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Abstract - In this work we describe a system and propose 

a novel algorithm for moving object detection and 

tracking based on video feed. Apart of many well-known 

algorithms, it performs detection in unsupervised style, 

using velocity criteria for the objects detection. The 

algorithm utilises data from a single camera and Inertial 

Measurement Unit (IMU) sensors and performs fusion of 

video and sensory data captured from the UAV. The 

algorithm includes object tracking and detection, 

augmented by object geographical co-ordinates 

estimation. The algorithm can be generalised for any 

particular video sensor and is not restricted to any 

specific applications. For object tracking, Bayesian filter 

scheme combined with approximate inference is utilised. 

Object localisation in real-world co-ordinates is based on 

the tracking results and IMU sensor measurements. 

 

Keywords: Bayesian filters, UAV, object tracking, 

unsupervised detection, rigid motion segmentation 

 

1 Introduction 

Nowadays, there are a plenty of algorithms aimed on 

object detection and tracking. These algorithms work using 

data captured in different wavelengths (synthetic aperture 

radars (SAR), video cameras, thermal imagers). Video 

camera can serve for a cheap solution for the tracking 

system. Thermal imager has an advantage that it allows to 

see discernible object contours either in day- or in night-

time conditions.  

Our aim is to resolve the problem of automatic moving 

objects detection on the video feed with moving camera.  

To do this, we consider unsupervised approach to the object 

detection, which is independent of the size and form of the 

object.  

Also the positions of the objects are estimated and 

tracked. It means estimation of the geographical co-

ordinates of the object in each moment of time.  

Suggested technical implementation is like shown in 

figure 1. Our system works on board the UAV, where the 

sensors and camera are mounted. 

 

 
Figure 1. The scheme of the proposed system 

2 Literature review 

The object detection and tracking problems are widely 

studied, nevertheless the problem statements vary 

tremendously, as well as application domains the methods 

are designed for. We have not found the methods doing 

exactly the same as the whole proposed system with object 

tracking, but we have observed the similar tracking 

methods.  

Some of the object detection methods rely on supervised 

detection techniques [1], [2], which require learning set 

preparation and taking into account all the varieties of the 

objects’ appearances.  More, the range of object 

appearances can be too various to consider it beforehand.  

Another methods abandon the object detection problem 

at all, relying on a ‘human in the loop’, i.e. an operator, 

which points to the object that should be detected.  

The method proposed here is based on unsupervised 

detection with some restrictions imposed on the object 

appearance, expressed in terms of object speed estimation. 

The unsupervised methods are proposed in [3] and [4], but 

they are defined for the dissimilar domains. One of the most 

widespread particular cases of unsupervised detection 

relies on static background, that can be resolved by 

background subtraction techniques [5], [6], but for this 

problem we think it is inapplicable because we cannot 

assume the camera to be static. 
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 The tracking methods are well developed, and in 

contrast to detection methods, some of them perform as 

domain independent frameworks. Different levels of 

complexity can be emphasised for these trackers. Optical 

flow based trackers, like Lucas-Kanade tracker [7], are 

simple trackers for short term surveillance for the point 

objects. More complex trackers aggregate information on 

the points’ movement from an optical flow tracker for 

different points, and apply it to track the sets of points, 

constituting objects. For example, it can be done by means 

of rigid motion segmentation [8], where we additionally 

assume the objects to move consistently. Actually, the 

method we propose can be referred to this group. However, 

there are even more complex methods like TLD [9], which 

are capable of challenging the object partial occlusion, as 

well as re-appearance after the full occlusion. But it does 

not support simultaneous tracking and detection, as well as 

multiple object tracking. Here we believe that the problem 

of full of partial occlusion in case of ‘top-down’ UAV view 

is not so critical, so we do not utilise complex trackers in 

order to enhance computational efficiency. At last, the 

objects we propose as a response of our tracker can be 

treated by such a complex tracker.  

Multiple Hypothesis Tracking (MHT) [10], when used 

for cluttered data, and different variations of Probability 

Hypothesis Density (PHD) [11] filters perform the idea of 

simultaneous multiple object detection and tracking based 

on Bayesian filtering, consonant to the proposed algorithm. 

One of the examples of the PHD filter application to multi-

target tracking is given in [12]. Another way is to exploit 

custom update equations instead of Bayesian filtering ones 

like it is done in [13]. The conceptual difference with the 

proposed algorithm is that all these methods recognise the 

possibility of occurrence of clutter, whilst we make motion 

segmentation for all the points and then investigate what of 

them are actually objects.  

One more task is to combine the object appearance on the 

image with the object position in the real world. For this 

purpose, telemetry approach should be utilised. The 

approach resembles SLAM [14] problem statement, but it 

is not the same. We cannot assume, that the camera has 

sufficiently large parallax to estimate the distance to the 

object by feature points matching. Hence, and also to 

perform tethering to the world co-ordinates, we rely on the 

external Euler angle sensors to estimate the camera 

position, rather than on the image feature points, as it is 

done in many SLAM problem statements like [14]. More, 

in some cases the background is not sufficiently gradient 

(e.g. sea, desert) to be reliably matched by feature point 

extraction algorithm, but the edges appear to be highly 

discernible for most of the objects. 

3 Problem statement 

The video tracking problem can be stated as follows.  

Suppose, that we have a video feed, which can be 

represented as a (finite, i.e. pre-recorded file, or infinite, i.e. 

stream) sequence {𝐼1, 𝐼2, … 𝐼𝑘 … }, where 𝑘 is the discrete 

instant of time, or frame number. Each of the grey-scale 

frames is a function 𝐼𝑘: 𝑋 → [0,1], where 𝑋 is a frame 

domain, usually  𝑋 = [0, ℎ] × [0, 𝑤] ⊂ ℝ2 or 𝑋 = [1, ℎ] ×
[1, 𝑤] ⊂ ℕ2, and 𝑤 and ℎ are frame’s width and height in 

pixels, respectively. For each of the frames, we intend to 

determine presence of the objects within it, and consistently 

follow them through the tracks.  

To resolve the problems of the object tracking and 

detection, we exploit ‘rigid motion segmentation’ approach 

[8]. This approach implies that all points of the object 

presented are moving consistently and synchronously from 

frame to frame. We track feature points, which are sampled 

by Harris corner detector with suppression, by Lucas-

Kanade tracker [7]. Then we aggregate it into tracks, i.e. 

sequences of the tracked feature points, which have a size 

up to some pre-defined maximum (for example, track of the 

last 10 tracked positions of the point). Then the estimated 

tracks are clustered in time-consistent manner using 

Bayesian filtering. 

Another problem we tackle is real world object localisation 

by means of telemetry. Suppose, that we have the frame 𝐼𝑘, 

tuple {𝛼𝑘, 𝛽𝑘 , 𝛾𝑘, 𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘, 𝑃𝑐} containing three Euler 

angles 𝛼𝑘, 𝛽𝑘 , 𝛾𝑘 of camera rotation in the world co-ordinate 

system, camera position co-ordinates 𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘, which can 

change with time, and camera parameters 𝑃𝑐 (focal distance 

and angles of view), which are assumed to remain constant 

throughout the algorithm’s working time. Based on this 

data, we can produce a mapping from the image to the world 

co-ordinates (𝑥𝑤 , 𝑦𝑤 , 𝑧𝑤) ∈ ℝ3, as well as estimate the 

geographical co-ordinates (𝜆, 𝜇) ∈ ℝ2 assuming a plain 

terrain. 

Then, we go ahead to the method formulation, which is 

depicted in figure 2.  

  
Figure 2 General description of the method. 

The method is performed for each frame and starts from 

the feature points detection. After that, the points are 

attached to the tracks by the procedure which is outlined in 

the following sections. At the following step, the tracks are 

clustered using Bayesian filter approximation approach, 

ensuring between-frame consistence of the cluster labels. 

Then, the objects’ clusters are selected from the set of 

clusters which move discernibly relative to the background. 

Finally, the estimated geographic positions for the detected 

objects are obtained using telemetry data processing 

algorithms. 

Feature points detection 

Tracks update 

Object detection 

Telemetry data calculation 

Tracks clustering 



 

 

4 Tracking and detection 

Figure 3. Tracking and detection method  
As it is shown in figure 3, at the first stage, the feature points 

are detected, tracked from frame to frame, and replaced, if 

there is no reliable correspondence on the subsequent 

frame.  

Then, for each of the frames, the tracks are built up the 

following way: the points from the new frame are attached 

to the tracks with the matching terminal points. If there is 

no match for any point from the previous frame, because it 

cannot be tracked or the object has left the capturing area, 

the track is terminated and abolished.  

The key part of our approach is a novel tracking and 

detection algorithm based on the Bayesian filter 

approximation. As it was mentioned before, it is based on 

time-consistent update of the frame clusters. Time 

consistent update means that the form, the parameters and 

the labels of the clusters are dependent from the results on 

the previous frame. The global idea is to track the “clusters” 

of stable points in the frame according to their movement 

by the application of Bayesian filter approximation 

approach inspired by Kalman filter [21].   

Then, the objects are detected according to the assumption 

that the camera can have some rotation or parallax from 

frame to frame, and we can think of the objects as moving 

if the expected movement of the points does not correspond 

to the expected movement of the camera. It allows the 

algorithm to detect the object movement when the camera 

has background movement itself.   

4.1 Feature point detection, tracking and 

filtering 

Feature point detection and tracking are deeply 

interdependent procedures as the quality of the tracking 

depends on the selected points. In this work we propose a 

well-known combination of Forward-Backward Lukas-

Kanade (FBLK) [15] tracking of the points selected by 

modified Harris corner detector (HCD) [16]. HCD is well 

suitable [17] point detector for FBLK-based tracking 

because it provides points according to conditioning 

number of the Hessian matrix [7], which is inverted during 

optical flow calculation.  We utilise a modified HCD for 

grey-scale image in order to ensure sparsity of the detected 

points over the frame. This property is achieved by non-

maximum suppression and application of sub-frame 

detectors. Hereafter we consider the “transition” from the 

frame 𝐼𝑘 to 𝐼𝑘+1. Here we define the feature points set from 

the frame 𝐼𝑘 by 𝐹𝑘 = {𝑓1
𝑘, … , 𝑓𝑛𝑘

𝑘 }, 𝑓 ∈ ℝ2 – pixel 

coordinates.  

 
Figure 4. The illustration of forward-backward error.  

At each new frame feature points from the previous frame 

are tracked using FBLK. The prediction of the point 𝑓 from 

𝐼𝑘 to 𝐼𝑘+1 is defined as 𝑝𝑘
𝑘+1(𝑓). FBLK provides a measure 

of the point tracking quality – backward error, which is 

calculated as 

𝐹𝐵𝑘
𝑘+1(𝑓) = ‖𝑝𝑘+1

𝑘 (𝑝𝑘
𝑘+1(𝑓)) − 𝑓‖. (1) 

In order to ensure high precision of the algorithm only 

feature points with backward error lower than a pre-defined 

threshold 𝑇1. The illustration of FBLK error is presented in 

the figure 4. On the right side, one can see well tracked 

point, which gives a reasonable forward-backward error. 

On the left side, the point is barely discernible, that causes 

the forward-backward error to be large due to erroneous 

matching.   Let us define the set of tracked points (from the 

frame 𝐼𝑘) with low error as 𝐺𝑘 ⊂ 𝐹𝑘, 𝐺𝑘 = {𝑓 ∈ 𝐹𝑘 ∶

 𝐹𝐵𝑘
𝑘+1(𝑓) < 𝑇1}.  

 If all the points are tracked well, some pre-defined percent 

of the points is deleted (with highest backward error). Then 

new feature points are detected using HCD algorithm. The 

number of newly detected points is equal to the number of 

deleted feature points. The set of newly detected points is 

defined as 𝐻𝑘. Thus,  

𝐹𝑘+1 =  𝑝𝑘
𝑘+1(𝐺𝑘) ∪ 𝐻𝑘+1. (2) 

4.2 Track formation 

Tracks are defined as a sequence of feature points from 

sequential frames: 𝑡𝑖
𝑘 = {𝑓𝑖𝑠𝑖

𝑠𝑖 , … , 𝑓𝑖𝑘

𝑘} is a track defined for a 

point from frame 𝑠𝑖, on which the track was initiated, to 

frame 𝑘. Informally, the track defines a “trajectory” of the 

filmed points from frame to frame. There are two possible 

options of for each point from the new frame when updating 

the tracks, depending on whether or not 𝑓𝑖𝑘

𝑘 ∈ 𝐺𝑘, i.e. 

whether the last point of the track was reliably predicted by 

FBLK.  

If the point is reliably detected, then the corresponding 

point is added to the track (figure 5, track 1 ): 

Feature point detection, tracking and filtering 

Track formation, track features calculation 

Tracking by Bayesian Filter Approximation 

Object detection 



 

 

𝑡𝑖
𝑘+1 =  𝑡𝑖

𝑘 ∪ 𝑝(𝑓𝑖𝑘

𝑘), if 𝑓𝑖𝑘

𝑘 ∈ 𝐺𝑘. (3) 

Otherwise, if 𝑓𝑖𝑘

𝑘 ∉ 𝐺𝑘,  a track is terminated (figure 5, track 

2 ). For all other feature points from the frame (𝑘 + 1), the 

new tracks are created (figure 5, tracks 5  and 6 ). One 

particular case is the tracks merging, when several tracks 

come to the same point (figure 5, tracks 3  and 4 ). These 

tracks are to be merged. 

 
Figure 5. The illustration of the tracks formation. 

Then each of the existing tracks are mapped into some 

“feature space”, which characterise the speed and position 

of the point on the frame for the last few seconds.  In this 

work we use the mean position of the track points for the 

last 𝑎 (typically, 10) frames in order to characterise the 

spatial properties of the track. The information about the 

tracks which has happened later than 𝑎 − 1 tracks ago is to 

be discarded. A difference between the last point and the 

point from 𝑎 − 1 frames ago characterises the speed. Hence 

the feature vector is composed of two spatial and two 

velocity components.  The lag of 𝑎 frames is used in order 

to ensure the stability of the speed property as a difference 

between sequential points may be noised. Feature vector 

related to the track 𝑡𝑖
𝑘 is denoted as 𝑑(𝑡𝑖

𝑘) or simply 𝑑𝑖
𝑘. It 

should be outlined that only those tracks are used which 

have the length of the points sequence (“age”) equal to 𝑎: 

|𝑡𝑖
𝑘| = 𝑎. This limitation is introduced to analyse only such 

points which are reliably tracked for a number of frames. 

The ‘equality’ sign stands here because the points that exist 

more than 𝑎 frames are discarded from the track. A track 

which satisfies the “age” limitation is referred as ‘mature’. 

4.3 Bayesian filter approximation 

As mentioned above, the Bayesian filter model is used in 

order to model time-consistent development of the mixture 

of Gaussians (MoG), which is a core part of rigid motion 

segmentation approach described here. Features of the 

tracks computed and observed for each frame are 

considered as a sample generated from the MoG, where 

each Gaussian represents a separate rigidly moving object, 

or part of the scene. In order to introduce “smooth” 

development of the mixture, frame-to-frame changes of the 

parameters of the MoG ― means, covariance matrices and 

prior probabilities (weights) ― are modelled by a dynamic 

system. Hence, the parameters of the MoG are considered 

as hidden variables of the Bayesian filter, and the features 

of the tracks are referred to observed variables. The key 

difference from the standard approach (and similarity to the 

PHD filter [11]) is the fact that the model utilises a sample 

of observed variables at each time step. 

Hereafter we define the variables and probability models 

for the Bayesian filter. Consider first the hidden variables 

that define the parameters of the MoG at each frame. We 

denote the mean of the 𝑗-th mixture component for frame 

𝐼𝑘  by 𝑚𝑗
𝑘 ∈ ℝ𝑙, where 𝑙 is the features’ dimensionality, and 

corresponding covariance matrix by Σ𝑗
𝑘 ∈ ℝ𝑙×𝑙 and weights 

by 𝑤𝑗
𝑘 ∈ ℝ, where ∑ 𝑤𝑖

𝑘𝐾
𝑖=1 = 1 ∀𝑘. 𝑚𝑘, 𝑤𝑘  and Σ𝑘 denote 

the union of these corresponding parameters.  

As pointed before, computed set of the tracks’ features is 

generated from the MoG defined by the hidden variables. 

Denote the feature vectors of all mature tracks from the 

frame 𝐼𝑘 by 𝐷𝑘 = {𝑑1
𝑘 , … , 𝑑𝑛𝑘

𝑘 }, 𝑑𝑖
𝑘 ∈ ℝ𝑙, which represents 

observed variables for 𝑘-th stage where 𝑛𝑘 is the number of 

the mature tracks in the 𝑘-th frame. One of the model 

assumptions is that the set 𝐷𝑘 is i.i.d. and generated by 

MoG, so 

𝑑𝑖
𝑘~𝑝(𝑑𝑖

𝑘|𝑚𝑘, Σ𝑘 , 𝑤𝑘)

=  ∑ 𝑤𝑗
𝑘𝒩(𝑑𝑖

𝑘|𝑚𝑗
𝑘, Σ𝑗

𝑘)

𝐾

𝑗=1

, 
(4) 

where we denote the normal distribution  

𝒩(𝑑|𝑚, Σ)

=  
1

(√2𝜋)
𝑙
|Σ|

1
2

exp (−
(𝑑 − 𝑚)𝑇𝛴−1(𝑑 − 𝑚)

2
) (5) 

Therefore, probability distribution of the observed variables 

given the hidden (likelihood) is defined as 

 𝑝(𝐷𝑘|𝑚𝑘 , Σ𝑘 , 𝑤𝑘) =  ∏ 𝑝(𝑑𝑖
𝑘|𝑚𝑘 , Σ𝑘)

𝑛𝑘

𝑖=1

, (6) 

In order to achieve a “smooth” development in time of each 

model following update rules for the mean vectors are 

utilised: 

{
𝑚𝑗

𝑘+1 = 𝑚𝑗
𝑘 + 𝑣𝑗 + 𝜀𝑗,

𝜀𝑗~𝒩(𝜀|0, 𝛤𝑗
𝑘),

 (7) 

for 𝑗 = 1, … , 𝐾.  Term 𝑣𝑗 denotes the average movement of 

the points of the tracks from cluster 𝑗 from the frame 𝐼𝑘 to 

𝐼𝑘+1, and 𝜀𝑗 denotes a random Gaussian noise, 𝛤𝑗
𝑘 is a 

covariance matrix of the noise.  

The time-propagation model of the covariance matrices Σ𝑘 

and prior weights 𝑤𝑘 is performed using the heuristic 

approach, which is described further. All parameters of the 

MoG are assumed to be independent [19]. Probability 

distribution for the covariance is imposed over the 

“precision matrices” Λ𝑗
𝑘 = (Σ𝑗

𝑘)
−1

, 𝑗 = 1, … 𝐾 in the form 

of Wishart distribution, which is conjugate to the Gaussian 

distribution. Wishart distribution is defined as: 

𝒲(Λ|𝜈, Ψ) =
|Λ|𝜈−𝑙−1 exp(−tr(Ψ−1, Λ)/2)

2
𝜈𝑙
2 |Ψ|

𝜈
2Γ𝑝 (

𝜈
2

)
, 

 Λ ∈ ℝ𝑙×𝑙Λ ≥ 0, Ψ ≥ 0, 𝜈 > (𝑝 − 1). 

(8) 



 

 

Here Γ𝑝(⋅) is the multivariate gamma function. For the 

parameters 𝑤𝑘 Dirichlet distribution is used in this work. 

Dirichlet distribution is denoted as  

Dir(𝑤|𝛼);  𝑤, 𝛼 ∈ ℝ𝑙;  〈𝑤, 𝟏〉 = 1;  𝑤, 𝛼 ≥ 0.  (9) 

We exploit the forward filtering approach for probabilistic 

inference in Bayesian filter where at each moment of time 

𝑘 probability distributions of the hidden variables given all 

previous observed variables 𝐷1, … , 𝐷𝑘 are estimated. Thus, 

the model estimates following distributions (due to 

parameter independence):  

𝑝(𝑚𝑗
𝑘|𝐷1, … , 𝐷𝑘);   𝑝(Λj

k |𝐷1, … , 𝐷𝑘); 

  𝑝(𝑤𝑗
𝑘|𝐷1, … , 𝐷𝑘).  

(10) 

Usually forward filtering is decomposed into two steps: 

prediction and update. We consider these two stages in 

more detail further. 

4.3.1 Prediction 

The prediction step aims to estimate the distributions of the 

hidden variables at stage 𝑘 given the observed data 

𝐷1, … , 𝐷𝑘−1.  It is done using the estimated distributions 

from the stage 𝑘 − 1 and “transition” pdf defined by the 

dynamic system (7). For the parameters 𝑚𝑗
𝑘 the solution is 

obtained analytically. If  

𝑝(𝑚𝑗
𝑘−1|𝐷1, … , 𝐷𝑘−1) =  𝒩(𝑚𝑗

𝑘−1|𝜇𝑗
𝑘−1, 𝛯𝑗

𝑘−1), (11) 

then, using the statements in the dynamic system  

𝑝(𝑚𝑗
𝑘|𝐷1 , … , 𝐷𝑘−1)

=  𝒩(𝑚𝑗
𝑘|𝜇𝑗

𝑘−1 + 𝑣𝑗
𝑘 , 𝛯𝑗

𝑘−1 + 𝛤𝑗
𝑘). 

(12) 

Parameter 𝑣𝑗
𝑘  may be computed using the information about 

the changes of the track features from the previous frame.  

Let 𝐼𝑆𝑗
𝑘 = {𝑖1

𝑗,𝑘
, … , 𝑖𝑁𝑗𝑘

𝑗,𝑘
} be a set of indices of adult tracks 

from frame 𝐼𝑘−1 clustered to the 𝑗-th mixture component, 

which are presented on frame 𝐼𝑘.  Then 𝑣𝑗
𝑘  may be 

computed as 

𝑣𝑗
𝑘 =

1

𝑁𝑗𝑘

∑ [𝑑(𝑡𝑖
𝑘) − 𝑑(𝑡𝑖

𝑘−1)]

𝑖∈ 𝐼𝑆𝑗
𝑘

. 
(13) 

Covariance matrix 𝛤𝑗
𝑘 is estimated as sample covariance for 

the difference of features of tracks with indices from 𝐼𝑆𝑗
𝑘. 

Consider the prediction step for the covariance matrices and 

prior weights. For both of the parameters it is hard to select 

“transition” pdf 𝑝(Λ𝑗
𝑘|Λ𝑗

𝑘−1), 𝑝(𝑤𝑗
𝑘|𝑤𝑗

𝑘−1), which after 

prediction step preserve the form and family of the 

distribution. For that reason in this work we select the 

prediction distribution for Λ𝑗
𝑘 , 𝑤𝑗

𝑘 in heuristic manner.  

If 𝑝(Λ𝑗
𝑘−1|𝐷1, … , 𝐷𝑘−1) = 𝒲(Λ𝑗

𝑘−1|𝜈𝑗
𝑘−1, Ψ𝑗

𝑘−1), 

predictive density is assigned  as follows: 

𝑝(Λ𝑗
𝑘  | 𝐷1, … , 𝐷𝑘−1)  =

𝒲 ( Λ𝑗
𝑘|  

𝜈𝑗
𝑘−1

𝜌𝑗
𝑘 , 𝜌𝑗

𝑘Ψ𝑗
𝑘−1) , 𝜌𝑗

𝑘 > 1.   
(14) 

This modification preserves the expected value of the 

inverse covariance of the cluster, but enlarges the variance 

allowing the adaptation of the posterior distribution for the 

new data in the update step in more flexible manner. Larger 

values of the parameter 𝜌𝑗
𝑘 cause more flexible and less 

stable update on the update step in comparison to the 

predictive density. 

It was experimentally established that most convenient and 

efficient predictive distribution 𝑝(𝑤𝑘|𝐷1, … , 𝐷𝑘−1) should 

be the same at each moment of time, i.e. 

𝑝(𝑤𝑘|𝐷1, … , 𝐷𝑘−1) = Dir(𝑤𝑘|𝜂 × 𝟏),   (15) 

where 𝜂 is a small constant, 𝟏 ∈ ℝ𝑙 – vector with all 

components equal to 1. 

Thus, assuming that means and covariance matrices of 

different components are independent, overall predictive 

density is as follows: 

𝑝(𝑤𝑘 , Λ𝑘 , 𝑚𝑘|𝐷1, … , 𝐷𝑘−1) = 

 ∏ [𝒩(𝑚𝑗
𝑘|𝜇𝑗

𝑘−1 + 𝑣𝑗
𝑘 , 𝛯𝑗

𝑘−1 + 𝛤𝑗
𝑘) ×𝐾

𝑗=1

 𝒲 ( Λ𝑗
𝑘|  

𝜈𝑗
𝑘−1

𝜌𝑗
𝑘 , 𝜌𝑗

𝑘Ψ𝑗
𝑘−1)] ×  Dir(𝑤𝑘|𝜂 × 𝟏). 

(16) 

4.3.2 Update 

The update step aims to compute distributions of the hidden 

variables at stage 𝑘 given observed data 𝐷1, … , 𝐷𝑘. Using 

Bayes rule we obtain: 

𝑝(𝑤𝑘 , 𝑚𝑘 , Λ𝑘|𝐷1, … , 𝐷𝑘) ∝ 

∝ 𝑝(𝑤𝑘 , 𝑚𝑘 , Λ𝑘|𝐷1, … , 𝐷𝑘−1) × 

× 𝑝(𝐷𝑘|𝑚𝑘 , Λ𝑘 , 𝑤𝑘) =  ℒ(𝑚𝑘 , Λ𝑘 , 𝑤𝑘) 

(17) 

Here the likelihood of the observed variables 𝐷𝑘 is a 

product of MoG, as in (6). Therefore, direct inference is 

computationally infeasible and the exact distribution 

becomes more complex from step to step. For this reason 

an approximation of the posterior distribution is used.  The 

posterior is estimated in the form, that preserves the initial 

structure of the distribution (16), i.e.: 

𝑝(𝑚𝑘 , Λ𝑘 , 𝑤𝑘|𝐷1, … , 𝐷𝑘)  

=  ∏[𝒩(𝑚𝑗
𝑘|𝜇𝑗

𝑘 , 𝛯𝑗
𝑘)

𝐾

𝑗=1

×  𝒲( Λ𝑗
𝑘| 𝜈𝑗

𝑘 , Ψ𝑗
𝑘)] ×  Dir(𝑤𝑘|𝛼𝑘) =  

𝑝(𝑚𝑘|𝐷1, … , 𝐷𝑘)𝑝(Λ𝑗
𝑘|𝐷1, … , 𝐷𝑘)𝑝(𝑤𝑘|𝐷1, … , 𝐷𝑘) 

This distribution structure requires parameters 𝜇𝑗
𝑘, 𝜈𝑗

𝑘 , Ψ𝑗
𝑘 

and 𝛼𝑘 to be defined. For this purpose we use the  Laplacian 

approximation for 𝑝(𝑚𝑘|𝐷1, … , 𝐷𝑘), and similar heuristic 

approach for distributions of Λ𝑗
𝑘 and 𝑤𝑘,  utilising the mode 

of distribution (17), which gives: 

Ψ𝑗,
𝑘 =

Λ𝑗,𝑀𝐴𝑃
𝑘

𝜈𝑗
𝑘 , 

𝜇𝑗
𝑘 = 𝑚𝑗,𝑀𝐴𝑃

𝑘 , 

𝛼𝑘 = 𝑤𝑀𝐴𝑃
𝑘  . 

(18) 

Here Λ𝑗,𝑀𝐴𝑃
𝑘 , 𝑚𝑗,𝑀𝐴𝑃

𝑘 , 𝑤𝑀𝐴𝑃
𝑘  stay for mode of (17). These 

parameters can be estimated using Expectation-

Maximisation algorithm [24]. Parameter  𝜈𝑗
𝑘 is selected as 

a sum of posterior probabilities of 𝑗-th cluster over feature 

vector in 𝐷𝑘.  

Parameter 𝛯𝑗
𝑘 is updated according to Laplacian 

approximation approach for 𝑝(𝑚𝑘|𝐷1, … , 𝐷𝑘), i.e.: 

𝛯𝑗
𝑘 = − [∇

𝑚𝑗
𝑘∇

𝑚𝑗
𝑘 log(ℒ(𝜇𝑘 , Λ𝑘 , 𝑤𝑘))]

−1

 (19) 

 



 

 

In other words, 𝛯𝑗
𝑘 is assigned to the negative inverse 

Hessian of the logarithm of the posterior likelihood at the 

mode of the distribution. 

The update step may be interpreted as Laplace-like 

approximation of the posterior distribution.  

4.4 Object detection 

Kabsch algorithm [25] is used for the object detection. This 

algorithm aims to establish the estimated rotation matrix 

and translation vector, using the following assumption: 

�̂�𝑘
𝑇 =  𝑈𝐺𝑘−1

𝑇 + 𝑃, 

∑ |𝐺𝑘
𝑇

𝑖
− �̂�𝑘

𝑇
𝑖
|

𝐿2

2
 

1≤𝑖≤𝑛𝑘

→ min
U,P

 , (20) 

where 𝐺𝑘−1 are the tracked points from the previous frame,  

𝐺𝑘 are the matching points from the new frame and �̂�𝑘 is its 

estimation, 𝑈 is a rotation matrix, which is supposed to be 

orthogonal, and 𝑃 is the translation vector, 𝑛𝑘 is the count 

of the segmented tracks. The matrices are represented in the 

following way: 

�̂�𝑘 = (

�̂�1 �̂�1 ℎ
�̂�2 �̂�2 ℎ
… … …

�̂�𝑛𝑘
�̂�𝑛𝑘

ℎ

), 𝐺𝑘 = (

𝑥1 𝑦1 ℎ
𝑥2 𝑦2 ℎ
… … …

𝑥𝑛𝑘
𝑦𝑛𝑘

ℎ

), 

𝐺𝑘𝑖
, �̂�𝑘𝑖

  are the 𝑖-th rows of the matrices 𝐺𝑘 and �̂�𝑘 

respectively.  

 𝑈 ∈ ℝ3×3 is an orthogonal matrix, 𝑃 = (

𝑝𝑥

𝑝𝑦

𝑝𝑧

), 

where ℎ is some pre-defined  height constant, i.e. 1.  

To make the estimation more accurate, it is repeated 𝑁 

times, typically 𝑁 = 3, and at each iteration for the best-

matched points from the previous iteration up to some 

quantile 𝜂 (𝜂 = 0.5 − 0.9) are selected. The matching 

between the points is estimated according to 𝐿2 metric as  

𝐸𝑘 = [(�̂�𝑘 − 𝐺𝑘) ⊗ (�̂�𝑘 − 𝐺𝑘)]𝕀3×1, (21) 

where 𝕀3×1 is an all-ones matrix, ⊗ stays for an element-

wise multiplication. 

To distinguish between the object and the background 

points, the threshold is calculated dynamically using the 

following simple heuristics. The points are sorted by their 

𝐿2 errors, and the standard deviation 𝑆 of difference 

between the neighbouring errors in the sorted array is 

calculated. The error threshold 𝑇 is stated as an average 

between two smallest elements of the errors sequence, 

which difference from the previous error is more than 𝜏𝑆, 

where 𝜏 is some parameter (typically 3 ≤ 𝜏 ≤ 20). The 

scheme, illustrating this method, is summarised in figure 6. 

 
Figure 6. Illustration the data thresholding method. The red 

points on the line are the points from 𝐺𝑘.  

Then, for each cluster from the Bayesian filter tracker, the 

median error is estimated and checked by the thresholding 

with threshold 𝑇. All the clusters, which average error is 

more than threshold, are treated as objects, and as 

background otherwise. The method can be implemented for 

the subsequent frames as well as for the first and the last 

frame from the track to ensure robust work of the method. 

5 Geographical co-ordinates estimation 

Here we propose a geographical co-ordinates estimation 

method for any point of the image given video footage and 

synchronised IMU sensor data.  

 
Figure 7. Scene scheme 

The scheme of the scene is depicted in figure 7. It is 

assumed that the surface is ideally horizontal, i.e. the 

camera has known height above the plain ground. It is pretty 

correct for instance for sea of field surface. Using 

geometrical assumptions, we try to estimate the distance to 

the object, given screen plane inclination, screen object co-

ordinates, and camera focal point geographical co-ordinates 

and height. The screen plane inclination is described by 

Euler angles [26] provided by IMU. We use pinhole camera 

model to estimate the distance to the point and estimate the 

coordinates in world co-ordinate system:  

1) normalise screen position of the point (𝑥, 𝑦) on the 

image 𝐼𝑘, having pixel width 𝑤 and height ℎ: 

𝑥𝑛 = 𝑥 –
𝑤

2
, 𝑦𝑛 =

ℎ

2
–  𝑦. (22) 

2) estimate the camera direction in the north-east-down 

(NED) co-ordinate system [27] using homogeneous 

image coordinates: 

𝑛 = (�̂�, �̂�, �̂�) =

=  𝐴 (
2 tan (

𝛽ℎ

2
) 𝑥𝑛

ℎ

2 tan (
𝛽𝑣

2
) 𝑦𝑛

𝑤
1

)

𝑇

  , 
(23) 

where 𝐴 is the rotation matrix of the camera which can be 

derived from the Euler angles captured from sensors, 

𝛽ℎ , 𝛽𝑣 are horizontal and vertical angles of view, built on 

the Euler angles obtained from sensors.  

3) calculate the scale factor for the normal vector using 

congruent triangles proportions as −
𝐻

�̂�
, where 𝐻 is a 

height of the camera relative to the ground. 

4) The �̂� and �̂� components of vector 𝑛 are used within the 

Vincenty algorithm [28], along with providing us with the 

location of the object in the geographical (GPS) co-

ordinates.  

The most critical assumption that influence the quality of 

the proposed method is the planarity of the terrain, The 

measurement error, introduced by discrete pixel 



 

 

measurements, depends on the angle of view. In the worst 

case, this kind of error depends on the distance from OOI 

to the horizon line on the image as 𝑂 (
𝐻𝑁

𝑛(𝑛+1)
) , where 𝑛 

is distance (i.e. number of pixels) to the horizon line, 𝑁 is 

the “frame size” (height or width). However, in case of 

“top-down” filming such an error is insignificant. 

6 Experiments 

To prove the practical applicability of the method, tests with 

VIVID PETS 2005 data set [29] were carried out, as well as 

the comparison on the same data set with the alternative 

multi-target tracking method described in [13]. The data set 

consists of several video sequences, containing different 

patterns of multiple vehicles appearance in the video (figure 

8). The data set is augmented with the ground truth data for 

the positions of the objects but only for one of the objects 

and only on every tenth frame. 

  

  
Figure 8. VIVID PETS 2005 data set sample frames. 

In this comparison we reproduce an experiment from [13], 

and because of this circumstance, the metrics are chosen the 

same. ‘Match’ metric means the part of the frame where 

presented ground truth data is contained within the 

bounding box of the object. ‘Size ratio’ metric means the 

average ratio between the actually detected bounding box 

and the ground truth one (ideally 1). The results are given 

in the table  1. These experiments was carried out with the 

number of clusters 𝐾 = 30,  the object detection parameter 

𝜏 = 10. 
 Match Size 

Ratio 

Match 

(Method 

and data 

from [13]) 

Size Ratio 

(Method  

and data 

from [13]) 

EgTest01 0.9828 2.57 0.9500 1.00 

EgTest02 0.9302 2.47 0.9302 1.23 

EgTest03 0.9337 2.06 0.8588 0.78 

EgTest04 0.9302 3.51 0.6000 1.19 

EgTest05 0.9080 0.49 0.8889 0.88 

Table 1 Results of the algorithm comparison 

These results show the robust match of the localised pattern 

with the ground truth data. For all the data sets the detection 

rate exceeds 90%. Higher size ratio means that the detected 

bounding boxes are larger due to relatively large optical 

flow near the object and because of the cluster is tightening 

for several frames on the appearing object, while the rival 

algorithm relies on the region detection of the object. One 

should mention that we have an object size ratio less than 1 

only in the data set EgTest05 that means underestimation of 

the bounding box size. In all other cases, the targets are  

small enough to make even slight bounding box sizes 

change the bounding box ratio dramatically (figure 9).  

 

 
Figure 9. Object detection algorithm output. 

7 Conclusion 

In this work we proposed an algorithm for UAV video 

analytics capable of the following functionality: 

- time-consistent multiple object detection and tracking of 

the object via newly-proposed Bayesian filter 

approximation;  

- geographical co-ordinates estimation, giving a 

possibility to locate the objects in the world.  

The automatic object detection is performed with the 

restriction that the object is discernibly moving. The 

possibility of multiple object tracking enable the algorithm 

to notify on the appearance of the moving object even in 

case if another object is already being tracked. The 

geographical co-ordinates mapping enables us to match the 

object position on the image with its position on ground. 

The algorithm delivers robust and accurate results 

comparing to the rival method for automatic multiple 

objects detection and tracking, as it was shown in the 

experimental section.  

The following algorithm improvements are considered for 

future work: 

- integration with stereo vision approach for better 

geo-positioning; 

- different prediction and update stage 

approximations within the Bayesian filter scheme; 

- integration with sophisticated trackers capable of 

occlusions.  
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