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Abstract
Purpose This paper investigates the use of B-spline smoothers as an alternative to
polynomials when estimating trajectory shape in group-based trajectory models. The
use of polynomials in these models can cause undesirable curve shapes, such as
uplifts at the end of the trajectory, which may not be present in the data. Moreover,
polynomial curves are global, meaning that a data point at one end of the trajectory
can affect the shape of the curve at the other end.
Methods We use the UK Offenders Index 1963 birth cohort to investigate the use
of B-splines. The models are fitted using Latent Gold, and two information criteria
(BIC and ICL-BIC) are used to estimate the number of knots of the B-spline, as well
as the number of groups. A small simulation study is also presented.
Results A three-group solution was chosen. It is shown that B-splines can provide
a better fit to the observed data than cubic polynomials. The offending trajectory
groups correspond to the classic groups of adolescent-limited, low-rate chronic and
high-rate chronic which were proposed by Moffitt. The shapes of the two chronic
trajectory curves from the B-spline fitting are more consistent with the life-course
persistent nature of chronic offending than the traditional cubic polynomial curves.
The simulation shows improved performance of the B-spline over cubic polynomials.
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Conclusions The use of B-splines is recommended when fitting group-based tra-
jectory models. Some software products need further development to include such
facilities, and we encourage this development.

Keywords Group based trajectory model · Smoothing · Latent class growth
analysis · Offenders index

Introduction

In the context of criminology, group-based trajectory models (GBTM) provide a
method of examining and understanding the evolving nature of offending over the life
course. Trajectory models most commonly examine frequency measures of offend-
ing over the life course through arrest or conviction data, although the method has
also been used for examining other processes, such as changing offending serious-
ness over the criminal career [16]. In contrast to other methods, such as the growth
curve model [37], such models assume that the underlying population consists of a
fixed but unknown number of groups, with distinct trajectories which give the chang-
ing estimated mean values for each group over time. The modelling task then is to
estimate the number of groups, and the shape of the trajectories, as well as to examine
the assignment of individuals to trajectories, and the effect of covariates on trajectory
membership.

Since Nagin and Land’s seminal work [23], the GBTM method has become
increasingly popular. It is now used extensively both in criminology and in other
disciplines such as psychology. However, the method has also been subject to con-
troversy. Thus [36], in his encyclopedia entry, identifies that the method has been
subject to “unusually robust criticism”. Sweeten identifies two controversies, the first
concerned with the meaning of “group” and the second suggesting alternative mod-
elling paradigms that may be better than group-based trajectory modelling. The first
concern is really focused on the need not to over-interpret the groups formed by the
method. Both [24] and [33] have suggested that the method may find groups which
may not really exist in the data.

The second concern relating to the form of the model has been where researchers
have proposed alternative methods of modelling longitudinal data, either through
multilevel or hierarchical models which do not assume a group structure or through
growth mixture models. Reviews of these competing approaches have been carried
out by [8] and [11].

Bauer [2] gives a thoughtful discussion of these two issues. He divides the
applications of GBTM into essentially three groups. Direct applications are where
the latent trajectories are interpreted as real subgroups in the population. In con-
trast, in indirect applications, there is no interest in the group structure, and the
latent classes simply provide a more flexible method of accounting for the indi-
vidual variation in trajectories—a form of non-parametric random effect. For these,
GBTMs may be used even when there is no underlying group structure, and present
a way of accounting for non-normality in the heterogeneity. Bauer also identifies
a third group which he also labels indirect—those applications which recognise
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that the latent classes are not real but where the trajectories are still presented and
interpreted.

One assumption of the model not usually discussed is that the estimated tra-
jectories are assumed to follow a polynomial curve over age. However, the use of
polynomial curves can led to modeling difficulties. The main issues are:

(a) Polynomial curves can sometimes produce unexpected changes in direction
which tend not to be supported by the data. Various authors have estimated tra-
jectories that show a typical pattern of increase, followed by decrease, followed
by an uplift at the end of the time period that cubic polynomials often produce.
We illustrate the problem by selecting two illustrative studies from the litera-
ture and shown in Fig. 1; [18] estimated juvenile trajectories for indigenous and
non-indigenous juveniles, and found that there was an upward turn in their high
rate trajectory at age 19 after an earlier increase and decrease before age 19.
Bushway et al. [7] also model trajectories of offending behaviour from age 13
to age 22, and estimate an uplift for three of their trajectories. The two papers
take different approaches to these trajectory shapes; Marshall comments in the
text on the change of shape without suggesting a reason, whereas [7] also com-
ment, but suggest such behaviour to be evidence of intermittency. It is clear that
when trajectories are estimated which show a number of changes of direction,
then authors are sometimes uncertain how to interpret these shapes and whether
such changes in direction are real.

(b) The fitting of a polynomial curve is “non-local”, meaning that data points in one
part of the time axis can influence the shape of the curve in a distant part of the
time axis. This is in general not a desirable characteristic. Thus, for example,
moving averages (a simple form of smoothing) will average values only in the
close neighbourhood of the data point.

(c) Polynomials are not capable of producing curves that are arbitrarily shaped. It is
not possible for a polynomial trajectory curve to be produced that rises steeply
in the first part of the time axis, and then exhibits a constant rate thereafter.

(d) Polynomials are highly correlated and can lead to numerical instability.

Although many research papers do not interpret trajectory shape in detail, some
do. For example, [34] estimated pre-employment offending trajectories to check
whether there were any non-desisting trajectories before job-entry. The rationale for
this was that a job could only be a turning point for those who have not yet started
their desistance process. The shape of the underlying trajectories clearly matters in
this example. Another example is in child sexual offending, where the aggregated
age-crime curve is thought to be bimodal [35, p.5]. There is considerable interest in
whether such a curve is produced by offenders stopping offending in early middle
age and restarting in later middle age, or whether there are two populations of child
sexual offenders with different onset and desistance patterns.

There are four approaches to dealing with this problem. Firstly, higher order poly-
nomials could be used. Sweeten [36] reports that PROC TRAJ, the SAS software
addon for group-based trajectory modelling [15], allows polynomials up to order five
to be fitted. While using high order polynomials may allow more flexibility in the
shape of the trajectory, the method still fails to solve the problem of the non-locality
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Fig. 1 Two examples of cubic polynomial trajectories from the literature showing uplifts on some tra-
jectories at the high end of the age scale. The top plot shows an example from [18] with an uplift for
the “high” group, and the bottom plot shows three offending trajectories with uplifts from [7] using the
Rochester Youth Development Study. Such uplifts may be spurious

of polynomial curves, where a data point at a low age can have a large effect on the
fitted curve at a high age. This in our view is an undesirable characteristic. A second
solution is to add additional functions of age to the polynomial terms for each trajec-
tory. This is the approach used by [4], who added two additional terms of the form
|((age/10)− 2)3| and |((age/10)− 3)3| to the model specification of each trajectory.
This approach is similar to the fractional polynomial method of [31]. The method
is “ad hoc” in the sense that the choice of the constants 2 and 3 are arbitrary and
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probably depend on initial examination of the data set under analysis—perhaps an
undesirable modelling strategy. A third solution is to fit age as a categorical factor. In
effect, this fits age as a stepwise function; the levels of the steps are constant within
each time period, and jump between time periods. This method provides local fitting,
but the fitting is too local as information from adjacent time periods is not used. In
addition, there are typically a large number of parameters to estimate for each tra-
jectory. In this paper, we choose a fourth solution—that of using cubic B-splines.
Silverman [32] describes the idea as “a natural and flexible approach to curve esti-
mation, which copes well whether or not the design points are equally spaced”. The
flexibility of shape together with its ease of fitting makes it suitable for group-based
trajectory models.

Returning to Bauer’s classification above, we recognise that most applications of
GBTM want to interpret the resulting trajectories, and this paper is of primary use to
the first and the third of these—the direct applications and also the indirect applica-
tions which have some interpretation. However, a more flexible form of modelling
will also be of considerable utility to the second type of user as the model will account
for heterogeneity more precisely. We return to this point in the discussion.

The Group-Based Trajectory Model

The Basic Model

We start by assuming that we observe a set of N offenders who are repeatedly
observed over T time periods. For offender i, we observe yi = (yi1, yi2, . . . ,

yit , . . . , yiT ).
We also simplify this development by assuming that the observations are counts

of some criminal process such as court appearances, offenses or arrests, and that we
have no missing data. Furthermore, we assume that all offenders are measured at the
same time periods, so that the dataset is “balanced”. We assume that there are K

latent groups or trajectories in the data, Then we can write

P(yi ) =
K∑

k=1
π(k)P (yi |k)

= ∑

k

π(k)
T∏

t=1
P(yit |k)

(1)

where the π(k) represent the group sizes, with
∑

k π(k) = 1. The likelihood L can
then be written as

L =
∏

i

P (yi ) =
∏

i

(
∑

k

π(k)

T∏

t=1

P(yit |k)

)

(2)

For count data in the kth trajectory, we assume that the yit are distributed according
to some discrete distribution—usually Poisson or negative binomial. Thus, either

yit ∼ Poisson(λtk) with P(yit |k) = λ
yit

tk e−λtk

Yit !
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or

yit ∼ NegBin(λtk, θk) with P(yit |k) = �(yit + θ2k )

yit !�(θ2k )

(
θk

θk + λkt

)θ

k

(
λkt

θk + λkt

)y

it

(3)
where λtk is the mean of the kth trajectory at time period t , and θk is an scale
parameter for the kth trajectory. We reparameterise so that τk = 1

θk
represents the

overdispersion of the kth trajectory, with the variance of yit |k equal to λtk(1+ τk). If
τk is zero, then we have Poisson variability for that trajectory.

It is usual to apply polynomial smoothing to the means to each of theK trajectories
through a log-linear model. Let the value of the time axis in time period t be xt . Then,
for cubic polynomial fits, we have, for the kth trajectory

ln(λtk) = β0k + β1kxt + β2kx
2
t + β3kx

3
t (4)

For example, with three latent trajectories with cubic polynomials, we need to esti-
mate two of the three π(k), together with either 12 β parameters for the Poisson
model, or 12 β parameters and three θ parameters for the negative binomial model.

Once the parameters of the model have been estimated, then the posterior probabil-
ity of the membership of trajectory membership for each offender can be estimated.
This is given by

p̂ik = P̂ (k|yi ) = π̂(k)P̂ (yi |k)
∑K

k=1 π̂(k)P̂ (yi |k)
(5)

where

P̂ (yi |k) =
∏

t

P̂ (yit |k)

for the chosen discrete distribution. Absolute assignment to group can be carried out
for any individual i by taking the group with the largest pik .

Determining the Number of Trajectories K

Various authors have suggested numerous methods for determining the number of
groups or classes in the data. Nagin [22], in his book, recommends the use of BIC
based on his extensive simulation work. Other authors have suggested alternative
methods. For example, Nylund et al. [25] examined the performance of AIC, CAIC,
BIC and adjusted BIC, as well as the bootstrap test for a wide range of latent class
and growth mixture models, and concluded that the bootstrap test often works well.
Aitkin et al. [1] has recently suggested a Bayesian method based on draws from
the posterior deviance which is found to perform very well on small and medium
samples. We have found from experience that although the BIC works well for small-
and medium-sized samples, it is less good for very large samples. An alternative,
recommended as the best by [19], in the context of general mixture models, is the
ICL-BIC criterion. This is defined to be BIC plus twice the entropy of the model:

ICL-BIC = −2 logL + log(n)q + 2
∑

ik

p̂iklogp̂ik (6)
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where q is the number of parameters in the model, and n is the number of distinct
individuals. This criterion was, however, found to be too conservative in Nagin’s
simulation, finding fewer groups than were actually present. We will examine both
BIC and ICL-BIC in this study.

Smoothing Trajectories

We seek to move from the polynomial model by using a more flexible form of smooth
function. We replace Eq. 4 with

ln(λtk) = fk(xt ) (7)

We are now estimating k different smooth functions or smoothers which change over
time, one for each trajectory. Hastie and Tibshirani [13] document a wide range
of different methods for estimating the smoothers fk(xt )—these include regression
splines, local loess smoothing, running line smoothers and kernel smoothers. Here,
we choose regression smoothers as a smoothing method. Although many of these
other smoothers could be used, regression splines offer one major advantage—they
can be used straightforwardly in standard software without the need to construct
purpose-written programs. Regression splines are basically a set of piecewise poly-
nomials, usually cubic, that meet at series of knots on the x axis; there is continuity of
the piecewise polynomials at these knots and also in the first and second derivatives.
The greater the number of knots chosen the more flexible the resulting smoothing
function will be.

Regression splines can be fitted by adding a series of terms to the design matrix
for each trajectory k. If the original design matrix is defined by

[
1,X,X2,X3

]
, where

1, X, X2 and X3 are column vectors containing the values 1, xit , x2
it and x3

it , then we
augment this matrix with extra columns Ch—one for each knot h. The extra columns
have elements of the form

ch
it =

{
(xit − zh)

3 if (xit > zh)

0 otherwise
(8)

where zh is the location of the hth knot. Thus, a regression spline with three knots
will have three extra columns, and have seven degrees of freedom in total for each
trajectory. The augmented design matrix is known as the basis of the spline.

B-Splines and Basis Functions

We choose a particular form of regression spline, the B-spline, which is a orthogonal
transformation of the regression spline defined above. These have important numer-
ical properties which limit the correlation between adjacent columns in the design
matrix. While they can be relatively easily calculated through a recursion formula,
the exact mathematical description is beyond this paper, and [5] gives the details. The
columns of the basis can be represented graphically: Fig. 2 shows the B-spline basis
based on local cubic polynomials for four knots and seven degrees of freedom over
the range of x from age 10 to age 45. It can be seen that no basis extends over the
entire range of x. This means that the local nature of the fit is ensured. The greater the
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Fig. 2 B-spline basis with four knots and seven degrees of freedom, with the age axis used in the example.
Knots are indicated as dots on the x-axis

number of knots specified, the more local these polynomials are and the greater the
ability to follow the underlying data. Rodriguez [30] suggests that the most appro-
priate placement of knots is at the areas where f (x) is changing more rapidly. As
with all modelling, a balance needs to be struck between the goodness of fit of the
curve to the data, and over fitting by specifying too many knots. It is often appropri-
ate to examine information criterion such as the BIC and ICL-BIC, coupled with the
knowledge of the subject and data, to decide the most suitable location and number of
knots. A different approach to deal with the number and location of knots is to treat
it as a model selection problem [3]. The aim becomes to choose the number of knots
that minimises the model fit statistics, by basically treating knot selection as regres-
sor selection. There are some methods that can assist with choosing the appropriate
amount of knots. He and Ng [14] use a method called the three-step selection, which
compares the change in the Akaike information criterion when adding or removing
knots. Alternatively, Osborne et al. [26] use a method called LASSO (Least Abso-
lute Shrinkage and Selection Operator) which is a regression method which involves
penalising the absolute size of the regression coefficients. We take a straightforward
approach and use the ICL-BIC criterion to choose the number of knots. B-splines
are starting to be used in criminology. For example, [17] used B-spline smooth-
ing to describe the general shape of the age-crime curve for males and females and
compared the results with group-based trajectory modelling, without, however, incor-
porating spline fitting into the GBTM modeling. Our focus in this paper is to build
on this work and incorporate the B-spline estimation into GBTM modelling.

When fitting B-splines, both the number of knots and the position of the knots
need to be specified, as well as the order of the local polynomials. In general, the
position of the knots is usually chosen by taking suitable percentiles of the x-axis.
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The number of knots represents the degree of smoothing (sometimes represented by
the degrees of freedom of the basis given by df = number of knots + 3), and can be
chosen by criteria such as the BIC or ICL-BIC, or by other statistical methods such
as cross-validation. It is common to use local cubic polynomials, and we do so in this
paper.

Fitting the Model in Standard Software

We can use standard software to fit the B-spline group-based trajectory model
(BGBTM) providing that the software has a flexible enough user interface to allow
user-specified design matrices for the trajectories. In general, we recommend that a
package such as R can easily be used to calculate the cubic B-spline basis using the
bs() function in library splines, and the B-spline basis can then be provided as
time varying covariates in the package of choice. Thus, the R-code

library(splines)
xx=bs(age, df=7)

can be used to generate the B-spline basis for age with four knots. SAS through the
PROC TRAJ procedure [15] is a popular method of fitting group-based trajectory
models, and allows time-varying covariates. Thus, specifying the B-splines as time-
varying covariates and setting the polynomial order to zero will fit a similar model to
ours (it is similar but not identical as there is still an intercept for each trajectory in the
model). MPLUS in contrast does not appear to have the flexibility required. We also
consider two alternative software packages for trajectory fitting—Latent Gold and R.
The package lcmm in R [29] can fit group-based trajectory models for continuous
and ordinal data, but not for count data.

In this paper, with our focus on count data, we use Latent Gold [38], which is a
general package for a wide variety of latent class models. In this software, group-
based trajectory models can be fitted using the Latent Class regression option, which
required the data to be in long form. We use R to calculate the B-spline basis, and the
variables which make up this basis are added to the dataset and become the “predic-
tors” in the regression. The predictor effects are specified as class dependent (that is
there is a separate trajectory for each class or group) through the model tab. Latent
Gold has the facility to fit either the Poisson or the negative binomial by setting the
type of the dependent variable either to “count” or to “overdispersed count”. The
fitted trajectories can be examined by requesting “estimated values” on the output tab.

Dataset and Methods

The England and Wales Offenders Index

We will be illustrating the methodology using official conviction data from the
Offenders Index (OI) database for England and Wales. The OI was originally cre-
ated for researchers to statistically analyse the criminal histories of offenders. The
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1963 birth cohort is one of eight birth cohorts (1953, 1958, 1963, 1968, 1973, 1978,
1983 and 1988), each representing a 4-week sample (around a one in thirteen sam-
ples) of all offenders born in a specific year. The same 4 weeks were chosen for
each cohort year (these are 3–9 March, 19–25 June, 28 September–4 October and
17–23 December). Court reports submitted by the police are built upon to form the
database. The data is collected from age 10 (the age of criminal responsibility) with
histories followed up till 2008. The 1963 birth cohort was chosen as 1953 and 1958
cohorts have conviction histories in the 1960s, when the criminal justice system had
far fewer diversions away from court in the form of cautions and warnings, and thus
the changes in the justice system for the two earlier cohorts would be more likely to
be confounded with changes in age. The dataset contains the court conviction history
from 1973 to the end of 2008. The 1963 cohort has 14,506 offenders who, between
them, have accumulated 89,750 offenses over the study period.

The data is structured in a hierarchical form with three levels—the first contain-
ing offender details (namely gender and date of birth), the second containing court
conviction details for the offender (dates of convictions) and the third level provid-
ing details of each separate offense within each court conviction occasion. Not all
offenses form part of the OI—with only offenses that are considered standard list
offenses are included. Standard list offenses are those which are considered indictable
(crown court offenses) or triable either way (either in the magistrates court or the
Crown court) and the more serious summary (magistrates court) offenses. Therefore,
many minor offenses are excluded.

There are a few disadvantages with the dataset which need to be mentioned. As
the dataset is formed from court records, the date of offense is not recorded. As there
can be a substantial delay between the offense date and court date, this can cause
inaccuracies in the number of offenders committing crimes at specific ages. Data on
the length of time from offense to court outcome has only recently been collected
in England and Wales; yearly data for the years 2010–2014 suggests the delay is
relatively constant, ranging from 151 to 159 days [20]. The dataset also contains no
information on cautions, warnings or fixed penalty fines, and no record is kept of
unsuccessful prosecutions. Information on death, immigration or emigration is also
not recorded.

The way in which the OI database is created is through a matching process using
the offenders surname, date of birth and criminal record number (if available). This
is subject to matching error and can match records together which do not relate to the
same person. This can be a problem with female offenders, who may change surname
when they get married. Francis and Crosland [10] also found specific problems with
common family names such as Smith or Singh. Due to the lengthy time period of
the dataset, the results of analysis are also vulnerable to social changes over time
meaning that any changes in the patterns of offending could be influence by changing
attitudes towards certain offenses. Over time, some offenses may be viewed as less
serious meaning the offender may receive a lesser disposal such as a caution which
may not be recorded as a conviction on the database.

Despite these caveats, the Offenders Index provides an excellent if imperfect
resource for examining long-term patterns of offending, with the 1963 cohort provid-
ing criminal histories over a 35-year period. In particular, the definition of offenses
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over time is extremely consistent with only a few changes to what is considered a
standard list offense.

Data Restructuring and Modelling Strategy

We grouped the offense counts into age periods of 2 years (10–11,12–13 up to 44–
45). Latent Gold requires the data in long form, and so the data was restructured
so that there were multiple lines of data for each offender, one for each 2-year age
period. Convicted offenses are naturally overdispersed, as each court appearance
potentially generates a number of offenses, and the counts are clustered. One such
mechanism is that offenders may seek to have other offenses taken into consideration
when they are charged for an offense. This natural overdispersion led us to use the
Negative Binomial form of the model. We fitted a sequence of models, from one to
eight trajectory groups and with from one knot to five knots (four smoothing degrees
of freedom up to eight smoothing degrees of freedom, using 100 different starting
values for each model and taking the best solution. For each model, we calculated
the BIC and ICL-BIC.

To assess model fit, we compared the mean observed offense counts mit for each
trajectory with the fitted mean trajectory counts λ̂tk , using the posterior probabilities
of group assignment as weights:

mkt =
∑

i

pikyit

n
(9)

This gives an indication of how well the fitted trajectories fit the data, on the
assumption that the classes or groups are correctly specified.

For the final model, we formed 95 % confidence intervals for each trajectory,
which were calculated as follows. If Xk is the design matrix for trajectory k and η̂k
is the fitted linear predictor η̂k = [log(λ̂ik)], then the upper (U) and lower (L) limits
of the confidence interval are given by

[L95%(η̂k), U95%(η̂k)] = η̂k ± Z0.975s.e.(η̂k) (10)

where Z0.975 is the 97.5th percentile of the standard normal distribution, and s.e.(η̂)

is the vector of standard errors of η̂. This is given by:

s.e.(η̂k) = √
(Xkcov(βk)XT

k ) (11)

where cov(βk) is the variance-covariance matrix of βk. The variance-covariance
matrix of the parameter estimates can be extracted from Latent Gold following a
model fit, and the above calculations can be carried out in R or other mathematical
software.

Results

Following the above strategy, we fitted a sequence of negative binomial latent trajec-
tory models to the Offenders Index data. Table 1 shows the BIC and ICL-BIC values
from these fits.
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Table 1 BIC and ICL-BIC values from negative binomial B-spline fits to the Offenders Index data. The
number of knots is equal to (df-3)

4 df 5 df 6 df 7 df 8 df

BIC values

1 group 310,805.5 310,778.0 310,764.8 310,573.2 310,552.9

2 groups 291,040.2 290,993.6 290,969.2 290,792.1 290,738.0

3 groups 286,719.1 286,659.2 286,564.0 286,478.4 286,483.4

4 groups 283,468.7 283,439.0 283,395.7 283,326.2 283,325.0

5 groups 282,550.6 282,463.2 282,438.0 282,380.2 282,380.7

6 groups 281,886.3 281,815.3 281,782.2 281,713.9 281,707.4

7 groups 281,240.6 281,190.1 281,229.8 281,169.8 281,158.2

8 groups 280,805.5 280,792.5 280,844.2 280,827.8 280,785.8

ICL-BIC values

1 group 310,805.5 310,778.0 310,764.8 310,573.2 310,552.9

2 groups 292,567.1 292,523.6 292,497.1 292,316.7 292,266.3

3 groups 297,404.6 297,408.2 297,251.7 297,229.5 297,280.7

4 groups 294,674.9 295,230.0 295,144.9 295,103.3 295,117.9

5 groups 295,351.4 295,235.1 295,127.6 295,086.0 295,100.5

6 groups 299,570.4 295,392.7 295,330.3 295,252.1 295,298.4

7 groups 299,086.8 298,423.3 298,358.2 298,423.3 298,576.8

8 groups 301,669.4 301,949.4 302,454.2 301,949.4 301,224.9

We can notice two features. Firstly, holding the degree of smoothing constant, and
examining columns of the table, the BIC values continue to decrease from one to
eight groups, and no minimum BIC is obtained. This is a common feature of trajec-
tory models with a large number of cases. Looking at the BIC values row-wise, the
BIC values suggest that between seven and eight smoothing degrees of freedom is
needed depending on the number of groups. Turning now to the ICL-BIC values, and
examining columns of the table, we see that the minimum occurs for two groups.
We note, however, that the ICL-BIC values are volatile; the values increase for three
groups, and then decline again for four groups. Looking at the ICL-BIC values row-
wise, we can observe that the minimum value most often occurs for seven degrees of
freedom.

It appears that both BIC and ICL-BIC have not really helped us in identifying the
number of groups. The BIC values identify too many groups, as the large amount
of data allows us to identify many groups. Practically, however, we consider that
reporting over eight groups is too complicated. The ICL-BIC, in contrast, identifies
too few groups. This chimes with [22], who also reported that ICL-BIC had this
characteristic.

We therefore adopt a pragmatic solution, following [22], who commented that
“model selection must balance the sometimes competing objectives of model par-
simony and capturing the distinctive features of the data” (p75). Our example is
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illustrative, and we therefore allow previous studies to influence our choice of the
number of groups. D’Unger et al. [9] identified four trajectory groups in the UK
London delinquency study, one of which was a non-offending group and three of
which were offending groups . As our sample consists solely of offenders, we have
no non-offenders, and so we report the three-group trajectory solution. We choose
seven smoothing degrees of freedom as this minimises both BIC and ICL-BIC for
three groups.

Figure 3 shows the fitted trajectories with 95 % shaded confidence intervals, for
the three group model with seven smoothing degrees of freedom, together with the
mean observed number of offenses by group using the weighted estimation described
earlier. The fitted trajectories appear to follow the observed data well, with no
undesirable “polynomial-like” features in the shapes of the curve.

In contrast, Fig. 4 shows the fitted trajectories and observed data for the three
group B-spline fit. While the observed mean number of offenses in the bottom part
of Fig. 4 looks very similar to the bottom plot of Fig. 3, the fitted trajectory curves
are somewhat different. In particular, group 3 fails to follow the trajectory shape of
the observed mean counts, dipping too rapidly towards zero.

Simulation Study

One criticism of the above development is that it has been carried out on real data that
has an unknown group trajectory structure. To counter this criticism, we therefore
carried out a small simulation study to illustrate the methodology on a constructed
dataset with a known group trajectory structure. We can then examine how well the
two methods (B-spline and cubic polynomial) reproduce the known trajectories, and
also examine the misclassification between the known group membership and the
membership predicted under the competing methods.

Our simulation assumes three trajectories, with known group size proportions
of 0.5, 0.4 and 0.1. Table 4 in the Appendix shows the specified mean counts per
year for the three trajectories. A negative binomial distribution was assumed for
each trajectory with common shape parameter of 2.00. Furthermore, 14,000 simu-
lated individuals were drawn by first sampling from a multinomial distribution to
determine the trajectory membership, and then simulating from the trajectory count
distribution for each age from 10 to 45.

Figure 5 shows the fitted three group trajectories to this data, under both the cubic
trajectory and B-spline models, and taking the best solution out of 100 different start
values. The specified mean counts are shown as data points. It can be seen that the
B-spline model reproduces the shape of the trajectories more precisely than the cubic
polynomial model. Details of the model fitting are shown in Table 2. It can be seen
that, although the group sizes are nearly identical in the two models, the B-spline
model has a lower BIC, and the estimates of the scale parameters are better esti-
mated with the B-spline model. Finally, we looked at the assignment of individuals
to latent trajectories (using Eq. 5) under the two models using the highest probability
method, and compared this to the known membership from the simulation. Table 3
shows these results. The difference here is more dramatic. It can be seen that the
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Fig. 3 The top graph shows the fitted B-spline trajectories for the three group model with seven degrees
of freedom smooth fitted trajectories identified from the B-spline analysis
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Fig. 4 The top graph shows the fitted cubic polynomial trajectories for the three group model. 95 %
Confidence intervals are shown as lighter shaded areas surrounding each curve. The bottom graph shows
the observed mean offense counts for the three fitted trajectories identified from the cubic polynomial
analysis
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Fig. 5 Simulation results. The top graph shows the defined mean profiles listed in the Appendix and used
to construct the simulated data set, and the bottom two graphs show the cubic polynomial trajectories and
the B-spline trajectories fitted to the simulated data

misclassification rate is far lower for the B-spline method than for the traditional
cubic fit, with a substantially greater amount of misclassification between groups 1
and 2 for the cubic model. In summary, the results support the real data analysis
above, with the B-spline method giving a more flexible curve shape, and a better
classification rate.

Table 2 Results of simulation: estimated group sizes and estimated dispersion

Cubic model B-spline model

Group 1 Group 2 Group3 Group 1 Group 2 Group 3

Estimated group sizes (%) 49.61 40.11 10.29 49.67 40.04 10.28

True group sizes (%) 50.05 39.64 10.31 50.05 39.64 10.31

Known scale parameter θk 2.000 2.000 2.000 2.000 2.000 2.000

Estimated scale parameter θ̂k 2.382 1.975 2.045 2.041 2.009 2.033

BIC 393,557 391,978

ICL-BIC 398,011 397,641
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Table 3 Results of simulation: misclassification rates and assignment tables for the two models

Cubic model

Estimated group membership

Known group membership 1 2 3 Total

1 5819 408 0 6227

2 1186 5141 11 6338

3 1 2 1432 1435

Total 7006 5551 1443 14,000

Misclassification rate: 0.1149

B-spline model

Estimated group membership

Known group membership 1 2 3 Total

1 6560 660 1 7221

2 446 4889 6 5341

3 1 1 1436 1438

Total 7007 5550 1443 14,000

Misclassification rate: 0.0796

Discussion and Conclusions

The results and small-scale simulation study presented in this paper show that the use
of B-splines improve both the estimation of trajectory shape and the classification
rate. Thus, B-splines in group-based trajectory modelling gives improved insight into
the shapes of trajectories. Like many other writers (for example [28]), we can relate
our trajectories in the real data example to Moffitt’s taxonomy [21]. For the three
offending groups shown in Fig. 3, the largest group is group 1 (51 % of offenders),
which can be labelled as adolescent-limited. The shape of this trajectory appears to be
quadratic. However, the remaining trajectories are not polynomial shaped. Group 2
appears to coincide with Moffitt’s low rate chronic group. This has a nearly constant
trajectory shape from around age 20 to age 40. Group 3 (the high-rate chronic group)
also has a non-polynomial shape. From peaking at age 20 at around one and a half
offenses per year, the trajectory flattens off at age 25 at about one offense a year, then
declines to around half an offense a year by age 40. The trajectory has a far more
complex offending shape than the cubic trajectory presented in Fig. 4, which has its
peak at age 25 followed by a strong decline thereafter. The shape of the spline trajec-
tory in our view fits better to the idea of a chronic or life-course persistent offender.
However, as has been pointed out by [6], these substantive results would also support
general life course criminological theories such the cumulative disadvantage theory
of [27] and indeed Gottfredson and Hirshi’s general theory of crime [12].

The disadvantage of cubic polynomial trajectories in generating uplifts not sup-
ported by the data has been highlighted in the introduction by an example from
sexual offending. In that example, the aim was to examine whether there is evidence
that some sexual offenders desist in early middle age, only to restart at a later age.
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A method that generates false uplifts must then be suspect for these types of investiga-
tion, and the B-spline method offers strong advantages for these problems. However,
no matter which method is used, researchers must also take care that their trajecto-
ries do not extend beyond the range of the data. Additionally, if the B-spline method
detects uplifts, examination of the number of offenses in the region of the uplift will
help to determine the criminological importance of such a result.

Another disadvantage of cubic polynomials that we identified in the introduction
was that data points in the early part of the time axis can influence the shape of the
curve in the later part of the time axis. While this can be seen mathematically, no
empirical studies have been undertaken on GBTMs to investigate this problem, and
we highlight this for future research.

One referee suggested that observed mean counts may be an easier way of under-
standing the underlying shape of trajectories. Certainly in this paper, the bottom
graphs in Figs. 3 and 4 appear to be very similar. The procedure would then be to fit
cubic polynomial trajectories and then to plot the observed mean counts at each age
point rather than the fitted curves. We think this idea has promise for those without
access to B-spline software, but it would be an approximate method as the assign-
ment weights for the means are determined by the cubic trajectory model, rather than
the better B-spline model. It would give a similar result to that obtained by fitting
“age” as a factor.

The model is valuable to all three of the forms of application identified by [2]
described in the introduction section. Clearly, it is of use to those applications who
wish to interpret trajectories either as real subgroups or as approximations to reality
with individual variability around each trajectory. But it is also of use to those who
simply want to use trajectories to account for heterogeneity in the population through
a non-parametric discrete mixing distribution. For these applications, mixtures of
splines will provide more flexility than mixtures of polynomials.

The model can be extended in various ways. We can easily relax the earlier as-
sumption of count data, so that trajectory models can be fitted to binary or continuous
observations—this will simply change the distributional assumption and the link func-
tion in Eq. 4. For continuous data, thelcmm package inR can be used to fit the models.
Missing observations can be incorporated easily as the likelihood can be construc-
ted for only those time points that are observed. This would essentially use a full infor-
mation maximum likelihood analysis and would assume a missing at random process.

Other extensions to the model presented here are possible but would require pro-
gramming work. For example, the Zero-inflated Poisson (ZIP) model, which allows
for intermittency, is popular in criminological applications as it is included in PROC
TRAJ. However, the full form of the ZIP model is not available in Latent Gold.
Where the Nagin and Land ZIP model specifies a different immune proportion for
each time point and for each trajectory, the Latent Gold model ZIP model assumes
a constant immune probability over all trajectories and time points. Other forms of
smoothing technology could also be used in place of B-splines, and this would also
require programming. We would expect results with other smoothers to be similar.

In conclusion, we can recommend the use of B-spline trajectories. They provide
a more flexible way of fitting trajectories, and the results of such analyses are not
constrained to the often unrealistic shapes of cubic curves. Some software can already
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be used to fit these models. We also suggest that the assumption of negative binomial
counts may be more realistic in many examples than the more common assumption
of Poisson counts. We encourage software writers to add both facilities to packages
that do not currently support them.

Acknowledgments We are grateful to three anonymous referees who provided useful and insightful
comments which improved this paper. This work was supported by the UK Economic and Social Research
Council (ESRC) (award numbers ES/K006460/1 and ES/J500094/1). This study was a re-analysis of
existing data that are held by the Ministry of Justice and available on request.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

Table 4 Trajectory means used in simulation study (“Simulation Study” section)

Group trajectory means used in simulation

offenses per year

Age Group 1 Group 2 Group 3

11 0.01 0 0.3

12 0.02 0.005 0.4

13 0.06 0.01 0.55

14 0.09 0.02 0.7

15 0.13 0.03 0.85

16 0.17 0.04 1

17 0.23 0.05 1.15

18 0.27 0.06 1.3

19 0.3 0.07 1.45

20 0.27 0.08 1.6

21 0.23 0.09 1.5

22 0.17 0.1 1.4

23 0.13 0.105 1.3

24 0.09 0.11 1.3

25 0.065 0.115 1.3

26 0.03 0.12 1.3

27 0.01 0.125 1.3

28 0.01 0.13 1.3

29 0.01 0.135 1.3

30 0.01 0.14 1.3

31 0.01 0.145 1.2

32 0.01 0.15 1.1

33 0.01 0.16 1

http://creativecommons.org/licenses/by/4.0/


B. Francis et al.

Table 4 (continued)

Group trajectory means used in simulation

offenses per year

Age Group 1 Group 2 Group 3

34 0.01 0.17 0.9

35 0.01 0.17 0.84

36 0.01 0.17 0.81

37 0.01 0.17 0.78

38 0.01 0.17 0.75

39 0.01 0.17 0.72

40 0.01 0.17 0.69

41 0.01 0.165 0.66

42 0.01 0.16 0.63

43 0.01 0.155 0.6

44 0.01 0.15 0.57

45 0.01 0.145 0.4

Group sizes 50 % 40 % 10 %
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