zero value. At the other extreme is the original video at
its capture resolution and frame rate. This has the highest
value for potential customers, but also incurs the highest
exposure of privacy. Where to strike the balance is a dif-
ficult question that is best answered individually, by each
user. This decision will most probably be context-sensitive.
One example is to blur all faces in an image; this only re-
quires face detection, which is a standard capability in image
processing software today. A more selective privacy policy
might only require the faces of certain people to be blurred.
That is considerably more difficult to implement, since face
recognition is a much harder computer vision problem than
face detection. Fortunately, we have been successful in creat-
ing an open source implementation of face recognition using
deep neural networks called OpenFace that provides surpris-
ingly high accuracy [2].

OpenFace can be used as a building block for IoT services
running on a cloudlet. For example, when running on a lap-
top such as Macbook Air, OpenFace can train to learn a new
face (e.g. guests in a home) in 10-20 seconds. Subsequent
recognition takes about 500 ms in our prototype. Both of
these functions can thus be performed without having to of-
fload any video to the cloud. This serves as an illustration
that even complex mediators can be implemented to run in
private cloudlet architectures.

6. Related Work

Protecting user privacy has been extensively explored in
the UbiComp community, e.g. informing users of potential
privacy threats [14] and protecting user location data [6],
[8]. Our work focuses on the use of privacy mediators. The
idea of a rule-based trusted intermediary that controlled the
release of location information was described in [18] and a
similar, though more general solution was later proposed in
[17] in which Personal Data Vaults were used to filter end-
users’ mobile sensor data before sharing it with content-
service providers. Our work differs from these rule-based
intermediaries by offering a generalized cloudlet infrastruc-
ture for intercepting both mobile and (predominantly) fixed
sensor data.

In [3] the use of OSGI for hosting privacy interceptors in
smart environments was explored — this approach has many
parallels with our architecture but focuses on enforcing pri-
vacy policies relating to contextual data when requests for
information are received (and thus is similar to [18]) rather
than processing outgoing sensor streams. Moreover, the
choice of OSGI as an underlying platform is obviously lim-
iting compared to the more general support provided by
cloudlets. Commercial firewalls for smart homes are begin-
ning to appear (e.g. http://www.bitdefender.com/box/) but
these typically focus on protecting the home from inbound
traffic rather than protecting privacy through mediation of
outbound traffic from uncompromised devices.

In [26] a decentralized infrastructure for social networking
is proposed where each user’s configurable“butler” provides
fine-grained access control and storage. In contrast, we do
not address the needs of social networking, nor focus on dis-



tributed storage, nor prevent the sending of sensor data to
the cloud (instead we enable the latter at a user-chosen gran-
ularity). Other work in this field includes [12] that investi-
gates on-device sensor abstractions for augmented reality
applications to prevent private data from accidentally being
leaked from applications having raw sensor data access.

7. Conclusion

In this position paper we addressed the challenge of help-
ing the IoT bridge the impending “chasm” that blocks the
path to widespread adoption. We have argued that privacy
is a key issue and subsequently proposed an architecture
based on an essential design principal, namely that users
should maintain overall control of their data and be respon-
sible for managing its release to cloud services. Our ar-
chitecture provides a framework for addressing privacy re-
quirements in traditional IoT environments and, crucially,
through the use of cloudlets and mobile code enables the
support of challenging IoT scenarios in the mobile domain
including human augmentation and omnipresent video. We
have focused herein primarily on home scenarios because
that is where the need is most urgent for IoT. In our future
work, we plan to study extensions of our architecture for
public space IoT applications.
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