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We measure the top quark mass in dilepton final states of tt̄ events in pp̄ collisions at 
√

s = 1.96 TeV, 
using data corresponding to an integrated luminosity of 9.7 fb−1 at the Fermilab Tevatron Collider. 
The analysis features a comprehensive optimization of the neutrino weighting method to minimize the 
statistical uncertainties. We also improve the calibration of jet energies using the calibration determined 
in tt̄ → lepton + jets events, which reduces the otherwise limiting systematic uncertainty from the jet 
energy scale. The measured top quark mass is mt = 173.32 ± 1.36(stat) ± 0.85(syst) GeV.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

The discovery of the top quark in 1995 [1,2] completed the 
three quark families of the standard model (SM). Since then, the 
top quark has been one of the focal points of the Fermilab Tevatron 
and of the CERN LHC programs. The top quark stands out because 
of its large mass, mt , which is a fundamental parameter in the SM. 
Its Yukawa coupling to the Higgs boson, Yt = √

2mt/v , where v is 
the vacuum expectation value of the Higgs field, is close to unity, 
implying that the top quark may play a special role in electroweak 
symmetry breaking. In addition, mt is linked to the W and Higgs 
boson masses, MW and MH , through radiative corrections [3]. Fol-
lowing the Higgs boson discovery [4,5], a precise measurement of 
mt provides a test of the electroweak sector of the SM and infor-
mation on whether our universe resides in a stable or metastable 
region of that theory [6–8]. The short lifetime of the top quark 
prevents its confinement in the strong color field, since top quarks 
decay before hadronizing. This allows a particularly precise study 
of pure quantum chromodynamic (QCD) effects. A comparison of 
the measured mt and the mt extracted from cross section mea-

http://creativecommons.org/licenses/by/4.0/
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surements [9–12] may provide a probe of higher order and soft 
QCD corrections to the observed mass [13].

Assuming the SM branching ratio of t → W b ≈ 100%, tt̄ de-
cays yield distinct final state categories according to the number 
of charged leptons with high transverse momentum (pT ) from W
boson decays. Dilepton (2�, � = e or μ) events, such as ee, eμ, 
and μμ, with neutrinos from two W → �ν decays, are relatively 
rare but have low background. We present a measurement of mt
using pp̄ collider data collected with the D0 detector at the Fer-
milab Tevatron collider, corresponding to an integrated luminosity 
of 9.7 fb−1, in events with two high-pT electrons or muons of op-
posite electric charge. Two high-pT jets must also be observed, 
one of which must be identified as being consistent with orig-
inating from a b quark. This analysis is based on our previous 
dilepton measurement [14], but with increased integrated lumi-
nosity and multiple optimizations to improve the precision of mt . 
We reduce the dominant statistical contribution to the uncertainty 
on mt through an optimization of the methods for kinematic re-
construction and statistical analysis. Lacking a dijet signature from 
W → qq̄′ , which is present in tt̄ → lepton + jets (� + jets) events 
and was used to improve the precision of jet energy calibration 
with a W mass constraint [15], previous dilepton analyses at the 
Tevatron have reached a sensitivity limit imposed by standard jet 
calibration methods [16,17]. Progress in calibrating jet energies in 
the dilepton channel [14] provides improved cross-checks across 
different channels and a more significant contribution from the 
dilepton channel to the world average mt [18]. For comparison, 
the most recent measurements of mt in the dilepton channel from 
CDF, ATLAS, and CMS are, respectively, mt = 171.5 ± 1.9(stat) ±
2.5(syst) GeV [19], mt = 173.79 ± 0.54(stat) ± 1.30(syst) GeV [20], 
and mt = 172.50 ± 0.43(stat) ± 1.46(syst) GeV [21]. In this analy-
sis, we substantially reduce the otherwise dominant uncertainty in 
the jet energy scale by applying the methods of Ref. [14].

2. Detector and data sample

2.1. Detector

The D0 detector [22,23] has a central-tracking system, con-
sisting of a silicon microstrip tracker and a central fiber tracker, 
both located within a 1.9 T superconducting solenoidal magnet, 
with designs optimized for identification of the pp̄ collision ver-
tex and track reconstruction at pseudorapidities [24] of |η| < 3
and |η| < 2.5, respectively. The liquid-argon/uranium calorimeter 
has a central section covering |η| ≤ 1.1, and two end sections 
that extend coverage to |η| ≈ 4.2, with all three housed in sep-
arate cryostats. An outer muon system, covering |η| < 2, consists 
of a layer of tracking detectors and scintillation trigger counters in 
front of 1.8 T iron toroids, followed by two similar layers after the 
toroids.

2.2. Object reconstruction

We require electrons to satisfy an identification criterion based 
on boosted decision trees [25] using calorimeter and tracking in-
formation. Muons must satisfy requirements that match hits in 
the muon system to a track in the central tracking detector that 
is required to have a small distance of closest approach to the 
beam axis [26]. We require hits in the muon layers inside and 
outside the toroid. Muons and charged hadron momenta are mea-
sured in the central tracking detector, while electron, photon (γ ), 
jet, and charged hadron energies are measured in the calorime-
ters. Muons must be isolated from jets and from nearby tracks. 
Electrons and muons must have their extrapolated track trajecto-
ries isolated from calorimeter energy depositions greater than an 
energy threshold. Electrons and muons must have pT > 15 GeV, 
and |η| < 2.5 and < 2.0, respectively. We reconstruct jets using an 
iterative, midpoint-seeded cone algorithm with a cone parameter 
of Rcone = 0.5 [27]. Jets with embedded muons from the decay 
of b-hadrons require an additional correction to jet energy to ac-
count for the associated neutrino. A multivariate discriminant [28]
is used to identify jets that contain a b-hadron (i.e., b jets) from a 
vertex displaced from the interaction point. We define the missing 
transverse momentum (/E T ) attributed to the escaping neutrinos 
as the negative of the vector sum of all transverse components of 
calorimeter cell energies, corrected for the measured muon mo-
menta and the response of the calorimeter to electrons. We also 
correct /E T for detector response in the jet energy calibration, as 
described below. Details of object reconstruction are provided in 
Ref. [29].

2.3. Standard jet energy calibration

We calibrate the energy of jets to be the energy of the particle 
jets reconstructed using the midpoint algorithm [27]. We correct 
for the effects of the calorimeter response to particle constituents 
of jets, energy leaking into the cone from particles directed outside 
it, as well as energy deposits outside the cone from particles inside 
it [30]. Charged hadrons have an energy-dependent response that 
is lower than that of electrons and photons. We therefore apply 
corrections obtained from γ + jet events to account for the energy 
dependence of the jet response in the central |η| region. We also 
apply a relative η-dependent correction obtained from γ + jet and 
dijet events. We employ the same methods to calibrate jet energies 
independently in the Monte Carlo (MC) simulation and in data. The 
MC is used to help study potential biases in the data. We incorpo-
rate a correction for jets in the MC simulation that accounts for the 
difference in single-particle response between data and MC. This 
procedure ensures that the flavor dependence of the jet response 
in data is replicated in MC. In the MC we account for multiple 
pp̄ interactions by correcting the jet energy to the particle level of 
only those particles that are directed within the jet cone at particle 
level. The typical systematic uncertainty in the energy calibration 
of each jet in the dilepton sample is 2%. This precision is limited 
by systematic uncertainties of the γ + jet method in the pT range 
of jets in tt̄ events. Details about this “standard jet energy scale” 
calibration can be found in Ref. [30]. We require that jets have 
pT > 20 GeV and |η| < 2.5 after calibration, but before applying 
additional corrections from the W → qq̄′ constraint in the � + jets
channel discussed below.

3. Absolute jet calibration from a W → qq̄′ constraint

As in Ref. [14], we apply a multiplicative correction factor to the 
energy of jets in data based on an analysis of tt̄ → � + jets events 
using the W → qq̄′ decays as a constraint. Application of this fac-
tor, 1.0250 ± 0.0046 (stat) [15], improves the agreement between 
MC and data and allows us to use its uncertainty to reduce the un-
certainty on the absolute energy scale by a factor of ≈ 4 relative 
to the standard jet energy scale, while retaining its η and pT de-
pendence. To apply this scale, which comes from light-quark jets, 
to the dilepton sample, which has b jets, it is important to ensure 
that the variation in the ratio of data over MC jet response be-
tween different flavors be placed on an equal footing. The standard 
jet energy scale [30] achieves this on a jet-by-jet basis by using 
single particles in MC jets to correct the simulation so that it has 
the same kinematic and flavor-dependent jet response as that in 
data. This ensures that the energies of b jets in dilepton simulated 
samples agree with those of b jets in the dilepton data sample at 
the same level as light-quark jets. Aside from fragmentation dif-
ferences between data and MC which are discussed below, this 



22 D0 Collaboration / Physics Letters B 752 (2016) 18–26
approach justifies the use of the � + jets constraint in the dilep-
ton channel.

4. Event selection

The tt̄ candidate events in the ee and μμ channels are re-
quired to pass single-lepton triggers. The full suite of triggers is 
used for selecting eμ events. The dilepton event selection before 
optimization is described in Ref. [29]. We optimize the selection 
based on MC events to provide the smallest expected statistical 
uncertainty in mt . We require two isolated leptons with opposite 
electric charge. We require at least two jets, where at least one 
of the two jets with highest pT must be identified as a b jet. 
For the eμ channel, our selections have an efficiency for tagging 
b jets of 72%, and a light-quark mistag rate of 12% in the cen-
tral region in η. The same-flavor channels employ slightly tighter 
b tagging requirements and thus have a few percent lower effi-
ciency, and 30% lower mistag rate. We require events in the μμ
channel to have /E T > 40 GeV. This /E T selection is also applied to 
ee events when the dielectron invariant mass is between 70 and 
100 GeV, to reduce the Z → ee background contribution. We de-
fine a /E T significance variable, S , which measures the likelihood 
for the observed /E T to be a fluctuation from /E T = 0 GeV. We re-
quire S > 3.5 (4) for the ee (μμ) channel. We require eμ events 
to have HT > 100 GeV, where HT is the scalar sum of the pT of 
the two highest-pT jets and of the lepton with highest pT . The HT , 
b tagging, and /E T -based requirements are optimized to minimize 
the expected statistical uncertainty on mt in each channel. The ex-
pected signal-to-background (S/B) ratio is ≈ 7 for these channels. 
These requirements yield a 3% improvement in statistical precision 
in mt relative to the selections in Ref. [14]. After implementing all 
these selections, we obtain 340, 115, and 110 events in the eμ, ee
and μμ channels, respectively.

5. Modeling signal and background

The tt̄ events are simulated at 15 mass points over the 
range 130 ≤ mMC

t ≤ 200 GeV using the tree level generator alp-

gen 2.11 [31] with up to 2 additional light partons and pythia

6.409 [32] with modified underlying event Tune A for parton 
showering and hadronization. Here, mMC

t refers to the input mass 
in alpgen. An additional, larger sample is generated at mMC

t =
172.5 GeV to study systematic uncertainties. We normalize the 
tt̄ production cross section to σtt̄ = 7.24 ± 0.23 pb [33], which is 
calculated at next-to-next-to-leading order with a next-to-next-to-
leading logarithm soft gluon resummation. The main backgrounds 
arise from three sources: Z/γ ∗ → �+�− , diboson (W W , W Z , 
and Z Z ) processes, and instrumental effects. We model the Z/γ ∗
background using alpgen with up to 2 light partons and pythia for 
showering and hadronization. We employ pythia for the diboson 
background. The instrumental background arises from W + jets, 
multijet, or � + jets tt̄ events where one or two jets are either 
mis-identified as electrons, or they contain a hadron decaying to 
a non-isolated lepton that passes our selection. This background 
is estimated from data as in Ref. [29]. We apply a full detector 
simulation based on geant 3.14 [34] for all simulated events. The 
objects reconstructed in simulation are smeared to ensure that 
their resolutions reflect those in data. Scale factors in object effi-
ciencies are applied to improve agreement between data and MC.

6. Kinematic reconstruction

6.1. Neutrino weighting

The presence of two neutrinos in the tt̄ decay makes it impossi-
ble to fully constrain the kinematics and thus extract a unique mt
measurement from each event. Given the measured momenta of 
leptons, jets and /E T , the available constraints from MW , and the 
condition mt = mt̄ , we are missing one constraint to provide full 
tt̄ reconstruction in dilepton events. We integrate over the phase 
space of neutrino rapidities for chosen values of hypothesized mt
(mh

t ) [35], and compare /Ecalc
T , the vector sum of neutrino momen-

tum solutions at each chosen point of phase space, to the observed 
/Eobs

T to determine a “weight” ω characterizing the level of agree-
ment:

ω = 1

N

N∑
i=1

∏
j=x,y

exp

(
− (/Ecalc

j,i − /Eobs
j )2

2σ 2
/E T

)
, (1)

where i runs over all neutrino solutions for any two possible jet-
lepton assignments in the tt̄ final state (up to N = 8), j stands for 
the two orthogonal coordinates in the transverse plane (x and y), 
and σ/E T is a parameter representing the RMS of the difference be-
tween the transverse components of the measured /E T and the sum 
of the solved neutrino transverse momenta. The parameter σ/E T is 
taken to be the same in both x and y directions. We perform this 
calculation over a range of mh

t , integrating ω over the neutrino 
phase space, to yield a distribution of ω(mt) versus mh

t . Prior stud-
ies [36] have shown that the first two moments (μω, σω) of this 
distribution extract most of the information about mt . The analysis 
of Ref. [14] used the range of mh

t values between 80 and 330 GeV 
in 1 GeV steps and a σ/E T of 7 GeV in the weight calculation. The 
new optimized determination of these parameters is briefly sum-
marized below.

6.2. Optimization of weight calculation parameters

After applying the methods described above to improve the 
jet energy calibration, the statistical contribution is the dominant 
source of measurement uncertainty on mt in the dilepton chan-
nel. We therefore examine the parameters used for the kinematic 
reconstruction of tt̄ events and for the maximum likelihood fit to 
reduce the expected statistical uncertainty. At each step, we verify 
through MC simulations that the optimization does not increase 
the systematic uncertainty.

All neutrino solutions and jet assignments yield mass estima-
tors such as μω that are correlated with mt . However, the correla-
tion is substantially greater, and μω values are less biased, when 
the correct jet assignments and solutions of neutrino momenta 
are chosen. Since now mt has been measured with high preci-
sion [18], we can optimize the range of mh

t based on known values 
of mt . Considering a wide range in mh

t causes incorrect configu-
rations to overwhelm the correct configuration, thereby worsening 
the mass resolution. Likewise, scanning over too narrow a range 
biases the background and worsens the mass sensitivity by caus-
ing tt̄ and background distributions to be similar. Examination of 
a two-dimensional grid of upper and lower limits of the mass 
range yields the optimal range of mh

t = 115 to 220 GeV in 1 GeV 
steps. The value of σ/E T also has a noticeable impact on the ex-
pected precision of the analysis. This was not the case in Ref. [14], 
mainly because the final top quark mass measurement was less 
precise. In Ref. [14], the value of 7 GeV for σ/E T was obtained as 
the unclustered /E T resolution in an earlier dataset [36], where the 
unclustered /E T is the magnitude of the vector sum of all energy 
depositions in the calorimeter that are not included in lepton or 
jet reconstruction. However, accounting only for the unclustered 
energy resolution as the origin of the difference between the cal-
culated and measured /E T ignores the effect of assumptions that go 
into the kinematic reconstruction. For instance, the finite binning 
of the neutrino rapidities discretizes the solved neutrino momenta 
and therefore the solved /E T . Also, the solved /E T does not include 
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Fig. 1. The distribution in the mass estimator, μw , for the combination of the ee, eμ, 
and μμ channels for (a) the preselected sample and (b) the final event sample. The 
MC events are normalized separately to the number of observed events in data in 
each channel. The ratios show the total number of observed events divided by the 
number of expected events in a given bin of μw for mMC

t = 172.5 GeV. The band 
of systematic uncertainty is shown as the shaded area in the ratio plots, which 
includes contributions from the dominant sources: jet energy scale, lepton identifi-
cation, lepton momentum scale, luminosity, b quark modeling, initial and final state 
radiation, color reconnection, as well as hadronization and higher-order QCD effects 
for tt̄ events.

additional jets, reconstructed or not, since only the two leading 
jets are considered in the kinematic reconstruction. Due to these 
additional contributions, a scan in a wide range from 7 to 100 GeV 
is performed and we find the optimal value for σ/E T to be 25 GeV, 
which is larger than the 7 GeV of Ref. [14]. Combined, these op-
timizations improve the expected combined statistical uncertainty 
on mt by 11% compared to the parameters in Ref. [14].

6.3. Efficiency of kinematic reconstruction and event yields

Events used in the analysis must have at least one pair of neu-
trino solutions for at least one mh

t value. The efficiency for this 
kinematic reconstruction is over 99% for tt̄ events, and 91% to 
98% for the background. In the final sample, a total of 336, 113, 
and 109 events in the eμ, ee, and μμ channels, respectively, pass 
the kinematic reconstruction. The expected sum of tt̄ and back-
ground yields and their corresponding asymmetric total uncertain-
ties (stat ⊕ syst) are 298.1 +22.1

−27.2 , 106.5 +10.4
−11.6 , and 103.5 +7.4

−9.1 events 
for the eμ, ee, and μμ channels, respectively. The distributions of 
the mass estimator μω in a preselected sample, omitting require-
ments on b tagging, /E T , /E T significance, and HT , are shown in 
Fig. 1(a). The tt̄ component is evident in the preselected data. The 
mass dependence of the μω distribution is given in Fig. 1(b) for 
three mMC

t mass points with all selections applied.
7. Extracting the top quark mass

7.1. Maximum likelihood

We perform a binned maximum likelihood fit to the ex-
tracted moment distributions [μω, σω] in data. Expected proba-
bility densities are calculated using the MC samples for each of 
the 16 mt points, yielding a two-dimensional probability den-
sity hS(μω, σω|mMC

t ) distribution parametrized by mt . Background 
samples are used to construct a background template for each 
channel, hB(μω, σω), with each background contributing accord-
ing to its expected yield. Bins in signal templates with no events 
are given a weighted value corresponding to a single signal MC 
event to ensure that the log of likelihood is not infinite. The likeli-
hood is given by:

L(μω{1..N},σω{1..N}, N | nS,nB,mt) =
N∏

i=1

nS · hS(μω i,σω i | mt) + nB · hB(μω i,σω i)

nS + nB
, (2)

where N is the number of observed events in data, nS is the ex-
pected number of tt̄ events (for mt = 172.5 GeV), and nB is the 
expected total number of background events. We fit (− lnL) versus 
mMC

t to a parabola in a window of mMC
t that is iteratively var-

ied until a stable minimum is found. We take the minimum of 
the final parabola to be the fitted top quark mass, mfit

t . The uncer-
tainty on the fitted mass is obtained by considering the mMC

t range 
over which the fit function increases by 0.5 units in (− lnL) above 
this minimum. Using pseudo-experiments, we optimize the tem-
plate binning of each channel separately in a two-dimensional grid 
that lets μω and σω bin sizes vary independently. Finer binning in 
μω and σω , especially for the eμ channel, improves the expected 
statistical precision in mfit

t by 5%. The fitted mass window is op-
timized to ±15 GeV for all channels. Taking all the optimizations 
together, including event selection, weight calculation, and max-
imum likelihood fitting, the statistical sensitivity of this analysis 
is improved relative to Ref. [14] by 20% beyond the 35% gain ex-
pected from increased integrated luminosity.

7.2. Ensemble testing and data results

We obtain a linear relationship between mfit
t and mMC

t by per-
forming randomized pseudo-experiments using all signal mass 
points. The numbers of signal and background events in the 
pseudo-experiments are allowed to fluctuate within their Poisson 
uncertainties around their expected values. We require that the to-
tal number of events matches that observed in data. To minimize 
the effect of statistical fluctuations on our systematic uncertain-
ties, we optimize the number of pseudo-experiments by dividing 
the MC sample into five subsamples, and measure systematic un-
certainties with each subsample. We calculate the RMS of the five 
uncertainties, average over all systematic effects, and divide by 

√
5

to estimate the statistical component of systematic uncertainties. 
The average RMS decreases until we oversample, or reuse, the tt̄
MC events by roughly a factor of three. This corresponds to 3000 
pseudo-experiments. We perform a linear fit of mfit

t versus mMC
t to 

obtain a calibration slope and offset for mfit
t using 3000 pseudo-

experiments:

mfit
t = Slope · (mMC

t − 170) + Offset + 170. (3)

We account for oversampling by increasing the statistical uncer-
tainties at each mass point by the appropriate oversampling factor. 
Likewise, we compute the pull, or the ratio of mfit

t − mMC
t over 

the average estimated uncertainty at each mass point. The slopes 
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Table 1
Slopes, offsets, and pull widths of the mt calibration and the expected statistical 
uncertainties in the mass (σmt ) for the ee, eμ, and μμ channels, and their combi-
nation.

Slope Offset [GeV] Pull width σmt [GeV]

ee 0.984 ± 0.004 0.671 ± 0.043 0.994 2.98
eμ 0.986 ± 0.006 0.548 ± 0.065 0.998 1.72
μμ 0.989 ± 0.010 0.717 ± 0.103 1.004 3.31
2� 0.988 ± 0.006 0.617 ± 0.063 0.995 1.35

Table 2
Systematic uncertainties on mt for the combined dilepton measurement using 
9.7 fb−1 of integrated luminosity. For symmetrized uncertainties, the “±” sym-
bol indicates that the corresponding systematic parameters in MC are positively 
correlated with mt in data, and the “∓” symbol indicates an anticorrelation. The 
uncertainties shown as + or − only are computed by comparing a standard choice 
with an alternate, but are symmetrized in calculating the total uncertainty.

Source σmt [GeV]

Jet energy calibration
Absolute scale ∓0.47
Flavor dependence ∓0.27
Residual scale +0.36

−0.35
b quark fragmentation +0.10

Object reconstruction
Trigger −0.06
Electron pT resolution ±0.01
Muon pT resolution ∓0.03
Electron energy scale ±0.01
Muon pT scale ±0.01
Jet resolution ∓0.12
Jet identification +0.03
b tagging ∓0.19

Signal modeling
Higher-order effects −0.33
ISR/FSR ±0.15
pT (tt̄) −0.07
Hadronization −0.11
Color reconnection −0.22
Multiple pp̄ interactions −0.06
PDF uncertainty ±0.08

Background modeling
Signal fraction ±0.01
Heavy-flavor scale factor ±0.04

Method
Template statistics ±0.18
Calibration ±0.07

Total systematic uncertainty ±0.85

of mfit
t versus mMC

t are close to 1, and pull widths are consis-
tent with unity, as shown in Table 1. We calculate the final mt

by correcting mfit
t from a given measurement by the slope and 

offset. We correct the statistical uncertainty using the slope and 
the pull width. The expected corrected statistical uncertainties for 
each channel are given in Table 1. In data, we obtain corrected, 
fitted mt values of mt = 171.86 ± 1.71(stat), 173.99 ± 3.04(stat), 
and 178.58 ± 3.56(stat) GeV for the eμ, ee, and μμ channels 
respectively, and mt = 173.32 ± 1.36(stat) GeV for the combined 
channels.

8. Systematic uncertainties

Systematic uncertainties summarized in Table 2 arise from jet 
energy calibration, object reconstruction, modeling of tt̄ and back-
ground events, and the mass-extraction method. The energies of 
jets are shifted up and down by the uncertainty on the absolute 
energy scale, which is taken from � + jets events, thereby pro-
viding shifts in mt . This scale is appropriate for light-quark jets, 
which, after correcting for jet flavors to improve the agreement 
between data and MC, have different kinematic distributions than 
b jets from tt̄ decays. We calculate a residual uncertainty due to 
the kinematic differences between the � + jets calibration sample 
and dilepton sample of b jets. We use separate up and down esti-
mates to extract the energy- and η-dependent shifts in mt based 
on uncertainties in the standard jet energy scale relative to their 
average value in the � + jets calibration sample. We cross-check 
this with an alternative method that applies shifted light-quark jet 
energy scales to b jets in the � + jets channel [15]. These methods 
agree, and thereby validate the use of the � + jets scale as a jet 
calibration. We also cross-check using a jet-energy-dependent lin-
ear parameterization of the residual jet energy scale as in Ref. [15], 
obtaining results that do not exceed our estimate of uncertainties 
from the jet energy scale. To estimate the uncertainty correspond-
ing to possible differences in the flavor dependence of the MC 
scale relative to data, we change the single-particle responses up 
and down by their uncertainties and obtain the shift in mt . To 
estimate the possible dependence on the b quark fragmentation 
in the MC, we replace the pythia b quark fragmentation function 
with the Bowler scheme [37], and compare mt with the Bowler 
free parameters tuned to LEP (ALEPH, OPAL, and DELPHI) or SLD 
data [38].

The systematic uncertainty due to the trigger efficiency is es-
timated by applying the ratio of single lepton trigger efficiency 
parameterization in data divided by the MC parameterization to 
the ee and μμ channels. The uncertainties in the modeling of 
the energy and momentum resolutions of electrons, muons, and 
jets are applied independently of each other, and the shifts in mt

are extracted as uncertainties on mt . Lepton energy or momentum 
scales and their uncertainties are extracted from Z → 2� events in 
data. An additional uncertainty is estimated for jet identification 
by shifting the jet identification efficiency within its uncertainty in 
MC samples to estimate their effect on mt . The uncertainty from 
modeling b tagging is evaluated by changing within their uncer-
tainties the corrections that account for the agreement between 
data and MC in b tagging efficiency.

Higher-order virtual corrections to mt are absent in the alp-

gen used to generate our standard tt̄ samples. We therefore com-
pare an ensemble of pseudo-experiments using mc@nlo 3.4 [39]
tt̄ events with one using alpgen events, where both employ her-

wig 6.510 [40] for modeling of hadronization. To evaluate the 
uncertainty associated with the modeling of initial and final-state 
radiation (ISR/FSR), we compare alpgen+pythia with the renormal-
ization and factorization scale changed up and down by a factor 
of 1.5 [15]. The � + jets analysis exhibits a discrepancy in the shape 
of the pT distribution of the tt̄ system, which, although the dilep-
ton statistics are limited, may be present in the dilepton sample. 
We evaluate the uncertainty in the modeling of the tt̄ pT distri-
bution by reweighting MC events to make them match the data. 
The observed shift in mt is taken as the uncertainty. Since the 
hadronization in our standard tt̄ sample is modeled with pythia, 
we estimate a hadronization uncertainty on mt by performing 
pseudo-experiments using an alpgen+herwig sample. We evaluate 
the effect of color reconnection by comparing mt measurements 
in alpgen+pythia samples with two pythia tunes: the Perugia2011 
tune that incorporates an explicit color-reconnection scheme, and 
the Perugia2011 NOCR tune that does not [41]. Data and MC may 
have different distributions in instantaneous luminosity after event 
selection. This uncertainty due to multiple pp̄ interactions is esti-
mated by reweighting the distribution of instantaneous luminosity 
to make MC agree with the data for respective data-taking epochs, 
and then take the shift in mt with respect to the default value. 
The uncertainty due to the proton structure is obtained from the 
20 sets of CTEQ6L1 parton distribution functions (PDF) reweighted 
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to CTEQ6M, where the deviations in mt for the 20 eigenvectors sets 
are added in quadrature [42].

We estimate the effect of the uncertainty on the fraction of sig-
nal or background by changing the expected tt̄ event yields (nS) 
up and down and the expected background yields (nB) down and 
up within their total uncertainties. The heavy-flavor scale factor, 
which is applied to the Z → 2� cross section to correct the heavy-
flavor content, is also changed up and down within its uncertainty 
to estimate its systematic effect on mt .

Our templates are constructed from MC samples for tt̄ , Z → 2�, 
and diboson backgrounds, as well as data samples for instrumental 
background, yielding statistical uncertainties on their bin contents. 
We use Poisson distributions to modify bin contents within their 
statistical uncertainties to obtain 1000 new templates. We measure 
mt in data using these templates, and the RMS of the measured top 
quark mass is taken as its uncertainty. Our method of mt extrac-
tion relies on the correction of the fitted mt to the input MC mass. 
The uncertainties from this calibration are applied to provide the 
uncertainty in mt . The uncertainty is reduced substantially from 
Ref. [14] due primarily to the reduction in the uncertainty in jet 
energy calibration and the optimizations for improvements in sta-
tistical uncertainty. Larger MC samples also contribute by lowering 
statistical fluctuations on systematic uncertainties, or reducing sta-
tistically limited systematic uncertainties.

9. Conclusions

We have measured the top quark mass in the combined dilep-
ton channels (eμ, ee, μμ):

mt = 173.32 ± 1.36(stat) ± 0.85(syst) GeV

= 173.32 ± 1.60 GeV.

This measurement is consistent with the current world average 
value of mt [18]. Our measurement is the most precise dilepton 
result from the Tevatron, and is competitive with the most recent 
LHC dilepton measurements. The systematic uncertainty of 0.49% 
is the smallest of all dilepton measurements.
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