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Microstructure noise components of the S&P 500 index: 

variation, persistence and distributions 
 

 

Abstract 

By studying the differences between exchange-traded fund prices and futures prices, new 

results are obtained about the distribution and persistence of the microstructure noise 

component created by bid/ask spreads and discrete price scales. The univariate distributions 

are shown to be time-varying and to depend on the minute of the day, on the year studied and 

on index volatility. The bivariate density is estimated from high-frequency prices, to provide 

estimates of the probabilities of one-tick bid/ask spreads, marginal noise densities and 

measures of noise dependence across the markets studied. Properties of the residual 

microstructure noise, created by factors other than discrete prices, are also estimated. The 

residual component has more variation and less persistence than the discrete-price component 

during the period examined, from January 2010 to December 2012. 

 

1  Introduction 

  

Microstructure noise (MN) is defined as the difference between an actual market price and 

the efficient price which would be observed if markets had perfect characteristics. We split 

MN into discrete-price and residual components and show that empirical inferences can be 

made about these components for the S&P 500 index, despite the impossibility of observing 

efficient prices. Our results exploit the no-arbitrage constraint on spot and futures prices, with 

spot prices obtained from an exchange traded fund. We provide the first estimates of the 

variance and persistence of each MN component. We also provide the first empirical 
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estimates of the bivariate distribution for the discrete-price components of spot and futures 

MN.  

 Continuous-time market prices (or their logarithms) are frequently described as the 

sum of a semimartingale process plus a MN term representing market frictions, as in the 

seminal high-frequency paper on MN by Hansen and Lunde (2006). The semimartingale 

process can include diffusion and jump terms and usually incorporates stochastic volatility 

(Barndorff-Nielsen, Hansen, Lunde and Shephard, 2008). MN then has many potential 

sources, which we separate into the two components noted by Hansen and Lunde (2006) and 

amplified by Ait-Sahalia, Mykland and Zhang (2011). The discrete-price component captures 

the two most obvious sources of MN, namely the positive tick size which defines the 

minimum gap between different feasible prices and the positive spread between bid and ask 

prices. The residual component covers the trading environment and includes effects from 

order flow, price pressure, inventory control, block trades and asymmetric information. 

Related insights from economic theory are discussed by Diebold and Strasser (2013), while 

the specific effect of price pressure is analyzed by Hendershott and Menkveld (2014). 

 We focus on the discrete-price MN component in this paper. We show the variability 

of discrete-price MN depends on both the clock time and the volatility of the index, and that 

appropriate distributions (conditional on the bid/ask spread width) are uniform for the spot 

asset but are less dispersed than uniform for futures. We also show there is positive although 

weak correlation between the spot and futures discrete-price MN. There is positive serial 

dependence in at least the futures component, which can be attributed to trades tending to 

cluster on either the bid or ask side of the market. We estimate that the appropriate 

persistence measure for the probability of a trade at the ask corresponds to a half-life of 

almost 30 minutes. 
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 The no-arbitrage constraint and empirical evidence are used to argue that the spot and 

futures residual MN are essentially identical. We show that the auto- and cross-correlations of 

spot and futures price changes (beyond the first lag) are dominated by the residual component 

and then estimate that the residual component has more variation and less persistence than the 

discrete-price components. The residual half-life estimate is approximately 3.3 minutes. 

Typical standard deviations for the discrete-price components are 6 cents for the spot asset 

and 13 cents for the futures (when their bid/ask spreads are 10 and 25 cents respectively), 

compared with 30 cents for the common residual component, during the middle of the trading 

day. 

There is now a considerable literature about understanding and mitigating the high-

frequency econometric consequences of MN. Methods for measuring the realized variance of 

efficient prices are developed and compared by Zhang, Mykland and Ait-Sahalia (2005), 

Bandi and Russell (2008, 2011), Barndorff-Nielsen et al (2008) and Dahlhaus and 

Neddermeyer (2014), with realized covariance studied in Voev and Lunde (2007) and Corsi 

and Audrino (2012). Related work covers the impact of MN on volatility forecasting, as in 

Ait-Sahalia and Mancini (2008), Andersen, Bollerslev and Meddahi (2011) and Ghysels and 

Sinko (2011). Tests for jumps in efficient prices, robust against MN, are available in Ait-

Sahalia, Jacod and Li (2011) and Lee and Mykland (2012). 

There are, however, relatively few empirical studies of the statistical properties of MN. 

For the variance of MN, methods and results are provided by Bandi and Russell (2006), Ait-

Sahalia and Yu (2009) and Nolte and Voev (2012), while the autocorrelations of MN are 

estimated by Ubukata and Oya (2009), Ait-Sahalia, Mykland and Zhang (2011) and Jacod, Li 

and Zheng (2014).  

Researchers often need to make assumptions about the distribution and 

autocorrelations of MN, either to obtain theoretical results or to design Monte Carlo studies 
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which clarify the properties of econometric methods. The simplest assumptions are 

independent and identical Normal distributions, which are common in simulations. Our paper 

provides a framework for moving beyond these simple assumptions, which we presume are 

common because distributional and time series facts for MN have hitherto been neglected. 

Our data are trade prices for S&P 500 e-mini futures and a spot, exchange-traded fund 

(ETF) which replicates the S&P 500 index. Section 2 describes the ETF and futures markets. 

Section 2 also presents no-arbitrage conditions which constrain the differences between spot 

and futures prices to fall within a narrow interval around the no-arbitrage expected difference. 

From a MN perspective, there is a fundamental difference between the spot and futures assets 

due to their different tick sizes. One tick for the ETF equals one cent and as the price of ten 

ETF shares tracks the index we can say the effective tick size is 10 cents. In contrast, the 

futures tick size is much larger at 25 cents. We deduce that the expectation-adjusted, 

spot/futures price difference will fall between 35  cents and 35 cents when (a) each asset 

has a one-tick, bid/ask spread and (b) the two spreads overlap after adjusting for the expected 

spot/futures basis. For prices recorded once a minute from January 2010 to December 2012, 

we find that almost 99% of the adjusted price differences do fall within 35  cents. However, 

we estimate that 12% of these differences occur when the ETF and/or the futures spread is 

two ticks wide. 

 Section 3 defines the MN components, states assumptions and presents theoretical 

results. Section 4 is a detailed exploratory analysis of prices recorded once a minute, 

including several results about the differences between ETF and futures prices. Section 5 

presents and motivates assumptions about the distribution of discrete-price MN, which place 

strong restrictions on acceptable bivariate distributions. Section 6 then provides estimates of 

parametric distributions obtained by maximizing a log-likelihood criterion. Section 7 uses the 
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time-series dependence among one-minute price changes to estimate the variance and 

persistence of the residual MN component. Finally, Section 8 offers conclusions. 

 

2  Relationships between ETF and futures prices 
 

Several traded contracts provide payoffs proportional to changes in the S&P 500 index. We 

investigate the prices of an exchange-traded fund (ETF) and the prices of a series of futures 

contracts to learn about their microstructure properties.  

 

2.1 Two markets for trading the S&P 500 index 

The shares of the SPDR S&P 500 ETF represent ownership in a unit investment trust 

managed by State Street Global Advisors. These shares are traded electronically at several 

U.S. exchanges, with ticker symbol SPY. We use the ticker symbol as the name of the ETF 

throughout this paper. The price of 10 SPY shares tracks the level of the S&P 500 index. 

Dividends are paid quarterly, after the deduction of a management fee which is 

approximately 0.10% per annum. 

 On a typical day in 2013, more than 250,000 SPY trades were executed and more than 

100 million shares were traded at an average price near to $160. The market capitalization of 

SPY was then $1.4 1110 , which was almost 1% of the total capitalization of the 500 

component stocks. One price tick for SPY equals one cent. As may be expected from SPY’s 

high liquidity, the usual width of the visible bid-ask spread is one cent. This corresponds to a 

10-cent spread when we multiply all SPY prices by 10 throughout the remainder of this paper. 

 The e-mini S&P is a futures contract written on the S&P 500 and traded on the 

CME’s Globex electronic trading platform, with ticker symbol ES. The mini contracts are for 

50 index units and their trading volume far exceeds that of the original index futures contract, 
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which is for 250 index units. ES contracts expire in March, June, September and December 

and their prices are for one unit of the underlying index. 

One ES price tick equals 25 cents, which is two-and-a-half times the SPY tick when 

the underlying quantity is equalized at one index unit. Consequently, it is anticipated that 

there is substantially more bid-ask spread noise in ES prices than in SPY prices. 

The value traded for ES is approximately an order of magnitude higher than the SPY 

value traded. On a typical day in 2013, 2 million ES contracts were traded, representing 100 

million index units at a price of approximately $1600 each. Andersen, Bondarenko, Kyle and 

Obizhaeva (2015) report an average trade size of 13 contracts and a trade frequency of 6 per 

second during the period from 09:30 to 16:15 EST. Thus ES trades are slightly less frequent 

than SPY trades (about 10 per second) but on average they are for a much larger quantity of 

index units. 

SPY pays dividends once a quarter and the ex-dividend dates are identical to the 

expiration dates of the ES futures contracts.  When bid-ask spreads are ignored, the SPY 

price equals the S&P 500 index level when SPY goes ex-dividend; the SPY price then equals 

the final futures settlement price at 09:30 EST on the third Friday of an expiry month, which 

is calculated from the opening prices of the constituent stocks. 

 

2.2 Constraints on prices 

Let tS  and tF  respectively denote prices at time t for SPY and the nearest-to-expiry ES 

contract, with SPY going ex-dividend at times 0 and T. Then there is a standard no-arbitrage 

pricing equation, which applies for perfect markets having zero spreads, zero transaction 
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costs, continuous price scales, continuous trading and correctly anticipated dividends, 

namely2: 

TtDStTrF ttt  0for      )](1[ .                                               (1) 

Here time is measured in years, tr  is the appropriate risk-free rate and D is the value at time 

T of the SPY dividend. The term D represents dividend income from the constituent stocks 

minus management fees, with adjustments for the timing of the constituent cash flows and the 

delayed payout a few weeks after the ex-dividend date. 

 As tS  exceeds tF  throughout our sample period, we define the theoretical basis as  

TtStTrDFSB ttttt  0   ,)( .                                   (2) 

The basis then increases from 00TSrD   at time 0 to D just before time T. Some 

representative values for our recent sample period, after multiplying the SPY price and 

dividend by 10, are ,1200S 5D  and %,3.0r  for which the basis would increase over 

3 months from 4.1 to 5.0. We note that intraday variation in the theoretical basis is expected 

to be very small.  

 The above no-arbitrage conditions are not exact when prices to buy exceed prices to 

sell. Let asktbidt SS ,,   and asktbidt FF ,,   denote the bid and ask prices. Arbitrageurs may 

be expected to buy one asset and sell the other whenever the price of this portfolio is 

sufficiently cheap relative to a fair value derived from dividend expectations, interest rates 

and the SPY price level. In particular, arbitrage trading may be expected when the bid-ask 

spreads, adjusted for the basis, do not overlap. A pair of no-arbitrage equations is provided by 

requiring overlapping spreads, which implies: 

tasktbidt BFS  ,,    and   tbidtaskt BFS  ,, ,                                      (3) 

                                                 
2 Similar no-arbitrage equations are well-known and can be found, for example, in MacKinlay and Ramaswamy 
(1988), Duffie (1989) and Stoll and Whaley (1990). 



8 
 

with tB  the market’s consensus value for the basis. If one of these constraints is broken then 

buying the cheap portfolio does not guarantee a profit, even when trading costs are ignored. 

Rather, a positive payoff occurs if the initial price advantage (e.g. )( ,, tasktbidt BFS  ) 

exceeds the present value of the equivalent cost when the portfolio is sold (e.g. 

)( ,, sbidsasks BFS   at some time )ts  . 

For contemporaneous trades agreed at prices tS  and tF , each of which is either a bid 

or ask price, overlapping spreads imply that: 

bidtasktbidtasktttt FFSSBFS ,,,,)(  .                            (4) 

Thus the recorded magnitudes of differences in traded prices, adjusted for the basis, must not 

exceed the spreads cost which is the sum of the widths of the two bid-ask spreads. We 

anticipate magnitudes of at most 35 cents when all spreads are one tick wide. A magnitude of 

more than 35 cents may then attract arbitrageurs seeking positive expected payoffs; beyond 

70 cents a profit is almost guaranteed as the initial price advantage exceeds 35 cents which is 

more than the spreads cost at any future time whose spreads overlap. 

 

3  Components of microstructure noise 

 

It is conventional in microstructure literature to assume there are unobservable, efficient 

prices which follow continuous-time semimartingale processes. We denote the efficient spot 

prices by }0,{ tS e
t  and assume that the efficient futures prices }0 ,{  tTF e

t  follow from 

the no-arbitrage constraint, thus: 

TtDStTrF e
tt

e
t  0     ,)](1[ .                                         (5) 

Microstructure noise (MN) is defined in this paper as the difference between a 

representative observed price and the efficient price. Using prices facilitates our discussion of 
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noise components, which would be more complicated if noise was defined as the difference 

between observed and efficient log prices.  We rely on exceptionally high trading volume to 

assume that at a calendar time t there are contemporaneous trade prices tS  and tF . With 

microstructure noise denoted by tSN ,  and tFN , , 

tS
e
tt NSS ,     and 

tF
e

tt NFF , .                                                              (6) 

We separate total MN into discrete-price MN caused by positive tick sizes and spreads and 

residual MN which accumulates all other price frictions.  

 

3.1 Residual microstructure noise 

We assume an asset’s residual MN depends on a component shared by the spot and futures 

assets and possibly also on an idiosyncratic component. We denote by tM  the contribution 

of common, residual MN to spot prices. It is plausible to suppose that the sum t
e
t MS   and a 

corresponding futures sum satisfy the no-arbitrage constraint, which implies the futures sum 

is tt
e

t MtTrF ))(1(  . Denoting the idiosyncratic, residual MN terms by tSm ,  and tFm , , 

the latent prices when there is no discrete-price MN are: 

tSt
e
tt mMSS ,

*     and 

tFtt
e

tt mMtTrFF ,
* ))(1(  .                                          (7) 

We will assume the three residual components in (7) have zero expectations and zero cross-

covariances.  Also, the vectors of residual components are assumed to be stochastically 

independent of the vectors of efficient prices. The idiosyncratic components, if they do exist, 

must be small relative to spreads otherwise there will be arbitrage opportunities. We present 
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empirical evidence in Section 4 supporting the claim that (almost) all the residual MN can be 

explained by a common component.  

 

3.2 Discrete-price microstructure noise 

At all times the most competitive bid/ask spreads on offer are assumed to include the prices 

*
tS  and *

tF , so askttbidt SSS ,
*

,   and askttbidt FFF ,
*

,  . The discrete-price MN 

components tU  and tV  are then defined by: 

ttSt
e
tttt UmMSUSS  ,

*         and 

ttFtt
e

tttt VmMtTrFVFF  ,
* ))(1( .                              (8) 

Note that the continuous random variables *
tS  and tU  are not independent because their sum 

must be a multiple of the tick size and hence *
tt SU  has a time-varying, discrete distribution.  

We define the discrete-price MN for trades at the ask prices by: 

    *
, tasktt SSU      and 

*
, tasktt FFV  .                                                          (9) 

As the widths of the bid-ask spreads are very small relative to the asset prices, it is safe to 

assume that the distributions of 
tU  and 

tV  conditional upon the spread widths 

bidtaskt SS ,,   and  bidtaskt FF ,,   are uniform, respectively with positive densities on the 

intervals ],0[ ,, bidtaskt SS   and ],0[ ,, bidtaskt FF  . We will also assume 
tU  is independent 

of 
tV  for the following reasons: (1) the basis is stochastic and it can be assumed to have a 

continuous distribution, (2) the variation in basis values is large relative to the spread widths, 
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and so (3) at a random time moment the location of *
tF  within its spread (measured by 

tV ) 

does not depend on the corresponding location of *
tS  within its spread (measured by 

tU ). 

 The distributions of tU  and tV , conditional upon their spread widths, will only be 

uniform and independent if we make the additional assumptions that trades occur randomly at 

the bid and ask ends of the spreads, with chance one-quarter for all end combinations 

whatever the outcomes for *
tS  and *

tF . For these special assumptions, and for a one-tick spot 

spread width w, ],0[uniform~ wUt
 , ],[uniform~ wwUt  , 12)var( 2wUt   and 

3)var( 2wUt  ; as the one-tick futures spread width is w5.2 , 325.6)var( 2wVt   and 

325.7)var( 2wVU tt  , so the standard deviations of tt VU ,  and tt VU   are respectively 

5.77, 14.43 and 15.55 cents as w equals 10 cents. 

 There are, however, three assumptions which we should not automatically make about 

the discrete-price MN variables. First, we do not assume tU  and tV  have conditional uniform 

distributions. One good reason is that trades may be more likely to occur at the ends of the 

bid/ask spreads nearest to *
tS  and *

tF . Let )(sign *
ttt SSX  , which is 1 for a spot trade at 

the ask price and 1  for a trade at the bid price. Then 

).)(1( ,,2
1

bidtasktttt SSXUU                                           (10) 

As the outcome 
tu  for 

tU  decreases towards zero, *
tS  approaches the ask price and 

)1(  tt uXP  may increase. Hence there might be a negative correlation between 
tU  and 

tX  which decreases the variance of tU  below the level for a uniform distribution. To 

illustrate the possible effect, suppose the spot spread width is fixed at w and that  

),()1()1(
2
1 wUUXP ttt

       with     10   .                   (11) 
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Then it is easy to show that 

6/][ wXUE tt   

and 

6/)2()var( 2wUt  .                                               (12) 

Second, we do not assume tU  is independent of tV  because both trades on the same 

side of the spread (two bids or two asks) may be more likely than trades at opposite ends (one 

bid and one ask); in these circumstances )(sign *
ttt FFY   will be positively correlated with 

tX  and thus tV  will be positively correlated with tU . 

Third, we do not assume that a time series of noise terms }{ tU  have independent 

distributions because a trade at the ask (bid) may be more likely if recent trades have tended 

to be at ask (bid) prices; then the trade direction process }{ tX  may be persistent leading to 

positive autocorrelation among the }{ tU . 

 Finally in this subsection we note that the difference between traded spot and futures 

prices, adjusted for the basis, is essentially the sum of two MN component differences. When 

the market’s value of the basis is the difference between efficient prices, e
t

e
tt FSB  , then 

,

)()()(

,,

,,

tttFtS

tFtS
e

tt
e
ttttt

VUmm

NNFFSSBFS




                         (13) 

when interest terms are ignored. The absolute value of )( ttt BFS   must not exceed the 

sum of the widths of the two bid-ask spreads when the no-arbitrage equations apply, for all 

four combinations of feasible spot and futures prices, which constrains the variation of the 

idiosyncratic MN terms. 

 

  



13 
 

3.3 Components of variances and covariances 

Some inferences about appropriate price models can be made by studying the variances, 

autocovariances and cross-covariances of price changes. For a time interval  , let   be the 

price change operator, so, for example,  ttt SSS . Then the total variation in spot 

price changes is 

).,cov(2)var()var()var( **
ttttt USUSS                               (14) 

The covariance term is either zero or relatively small. This and similar covariance terms are 

assumed to be zero in the following material. To understand why, note from (10) that 

),cov( *
tt US   is the sum of ),cov( *  tt US  and ),cov( *

2
1

tt XSw   when the spread width 

is a constant w. The assumption that 
tU  has a uniform distribution is sufficient to prove that 

0),cov( *  
tt US , while there is no compelling reason for a substantial correlation 

between *
tS  and tX . Ignoring the covariance term in (14), we have: 

).var()var()var()var()var( , ttSt
e
tt UmMSS                     (15) 

The variance of efficient price changes is proportional to  . For very short intervals almost 

all of the variation in price changes comes from noise changes and in particular from prices 

bouncing across the bid/ask spread. In contrast, for intervals which are long relative to 

persistence measures for MN, almost all variation is due to efficient price changes.  

With, 

)(, tTrR tTt   

denoting the (generally very small) interest rate from now (time t) until futures expire (at T),  

)var()var()]var()[var()1()var( ,
2

, ttFt
e
tTtt VmMSRF     and 

),cov()]var())[var(1(),cov( , ttt
e
tTttt VUMSRFS  .                 (16) 
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When the idiosyncratic terms are negligible, we anticipate )var()var( tt SF   as we may 

expect )var()var( tt UV  ; and if discrete MN is (almost) uncorrelated across the two 

markets, then we may also expect ),cov()var( ttt FSS  . 

 Only the noise components contribute to covariances for non-overlapping price 

changes. If we simplify by assuming stationary processes for all noise components, with 

),(cor,   ttZ ZZ  denoting the autocorrelation at the integer lag   of a process Z 

observed once every   time units, then for 0 : 

).var()2(

)var()2(

)var()2(

),cov(),cov(

,1,1,

,,1,1,

,1,1,

,,

tUUU

StSmSmSm

tMMM

tStStt

U

m

M

NNSS






























 

For short time differences  , during which changes in interest terms are trivial, and for 

0 , 

).var()2(

)var()2(

)var()1)(2(),cov(

,1,1,

,,1,1,

2
,,1,1,

tVVV

FtFmFmFm

tTtMMMtt

V

m

MRFF

























           (17) 

Also, for cross-correlations ),(cor   tt VU , when 0 , 

.)var()var()2(

)var()1)(2(),cov(

11

,,1,1,

tt

tTtMMMtt

VU

MRFS
















 

 The interest-rate terms make trivial contributions to the equations above for our 

sample, as the average values of tr , tT   and TtR ,  are respectively 0.3% per annum, 81  

years and 0.0004 approximately. Consequently, in the remainder of this paper we assume 

0, TtR .   
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4  Exploratory data analysis 

 

4.1 Data 

SPY and ES prices are studied for the three-year period from 4 January 2010 to 31 December 

2012. Only prices recorded during the primary trading sessions are considered. For both 

assets these sessions commence at 09:30 EST and conclude at 16:15 EST. Although trade 

does occur during all hours of the day, trading volumes are much lower before 09:30 and 

after 16:15; 95% of the total SPY volume occurred within the primary trading periods. We 

will show that the variance of discrete-price MN is lower mid-day and for this reason selected 

results are presented for the mid-day period from 11:00 until 15:00. 

Transaction prices are analyzed at the one-minute frequency, because this is the 

highest frequency for which futures prices are available to us. Our primary data for each 

trading day are 405 SPY and ES prices defined by the last recorded trade prices before 09:31, 

09:32, …, 16:15; we also briefly consider the first recorded trade prices after the minute 

marks. The time differences between pairs of SPY and ES prices are fractions of a second 

and therefore it will be assumed that the matched prices are contemporaneous. On most days 

the nearest-to-expiry ES contract is selected, but if some of its prices are missing then the 

second-nearest contract is used. 

Only days when both assets have complete data are analyzed. There are 248, 249 and 

247 complete days, respectively in 2010, 2011 and 2012. The Flash Crash day (6 May 2010) 

is discarded, when volatility was exceptionally high, and the following high-volatility day (7 

May) is also discarded. The data investigated is then for 510,300405742   one-minute 

intervals. 

The tick size for SPY is one cent at all exchanges. All quotes we have checked in the 

TAQ database are for an exact multiple of one cent. However, 17% of the recorded trade 
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prices for SPY are “off tick”; the dollar prices then have a non-zero digit in the third and/or 

fourth decimal place. This phenomenon is identically present in our primary data source and 

in the TAQ database. As explained by Buti, Consonni, Rindi, Wen and Werner (2014), off-

tick trade prices occur in TAQ because trades by dark pools are included in the database. Off-

tick prices are rounded to the nearest cent for our reported calculations; we are not aware of 

any important differences between using rounded and recorded prices for the exploratory data 

analysis. 

Further discussion of the data and our processing methods is provided in Appendix A. 

For the remainder of this paper, the variable t now counts trading days, while j counts 

minutes within the day. 

 

4.2 Trade-to-trade price changes 

Some quick insights into discrete-price MN are provided by data about the price change from 

the last transaction price before a minute mark to the first transaction price after the same 

mark. For day t and minute j, the last trade prices for SPY and ES are respectively denoted 

jtS ,  and jtF , , while the next prices are denoted jtS ,  and jtF , . As the time gap between 

consecutive prices is of the order of 0.1 seconds, we can usually ignore any changes in 

efficient prices and residual MN during these short time periods and then state: 

jtjtjtjt UUSS ,,,,   . 

If we also assume there are no changes in the bid and ask prices, then 
  jtjt UU ,,  and  

))(( ,,,,2
1

,, bidtasktjtjtjtjt SSXXSS   ,                         (18) 

so the price change is then either zero or   the bid-ask spread. 

 For the mid-day period from 11:00 to 15:00 inclusive, we find that 99.0% of the 

minute marks have both (1) trade-to-trade spot price changes equal to either zero or   one 
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spot tick and (2) likewise for future price changes; these calculations exclude all minute 

marks having an off-tick spot price. Table 1 summarizes the bivariate distribution of the price 

changes when all changes beyond one tick are excluded. We obtain three conclusions from 

our brief review of trade-to-trade price changes. First, the width of the bid-ask spread is 

usually one tick during the mid-day period. Second, the chance of consecutive trades being 

on the same side of the market is estimated as 62.6% for SPY and 59.7% for ES. These 

numbers are useful upper bounds for prices recorded further apart, i.e. for )( ,, ktjt XXP   

and )( ,, ktjt YYP   when kj  . Third, the spot and futures price changes are almost 

independent (their correlation equals 0.05) and from their bivariate distribution we can 

estimate that the chance of trades at the same ends of the spreads, i.e. )( ,, jtjt YXP  , is 

between 51% and 63% based on the methods presented in Appendix B. 

 

4.3 Differences between spot and futures prices 

We assume the noise-free basis, e
jt

e
jt FS ,,  , is constant within each trading day. We estimate 

the common value, tB , by the average of N observed price differences, 

it
N

i
itt FS

N
B ,

1
, 

1ˆ 


.                                                    (19) 

This is an unbiased estimate, i.e. ttt BBBE ]ˆ[ , as all the microstructure noise terms have 

zero expectations. Adjusted price differences are defined as price differences minus basis 

estimates: 

tjtjtjt BFSq ˆ
,,,  .                                               (20) 

In the following text we often drop the adjective “adjusted” and simply refer to the quantity 

jtq ,  as a price difference. 
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Ideally we could observe tB  and study the properties of 

jtFjtSjtjttjtjt
e

jt mmVUBFSq ,,,,,,,,,  .                          (21) 

The estimation error ttt BB  ˆ  is, however, small relative to e
jtq ,  when N is large, since 

.)( 
1

)(
1

,,,,

,,

 





N

i
titittjtjt

t
e

jtjt

BFS
N

BFS

qq 

                             (22) 

The typical magnitude of the estimation error is quantified in Section 4.3.5, after estimating 

the autocorrelations of the price differences. 

 It is convenient to select cents as the price units. The rounded SPY price is a multiple 

of 10 cents, remembering that this is the price of 10 shares, while the ES price is a multiple of 

25 cents. Then jtjt FS ,,   is a discrete variable; it is a multiple of 5 cents and all multiples 

are possible. We may suppose the estimate tB̂  is a continuous variable for large N as the 

minimum difference between distinct feasible values equals N5  cents. Consequently we 

may treat the price difference jtq ,  as continuous, although on each day t any pair of values 

will be separated by some multiple of 5 cents.  

 

4.3.1 Most price differences are small 

We expect the magnitude of the price differences to be less than 35 cents when the SPY bid-

ask spread is one tick (and thus 10 cents wide), the ES spread is one tick (25 cents wide), the 

two spreads overlap after controlling for the basis, and the basis estimation error is negligible. 

A striking property of the price differences is that almost all are indeed between 35  and 35 

cents. The overall frequency of this event is 98.8% when prices are measured at the 405N  

minutes from 09:31 to 16:15 inclusive.   
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Price differences within 35  can occur if a spread is wider than one tick and/or the 

spreads do not overlap. Thus the frequency of overlapping, one-tick spreads is less than 

98.8%. In Section 6.3 we estimate the average probability of overlapping, one-tick spreads to 

be approximately 87% across the trading day, after fitting parametric density functions to the 

differences.   

The frequency of differences inside 35  varies across years and across the time 

within the trading day. The annual averages are 99.3% in 2010, 98.3% in 2011 and 98.8% in 

2012, with lower frequencies before 11:00 and after 15:00. Table 2 shows the frequency for 

each year outside 35 , before 11:00, after 15:00, and between these times. The central time 

period from 11:00 to 15:00 contains 60% of the 405 minute-marks but only 33% of the 

differences outside 35 . 

The daily ranges of the price differences confirm the small sizes of the price 

differences. The modal category for the daily range from 09:31 to 16:00 inclusive is 70, 70 

and 65 cents in 2010, 2011 and 2012. The medians are higher at 75, 85 and 80, because the 

daily ranges are skewed. 

The dispersion of the price differences is summarized in Table 2 by mean absolute 

deviations (m.a.d.) and standard deviations. As there are some extreme outliers, we focus on 

the m.a.d. measure of dispersion. The m.a.d. for a single trading day is usually between 11 

and 13 cents. Figure 1 shows there are subperiods having a higher level, notably from August 

to November 2011 and during December 2012. 

When the discrete-price MN terms are independent and have uniform distributions 

with maximum values equal to one tick, the m.a.d. of the noise difference, jtjt VU ,,  , equals 

13.17 cents and the standard deviation is 15.55 cents.3 These special values are higher than 

the estimates for our complete dataset, namely 12.02 and 15.30. As price differences are 

                                                 
3 The m.a.d. equation is included in Section 5.4 after (40). 
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noise differences plus a term representing basis estimation error plus another term for 

differences in idiosyncratic MN, we conclude that the empirical dispersion is less than 

predicted by the above collection of assumptions. On Figure 1 we see that most days have a 

m.a.d. estimate below the independent uniform (IU) value of 13.17. 

 

4.3.2 Large price differences 

There is a tendency for price differences outside 35  to cluster.  Only 1.2% of the 

differences are outside 35 . The conditional chance of an outside event, when one occurs 

for the previous minute, is higher and equals 5%, 8% and 13% in 2010, 2011 and 2012. The 

longest consecutive periods of time outside, by year, are 5, 6 and 8 minutes. A few days have 

an exceptional number of price differences outside 35 , such as 77 and 85 occurrences on 

18 and 27 December 2012 respectively and a total of 216 occurrences on the 5 consecutive, 

high-volatility, market days from 5 to 11 August 2011 inclusive.  

Approximately 9% of the differences outside 35  are also outside 70 . Table 2 

includes the frequencies of differences beyond 70 . The overall frequency of this event is 

only 0.11%. There are 37 differences outside 140 , with frequency 0.012%; of these 22 

occur at 16:00 or later, 7 occur between 09:59 and 10:01 and 5 between 14:15 and 14:30. 

 

4.3.3 Intraday variation in price differences  

There is some variation across minutes in the average level of the price differences, but this 

variation is small compared with the standard deviations of the price differences. Most of the 

averages for each minute are within 1  cent. The averages tend to be negative for the first 15 

or so minutes of the day, are then more likely to be positive until around 13:15 and then more 

likely negative. Standard tests on individual averages reveal weak evidence that expected 
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differences are not zero. Regressions of averages against three functions of time4 provide 

strong evidence, however, that expectations vary intraday. These expectations are all within 

5.0  cents. They generally fall as the day proceeds, so they cannot be explained by intraday 

variation in the theoretical basis. Instead, they might be explained by day traders holding 

positive quantities of SPY, which are purchased earlier in the day than they are sold. 

Figure 2 displays the m.a.d. of the price differences for each minute of the trading day. 

The three highest values are at 10:00, 16:00 and 16:15, respectively coinciding with 

macroeconomic news releases, the end of trading at Wall Street and the end of the primary 

trading sessions for SPY and ES. The m.a.d. starts the day around 13 cents, declines 

gradually towards 11 cents and then rises to 13 cents at 15:59; the values are notably higher 

after 16:00. Once more we see that most m.a.d. values are below the IU level of 13.17. We 

may infer that the price differences are generally small across the Wall Street trading period, 

except around news announcements. The curve on Figure 2 shows fitted values from a 

quadratic regression. 

 

4.3.4 Dependence on volatility 

There is some association between the volatility of the index and the magnitude of price 

differences. This is hinted at by the U-shape of intraday, average magnitudes (see Figure 2) 

which resembles the well-known U-shape of intraday, average volatility. Association is 

observed directly between the daily realized variance and both the mean absolute deviation 

and the standard deviation of the day’s price differences, with more correlation found with 

the standard deviation. The rank correlations between time series of realized volatility for 

                                                 
4 The functions are ,j  2j  and )389)1(2sin( j  and the regressions are estimated by OLS for the period 

09:31 to 16:00. The p-value of each estimated slope coefficient is less than 610 . 
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SPY and the standard deviation of adjusted differences between SPY and ES prices5 are 0.36 

in 2010, 0.64 in 2011 and 0.24 in 2012, all of which are highly significant. 

The average level of dispersion in price differences is almost constant when realized 

volatility is within the first three quartiles, as can be seen from the following averages: 

        
Realized   Days  Average Average       Beyond6 35  
volatility      m.a.d.      s.d.  median  average 
   <0.6  273    11.6     14.1      2   3.0 

 0.6-0.8 202    11.7     14.2      2.5   3.5 

 0.8-1.0 121    11.9     14.6      3   5.4 

 1.0-1.5 106    12.1     15.2      5   6.8 

 1.5-2.0  29    13.0     16.8     11  12.2 

   >2.0   11    15.5     21.9     27  28.8 

 

It is seen that price differences outside 35  cents become more likely as the price volatility 

increases. 

 

4.3.5 Autocorrelation among price differences 

The autocorrelation between price differences,  minutes apart on the same trading day, is 

estimated for a sample of M days by 
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Figure 3 shows the estimates for each year, when N equals 405 for the period from 09:31 

until 16:15. It is seen that the estimates are small and always positive when the time gap   is 

less than one hour. These small estimates are much larger than the negligible dependence 

                                                 
5 Daily realized volatility is the square root of realized variance (RV), here calculated very simply from the sum 
of squared, one-minute, percentage returns for the period from 09:30 to 16:00. The standard deviations of the 
adjusted price differences are calculated for periods from 09:31 to 15:59. 
6 Counts of minutes from 09:31 to 16:15 with price differences outside  35 to 35.  
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created by firstly mis-measurement of the basis and secondly the intraday variation in the 

average level of the price differences7. 

The estimated autocorrelations decline slowly, resembling estimates from a general 

ARMA(1,1) process whose theoretical autocorrelations are 1 ,   
 A . The curves on 

Figure 3 show values for   provided by minimizing 2)ˆ(    . The three estimates of 

the autoregressive parameter   are similar, at 0.971 for 2010, 0.981 for 2011 and 0.982 for 

2012. In contrast, the estimates of  A1  in consecutive years increase, from 0.062 to 

0.102 to 0.129. Consequently, microstructure noise has some time-varying properties. 

Estimates of   for the mid-day period from 11:00 to 15:00 remain similar, being 0.965, 

0.975 and 0.980, while the estimates of 1  are then slightly lower at 0.056, 0.079 and 0.098. 

The price difference jtq ,  incorporates an estimate of the basis. The variance of the 

estimation error  tt BB ˆ  equals the variance of tB̂  which depends on the autocovariances of 

the price differences, as there is the excellent approximation 

)
1

var()ˆvar(
1

,


N

j
jtt q

N
B .                                                (24) 

Assuming the price difference process is stationary, with positive autocorrelations 

,  A  

).var(
)1(

21
)21)(var(

1
)ˆvar( ,

0
, jtjtt q

N

A
q

N
B





 





                    (25) 

                                                 
7 When the terms e

jtq ,  are zero-mean and uncorrelated, the expected value of ̂  equals 0025.01  N . 

Replacing each term jtq ,  in the numerator of (23) by a plausible estimate of its intraday expectation j  gives 

an expected first-lag autocorrelation of 0.0004 when the terms jjtq ,  are uncorrelated.  
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Substituting estimates from Table 2 and from the fitted autocorrelations ̂Â  provides upper-

bound estimates of the standard error of tB̂  equal to 1.72, 2.71 and 2.90 cents, respectively in 

2010, 2011 and 2012. 

 

4.4 Variances, covariances, autocorrelations and cross-correlations for price changes 

As ES futures have wider bid/ask spreads than the SPY ETF, we expect the changes in our 

futures prices to be more variable than the changes in our spot prices; we also expect more 

negative covariation to be found between consecutive futures changes than between 

consecutive spot changes. The summary statistics in Table 3 confirm both of these 

expectations8. The tabulated numbers are for one-minute price changes, 1,,,  jtjtjt SSS  

and ,1,,,  jtjtjt FFF  and also for one-minute returns, )/ln( 1,, jtjt SS  and 

)/ln( 1,, jtjt FF . We find that the one-minute variances are 14% higher for the futures asset 

than the spot asset, while the one-minute covariances and correlations for futures are a factor 

3 to 4 times the spot level. As the futures/spot covariance ratio is well below the ratio for 

squared one-tick sizes, namely 25.65.2 2  , it is probable that variation in residual MN 

makes a significant contribution to the negative, first-lag covariances. 

 Table 3 also lists the estimated autocorrelations and cross-correlations for one-minute 

price changes and returns for leads and lags from one to ten minutes. These correlations are 

very similar for price changes and returns. All the tabulated numbers are negative. Figure 4 

plots these negative correlations and also displays some positive estimates for lags beyond 

ten minutes. Only correlations at lags 1, 2 and 4 are clearly outside the robust 95% intervals 

of Taylor (1984) and Lo and MacKinlay (1988) for an uncorrelated process, shown by dotted 

                                                 
8 Results are tabulated for the mid-day period, from 11:00 to 15:00, to avoid distorting effects from the intraday 
pattern in volatility. All covariances are estimated from products of terms a fixed time apart on the same trading 
day, as illustrated by (23).  
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curves on Figure 4. Both Table 3 and Figure 4 show that the sample correlations are very 

similar for the four combinations of either jtS ,  or jtF ,  with either  jtS ,  or  jtF ,  

when 2 . This strongly suggests that these correlations reflect persistence in a common 

noise component, which can only be the residual MN component. 

 

4.5 Component models consistent with the data 

Five MN components were introduced in Section 3, namely spot discrete-price MN ( jtU , ), 

futures discrete-price MN ( jtV , ), residual MN identically present in spot and futures prices 

( jtM , ) and idiosyncratic residual MN for spot ( jtSm ,, ) and futures ( jtFm ,, ) prices. We now 

identify the simplest plausible models for these components which are compatible with (1) 

the variance of price differences tjtjtjt BFSq ˆ
,,,  , (2) the autocorrelations of the price 

differences and (3) the auto- and cross-covariances of the price changes jtS ,  and jtF , . 

 First, we infer that it is credible to discard the idiosyncratic components because the 

level of variation in jtq , can be entirely explained by variation in the two discrete-price 

components. The sample standard deviation of tjtFjtSjtjtjt mmVUq  ,,,,,,,  

equals 15.30 cents, which is less than the standard deviation of 15.55 cents for  jtjt VU ,,   

when the discrete-price MN terms are independent and have uniform distributions with 

maximum values equal to one tick. As the basis estimation error t  can be assumed 

uncorrelated with all other terms, we can explain the variation in jtq ,  by nonuniform 

distributions and/or dependent noise terms without requiring idiosyncratic components. Of 

course we cannot prove idiosyncratic components do not exist, but if they do then no-
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arbitrage considerations and the above remarks show they must have minor variation. From 

now on, we assume 0,,,,  jtFjtS mm . 

 Second, the persistent autocorrelations of the price differences can only be explained 

by persistence in the futures noise term jtV ,  because this term accounts for most of the 

variation in tjtjtjt VUq  ,,, . Positive dependence in jtV ,  will occur if trades tend to 

cluster on one side of the market for several minutes. To illustrate its possible magnitude, let 

jtY ,  be 1 for a futures trade at the ask price and 1  for a trade at the bid price. Also let jtZ ,  

be the latent probability of a trade at the ask, so jtjtjt ZZYP ,,, )1(  . With maxv  the width 

of the futures spread, assumed constant, from (10): 

)1( ,max2
1

,,  
jtjtjt YvVV .                                                (26) 

When we can assume }{ ,


jtV  is an i.i.d. process9, stochastically independent of }{ , jtY , it can 

be shown that the autocovariances of discrete-price noise are proportional to those of the 

probability process, with 

),cov(),cov( ,,
2
max,,    jtjtjtjt ZZvVV .                                   (27) 

A uniform distribution for jtV ,  follows from the assumptions above, when 
jtV ,  is uniform 

and jtY ,  has zero expectation, and hence the proportional relationship for autocorrelations is 

ZjtV Z ,,, )var(3    .                                                    (28) 

The discrete-price noise process then has the ARMA(1,1)-style autocorrelations VVA , seen 

on Figure 3, when }{ , jtZ  is AR(1) with autocorrelations V .  A ballpark estimate of 

                                                 
9 Independence is a reliable assumption for one-minute observations and our empirical level of volatility. It 
would not be reliable for much shorter times between prices. 
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)var( , jtZ  comes from supposing consecutive trades have the same probabilities of being at 

the ask, i.e. jtjt ZZ ,,  . Then  

)var(2)( ,2
1

,, jtjtjt ZYYP  .                                         (29) 

From Section 4.2 and Table 1, we estimate )var( , jtZ  to be approximately 0.05 giving an 

upper bound of 0.15 for the noise autocorrelations. This is consistent with the 

autocorrelations of the price differences shown on Figure 3. 

Third, the covariance between jtF ,  and  jtF ,  when 2  is dominated by the 

covariances of residual MN because the discrete-price MN is highly persistent. From (17), 
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Supposing the autocorrelations of the terms jtV ,  can be modelled as 1 , VVA , the final 

term can be approximated as )var()1( ,
12

jtVVV VA    when 2 . When 08.0VA  

and 975.0V  from Section 4.3.5, and jtV ,  is uniformly distributed between 25  and 25 

cents, this term is approximately 010.0  at lag 2, compared with the empirical covariance of 

38 derived from Table 3. We therefore ignore the discrete-price term for the futures asset 

when we estimate a process for the residual MN in Section 7 and it is plausible to also ignore 

comparable contributions to spot covariances and the cross-covariances. From Table 3, which 

shows negative autocorrelations for jtF , ,  a natural model for }{ , jtM  is an AR(1) process 

with positive autocorrelations M . Then 

2  ),var()1(),cov( ,
12

,,  
  
 jtMMjtjt MFF .                          (31) 
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5  Theoretical distributions for discrete-price microstructure noise 

 

A general framework for the bivariate distribution of contemporaneous, discrete-price, 

microstructure noise at two markets is now presented, followed by three plausible 

assumptions which constrain specifications of the bivariate density. 

The empirical results in Section 4 imply that satisfactory specifications must have 

nonuniform marginal distributions and/or positive dependence between the two noise terms. 

The first possibility can be motivated by expecting trades to be more likely to occur at the 

nearest feasible market prices to noise-free prices, while the second can be motivated by a 

common liquidity pressure which makes it more likely that both markets trade at the bid or at 

the ask than one at the bid and the other at the ask. Examples of densities compatible with the 

assumptions and these motivating remarks are provided in Sections 5.4 and 5.5, with the most 

general specification having six free parameters. 

 

5.1 A general framework 

Whenever possible we suppress all notation referring to time in Section 5, to simplify the 

presentation of relationships between random variables. Our goal is to use adjusted price 

differences q to estimate distributions for the spot noise *SSU   and the futures noise 

*FFV  , with each discrete-price noise term equal to a trade price minus an unobservable 

latent price which incorporates common price components. 

 It is innocuous to suppose the latent prices have continuous distributions, so we 

assume the distribution of ),( VU  is continuous. The bivariate density of U and V is denoted 

by ),( vuh . 

As in Section 4.3, each price difference Q equals a noise difference D minus a basis 

estimation error  : 
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The density of D follows from the density of ),( VU  and equals: 

. ),( )(  



duduuhd                                                     (33) 

As the estimation error equals the average of a large number of noise differences, we assume 

it is independent of D and Gaussian, with mean zero and variance 2 . The price difference Q 

then has density: 

dxxqxq  )())(exp( 
2

1
)( 2

2
1 







 .                            (34) 

The empirical challenge is to estimate the bivariate density h by using observations from the 

density  . 

 The noise term for an asset must be between w  and w inclusive, when the asset’s 

bid-ask spread is of width w. A natural strategy is to first specify distributions conditional on 

spread widths and then define h as a mixture of densities. Let Kk ,...,2,1  label pairs of 

spread widths denoted by ),( )(
max

)(
max

kk vu , occurring with probabilities )(kp . Then, for 

component densities )(kh , 
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                               (35) 

We identify 1k  with the narrowest possible spreads, namely one tick wide for each asset 

when dark pool activity is excluded, and we anticipate that )1(p  is near 1 based upon the 

exploratory data analysis (EDA). 

 The EDA shows that the distribution of Q depends on the minute j, may depend on 

the day t and is unlikely to be independent of variables such as realized variance. The most 

complicated specification estimated in this paper takes the form: 
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1
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,
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t
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tjt vuvuhjIpIvuh 


                   (36) 

with tI  representing auxiliary information such as a measure of contemporaneous or past 

volatility.  

 

5.2 Three assumptions 

We make assumptions about symmetry, uniformity and independence which apply to each 

component density )(kh . To simplify the text, we omit k from the remaining notation and 

equations in Section 5. 

Let )(uf  and )(vg  be the marginal densities of ),( vuh . It is pragmatic, and possibly 

also intuitive, to assume that all densities are symmetric, so ),()( ufuf   )()( vgvg   

and .,  allfor    ),(),( vuvuhvuh   

Suppose the latent price *S  falls within the unique10 SPY bid-ask spread from bidS  

to maxuSS bidask  . As in Section 3.2, it is appropriate to assume that *S is uniformly 

distributed between the feasible trade prices, i.e. the distribution of *SSU ask   is 

uniform between 0 and maxu . When U  has outcome u  the only possible outcomes for U 

are u  and maxuu  . Therefore, the symmetry and uniformity assumptions imply: 

.0for       ,
1

)()( max
max

max uu
u

uufuf                               (37) 

Then )(uf  is entirely determined by the function’s values over the half-spread interval from 

0 to max2
1 u ; similar remarks apply to )(vg .  

                                                 
10 We ignore the possibility that the noise-free price exactly equals a feasible trade price because the assumed 
probability of this event is zero. 
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The bivariate distribution of *SSU ask   and *FFV ask  , depends on 

properties of the basis ** FSB  . For the reasons given in Section 3.2, we assume that  

U  and V  are independent. Any feasible outcome of ),(  VU  defines four possible 

outcomes for ),( VU , located at the corners of a rectangle with the length of each side equal 

to either max u  or max v . Assuming independent, uniform distributions for  U  and V , the 

corner sum constraint states that each set of rectangle corners appearing in the following 

equation has the same total density: 

, ),(),(),(),( 1
max

1
maxmaxmaxmaxmax

 vuvvuuhvuuhvvuhvuh  

maxmax 0 and 0for  vvuu  .                     (38) 

This constraint severely restricts the specification of h, by excluding otherwise plausible 

specifications of dependence between U and V. In particular, the constraint rules out well-

known copula functions. 

 

5.3 Examples 

As is appropriate for SPY and ES, we assume maxmax vu  ; for the numerical examples we 

select dollar price units and minimum spread widths, so 1.0max u  and 25.0max v . 

The simplest example  occurs when ),( VU  has the independent uniform (IU) density: 

, 
4

1
),(

maxmaxvu
vuhIU        maxmax 0 and 0for  vvuu  .                (39) 

The difference VUD   has density: 

.  if     )  (
4

1

, if                                             
2

1
)(

maxmaxmaxmaxmaxmax
maxmax

maxmax
max

uvduvdvu
vu

uvd
v

dIU




      (40) 
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This distribution has expectation equal to zero, variance equal to 3)( 2
max

2
max vu   and mean 

absolute deviation (m.a.d.) equal to )6()3( max
2
max

2
max vvu  . 

Figure 5 includes the density )(dIU  for the minimum spread widths. This density is 

composed of three lines, passing through the coordinates ))( ,( dd IU  (0, 2), ( 0.15, 2) 

and ( 0.35, 0). The standard deviation and m.a.d. are respectively 0.1555 and 0.1317.  The 

m.a.d. exceeds most of the empirical estimates presented in Table 2 and displayed on Figures 

1 and 2. From Figure 2 in particular, it is immediately seen that the IU density )(dIU has 

too much dispersion to explain empirical price differences. 

To reduce the dispersion of the difference D we must select non-uniform noise 

distributions and/or permit positive dependence between the two noise terms U and V. The 

simplest, parametric, candidate density for U is a general linear function of u : 

)21(
2

1
)(

maxmax u

u

u
ufP         .0for  maxuu                        (41) 

This density is linear between )2()1()0( maxufP    and 

)2()1()( maxmax uufP   , with 11   . Its shape is a pentagon 11 , hence the 

subscript P in its definition. The variance is equal to 2
max6

1 )2( u . Trades are more likely at 

the end of the spread nearest the noise-free price when   is positive.  Density (41) occurs 

when (11) applies, i.e. when the chance of a trade at the ask price is a linear function of U .  

 The independent pentagon (IP) density for ),( VU  is 

)()(),,(  vfufvuh PPIP     maxmax 0 ,0for  vvuu  .             (42) 

                                                 
11 On a density plot, the shape of the uniform density is often called a rectangle. The shape of the general 
pentagon density has two vertical sides, two sloping sides and a fifth side along the horizontal axis. 
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As U  is independent of V , the corner sum constraint applies. From (33) and (41), the 

density of VUD  is then the integral of a quadratic function of u, whose coefficients 

depend on the signs of u and du  . Consequently, the IP density )(dIP  is a cubic function 

of d, with coefficients varying across the support of the distribution; computational methods 

for these coefficients are provided in Appendix C. Figure 5 includes a plot of the IP density 

when 3.0 ; The variance of D for the IP distribution is 2
max6

12
max6

1 )2()2( vu    , 

so the standard deviation of the plotted density is 0.1433, which is close to the sample value 

of 0.142 for the mid-day period from 11:00 to 15:00. 

Positive dependence between U and V will occur if contemporaneous trades for the 

two markets are more likely to be at either two bid prices or two ask prices than at one bid 

and one ask. Let )(uvS  be the usual sign function, so 

)(uvS  = 1       if 0uv , 
    = 0       if 0uv  and                                                  (43) 

= 1    if 0uv .  

Then the simplest parametric example of a dependent density for ),( VU  is dependent 

uniform (DU): 

, 
4

)( 1
),(

maxmaxvu

uvS
vuhDU

 
       maxmax 0 ,0 vvuu  ,                (44) 

with 1 . This density trivially satisfies the corner sum constraint because (almost surely) 

each of the four corners in (38) is in a different quadrant. The variance of VUD   now 

equals maxmax2
12

max
2
max3

1 )( vuvu  . Let )(dDU  denote the corresponding density for 

D. Then )()( dd IUDU    is made up of line segments, which can be computed from 

equations given in Appendix C. For our SPY and ES example, )(dDU  is composed of eight 

lines, passing through the coordinates ))( ,( dd DU  (0, 22  ), ( 0.1, 2), ( 0.15, 2), (
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0.25, 1 ) and ( 0.35, 0). The density when 3.0  is shown on Figure 5 and then the 

standard deviation of D is 0.1429. 

The density of price differences Q is similar to that of noise differences D when the 

standard deviation   of the basis estimation error is small. Figure 5 compares the 

distributions of D and Q for IP densities when   is set to a high level compared with the 

estimates given in Section 4.3.5. The curve labeled ‘Q: IP 0.3’ is for parameter values 

3.0  and 04.0 . It stays close to the curve ‘D: IP 0.3’ except when d is beyond 

3.0 . 

 

5.4 A general specification 

General parametric specifications of the bivariate density h can be constructed from linear 

combinations of products of univariate densities plus a term which creates dependence 

between U and V. For example, combining the general IP density with the special case when 

1  makes h a general linear function of u , v  and uv . Dependence can be included 

by adding a residual function which sums to zero across all sets of rectangle corners 

appearing in the corner sum constraint; three simple choices are functions proportional to 

),(uvS  uuvS )(  and vuvS )( . 

We focus on the general parametric density defined by: 

]].)[(                            

                        

[
4

1
),(

max
6

max
54

maxmax
3

max
2

max
10

maxmax

v

v

u

u
uvS

vu

uv

v

v

u

u

vu
vuhG









               (45) 

The parameters must be constrained to ensure h integrates to 1, so: 

134
1

22
1

12
1

0   .                                                     (46) 
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We apply two sets of constraints when we estimate the parameters in Section 6. First, we do 

not permit the density to increase as the distance from the origin increases, i.e. we require

0 uh for 0u , 0 uh for 0u  and likewise for vh  ; then: 

),max( 5351    and ),max( 6262   .                      (47) 

Second, we require outcomes with identical signs for u and v to be at least as likely as those 

with different signs, i.e. ),(),(),(),( vuhvuhvuhvuh   for all 0, vu , which 

implies: 

0),,,min( 65464544   .                           (48) 

When the above constraints apply, the function h is always non-negative when 

0),( maxmax vuh , i.e. when  

06543210   .                                 (49) 

 

6  Estimated distributions for discrete-price microstructure noise 

 

The general distributions of Section 5 are parametric and we now estimate their parameters 

within a likelihood framework, outlined in Section 6.1. Initially we assume stationary 

distributions and we do not condition on the level of index volatility. The results obtained in 

Section 6.2 for the mid-day trading period from 11:00 to 15:00 show that it is appropriate to 

simplify the bivariate density of microstructure noise by removing some parameters. We do 

this and then include the time-of-day and index volatility in the density specification, to 

provide estimates in Section 6.3 for the longer trading period from 09:31 to 15:59. 
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6.1 Methods 

Distributions are estimated from sets of adjusted price differences, tjtjtjt BFSq ˆ
,,,  , for 

days t and minutes j. We provide results for subsets of the minutes during a set of trading 

days T; a subset of minutes is denoted by J and then the basis estimate tB̂  equals the average 

of the price differences jtjt FS ,,   across Jj . 

 Each price difference equals a noise difference minus an independent basis estimation 

error: tjtjt dq  ,, . The density of the noise differences is ),( , jtId   which can depend 

on auxiliary information jtI , , while ),0(~ 2 Nt . We adopt a two-stage estimation 

strategy: an estimate ̂  of   is obtained from the sample variance and autocorrelations of 

the price differences (as in Section 4.3.5) and then the vector   of noise parameters is 

estimated by maximizing a log-likelihood criterion. 

The log-likelihood criterion is defined for days Tt and sets of minutes JAt   by: 

)ˆ,(log)ˆ,(log 



Tt

tLL             with 

dxIxqxL
tAj

jtjtt  ),  ()ˆ2exp(
2ˆ

1
)ˆ,( ,,

22  


 



 .                   (50) 

The function L is not an exact likelihood function, because the results in Section 4.3.5 show 

that the adjusted price differences are weakly autocorrelated. However, the maximum 

correlation between pairs of different price differences is less than 0.15 so it is plausible to 

estimate and compare models using likelihood methods, particularly if inferences are based 

upon very low significance levels. 

 We progress to preferred specifications for the bivariate density of microstructure 

noise ),( ,, jtjt Ivuh  by using results for simpler specifications to guide choices for more 

general specifications. The densities jth ,  are linear combinations of K component densities 
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)(
,

k
jth , with each component having different maximum levels for u and v based upon the 

assumed widths of bid-ask spreads. We commence with one state )1( K  and no auxiliary 

information, then add more states and finally consider the relevance of selected information 

jtI , .  

As ),()(
, vuh k
jt  is zero when )(

max
kuu   or )(

max
kvv  , it follows that the density 

)(d  is zero whenever )1 ,max( )(
max

)(
maxmax Kkvuqd kk  . Consequently, we 

exclude price differences from the likelihood criterion when they are outside maxq . Thus 

tA  contains all minutes j for which Jj  and max, qq jt  . Some data censoring is inevitable 

for practical values of K and maxq , otherwise there can be days in the sample for which the 

product term in (50) is zero so that 0tL . Some bias may occur in the parameter estimates 

because some data are excluded, although we expect any bias to be small as all estimates are 

based upon including more than 99% of the sample minutes.  

All component densities are defined by (45) in Section 5.4 and they are all estimated 

with the constraints listed in (46)-(49). The noise difference density )(d  is calculated 

exactly from (33) and the equations in Appendix C. The integral in (50) is calculated 

numerically. 

We compare density specifications by comparing maximum values of )log(L  and 

goodness-of-fit measures 2X  evaluated at the MLEs. To calculate 2X  we count the 

observed number of minutes iO  having Jj , max, qq jt   and iqi jt 05.0)1(05.0 ,  , 

for 71  i , and obtain the expected number iE  when   equals the MLE. The fit for 

35.0q  is then summarized by: 

  iii EEOX 22 )( .                                                         (51) 
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6.2 Estimates for the mid-day period 

Distributions are initially estimated from prices recorded between 11:00 and 15:00 inclusive. 

We do so because Figure 2 shows there is less variation in the mean absolute deviations of 

the price differences during this mid-day period, so ignoring any intraday density variation is 

then more reasonable. The mid-day period also has a higher percentage of price differences 

inside 35.0 , which enhances the usefulness of one-state specifications. 

 

One state 

Our first results are for one state, so 1K , 1.0)1(
max u , 25.0)1(

max v  and 35.0max q ; then 

0.43% of the minutes are excluded for 2010, 0.95% for 2011 and 0.51% for 2012. The 

parameter vector is ),,,,,( 654321   , with the terms j  defined by (45). 

Panel A of Table 4 provides estimates of   and   for each year, for three special 

cases and then for all seven parameters. The first special case is the independent uniform 

density, which has by far the lowest log-likelihoods and the highest goodness-of-fit statistics. 

This confirms that it is necessary to investigate nonuniform marginal densities and/or 

dependence between the two noise terms. 

The most general estimates show that 2̂  exceeds 0.5 for all three years, that two 

values of 6̂  exceed 0.3 and that the maximum values of 1̂ , 3̂ , 4̂  and 5̂  are 

respectively 0.05, 0.05, 0.002 and 0.002. These facts motivate estimating the two-parameter 

special case when 05431   , which produces values of the log-likelihood near to 

the best for a general  . Table 4 lists values for )log(L  minus the corresponding values for 

the two-parameter special case. The three log-likelihood differences are 1.18, 0.12 and 0 

which provide no evidence to support including the additional four parameters in the 
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bivariate density function. Table 4 also shows that the additional restriction 06   is 

inappropriate, as then double the reduction in )log(L  always exceeds 39, which is far above 

the 0.1% critical point of 2
1 , which equals 10.8. The standard errors of 2̂  and 6̂  are small 

for the two-parameter special case; these are approximately 0.031 for 2̂  and 0.017 for 6̂  

when the i.i.d. assumption is made, and they increase to approximately 0.04 and 0.025 for 

block bootstrap estimates with the blocks defined by the trading days.  The values of 2X  are 

20.39, 30.18 and 70.44 for the preferred specification, which are rather large when 

comparisons are made with the 2
3  distribution; we defer graphical comparisons of empirical 

and fitted densities until after the results for four-state densities. 

From Panel A of Table 4 we conclude that a parsimonious, single-state specification 

of the bivariate density is possible with only two parameters. Replacing 2  by   and 6  by 

 , the density is: 

]))( (1[
4

1
),,,,(

max
2
1

maxmax
maxmax2 v

v
uvS

vu
vuvuhS   ,                 (52) 

with the label S2 indicating that this is a two-parameter special case. The constraints now 

simplify to  0  and 1
2
1   . The marginal distribution of U, whose support is 

relatively narrow, is then uniform, while the marginal for V is the pentagon density )( vfP  

(see (41)) with 2   and with relatively wider support. 

The two parameters can be interpreted separately. First,  determines the 

unconditional probability that an ES trade occurs at the end of the bid-ask spread nearest to 

the noise-free ES price; this probability equals )1(
4
1

2
1  , which varies from 57% to 60% for 

the estimates in Table 4, with standard errors equal to 0.5% Second,   controls the 

unconditional probability that both markets trade at the same end of the spread (either at two 
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bids or at two asks); this equals )1(
2
1

2
1   and its estimates vary from 53% to 58% 

(approximate standard errors are 0.6%). The covariance between U and V equals 

6maxmaxvu  and the correlation is  4 ; our correlation estimates vary from 0.06 to 

0.17.  

 

Two states 

The range of feasible price differences can be widened from 35.0  to 45.0  by adding a 

second state with 2.0)2(
max u  and 25.0)2(

max v , which permits the possibility of a two-tick 

spread for SPY.  Now 45.0max q  and approximately three-quarters of the minutes 

previously excluded are now included; only 0.10% of the minutes remain excluded for 2010, 

with 0.28% for 2011 and 0.12% for 2012. 

We estimate the following combination of S2-densities: 

)25.0 ,2.0 ,,,()25.0 ,1.0 ,,,(),( )2()2(
2

)2()1()1(
2

)1(  vuhpvuhpvuh SS  ,          (53) 

with ),,,,( )2()2()1()1()1(  p  and )1()2( 1 pp  . Maximizing the log-likelihood 

over all five parameters, we find that all estimates )2(̂  and )2(̂  are either zero or small as 

can be seen in Panel B of Table 4. The maximum log-likelihood is reduced by less than 0.1, 

for each year, when the restriction 0)2()2(    is imposed so an appropriate two-state 

model is provided by the three-parameter special case )0,0,,,( )1()1()1(  p .  

The estimates of )1(  are similar for the one and two-state specifications, and equal 

0.68, 0.79 and 0.55 when two states are estimated. The estimates of )1(  are higher when 

there are two states and these equal 0.39, 0.24 and 0.40. The estimated probabilities of a two-

tick SPY spread are similar for 2010 and 2012, at 0.060 and 0.072, while the estimate is 
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notably higher in 2011 at 0.129. The higher estimate for 2011 reflects the higher dispersion of 

price differences in that year, seen in Table 2 and on Figure 1. 

 

Four states 

The possibility of a two-tick spread for ES is included by setting 5.0)4(
max

)3(
max  vv , with

1.0)3(
max u  and 2.0)4(

max u . Now 7.0max q  which only excludes 0.027%, 0.075% and 

0.012% of the minutes in 2010, 2011 and 2012 respectively. 

The two-state results support selecting independent uniform densities whenever one 

of the spreads is more than one tick wide. Consequently, we now estimate parameters for the 

following combination of S2 and IU densities: 




4

2

)(
max

)(
max

)()1(
max

)1(
max

)1()1(
2

)1( ),,(), ,,,(),(
k

kk
IU

k
S vuvuhpvuvuhpvuh  .           (54) 

with ),,,,( )1()1()3()2()1(  ppp  and )3()2()1()4( 1 pppp  . 

Panel C of Table 4 shows that the estimates of )1(  and )1(  do not change much 

when the two additional states are included in the bivariate density specification. Two of the 

estimates of )3(p  are zero, which is not surprising as the third state has an ES spread five 

times as wide as the SPY spread.12 The probability of a two-tick ES spread is )4()3( pp  , 

estimated to be 0.44% in 2010, 1.21% in 2011 and 0.79% in 2012. Compared with the two-

state estimates, )1(p̂  is slightly higher and )2(p̂  is notably lower. 

It is inevitably difficult to obtain accurate estimates of four state probabilities when 

three of them are small. Indicative standard errors (s.e.) have been calculated when )3(p  is 

constrained to be zero and the i.i.d. assumption is made. We find that )1(p̂  and )2(p̂  are 

                                                 
12 In Section 6.3 we assume the third state probability is zero. Applying this constraint reduces the maximum 
log-likelihood for the 2012 data by 2.40. 
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almost perfectly negatively correlated and their s.e. range from 0.004 to 0.006, while the s.e. 

for )4(p̂  are from 0.0007 to 0.0011. There is little correlation between either )1(̂  or )1(̂  and 

either )2(p̂  or )4(p̂ , and the s.e. of )1(̂  and )1(̂  are respectively all approximately equal to 

0.033 and 0.019. 

 

Density comparisons for adjusted price differences 

Plots of the fitted one, two and four-state densities for the adjusted price differences q all 

show a close agreement with kernel densities estimated from the data provided by all mid-day 

minutes in a selected year. Our kernel densities first apply a Gaussian kernel, with bandwidth 

equal to 0.03, to give )(q  and are then converted to the symmetric function 

2))()(( qq   .  Figures 6a, 6b and 6c compare the four-state and kernel densities, for 

4.00  q ; over this range the visual comparison is essentially identical for two-state 

densities and it is very similar for one-state densities as far as 35.0q . The fitted densities 

tend to be slightly higher than the kernel densities for 2.00  q  and slightly lower for 

35.02.0  q . Figures 7a, 7b and 7c show a reasonable match between the four-state and 

kernel densities in the tail region  7.04.0  q , where the densities are very small. The 

densities are similar across years, although the tails are fatter for 2011 which can be seen 

from the higher values on the vertical axis of Figure 7b than on Figures 7a and 7c. 

 

6.3 Estimates for the primary trading period 

The primary trading period is from 09:30 to 16:15 inclusive. We exclude the period after 

16:00 because Figure 2 shows there is substantially more noise after Wall Street closes. For 

the same reason we also exclude the minute marks at 09:30, 10:00 and 16:00. Thus the set J 



43 
 

contains the 388 integers j in the list }389,...,31,29,...,1{ , corresponding to 09:31 until 09:59 

and 10:01 until 15:59 inclusive. 

Based upon the exploratory data analysis in Section 4.3.3, we expect the state 

probabilities to vary across the day with two-tick spreads more likely early and late in the 

trading day. We use a quadratic function of j to describe this intraday time-variation. From 

Section 4.3.4, we also expect the probabilities of two-tick spreads to be increasing functions 

of realized volatility. We provide presults when these probabilities depend on linear functions 

of SPY realized volatility, defined simply as the sum of squared, one-minute, percentage 

returns aggregated over the periods from 09:31 to 09:59 and 10:01 to 15:59.  

 Guided by the results for the mid-day period, three states are defined by (1) both 

spreads are one tick wide, (2) the SPY spread width is two ticks and the ES width is one tick, 

(3) both spreads are two ticks wide; thus 3K , 1.0)1(
max u , 2.0)3(

max
)2(

max  uu , 

25.0)2(
max

)1(
max  vv , 5.0)3(

max v  and 7.0max b . The percentages of minutes excluded are 

0.041% in 2010, 0.127% in 2011 and 0.019% in 2012. 

Following (54) and the results in Table 4, the bivariate density for the two noise terms 

is a linear combination of one S2-density and two IU-densities with the state probabilities 

depending on the minute j and the day’s realized variance, tRV : 
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                            (55) 

Our choices for the state probabilities are: 

        3 ,2       ),)
194

(1)(1(),( 2min)(
min

)( 


 k
jj

RVpjRVp t
k

t
k                      (56) 

and                   ).,(),(1),( )3()2()1( jRVpjRVpjRVp ttt   
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The parameter vector is ),,,,,,( min
)3(

min
)2(

min  jpp   and all parameters are 

non-negative. The terms )(
min
kp  are the minimum probabilities for states 2 and 3, which occur 

when firstly 0  or 0tRV  and secondly 0  or minjj  . The same multiplicative 

factors are applied to the two terms )(
min
kp  to avoid estimating more than seven parameters. To 

prevent very high values of RV being overinfluential, all seven values above 5 have been 

truncated to 5; all the truncated values occur in the second half of 2011. 

Table 5 contains the parameter estimates when all seven parameters are estimated and 

also for three special cases, which switch off one or both of the time-varying multipliers. The 

final column shows the adjusted log-likelihood AL, defined as the maximum log-likelihood in 

excess of the maximum when there is no time-variation, i.e. when 0  . We see large 

values of AL confirming that the state probabilities vary though time. When 0 , the log-

likelihood is always more than 35 below the global log-likelihood for the same year, while 

for 0  the reduction is always more than 89. We conclude that both the time of the day 

and the level of price volatility influence the probabilities of spreads wider than one tick. 

The average probabilities across the primary trading period are estimated as: 
 
   State 1  State 2  State 3 

 2010  0.930  0.063  0.007 

 2011  0.807  0.165  0.028 

 2012  0.886  0.100  0.014 

The estimated times when the first-state probabilities are maximized are 13:14, 13:24 and 

13:32, respectively for 2010, 2011 and 2012. They are all at their minimum level at 09:31, 

when their averages are estimated to be: 

   State 1  State 2  State 3 

 2010  0.841  0.144  0.015 
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 2011  0.511  0.418  0.072 

 2012  0.683  0.277  0.040 

We note that the estimates of  , which multiplies tRV  in (56), are highest for the 2011 data 

when realized variance is also generally higher. 

 

Discrete-price microstructure noise densities 

Finally, we present some representative estimated densities for discrete-price microstructure 

noise. For our preferred bivariate density, the marginal density )(uf  of the SPY noise 

variable for the exchange traded fund, *SSU  , is a weighted combination of two uniform 

densities with the weights depending on the clock and on index volatility. The first uniform 

density equals 2.01  when 1.0u  and the spread is one tick wide, while the second for two-

tick spreads is 4.01  when 2.0u . The density of U is thus, for 2.0u : 

2.0
)1(

1.0
)1( 1)1(5.215)(   uu ppuf .                                           (57) 

For the e-mini futures contracts ES, the marginal density )(vg  of the ES noise variable, 

*FFV  , is a weighted combination of a polygon density and two uniform densities. The 

polygon density is used when both spreads are one tick wide. The density of V becomes, for 

5.0v : 
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Figures 8a, 8b and 8c show the estimated marginal densities for each year when the 

state probabilities equal the average values presented above and when   equals the values in 

the final row for each year in Table 5. These diagrams show two empirical conclusions: 

firstly that ES has more discrete-price noise variation than SPY, reflecting their different tick 
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sizes, and secondly that ES trades are more likely to occur at the end of the spread nearest to 

the noise-free price. 

 

7  The magnitude and persistence of residual microstructure noise 

 

There is no obvious method for estimating the distribution of the residual MN component, 

denoted jtM , , so we conclude the empirical analysis by only estimating the variance and 

autocorrelations of the residual MN. We obtain these estimates by matching theoretical and 

empirical moments for the auto- and cross-covariances of the price changes jtS ,  and jtF ,  

during the mid-day period from 11:00 to 15:00 inclusive.  

Initially we match moments from lag 2 onwards, because the exploratory data 

analysis shows that the auto- and cross-covariances are then dominated by contributions from 

the residual MN. We have: 
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,,1,1,

,,,,,,,,
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


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jtMMM

jtjtjtjtjtjtjtjt

M

SFFSFFSS
 (59) 

These covariances are negative for the simplest credible specification for { jtM , }, which is 

an AR(1) process with positive autocorrelations M . Then 

2      ),var()1(....),cov( ,
12

,,  
  
 jtMMjtjt MSS .                (60) 

From Table 3 and Figure 4, the empirical auto- and cross-covariances are negative 

from lags 2 to 10 inclusive and their values are very similar for all combinations of either 

jtS ,  or jtF ,  with either  jtS ,  or  jtF ,  when 2 . Let C


 denote the average 

across the four sample values at lag  , which equals the autocovariance of 2/)( ,, jtjt FS 

at lag  ; also let )var()1( ,
12

jtMM MC  
  . Method of moment (MM) estimates of 
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)var( , jtM  and M  are provided by minimizing 2
2 )ˆ(  CCW  . Using lags 2 to 20 

inclusive, and all three years of mid-day prices (measured in cents), we estimate the variance 

and autoregressive parameter to be respectively equal to 963 and 0.807. 

Potentially more precise estimates, as well as standard errors, can be obtained by the 

generalized method of moments (GMM). Following the notation and equations of Hamilton 

(1994, page 416), we minimize the quantity gSg 1ˆ  where g is a 119   vector, with

2,ˆ
1   CCg , and Ŝ  is an appropriate 1919   matrix; we use the MM estimates to 

evaluate Ŝ . For all three years the GMM estimate of )),(var( MM   equals )813.0 ,927(   

which is similar to the MM estimate.  The estimated GMM standard errors are 471 and 0.071 

and the estimated correlation between the two parameter estimates is a substantial 0.92. Year 

by year, the GMM estimates are )832.0 ,508(  , )827.0 ,2025(   and )673.0 ,254(  , respectively 

for 2010, 2011 and 2012. The standard diagnostic test compares the minimum value of 

gSgT 1ˆ  with the 2
17  distribution, when T time periods are used. Our test values range from 

14.85 to 19.06, none of which provides evidence of model mis-specification; we observe that 

the minimum value of 16.75 for all three years is less than half of the value of gSgT 1ˆ  when 

0C , namely 41.51. 

We note that similar estimates of )),(var( MM   are obtained when first-lag 

covariances are also used, so that moments are matched from lags 1 to 20 inclusive, but it is 

then necessary to insert discrete-price MN parameter estimates into the calculations of the 

theoretical moments at lag 1. These are: 
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assuming the autocorrelations and cross-correlations of discrete-price MN are 
  UUU A,  

and 
  VVV A,  for 1  and 0),(cor ,,   jtjt VU  for 0 . A second set of MM 

estimates for )var( , jtM  and M  are given by minimizing 

,)ˆ()ˆ()ˆ( 222
21 SFSFFFFFSSSS CCCCCCWW  with 08.0 VU AA and 

975.0 VU  (from Section 4.3.5) and with ,2.40)var( , jtU  2.178)var( , jtV  and 

15.0),(cor ,, jtjt VU  (from Table 4, Panel C). These estimates are 1052 for )var( , jtM  and 

0.827 for M , which are very near the estimates given by minimizing 2W . 

 Using the lag 1 information also permits identification of an additional autocorrelation 

parameter for residual MN. Supposing 
  MMM A, , minimizing 1W  provides 

006.1ˆ MA  which supports the simple AR(1) specification for residual MN.  

The GMM estimate of persistence for residual MN shocks during the mid-day period, 

813.0ˆ M , corresponds to a short half-life equal to 3.35 minutes; from a symmetric 95% 

confidence interval for M̂ , the 95% interval for the half-life is found to be from 1.76 to 14.1 

minutes. Note that it is conceivable that there also exist highly persistent components of 

residual MN, which cannot be identified from our high-frequency data. 

The standard deviation of residual MN has a GMM estimate equal to 30.4 cents, 

which is notably higher than the estimated standard deviations of discrete-price MN. A direct 

comparison of standard deviations does not, however, totally clarify the relative importance 

of the residual and discrete-price components. High-frequency financial econometrics 

research makes frequent use of realized variance measures calculated from returns, which are 

often biased because of MN. As returns are essentially price changes divided by prices, the 

key comparison is between variances of changes such as between )var( 1,,  jtjt MM  and 
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)var( 1,,  jtjt VV . For h-minute returns, we may thus compare )var()1(2 , jt
h
M M  with 

)var()1(2 , jt
h
VV VA  . The former quantity disappears as 0h , while the latter quantity 

does not because 1VA . With  ,8.0M 08.0VA  and  ,975.0V we estimate the two 

terms are the same for futures when h is approximately 0.94, so that discrete-price MN is 

more influential for return intervals shorter than 56 seconds; it is more influential for the spot 

asset for intervals shorter than 12 seconds if we assume VU AA   and VU   . We do not 

claim that these estimates (12 and 56 seconds) are accurate. 

 

8  Conclusions 

 

Microstructure noise (MN) can be modelled as the sum of discrete-price and residual 

components. By studying the differences between exchange traded fund prices and futures 

prices, we have obtained new results about the distribution of the discrete-price MN created 

by bid/ask spreads and minimum price changes. The distribution is time-varying and depends 

on the minute of the day, on the year studied and on index volatility. For our data, we can 

also infer some properties of the residual MN, finding that it contributes more to measures of 

price variation than discrete-price MN for the popular sampling frequency of five minutes.  

The S&P 500 ETF trading under the ticker symbol SPY has a spread equal to 10 cents 

when the spread is one tick wide and the ETF prices are multiplied by 10 to match the level 

of the replicated index. The probability of a two-tick spread is relatively high before 10:00 

and after 15:00 and it increases as volatility increases. Our average estimate of the one-tick 

probability is 87% for SPY, with an average 13% chance of a two-tick spread. The simplest 

credible distribution for the discrete-price component of SPY microstructure noise, 

conditional on the spread width, is uniform which our data supports. 
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S&P 500 e-mini futures have a minimum spread of 25 cents and consequently there is 

more discrete-price noise in futures prices than in the ETF prices. One-tick and two-tick 

spreads are estimated to have average frequencies respectively equal to 98.4% and 1.6%. 

Uniform distributions have more variation than our fitted pentagon distributions, whose 

representative densities are shown on Figure 8. The higher density values for smaller (in 

magnitude) noise levels are consistent with trade being more likely at the end of the spread 

which is nearest to the latent price which would occur if there were no spreads and no 

minimum price changes. The estimated probability of trade at the “better value” price 

averages 58%, both mid-day from 11:00 to 15:00 and across the longer trading period from 

09:31 to 15:59. 

 There is some dependence between ETF discrete-price noise and futures discrete-

price noise, attributable to dependence between the orders flowing to the two markets. As 

buying pressure relative to selling pressure increases at both markets there will be a higher 

chance that both markets trade at ask prices, while if selling pressure dominates more trades 

occur at bid prices. Our average estimate of the chance of trades at the same ends of the 

spreads (two bids or two asks) is 58% mid-day and 56% for the longer trading period. The 

dependence between discrete-price noise across the markets is thus weak, with average 

correlation estimates of 15% mid-day and 11% all-day. 

 There is persistence in the discrete-price component for futures, which reflects 

persistence in the latent probability that a trade occurs at the ask price. Our data supports the 

probability process having mean, standard deviation and persistence half-life respectively 

equal to 0.5, approximately 0.22 and approximately 30 minutes. We may conjecture similar 

results for the spot component, but cannot obtain estimates because the spot component is far 

less variable than the futures component. 
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 The residual MN component must be very similar for spot and futures because these 

asset prices are constrained by the impossibility of arbitrage profits. We find no evidence to 

challenge the assumption of identical residual components for the two assets. The estimated 

standard deviation of residual MN, at 30 cents during the mid-day period, is high relative to 

the standard deviations of spot and futures discrete-price MN, around 6 and 13 cents during 

the same period. 

The relative contributions of residual and discrete-price MN to the variance of returns 

depend on both the standard deviations and the autocorrelations of the MN components. The 

residual MN is estimated to have high autocorrelations for nearby terms, because it can be 

modelled by an AR(1) process with the AR parameter having a half-life of approximately 3.3 

minutes. In contrast, all the autocorrelations of discrete-price MN are estimated to be between 

0 and 0.15 for all positive lags. Consequently, the discrete-price MN contributes more than 

the residual MN to the variance of returns for return measurement intervals shorter than some 

threshold. Our very approximate estimates for the threshold are 12 seconds for the ETF and 

56 seconds for the futures. 

 

Appendix A: Data processing 

 

The one-minute price records were bought from RC Research via www.price-data.com. 

A majority of the ES futures contracts have a full set of prices available until 16:15 on 

the Thursday preceding final settlement at 09:30 on the next morning. For these contracts we 

use all the prices before final settlement; no evidence of unusual basis values during the final 

Thursdays has been observed. For the remaining five contracts we switch to the second-

nearest contract on the first day that a full set is unavailable for the nearest contract; on 

average the switch is made one week before final settlement.  
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Partial trading days are excluded. There are six holidays in each year having two 

hours of ES trading but no SPY trading. Three hours of ES trades are unavailable on the 

Fridays following Thanksgiving Days and many SPY records are also then missing. Three 

hours of ES trades are also unavailable pre-holiday on 3 July and 24 December 2012. The ES 

data inexplicably ends early on 11 February and 25 May 2011. Six minutes of SPY data are 

missing after 16:00 on 26 March 2012 and prices have been created by adding a basis 

estimate to the ES prices. Finally, four minutes of SPY data are duplicated on 12 August 

2011 and the price records in each pair having the lower volume have been deleted. 

Large differences between SPY and ES prices, relative to basis estimates, have been 

checked to detect occasional large price errors. No evidence for any price errors has been 

found. 

The percentage frequencies of off-tick SPY prices are 15.4%, 15.4% and 19.4% in 

2010, 2011 and 2012. The most common off-tick final digits are 50 (as in a price of 109.125), 

with frequencies 4.9%, 5.8% and 7.1%. The final pairs 01, 10, 90 and 99 (as in 109.1201, 

109.121, 109.129, 109.1299) all have average frequencies above 1.2%.13 Rounded prices are 

defined by rounding to the nearest cent. The half-cent prices are arbitrarily rounded up for 

odd minutes (e.g. to 109.13 for the last trade before 09:31) and down for even minutes (to 

109.12 at 09:32). 

 

Appendix B: Chances of trades at the same ends of the spreads 

 

The probability that spot and futures trades occur at the same ends of the spreads (two bids or 

two asks) is )( ,, jtjt YXP  . Table 1 provides probabilities yxq ,  for the nine events

                                                 
13 Buti et al (2014) provide different dark-pool explanations for midpoint (final digits 50) and non-midpoint off-
tick prices. 
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xXX jtjt  )( ,,2
1  and yYY jtjt  )( ,,2

1 , for  ]1,0,1[, yx . It is trivial to deduce 

),( ,,, yxYXPp jtjtyx   for eight of the events, namely ,11,11,1  pp

01,11,1   pp  and .5.00,11,00,10,1  pppp  For any estimate 0,0p , the same ends 

probability can then be estimated as yxyx qp ,, . 

To get an upper bound for 0,0p , we note that 0,0q  is the sum of 4 terms, from 

1,,  jtjt XX  and .1,,  jtjt YY We claim that the event 

}1,1{ ,,,,   jtjtjtjt YYXX  is more likely than the event 

}1,1,1,1{ ,,,,   jtjtjtjt YYXX  which has chance 1,1q . Our upper bound for 

0,0p  is then 0,01,11,10,0 /)( qqqq    which is 82%. The logical lower bound is 50%. 

 

Appendix C: Evaluating the density of noise differences 

 

The density of VUD   is required for maxmax0 vud  . It is provided by 

  duduuh  ),( , with the integral across all u for which ),( duuh   is positive. Without loss 

of generality we assume maxmax vu  . 

For the most general density specification in Section 5.4, we need to evaluate  

duduauaaduuSduuaduauaa
u

dL
 ]))[(()(  654321

max

)(
0          (C1) 

for seven coefficients ia , with ).,max()( maxmax uvddL   The sign function is 1)( xS    

for 0x and 1)( xS  for 0x . The general integral can be rewritten as 
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. )()()(                                        
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duuSaduSauduSauSaduSuSaa
u
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

     (C2) 

The integral is evaluated by splitting the range of integration into intervals across which the 

sign functions are constant; within each interval the integrand is a quadratic function of u. 

The first interval has 1)( uS  and 1)(  duS , for 

  .      when

,        when          0

,0    when                    0

maxmaxmaxmaxmax

maxmaxmax

max

vudvuuvd

vduuu

uddu


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
                      (C3) 

The second interval contributes when max0 vd  , and it has 1)( uS  and 1)(  duS  

for 0)(  udL . The third interval also contributes when max0 ud  ; it has 1)( uS  and 

1)(  duS , for maxuud  . 
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Table 1 Bivariate distribution of trade-to-trade price changes 

 

The percentages are calculated from 122,605 minute marks, for which firstly the SPY price 

change from last-before-mark to first-after-mark is either zero or   one spot tick and 

secondly likewise for the ES price change. All minute marks are between 11:00 and 15:00 

inclusive. There are 1,251 minute marks during these hours for which either the SPY change 

or the ES change (or both) is (are) beyond   one tick. Minute marks having off-tick spot 

prices are excluded from these counts. 

 

 

ES change, in ticks 

   1      0     1  Total 

SPY change, in ticks 

1    4.13%  11.07%  3.31%  18.51% 

0  12.28% 37.36% 12.93% 62.57% 

1   3.31%  11.24%  4.37%  18.92% 

Total  19.72% 59.67% 20.61% 100% 

  



58 
 

Table 2  Summary statistics for adjusted price differences 

Statistics are provided for the adjusted price differences, tjtjtjt BFSq ˆ
,,,  , calculated 

once a minute, with S, F, t and j respectively denoting the SPY price, the ES price, the day 

and the minute, and with tB̂  the average for day t across minutes of the differences 

jtjt FS ,,  . The units of jtq ,  are cents. 

 

     2010  2011  2012  All years 

Days     246  249  247  742 

 

Mean absolute deviations 

  09:31 to 10:59   11.89  13.06  12.49  12.48 

  11:00 to 15:00   11.33  11.86  11.62  11.61 

  15:01 to 16:15   12.39  13.20  12.83  12.81 

  All day    11.65  12.37  12.04  12.02 

 

Standard deviations 

  09:31 to 10:59   14.91  16.96  15.60  15.85 

  11:00 to 15:00   13.76  14.76  14.09  14.22 

  15:01 to 16:15   19.20  17.58  16.49  17.79 

  All day    15.16  15.82  14.90  15.30 

 

Percentages beyond 35  

  09:31 to 10:59   1.01  2.74  1.95  1.90 

  11:00 to 15:00   0.43  0.93  0.61  0.66 

  15:01 to 16:15   1.20  2.78  2.21  2.07 

  All day    0.70  1.67  1.20  1.19 

 

Percentages beyond 70  

  09:31 to 10:59   0.12  0.29  0.05  0.15 

  11:00 to 15:00   0.03  0.07  0.01  0.04 

  15:01 to 16:15   0.21  0.30  0.29  0.26 

  All day    0.08  0.16  0.07  0.11 
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Table 3 Variances, covariances, autocorrelations and cross-correlations for price changes 
 

Variances and covariances for one-minute price changes  1,,,  jtjtjt SSS  and 1,,,  jtjtjt FFF , and one-minute returns, 

)/ln( 1,, jtjt SS  and )/ln( 1,, jtjt FF , with t counting days and j counting minutes. The first group of autocorrelations and cross-correlations are 

estimates of dependence between either jtS ,  or jtF ,  and either  jtS ,  or  jtF , . The data are mid-day prices, from 11:00 to 15:00 on days 

from January 2010 to December 2012. Covariances are estimated from products of terms a fixed time apart on the same trading day. The units of 

the price changes are cents. 

Covariances for price changes         810 Covariances for returns  

     Spot  Futures        Spot      Futures 

Spot  2154.2  2117.6         Spot     14.65    14.47 

Futures   2447.8         Futures      16.67 

 

   Correlations for price changes        Correlations for returns 

  j  Spot    Futures    Spot Futures          Spot Futures   Spot         Futures   
  j  Spot    Futures    Futures     Spot          Spot Futures   Futures     Spot 

  
0  1  1 0.9222 0.9222   1   1 0.9258 0.9258
1 -0.0265 -0.0842 -0.0300 -0.0054 -0.0259 -0.0810 -0.0296 -0.0054
2 -0.0147 -0.0154 -0.0166 -0.0138 -0.0152 -0.0154 -0.0165 -0.0144
3 -0.0030 -0.0009 -0.0019 -0.0013 -0.0023 -0.0007 -0.0015 -0.0008
4 -0.0176 -0.0151 -0.0153 -0.0176 -0.0186 -0.0155 -0.0157 -0.0187
5 -0.0072 -0.0060 -0.0061 -0.0065 -0.0075 -0.0068 -0.0069 -0.0069
6 -0.0029 -0.0019 -0.0024 -0.0027 -0.0037 -0.0020 -0.0028 -0.0032
7 -0.0070 -0.0059 -0.0054 -0.0069 -0.0076 -0.0067 -0.0061 -0.0074
8 -0.0012 -0.0010 -0.0013 -0.0016 -0.0011 -0.0009 -0.0011 -0.0018
9 -0.0041 -0.0007 -0.0015 -0.0022 -0.0043 -0.0012 -0.0022 -0.0022

10 -0.0020 -0.0039 -0.0033 -0.0035 -0.0033 -0.0048 -0.0043 -0.0048
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Table 4 Parameter estimates for the bivariate density of S&P 500 microstructure noise during the mid-day period 
 

Bivariate densities ),( vuh  are defined by combining component densities across states, with each state having a different combination of bid/ask 

spread widths. Densities are defined by (45) for one state, by (52) and (53) for two states and by (39), (52) and (54) for four states; parameter 

constraints are stated in Sections 5.4 and 6.2. The standard deviation of the basis estimation error is denoted by  . The column AL shows 

adjusted log-likelihoods, which are the maximum log-likelihood for a density specification minus the maximum log-likelihood for the selected 

specification having 0AL  . The goodness-of-fit measure 2X , defined by (51), summarizes the fit for adjusted price differences inside 35.0 . 

Results are shown by year for the mid-day period from 11:00 to 15:00 inclusive. 

 

Panel A: One state 

SPY spread  0.1     
ES spread  0.25     
 

  1   2   3   4   5   6      AL  2X  

2010  -  -  -  -  -  -  0.0173   2008.06 3639.20 
  -  1.1528  -  -  -  -     171.99   363.49 
  -  0.6795  -  -  -  0.3188    0      20.39 
  0.0484  0.6860   0.0181 0.0003   0.0003 0.3001    1.18      21.39 
 
 
2011  -  -  -  -  -  -  0.0239   1321.11 2620.95 
  -  0.9447  -  -  -  -     19.88     82.11 
  -  0.7845  -  -  -  0.1116    0      30.18 
  0.1034  0.8293  0.0950  0.0084   0.0084 0.1029    0.12      31.63 
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Table 4 continued… 
 

1   2   3   4   5   6      AL  2X  

2012  -  -  -  -  -  -  0.0269   1589.12 3094.72 
  -  1.0161  -  -  -  -     158.35   419.67 
  -  0.5614  -  -  -  0.3135    0      70.44 
  0.0000  0.5614  0.0000  0.0000  0.0000  0.3135    0      70.44 
 

A dash (-) indicates that the parameter is constrained to be zero. 
 
Panel B: Two states 
 
SPY spread  0.1       0.2 
ES spread  0.25       0.25 
 

  )1(p   )1(   )1(    )2(p   )2(   )2(    2X  

2010  0.9402  0.6830  0.3864   0.0598  0.0321  0.0000   44.87   
2011  0.8712  0.7861  0.2444   0.1288  0.1398  0.0000   64.40 
2012  0.9283  0.5493  0.4013   0.0717  0.0000  0.0000   92.29 
 
   
Panel C: Four states 

SPY spread   0.1      0.2  0.1  0.2 
ES spread   0.25      0.25  0.5  0.5 
 

  )1(p   )1(   )1(    )2(p   )3(p   )4(p    2X  

2010  0.9483  0.6842  0.3793   0.0473  0.0000  0.0044   42.33 
2011  0.8967  0.7905  0.2264   0.0912  0.0000  0.0121   59.37 
2012  0.9444  0.5587  0.3830   0.0478  0.0041  0.0038   88.91 
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Table 5 Parameter estimates for the bivariate density of S&P 500 microstructure noise during the primary trading period 
 
Bivariate densities are defined by (55) and combine component densities across three states, with each state having a different combination of 

bid/ask spread widths. The component densities are defined by (39) and (52). Their time-varying state probabilities depend on the minute j and 

the day’s realized variance tRV , as shown in (56).  The standard deviation of the basis estimation error is first estimated and denoted by  . The 

remaining parameters are all non-negative and estimated by maximizing the log-likelihood criterion stated in (50). The column AL shows 

adjusted log-likelihoods, which are the maximum log-likelihood for a density specification minus the maximum log-likelihood for the special 

case when there are no time-varying effects. Results are shown by year for the trading period from 09:31 to 15:59 inclusive, excluding 10:00. 

 

        )2(
minp   )3(

minp         minj      AL 

  
2010  0.7200  0.3009  0.0585  0.0066  -  -  -  0.0163  0  
  0.7175  0.2997  0.0277  0.0032  1.453  -  -    48.17 
  0.7174  0.3146  0.0283  0.0028  -  3.872  203.1    88.98 
  0.7151  0.3126  0.0139  0.0014  1.335  3.865  204.4    138.03 
 
2011  0.8050  0.1846  0.1368  0.0220  -  -  -  0.0255  0 
  0.8000  0.1729  0.0198  0.0034  5.483  -  -    557.91 
  0.8038  0.1930  0.0527  0.0083  -  4.865  212.4    316.93 
  0.7942  0.1842  0.0088  0.0014  4.958  4.609  213.5    856.91 
 
2012  0.6610  0.2910  0.0937  0.0141  -  -  -  0.0273  0 
  0.6593  0.2916  0.0498  0.0075  2.302  -  -    40.07 
  0.6501  0.3105  0.0329  0.0047  -  5.831  221.6    272.62 
  0.6489  0.3097  0.0193  0.0028  1.901  5.647  222.1    308.74 
 
A dash (-) indicates that the parameter is constrained to be zero. 
 



63 
 

 

 

The blue dots mark mean absolute deviations of adjusted price differences. The red line is the 
theoretical m.a.d. when the discrete-price noise terms are independent and have uniform 
distributions, which have zero expectations and maximum values equal to one tick. 

The purple curve shows fitted values when the mean absolute deviation of price differences is 
regressed on time and its square. The red line is the level for independent, uniform noise 
when all spreads are one tick wide. 
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Autocorrelations are shown for each year. The time lag is measured in minutes. The fitted 
curves minimize the sum of squared differences between empirical and theoretical 
autocorrelations. 

  

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 10 20 30 40 50 60

Figure 3: Autocorrelations of price differences and
fitted ARMA(1,1) values

2010
arma(1,1)
2011
arma(1,1)
2012
arma(1,1)



65 
 

 

 

 

Auto- and cross-correlations are shown for one-minute returns, for the mid-day period from 
11:00 to 15:00. The dotted lines connect robust 95% intervals for the individual correlation 
estimates under the hypothesis that the returns are generated by an uncorrelated process. All 
numbers are calculated by using the returns from 2010 to 2012.  
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The density of noise differences D when the noise terms are independent and uniform (IU) 
has three line segments and passes through (0, 2). The independent polygon (IP) density is 
illustrated by the red and curve and is defined by (41) and (42). The dependent uniform (DU) 
density, defined by (44), is shown by the green curve and has the highest peak. The density of 
price differences Q is illustrated by the curve whose density extends beyond 0.35, and is 
calculated from (34). The price units are dollars. 

  

0.00

0.50

1.00

1.50

2.00

2.50

3.00

‐0.4 ‐0.3 ‐0.2 ‐0.1 0 0.1 0.2 0.3 0.4

Figure 5: Examples of densities for noise and price differences

D: IU

D: IP 0.3

D: DU 0.3

Q: IP 0.3



67 
 

 

 

 

The mid-day period is from 11:00 to 15:00. The solid curves show kernel estimates of the 
densities of the adjusted price differences q . The dashed curves are the fitted densities for the 
four-state specification defined by (39), (52) and (54).  
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Solid curves are kernel estimates. Dashed curves are fitted densities for four states. 
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Blue lines are for the density of SPY noise, red lines are for ES noise. The three state 
probabilities used are averages of values which vary across the clock and also depend on 
realized volatility. The bivariate density is (55) and (56) and the marginal densities are (57) 
and (58). Densities are estimated for prices from 09:31 to 15:59, excluding 10:00. 
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