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Abstract—This paper proposes a new power allocation tech-
nique to jointly optimize link-layer energy efficiency (EE) and
effective capacity (EC) of a Rayleigh flat-fading channel with
delay-outage probability constraints. Specifically, EE isformu-
lated as the ratio of EC to the sum of transmission power and
rate-independent circuit power consumption. A multi-objective
optimization problem (MOP) to jointly maximize EE and EC
is then formulated. By introducing importance weight into the
MOP, we can flexibly change the priority level of EE and EC, and
convert the MOP into a single-objective optimization problem
(SOP) which can be solved using fractional programming. At
first, for a given importance weight and a target delay-outage
probability, the optimum average transmission power level to
maximize the SOP is found. Then, the optimal power allocation
strategy is derived based on the obtained average input power
level. Simulation results confirm the analytical derivations and
further show the effects of circuit power,importance weight, and
transmission power constraint limit on the achievable tradeoff
performance.

I. I NTRODUCTION

During the last decade, climate change has emerged as
a global challenge and many governments, academics and
industries are now increasingly unified in a call to action [1].
It is reported that information and communications technology
(ICT) industry is estimated to contribute between 2% to 3% of
global greenhouse gas emissions [2], a share which is quickly
raising. Besides, although silicon technology is exponentially
progressing, the power consumption of the processor is also
increasing by 150% every two years [3]. In contrast, the
improvement in battery technology is much more sluggish,
about 10% increase every two years [3], which leads to a
rapidly increasing gap between the demand for energy and
the battery capacity offered. Therefore, to meet the challenges
raised by the high demands of wireless traffic and energy con-
sumption, green communication has become an urgent need.
Energy efficiency (EE), in b/J/Hz, and spectral efficiency (SE),
in b/s/Hz, are considered as two key performance indicators
for green wireless communication systems. Unfortunately,it
is known that EE and SE are inconsistent and conflict with
each other.

To tackle this problem, many studies on the EE-SE trade-
off have been carried out [4]–[10]. In particular, the EE-
SE tradeoff problem was formulated as a constrained opti-
mization model, for interference-limited wireless networks in
[4], downlink orthogonal frequency division multiple access
(OFDMA) networks in [5], and cooperative cognitive radio
networks in [6]. In the aforementioned studies, EE was fixed
as the objective function and a constraint on achievable rate
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was imposed. However, according to the dynamic property
of surrounding circumstances, various application types,and
different users’ preferences, the corresponding objective func-
tion might need to change. Therefore, continuously adjustable
objective function is indispensable, but it is not providedin
[4]–[6].

The EE-maximization problem was converted into an MOP
in [7] and the weighted sum method was introduced to convert
the MOP into an SOP, subject to constraints on overall
transmit power of each remote access unit, bit error rate, and
proportional data rates for mobile stations. The MOP approach
in an OFDMA cellular network was provided in [8] which
introduced the normalization factor and transformed the MOP
into an SOP using weighted sum method. Later, considering
tradeoff between EE and SE, the power loading problem for
orthogonal frequency division multiplexing (OFDM) with im-
perfect channel estimation was investigated in [9]. Specifically,
instead of maximizing both EE and SE, the inverse of EE and
inverse of SE were minimized to make shannon capacity as
the common denominator [9]. The weighted sum method was
also used in [9] to build a tractable tradeoff function.

In the aforementioned tradeoff papers [4]–[9], shannon
limit was given as the system throughput, which is suitable
for systems with no link-layer QoS requirement. However,
for enabling multimedia communication systems, delay QoS
requirement has been an essential factor [11]. In such systems,
effective capacity (EC) can be used to specify the maximum
constant arrival rate with a target delay-outage probability
requirement [11]. Therefore, the link-layer EE is defined as
the ratio of EC to the total expenditure power. However, EE
and EC could conflict with each other. In more details, the EE
curve as a function of transmit power has a bell shape where
the location of its maximum depends on the circuit power
[12]. On the other hand, EC is a monotonically increasing
function of transmission power [11]. Therefore, depending
on the operational transmit power, EE and EC may conflict,
and hence, how to balance the two metrics deserves elaborate
study.

With the theory of link-layer EC, the relationship between
link-layer EE and EC under delay constraint was exploited
in [10]. Firstly, singal-to-noise ratio (SNR) was expressed in
terms of EC, using a curve fitting method. Then EE, as a
function of SNR, is defined as a function of EC. Therefore,
the relationship curve between EE and EC could be provided.
However, the mathematical formulation of tradeoff between
EE and EC, as well as the close-form power allocation strategy
was not provided.

In this paper, considering a system with delay-outage
probability requirement, a new link-layer EE-EC tradeoff
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formulation is proposed and then, solved using fractional
programming. Before starting to integrate the joint EE-EC
maximization problem, we transform the two objectives into
two normalized unitless functions, to get rid of their different
measurements and orders of magnitude. Further, instead of
maximizing link-layer EE and EC, we minimize the inverse
of EE and the inverse of EC to make EC as the common
denominator. We then introduce theimportance weight into
the formulation, which could be used to adjust the priority
of EE and EC according to surrounding circumstances, user’s
preference and system’s QoS requirement. By transforming
the MOP into an SOP, we show that the tradeoff function
is quasi-concave in transmission power, and hence, a global
maximum could be achieved through fractional programming
[13]. For a point-to-point Rayleigh flat-fading channel with
delay constraints, we present numerical results to illustrate
the effects of theimportance weight, circuit power and
transmission power constraint limit on the tradeoff problem.

II. SYSTEM MODEL

We consider a point-to-point wireless communication sys-
tem over a flat-fading channel. Similar to what is considered
in [14], firstly, the upper-layer packets are divided into frames
at the data-link layer. At the physical layer, the frames stored
at a first-in-first-out (FIFO) buffer are split into bit streams.
Adaptive coding and power allocation strategy are applied at
the transmitter [15], using the channel-state information(CSI)
fed back from the receiver, and the QoS constraint. Then, the
bit streams are read out of the FIFO buffer and transmitted
through the wireless fading channel.

We assume that the wireless channel is block fading, i.e.,
the channel gain is invariant during each fading-block, but
independently changes from one fading-block to another. The
length of each fading-block, denoted byTf , is assumed to
be an integer multiple of the symbol durationTs. We also
assume that the ideal Nyquist transmission symbol rate is
satisfied, which means that the symbol durationTs equals to

the inverse of the system bandwidth,Ts =
1

B
. During each

fading-block, the service rate process,{R[t], t = 1, 2, . . . , Tf},
using adaptive transmission is considered to be stationaryand
ergodic [14]. Therefore, the block indext could be omitted
for simplicity. The instantaneous service rate, in b/s/Hz,at the
tth fading-block is given as

R [t] = log2

(

1 + Pt[t] ·
γ [t]

PLσ2
n

)

(b/s/Hz) , (1)

where Pt[t] is the transmission power,PL denotes the
distance-based path-loss,σ2

n indicates the noise power and
γ[t] presents the channel power gain of the considered unit-
variance Rayleigh block fading channel with the probability
density function (PDF)fγ(γ) = e−γ [16].

A. Effective Capacity

Based on the large deviation theory, for a dynamic queueing
system with stationary ergodic arrival and service processes
[17], the queue length processQ (t) converges in distribution
to a steady-state queue lengthQ (∞) such that

− lim
x→∞

ln (Pr{Q (∞) ≥ x})

x
= θ, (2)

where Pr{a ≥ b} shows the probability thata ≥ b holds. (2)
implies that the probability of the queue length exceeding a
certain thresholdx decays exponentially fast asx increases
[15].

Now, assuming that the Gartner-Ellis theorem [18, Pages
34-36] is satisfied, EC of an independent and identically
distributed (i.i.d) block fading channel can be expressed as
[11]

EC= −
1

θTfB
ln
(

E

[

e−θBTfR[t]
])

(b/s/Hz) , (3)

whereE[·] indicates the expectation operator. Note that in (3),
the parameterθ (θ > 0) indicates the exponential decay rate
of the QoS violation probability. A slower decay rate could
be represented by a smallerθ, which indicates that the system
can tolerate a looser QoS guarantee, while a more stringent
QoS requirement will be indicated by a largerθ.

Now, the delay-outage probability, which is defined as the
probability that the delay exceeds a maximum delay-bound
Dmax, can be estimated by [11]

P out
delay = Pr {Delay≥ Dmax} ≈ εe−θµDmax,

whereDmax is in units of a symbol period(Ts = 1/B). Hence,
in order to meet a target delay-bound violation probability
limit, P out

delay, a source needs to limit its data rate to the
maximum ofµ, whereµ is the solution ofµ = EC, given
in (3).

B. Link-layer Energy Efficiency

We formulate the link-layer EE for delay-limited system as
the ratio of EC to the sum of the circuit power,Pc, and the
transmission power scaled by the power amplifier efficiency
ǫ. Therefore, EE can be expressed as

EE=
EC

Pc +
1

ǫ
E[Pt[t]]

0 ≤ ǫ ≤ 1. (4)

III. O PTIMAL POWER ALLOCATION

In this section, we formulate the EE-EC tradeoff as an
MOP and provide the optimal power allocation strategy under
average input power constraint. Since EE and EC have dif-
ferent measurements and orders of magnitude, we normalize
them with EEnorm and ECnorm, respectively. To be specific,
if P ∗

EE denotes the optimal average power level at which EE
is maximized, then EEnorm = EE|E[Pt[t]]=P∗

EE
and ECnorm =

EC|E[Pt[t]]=P∗

EE
.

Here, instead of jointly maximizing
EE

EEnorm
and

EC
ECnorm

,

we minimize the inverse of the two conflicting objectives to
make EC as the common denominator. The MOP, hence, can
be formulated as

min
EEnorm

EE
and min

ECnorm

EC
(5a)

subject to: E[Pt[t]] ≤ Pmax, (5b)

where Pmax is the average transmission power limit. By
utilizing (4), we combine the two objectives in (5a) using
an importance weight, which could be adjusted to indicate
the priority of different objectives. Therefore, the MOP is
transformed into an SOP with input power constraint, which



yields

min w1

EEnorm(Pc +
1
ǫ
E[Pt[t]])

EC
+ (1− w1)

ECnorm

EC
(6a)

subject to: E[Pt[t]] ≤ Pmax, (6b)

wherew1 ∈ [0, 1] is theimportance weight. In more details,
w1 and(1−w1) represent the importance of the link-layer EE
and EC, respectively. Whenw1 = 0, the tradeoff problem is
transformed into an EC-maximization problem, while when
w1 = 1, the MOP is simplified into an EE-maximization
problem. In fact, the importance of EE gradually grows as
w1 increases from 0 to 1.

Then, since the transmission power is a function of the
channel power gainγ, the instantaneous transmission power
Pt[t] in (6a)-(6b) could be written asPt(γ). Finally, the EE-
EC tradeoff problem can be mathematically expressed as

min
Pr(γ)≥0

w1

EEnormKℓ

(

Pcr +
1
ǫ
Eγ [Pr(γ)]

)

−
1

θTfB
ln
(

Eγ

[

(1 + Pr(γ)γ)
−α(θ)

])

+(1 − w1)
ECnorm

−
1

θTfB
ln
(

Eγ

[

(1 + Pr(γ)γ)
−α(θ)

])

(7a)

subject to: Eγ [Pt(γ)] ≤ Pmax, (7b)

where Eγ [·] indicates the expectation over the PDF ofγ,

Pr(γ) =
Pt(γ)

Kℓ

, Pcr =
Pc

Kℓ

, α(θ) =
θTfB

ln 2
, Kℓ = PLσ

2
n.

Setting EE′norm = EEnormKℓ, Kℓ could be canceled to scale
the normalized system performance with respect to path-loss

factor. Since−
1

θTfB
is a negative constant, the minimization

problem (7a) can be converted into a maximization problem.
Then, it could be converted back into a minimization problem
by inverting the objective function, yielding

min
Pr(γ)≥0

ln
(

Eγ

[

(1 + Pr(γ)γ)
−α(θ)

])

w1EE′
norm

(

Pcr +
1
ǫ
Eγ [Pr(γ)]

)

+ (1− w1)ECnorm

(8a)

subject to: Eγ [Pr(γ)] ≤
Pmax

Kℓ

. (8b)

A. Optimum Power Allocation With No Input Power Con-
straint

Firstly, the unconstrained SOP is tackled, paving the way
for the optimum power allocation strategy of the SOP with
input average power constraint. The objective function in (8a)
involves the ratio of two functions ofPr(γ), and it is not
concave [13]. However, the EC function has been proved to
be concave in the transmission power, and in turn, inPr(γ)
[14]. Therefore, the numerator in (8a) is convex [19]. On the
other hand, the denominator of the objective function is affine
in Pr(γ), therefore, the tradeoff problem is quasiconcave and
could be solved through fractional programming [13].

Now, by using the variable transformation
t = (w1EE′

norm

(

Pcr +
1
ǫ
Eγ [Pr(γ)]

)

+ (1− w1)ECnorm)
−1

,
the minimization problem (8a)-(8b) could be converted into

min
Pr(γ)≥0

t ln
(

Eγ

[(

1 + Pr(γ)γ
)−α(θ)])

(9a)

subject to: t
(

w1EE′
norm

(

Pcr +
1

ǫ
Eγ

[

Pr(γ)
])

+(1− w1)ECnorm
)

= 1. (9b)

The objective function in (9a) is convex in(Pr(γ), t) with
an affine constraint [13]. Therefore, the Karush-Kuhn-Tucker
(KKT) conditions are both sufficient and necessary for the
optimal solution [19]. Ifλ ∈ R is the Lagrange multiplier,
then the Lagrangian is

L
(

Pr(γ), t, λ
)

=

t ln
(

Eγ

[(

1 + Pr(γ)γ
)−α(θ)])

+ λ
(

t
(

w1EE′
norm

(

Pcr +
1

ǫ
Eγ [Pr(γ)]

)

+ (1− w1)ECnorm
)

− 1
)

. (10)

At the optimal power allocation, we have

∂L(Pr(γ), t, λ)

∂Pr(γ)
= 0, (11a)

∂L(Pr(γ), t, λ)

∂t
= 0, (11b)

which can be found as

α(θ)γ (1 + Pr(γ)γ)
−α(θ)−1

=
λw1EE′

norm

ǫ
Eγ

[

(1 + Pr(γ)γ)
−α(θ)

]

(12a)

ln
(

Eγ

[

(1 + Pr(γ)γ)
−α(θ)

])

+ λ

(

w1EE′
norm

(

Pcr +
1

ǫ
Eγ [Pr(γ)]

)

+ (1− w1)ECnorm

)

= 0. (12b)

From (12a), the optimum power distribution scheme can be
found as

Pr(γ) =

[

α(θ)
1

1+α(θ)

(w1ν)
1

1+α(θ) γ
α(θ)

1+α(θ)

−
1

γ

]+

, (13)

where [x]+ = max{0, x} and ν =
λEE′

norm

ǫ
Eγ

[

(1 + Pr(γ)γ)
−α(θ)

]

is referred to as the
scaled-Lagrangian-multiplier. The optimal value forν
(referred to asν∗) can be found by substituting the power
allocation (13) into (12b), yielding

EE′
normEγ

[(

1 +

[

(γα(θ))
1

1+α(θ)

(w1ν∗)
1

1+α(θ)

− 1

]+)−α(θ)]

× ln

(

Eγ

[(

1 +

[

(γα(θ))
1

1+α(θ)

(w1ν∗)
1

1+α(θ)

− 1

]+)−α(θ)])

+ ǫν∗
(

w1EE′
norm

(

Pcr +
1

ǫ
Eγ

[

α(θ)
1

1+α(θ)

(w1ν∗)
1

1+α(θ) γ
α(θ)

1+α(θ)

−
1

γ

]+)

+ (1− w1)ECnorm

)

= 0. (14)

For a Rayleigh fading channel, the expectations in
(14) can be calculated by (15a) and (15b), wherein

Γ(a, x) =

∫ ∞

x

ta−1e−tdt is the upper incomplete gamma

function and E1(x) =
∫ ∞

x

e−t

t
dt, |Arg(x)| < π indicates the



Eγ [Pr(γ)] =

(

α(θ)

w1ν∗

)
1

1+α(θ)

Γ

(

1

1 + α(θ)
,
w1ν

∗

α(θ)

)

− E1

(

w1ν
∗

α(θ)

)

(15a)

Eγ

[

(1 + Pr(γ)γ)
−α(θ)

]

=

(

w1ν
∗

α(θ)

)

α(θ)
1+α(θ)

(1 + α(θ))

[

−

(

w1ν
∗

α(θ)

)
1

1+α(θ)

e−
w1ν

∗

α(θ)

+ Γ

(

2 + α(θ)

1 + α(θ)
,
w1ν

∗

α(θ)

)]

+ 1− Γ

(

1,
w1ν

∗

α(θ)

)

, (15b)

exponential integral [20]. Based on the derivations in (13)-
(15b), the power allocation strategy could be summarized as
follows.

Remark 1:The optimum power allocation technique for
MOP of the link-layer EE and EC, at a target delay-outage
probability, includes two steps.
In Step 1,ν∗ could be found by substituting (15a) and (15b)
into (14). The operating input power levelP ∗

toff , corresponding
to the maximum achievable tradeoff performance, can then be
found by insertingν∗ into (15a), namely

P ∗
toff = Kℓ × Eγ [Pr(γ)]|ν=ν∗ . (16)

In Step 2, we optimally distribute the transmit power based on
P ∗

toff . SinceP ∗
toff is a unique optimum value, the denominator

of the EE-EC tradeoff function (8a) is fixed and equal to
w1EE′

norm

(

Pcr +
1

ǫKℓ
P ∗

toff

)

+ (1 − w1)ECnorm. Hence, the
formulated SOP in (8a) simplifies to

max
Pr(γ)≥0

−
1

θTfB
ln
(

Eγ

[

(1 + Pr(γ)γ)
−α(θ)

])

(17a)

subject to: Eγ [Pr(γ)] ≤
P ∗

toff

Kℓ

. (17b)

Finally, the optimum power distribution is given in (13).

B. Optimal Power Allocation under Average Input Power
Constraint

Here, the EE-EC tradeoff problem under an average input
power constraint, given in (6a)-(6b), is considered. Usingthe
results of Section III-A, the problem (8a)-(8b) simplifies to

max
Pr(γ)≥0

−
1

θTfB
ln
(

Eγ

[

(1 + Pr(γ)γ)
−α(θ)

])

(18a)

subject to: Eγ [Pr(γ)] ≤
P ∗

toff

Kℓ

(18b)

Eγ [Pr(γ)] ≤
Pmax

Kℓ

. (18c)

Hence, the power-constrained EE-EC tradeoff problem reduces
into a power-constrained EC-maximization problem, and the
average input power limit becomes min(P ∗

toff , Pmax).

IV. N UMERICAL RESULTS

In this section, we numerically investigate the im-
pact of circuit power, transmission power constraint and
importance weight on EE-EC tradeoff problem for a
Rayleigh block-fading channel with delay-outage probability
constraints.

Firstly, Fig. 1 plots the EE, in b/J/Hz, versus
importance weight, w1, for various circuit power values.
The figure reveals that the link-layer EE proportionally
increases withw1. This happens because the increase ofw1
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raises the importance of
EEnorm

EE
. Moreover, Fig. 1 shows

that with fixedw1, when Pcr increases from -5dB to 5dB,
EE decreases. We can show that, the average input power
limit P ∗

toff increases monotonically with the circuit power,Pc.
Since EE varies inversely withPc + P ∗

toff, EE decreases with
Pcr .

EC versusimportance weight for variousPcr is illustrated
in Fig. 2. Particularly, for a givenPcr , when w1 increases,
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Fig. 4: Energy efficiency versus scaled average input power limit,
for variousimportance weights.

EC gradually decreases. This indicates that
ECnorm

EC
is less

important with biggerw1. In addition, in both Fig. 1 and
Fig. 2, there is a flat region wherein EE and EC remain
constant with increasingw1, that is whenw1 ∈ [0, 0.2],
for Pcr = 5dB. It happens because, whenPcr is large and

w1 is small,
ECnorm

EC
dominates the tradeoff function. As a

result, the tradeoff system prefers to maximize EC. Hence,
EC|w1≤0.2 = EC|w1=0, EE|w1≤0.2 = EE|w1=0, wherew1 = 0
represents the EC-maximization problem. Whenw1 > 0.2, the

system starts to maximize
EEnorm

EE
as well, so the curve will

not stay flat.
We further plot the results for EC versusPmax, and EE

versusPmax, with Pcr = 0dB in Fig. 3 and Fig. 4, respectively.
In particular, Fig. 3 shows that the tradeoff system withw1 6= 0
achieves the same EC as an EC-maximization system, i.e.,
w1 = 0, until it reaches a break-point, after which EC flattens.
This happens because, after the breakpointP ∗

toff , increasing
power does not benefit the tradeoff performance. As shown in
Section III-B, for anyP ∗

toff ≤ Pmax, the operational input power
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Fig. 5: Delay-outage probability versus delay QoS exponent, for
variousimportance weights.

constraint will be remained atP ∗
toff . Therefore, the tradeoff

problem does not consume all the available power, but rather
operates at a fixed power level ofP ∗

toff , and in turn, achieves
a fixed EC, whenP ∗

toff ≤ Pmax.
In the tradeoff system withw1 = 0.5 plotted in Fig.

4, EE increases withPmax to a maximum value, and then
decreases until a break-point, after which it remains constant.
In other words, with the increase ofPmax, EE increases to
the maximum value EEnorm, then decreases until the break-
point P ∗

toff is reached. In EE-maximization situation, i.e.,
w1 = 1, the achievable EE increases with the increase of
Pmax until a break-point atP ∗

EE. This is due to the fact that the
system operates at the global optimal power levelP ∗

EE for any
P ∗

EE ≤ Pmax. On the other hand, in EC-maximization situation,
w1 = 0, EE decreases after it reaches its maximum. It is
because the EC-optimized power allocation strategy consumes
the whole available input power, resulting in continuously
growing EC, and simultaneously losing EE.

Finally, the delay-outage probability,P out
delay, versus delay

QoS exponent,θ, for various importance weights, with a
maximum tolerable delay thresholdDmax = 500, Pcr =
-10dB is plotted in Fig. 5. This figure indicates that for
loose delay-constrained systems, e.g.,θ = 10−5, different
importance weights will not affect the achievableP out

delay. On
the other hand, whenθ increases, e.g.,θ ≥ 10−3, smaller
w1 provides smaller delay-outage probability. This happens
because smallerw1 indicates that the system prefers EC-
maximization approach, hence, the system achieves higher EC
with smallerw1. Therefore, the probability that the data is
remained in the FIFO buffer is decreased. As a result, the
probability that the delay of a symbol exceeds a maximum
delay-boundDmax decreases.

V. CONCLUSIONS

We formulated and solved link-layer EE-EC tradeoff prob-
lem, for a point-to-point Rayleigh flat-fading channel under
delay-outage probability constraint, using the weighted sum
method and fractional programming. In order to make the two
objectives comparable, we normalized EE and EC with EEnorm

and ECnorm, respectively. We then minimized the inverse of
the two conflicting objectives and transformed the MOP into



a scalar criteria optimization problem with the introduction
of an importance weight. Finally, the optimal power allo-
cation strategy for the power-constrained tradeoff problem on
determined weight was given. Numerical results showed that
when circuit power is large, the tradeoff performance is more
favorable towards maximizing EC.
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