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Abstract—Decision making in cloud environments is quite
challenging due to the diversity in service offerings and pricing
models, especially considering that the cloud market is an
incredibly fast moving one. In addition, there are no hard
and fast rules; each customer has a specific set of constraints
(e.g. budget) and application requirements (e.g. minimum
computational resources). Machine learning can help address
some of these complicated decisions by carrying out customer-
specific analytics to determine the most suitable instance
type(s) and the most opportune time for starting and/or
migrating instances. In this paper, we employ machine learning
techniques to develop an adaptive deployment policy tailored
for each customer, providing an optimal match between their
demands and the available cloud service offerings. We provide
an experimental study based on extensive set of job executions
over a major public cloud infrastructure.

1. Introduction

The Infrastructure-as-a-Service (IaaS) ecosystem is
evolving so rapidly that it is becoming increasingly difficult
to select the best resources to use. It is a composite decision
that every customer is faced with:

• Which provider should she choose?
• What instance type(s) would provide her with the

cost:performance ratio that suits her needs?
• Does the time or day at which she requests these

resources affect how her application runs?

A customer has to choose between dozens of different
instance types, as illustrated in Figure 1. Moreover, the
answers to the above questions are highly subjective; each
customer application needs careful consideration of its re-
quirements against the various market offerings. Further
complications are manifested due to the disparate pricing
models adopted by different cloud service providers (CSPs).
As such, a customer entering the cloud market is over-
whelmed with a host of difficult questions without much
of a support system for such decision making.

We argue that we can help answer many of the afore-
mentioned questions about cloud infrastructure setup in a
systematic and evidence-based manner. This is not only to
assist customers entering the market, but also to provide
guidance to those wishing to migrate deployments between
CSPs to enhance Quality of Service (QoS), reduce cost, or to
honour other non-functional requirements (e.g. legislation,
disaster recovery, business continuity).
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Figure 1. The number of instance types offered by the major IaaS vendors,
as of 25th of August 2015.

In this paper we present Daleel, a multi-criteria adaptive
decision making framework that is developed to find the
optimal IaaS deployment strategy. In this paper, we take a
first step by focusing on one CSP in order to answer the
question: Which instance type and what time(s) are best for
a given customer application?. After gathering the profiling
evidence, we employ machine learning techniques to gain
insight into the expected performance of an application on
the calibrated CSP. Multivariate polynomial regression is
used for predicting application behaviour on certain IaaS
configuration.

Our contributions are as follows:

• The Daleel framework that supports adaptive de-
cision making in IaaS environments. We consider
two QoS attributes as criteria: instance price and
application execution time.

• An extensive analysis of variability of Amazon EC2,
a leading IaaS CSP. We use more than 5,000 appli-
cation runs for this purpose.

• Utilisation of different machine learning techniques
to evaluate Daleel’s ability to predict application
execution time on the EC2 cloud.

The rest of the paper is organised as follows. §2 reviews
related work. §3 details the Daleel architecture. §4 presents
the outcomes of a large-scale study into the variability of
IaaS offerings. §5 evaluates our learning approach using data
collected from EC2 deployments. §6 concludes and points
out avenues of future work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/42415721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2. Related Work

2.1. Application Management Frameworks

A number of frameworks have been developed by indus-
try and open source communities to act as an intermediary
between cloud customers and providers. These, sometimes
referred to as cloud brokers, carry out some task on behalf of
the customer such as arbitrage, aggregation and integration.
We classify such frameworks as either hosted or deployable.
Hosted services are externally managed by third-party stake-
holders and do not provide information about how the appli-
cation is being provisioned across the cloud. Examples in-
clude RightScale cloud portfolio management1, enStratus2,
xStream3 and CliQr4. In contrast, deployable services rely
on open source solutions that could be operated internally by
a corporation or externally as a grey-box integrated service.
Brooklyn5, Scalr6, Standing Cloud7 and Aelous8 are some
examples.

The solutions mentioned thus far tackle interoperabil-
ity to reduce application deployment, but do not support
adaptive decision making. This feature is still largely lack-
ing from cloud brokerage solutions, although some ef-
forts have started to surface in the wider cloud computing
community, e.g. STRATOS [1], CELAR9, MODACloud10,
Cloud4SOA [2], mOSAIC11, ARTIST12, Broker@Cloud13,
and PlanForCloud14. We conjecture that there is still a long
way to go in terms of providing dynamic decision making
that can effectively optimise to the specific functional and
non-functional requirements on a per-application basis.

2.2. Machine Learning

Machine learning can contribute immensely by taking
appropriate decisions to cater to specific application re-
quirements. Machine Learning has proved its potential for
producing prediction and optimisation solutions in various
fields [3], [4]. It has also been applied in cloud computing
towards resource scaling [5], forecasting [6], and dynamic
resource provisioning [7], [8], [9]. We aim to apply a similar
methodology but for the benefit of cloud customers selecting
between different IaaS resources.

1. http://www.rightscale.com/cloud-portfolio-management/benefits
2. http://www.enstratius.com/
3. http://www.virtustream.com/solutions
4. http://www.cliqr.com
5. https://brooklyn.incubator.apache.org/
6. http://www.scalr.com/
7. http://www.standingcloud.com/
8. http://www.aeolus-project.org/
9. http://www.celarcloud.eu/
10. http://www.modaclouds.eu/
11. http://www.mosaic-cloud.eu/
12. http://www.artist-project.eu/
13. http://www.broker-cloud.eu/
14. http://www.planforcloud.com/

3. Daleel

Daleel15 is a multi-criteria adaptive decision making
framework. It equips a cloud customer with evidence-based
knowledge of the IaaS setup specification that is optimal for
their particular application.

3.1. Architecture
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Figure 2. The Daleel Architecture.

Daleel’s architecture (depicted in Figure 2) consists
of three main modules: Decision Support, Actuator, and
Knowledge Base. The Decision Support module is at the
heart of the Daleel architecture and it relies on a three
phase process that continuously operates throughout the
application life cycle to predict application performance.
These phases are: Analysis, Learning, and Planning. They
carry out different but complimentary operations to acquire
deep knowledge of the available cloud deployment options
and how suitable they are to a given application. The Act-
uator triggers the Decision Support module into operation.
The Knowledge Base holds data collected by the Decision
Support module.

The application vignette is a short set of key-value pairs
provided by the customer that serve as a high level de-
scription of the application requirements. The customer con-
straints include the customer’s functional and non-functional
requirements such as minimum QoS, availability, location,
and budget. A CSP’s portfolio contains data that we obtain
(through APIs and web scraping) on their resource provi-
sioning levels, resource metadata, and pricing models.

We now describe how the three Decision Support phases
and the Actuator module work.

15. Daleel means ‘guide’ in Urdu.



3.2. Analysis Phase

The first stage comprises of a profiling procedure that
is based on time series analysis. Application profiling is
an effective way of tracking application behaviour under
different deployment setups. This can be carried out live on
shared cloud infrastructures (whether public or private), or
offline in a completely controlled and isolated virtual envi-
ronment. The obtained traces record different metrics such
as CPU utilisation, memory utilisation, paging and caching
information etc. Together these constitute the application
profile that can be used to predict deployment options that
can suit the application and customer requirements.

Aggregating different application profiles builds up the
Knowledge Base with information about application descrip-
tions and their behaviour on different deployment setups.
This is used to infer performance of a not-yet-profiled
application based on its ‘vignette’ (i.e. general description).

3.3. Learning Phase

The second phase in the Decision Support module is
the Learning phase. It comprises of a prediction proce-
dure that receives from the Analysis phase the following
information: performance traces, cloud resources portfolio,
and the application vignette. A critical task is to derive a
prediction model for the cloud provider in question, which
shows the QoS variations and offered services in order
to help the following phase (i.e. Planning) in achieving
optimal deployment that caters to the customer constraints
(functional and non-functional requirements).

The Learning phase aims to accurately predict the cost
of application execution, in terms of performance and vir-
tual machine (VM) price. It also aims to achieve a better
understanding of the correlation between the predictors and
the response in order to infer some relationship for future
prediction. These are quite difficult aims for which diff-
erent machine learning techniques are explored as no one
technique is considered to be the best for all data sets. In
this study, different regression methods were employed as a
prediction function. The response variable in our case study
is application execution time that involves a continuous
quantitative output value.

3.4. Planning Phase

The third phase takes input from the Learning phase in
the form of a prediction model which can generate a vector
output based on the input requirements of the customer. The
Planning logic is designed to support a multi-criteria deci-
sion making problem where a set of vectors describing the
performance is the Learning outcome. For the purposes of
this study, we are targeting two QoS attributes as our criteria,
namely VM price and application performance (execution
time). Various methods are being used by multi-criteria
decision making such as weighted sum [10], weighted prod-
uct [11], VIKOR [12], PROMETHEE [13], and more. We
intend for our decision making support to include such

multi-criteria techniques while considering more than two
QoS attributes.

3.5. The Actuator

The Actuator triggers the Decision Support module into
operation at different times. This could be based on thresh-
olds set according to the customer constraints on application
QoS, application load, or Knowledge Base information (e.g.
change in a provider’s portfolio). Such triggers will launch
new Analysis and Learning cycles, or will activate the Plan-
ning logic to begin migration to a new cloud infrastructure.
Migration between different cloud infrastructures is a big
challenge in its own right and is outside the boundaries
of this work. However, the Planning logic could easily be
extended to incorporate migration methods, e.g. [14].

4. Analysis of Variability in IaaS Offerings

We hypothesise that selecting specifications of a cloud-
based infrastructure is not an easy or straight-forward task,
especially due to the fact that there is considerable amount of
performance variability at any service provisioning tier. Our
initial step is to gather enough information to analyse such
variability. We achieve this through extensive experiments
over EC2’s public IaaS offerings. In this section we explain
the experimental details of our study along with profiling
procedure and the performance variability analysis. §5 will
detail about model development and learning evaluation
based on profiled data.

4.1. Methodology

The overall objective of conducting this evaluation is
to find the performance variations on different node con-
figurations at different times of the day. This experiment is
conducted on Amazon Elastic Cloud Compute (EC2). EC2
is the leading CSP with a 57% share of the IaaS market [15].
We run over different instance types, and throughout the
seven days of the week to investigate temporal variations.

4.1.1. Infrastructure. All instances used were 64-bit
Ubuntu Linux of different capacities as detailed in Table
1. Note that ‘vCPU’ indicates the number of virtual cores
assigned to a VM. An ‘ECU’ refers to an EC2 Compute
Unit; Amazon does not advise about how an ECU relates to
physical processing speed; it only assures that it is a standard
unit across its IaaS offerings16. ‘Price’ refers to the hourly
charge for running a VM of the referenced instance type.

Amazon provides differentiated series of instance types,
catering to different application needs (e.g. compute-
intensive, memory intensive, I/O-intensive, etc.). Each se-
ries contains a number of instance types offering different
setups of computational resources. We targeted the General
Purpose series T2 and M3 as well as the Compute Optimised
series C4 in order to evaluate varying combinations of

16. http://aws.amazon.com/ec2/faqs/



TABLE 1. THE COMPUTATIONAL SPECIFICATION OF EC2 INSTANCES.

Series Node vCPU ECU RAM Storage Price
(GB) (GB) ($/h)

T2 (General t2.small 1 Var. 2 20 0.026
Purpose) t2.medium 2 Var. 4 20 0.052

M3 (General m3.medium 1 3 3.75 4(S) 0.070
Purpose) m3.large 2 6.5 7.5 32(S) 0.140

C4 (Compute c4.large 2 8 3.75 20 0.116
Optimised) c4.xlarge 4 16 7.5 20 0.232

resource capacity over a relatively wide price range. Only
on-demand instances were used for this experiment. These
have no long term commitment and are charged on a pay-as-
you-go basis at an hourly rate. All instances were chosen to
be located in eu-west-1 availability zone, hosted in Ireland.

We are not aware of how EC2 virtual cores are pinned
to physical cores. Amazon EC2 uses the Xen hypervisor
to host the VM instances but do not provide the details of
scheduling algorithms used by the hypervisor. From running
our experiments, we could not find any firm details for
parallel workload and so are not aware of the interference
effects. This, however, is not our focus.

4.1.2. Application & Execution. Our use case application
was VARD [16], a tool designed to detect and tag spelling
variations in historical text, particularly in Early Modern
English. The output is aimed to improve the accuracy of
other corpus analysis solutions. VARD is a single threaded
application that is highly memory intensive. It holds in
memory a representation of the full text, as well as various
dictionaries that are used for normalising spelling variations.
Experiments were continuously repeated using a fixed set
of input texts over a period of seven days with a delay
of ten minutes in between each pair of runs. The Linux
tools vmstat, glances and sysstat were used to
continuously monitor resource utilisation.

4.2. Variation Due to Instance Type
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Figure 3. Application execution time over different cloud instance types.

We investigate performance of running VARD on VMs
of different instance types. The results are summarised in

Figure 3 where every dot represents the mean execution time
of one run. Shorter execution times reflect a lower hourly
rate over a full workload. There are a number of interesting
observations from these results.

We observe that, contrary to intuition, m3.medium (a
memory-rich instance) is of consistently poor performance.
We also observe that c4.large surpasses both m3.medium
and m3.large in performance. In fact it is on par with
c4.xlarge, which has twice both in specification and cost.

Overall, the T2 series offers by far the best value for
money. A possible explanation is the CPU Credits scheme
which enables customers to collect credits for idle instances
and later spend them when full CPU utilisation is needed.
CPU Credits are offered only on T2 series. Hence, T2
instances are good for applications that do not consistently
fully use the CPU. However, it also means that there is
a degree of uncertainty associated with an application’s
performance that depends on its idle time.

4.3. Variation Due to Time

We now turn our attention to uncertainty in application
performance due to the time at which they are executed.
This is depicted by the box-plots in Figure 4.

The T2 series offer the least RAM, but exhibit the least
variance in performance between the different days of the
week. m3.medium VMs display a predictable, albeit quite
high, application execution time. The median and quartiles
show very little variation across the days of the week.
m3.large also offers quite predictable performance across
the week, with a narrow first quartile which is favourable.

The two C4 instance types portray contrasting perfor-
mances. c4.large is rather predictable with a steady median
and right skewness (i.e. a very narrow first quartile). On
the other hand, dispersion in the c4.xlarge instances is more
towards the high end of application execution time with a
median that is less regular: less left skewness is observed
on Wednesday, Saturday and Sunday.

This could be down to different reasons such as demand
from other users, the provider’s resource sharing algorithms,
and the provider’s energy efficiency policy. These are diffi-
cult attributes for us to ascertain from the outside. Neverthe-
less, we detect certain regularities that helps us determine the
predictability of application performance at different time.

4.4. Lessons Learned

We investigated how variable the performance obtained
from different IaaS settings could be, making the execution
of a simple application rather uncertain. We demonstrated
that public IaaS offerings are to a great extent black boxes.
First, selecting instance types solely based on their adver-
tised resource specifications is not necessarily optimal. Sec-
ond, selecting which day of the week to run an application
could result in significant variation in performance.

This variability serves as our motivation to equip users
with some certainty when consuming IaaS resources.
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Figure 4. Dispersion of application execution time during all days of the week on different EC2 instance types. Notice that all graphs have the same y-axis
range apart from m3medium.

5. Learning Evaluation

We now apply different machine learning algorithms
to be able to predict the best IaaS deployment setup for
a certain application. We again use the VARD application
(see Section 4.1.2) as a use case, with the goal being to
predict the optimal resources and most opportune time for
starting an EC2 instance to execute VARD by predicting
the execution time. We first describe how we look for and
assess the best models, then we detail the outcomes of our
learning investigation.

5.1. Model Development and Evaluation Method

The core technique of our methodology that can ef-
fectively predict execution time is based on polynomial
regression. Polynomial regression is an approach of non-
linear fit to data [17]. It extends the linear model by adding
additional predictors that are obtained by raising each of
the original predictors to a power. For example, a cubic
regression has three variables: X,X2, X3. The basis func-
tions for polynomial regression are bj(xi) = xij . We take
application execution time as a response variable, whilst a
list of other variables as candidate predictors: RAM, vCPU,
processor speed, hypervisor, storage, day, time, application
input parameters, etc.

Considering both prediction and inference based learn-
ing techniques, we follow the procedure outlined below in

order to get a robust model that can accurately predict the
response using the predictors.

1) Split the data into two sets: a training set to be used for
learning, and a test sample for assessment and model
evaluation. For current evaluation we split the data set
into training and test set with a ratio of 57% and 43%
respectively.

2) Train the model on the training set.
3) Assess the accuracy of the model using resampling

methods (e.g. cross validation and bootstrapping [18]),
these methods are employed on the training set for
model assessment. Resampling methods repeatedly
draw samples from the training set and refit the model
on each sample to get additional information about the
fitted model’s performance such as variability estimates
of regression fit. Cross validation is one of the widely
used resampling methods for model selection. We used
the k-fold cross validation method, computed by aver-
aging the Mean Squared Error (MSE) for k-folds over
the training sample using the formula:

CV(k) =
1

k

k∑
i=1

MSEi

where k = 10 in our case. The MSE serves as a risk
function for an estimator to measure the average of
the squares of the error that is basically a difference
between the estimator and estimated value [4]. It is



calculated using below equation where y is actual
response value:

MSE =
1

n

n∑
i=1

(yi − f̂(xi))2

4) Check goodness of model fit using statistical testing
methods like p-value, R2, RSE, and F-statistics. R2

measures the proportion of variability in the response
variable that is explainable by the predictors. The
Residual Standard Error (RSE) shows the actual devi-
ation of the response from predicted, and measures the
lack of fit for a model. F-statistics (also referred to as
fixation indices) is a measure to reject a null hypothesis
and to show the overall significance of a model.

5.1.1. Polynomial Fit. The multivariate polynomial model
is a special case of a basis function approach that we used
in our learning model. The idea of using a basis function is
to have a transformation that can be applied to a variable
X: b1(X), b2(X), . . . bk(X). Instead of a linear model fit in
X , we fit the model:

yi = β0 + β1xi + β2xi
2 + β3xi

3 + · · ·+ βdxi
d + εi

Basis functions are fixed and known [18], hence the
least square approach can be used to estimate the unknown
regression coefficients in the model above. The least square
fit approach for coefficient estimates indicates that all of
the inference tools for linear regression, such as standard
errors of the coefficient estimates and F-statistics to check
overall significance of model, can be used in this setting
as well. A robust polynomial model is build using profiling
results. This model is an attempt to predict execution time
using two significant predictors RAM and vCPU as well
as an additional one: day of the week. This third predictor
cannot describe the underlying distribution function on its
own; instead it presents a meaningful outcome in a combina-
torial way. This polynomial regression based formula takes
the following form with one cubic and bivariate quadratic
polynomial:

F (x) = β01 + β11x+ β21x
2+

β02 + β12x+ β22x
2 + β32x

3+

β03 + β13x+ β23x
2 + β33x

3

This model is considered a successful attempt towards
prediction at a fine grained level. It has the lowest MSE
compared to other models evaluated in next section. The
planning phase takes this model as an input along with
substantial details of customer constrains and outputs the
suitable configuration based on the metric calculated by the
planner.

5.2. Model Accuracy Analysis

To evaluate the accuracy of our model we compared it
with different learning models using the standard methods
described in subsection 5.1. Due to the lack of previous

models, we used other learning techniques as baseline for
comparison, namely linear regression, ridge regression and
Lasso. The same dataset and methodology were used to
extract and evaluate the results.

5.2.1. Baseline Models. Linear models are relatively sim-
ple to implement and can provide good interpretation and
inference. For accurate coefficient estimates, it uses the least
square criteria [3]. The standard linear model is expressed
as follows:

yi = β0 + β1xi + εi (1)

The linear least squares fitting procedure (Equation 1)
estimates β0, β1, . . . , βp using the value that minimises the
residual sum of squares (RSS) as defined by:

RSS =

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2

In extension to our assumption about linear regression
we tried to fit the model containing all variables using
a technique that shrinks the coefficient estimates towards
zero. We used the two well-known regularisation techniques
for shrinking regression coefficients: ridge regression (also
known as Tikhonov regularisation [19]) and Least Absolute
Shrinkage and Selection Operator (Lasso) [20].

Ridge regression is similar to least squares but minimises
the coefficient estimates with a slightly different quantity of
λ [18]. The ridge regression coefficient estimates β̂R as the
values that minimises

RSS + λ

p∑
j=1

β2
j =

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

β2
j

λ ≥ 0 is a tuning parameter that controls the relative impact
of the least square and shrinkage penalty on the regression
coefficient estimates. When λ = 0, the penalty term has no
effect and estimates are least square. However, as λ → ∞
the shrinkage penalty grows and the coefficient estimates
approaches zero.

Ridge regression includes all the variables as P predic-
tors in the final model. Highest value of λ can reduce the
coefficient value but cannot exclude any variable from the
resulting model. On the other hand, Lasso overcomes this
disadvantage by forcing some of the coefficient estimates
to be equal to zero especially when the λ value is large
enough [18], as such:

RSS + λ

p∑
j=1

|βj |= ‘

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

|βj |

In statistical terms, Lasso uses an l1 penalty while ridge
uses an l2 penalty. The l1 norm of a coefficient vector β is

||β||1 =
∑
|βj |

For the ridge and Lasso regression model fits, we chose
a range of λ values from λ = 1010 to λ = 10−2 in order
to evaluate all scenarios starting from the null hypothesis
(that contains only the intercept term) to the least square fit,
respectively.



5.2.2. Diagnostic Assessment. We now asses the accuracy
of the models, as summarised in Table 2.

The norm values assessment for Lasso and ridge regres-
sion models indicate that none of the λ values reduced the
MSE. In fact, the best λ values (i.e. the ones that have
minimum MSE, namely λ = 2.30 for ridge and λ = 0.03 for
Lasso) have even higher MSE than that when the function is
derived to the least square fit. The best λ value was figured
out using cross validation technique.

Moving on to the other regression diagnostics (not
suitable for ridge or Lasso), the R2 statistic provides the
proportion of variance explained using the predictor X and
so it always takes a value between 0 and 1. The low R2

value for linear regression indicates that this model did not
explain much of the variability in the response; much less
than half of it, in fact. On the other hand, the polynomial
model captures more than 93% of data variability in terms
of response prediction.

The high F-statistics value for the polynomial model
indicates the significance of selected predictors and their
relationship with the response variable. The validation set
error rate is usually assessed using MSE especially in the
case of quantitative response. The MSE values for ridge and
Lasso are higher than that of the linear model. However, the
same validation set MSE for polynomial fit is considerably
smaller than the linear model. As with R2, we observe a
gross reduction for RSE in polynomial fit that estimates the
standard deviation of error term which means there is less
deviation of predicted response from the true regression line.

TABLE 2. ASSESSMENT OF THE MODELS OVER THE TRAINING
DATASET.

Diagnostic
Model

Linear Ridge Lasso Polynomial
MSE (10-fold CV) 1159.00 2312.69 2476.65 131.27
R2 0.3741 – – 0.9307
F-Statistics 298 – – 5024
RSE 33.77 – – 11.55

Furthermore, we can check the model visually by plot-
ting the actual response from the test dataset against the
predicted. If the model describes the structure of the data
appropriately, then the estimated regression curve should be
aligned with the data. This visualisation is shown in Fig-
ure 5. The red points denote the linear model fit, depicting
considerably high deviation from the identity line. Ridge
and Lasso display similar qualities and are not plotted for
clarity. In contrast, the polynomial fit (blue points) is closely
aligned to the identity line, proving a far superior prediction
capability compared to the linear and other baseline models.

Finally, we assess the models on the test set (43% of
the full EC2 data). The results confirm the above results, as
summarised in Table 3.

5.3. Model Fitting Outcomes

The polynomial transformation has proved to be the best
fit to the EC2 data as evaluated using different diagnostic
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Figure 5. Predicted vs Actual values for the polynomial and the linear
baseline model over the test dataset. Values closer to the identity line
indicate better prediction performance.

TABLE 3. ASSESSMENT OF THE MODELS OVER THE TEST DATASET.

Diagnostic
Model

Linear Ridge Lasso Polynomial
MSE 1183.00 1185.82 1162.80 129.84
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Figure 6. Q-Q plot of the polynomial model.

methods and plots. We now use residual plots to check
for possible violations of our assumptions such as non-
constant variance and non-normal distribution. If the two
distributions are similar, then they would show a constant
variance with normally distributed data. Q-Q plots are used
for this purpose. In the Q-Q plots of our polynomial model
shown in Figure 6, the points lie on the identity line in-
dicating that the data indeed follows a normal distribution,
validating our assumption. This also confirms that the non-
linear transformation works well for our model fit.

An interesting finding is that the inclusion of an ad-
ditional predictor (day of the week) has little but not sig-
nificant improvement as reflected by R2 in the polynomial
model. Nonetheless, it does allow us to be able to predict the
optimal deployment time at a day granularity level which is
a good contribution to support decision making.

In summary, we explored the possibility of fitting the
data with both linear and non-linear models. We found



that a non-linear transformation of the predictors is more
suitable due to the non-linear association of data. Model
assessment was done through cross-validation using the
MSE which estimates the test errors associated with the
learning method to evaluate its performance. We applied
regression diagnostics to check the assumptions for linear
regression with non-linear transformation of the predictors.
Non-linear multivariate polynomial model outperformed the
linear, ridge and Lasso models as indicated by different
factors.

6. Conclusion

Customers are faced with a large array of choices for
deploying their applications in the cloud. Supporting the
customer decision making is an under-researched area. Fur-
thermore, there is little understanding of how to implement
adaptive decision making that can react to changes in con-
text.

In this paper, we explored in depth the role of ma-
chine learning to provide such adaptive decision making.
An overall architecture, called Daleel, was proposed (§3)
and an empirical evaluation carried out to investigate how
machine learning can support the key phases of analysis
and learning in preparation for the subsequent planning.
The analysis focuses on decision making around executing a
particular application in a given cloud provider. Specifically,
our empirical study focused on decision making around the
selection of instance types for the execution of VARD, an
application from the field of computational linguistics. The
results show that:
a. The performance of instance types is often counter-

intuitive and can vary significantly over time (§4).
b. Machine learning can be highly effective in making pre-

dictions based on performance data but care is required
to select the right approach (§5).
Looking at this aspect in more detail, we explored the

possibility of fitting the data with both linear and non-
linear models. We found that a non-linear transformation of
the predictors is more suitable. This is due to the inherent
non-linear association of data; we found, through extensive
experimentation, significant skewness in the performance of
different EC2 instance types.

The results from this initial study are encouraging and
we are convinced that machine earning has a central role
to play in optimising cloud deployments. Our first avenue
of future work is to consider other classes of application,
including applications that vary in terms of being memory-
intensive, processor-intensive or data-intensive and combi-
nations thereof. The Knowledge Base in our Daleel archi-
tecture will be used for further investigation of application
behaviour and resource utilisation patterns in order to predict
based on different clusters of application types. Second,
we plan to incorporate enhanced decision making methods,
including consideration of multi-criteria decision making.
Finally, extending the work to consider the management of
cross-cloud environments including consideration of policies

such as cloud-bursting in hybrid cloud infrastructures. Cloud
brokerage is the key application area here, but it still is in
its infancy especially in terms of practical experience.
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