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Mixed-strategy learning with continuous action sets
Steven Perkins, Panayotis Mertikopoulos, Member, IEEE, and David S. Leslie

Abstract—Motivated by the recent applications of game-
theoretical learning to the design of distributed control systems,
we study a class of control problems that can be formulated
as potential games with continuous action sets. We propose an
actor-critic reinforcement learning algorithm that adapts mixed
strategies over continuous action spaces. To analyse the algorithm
we extend the theory of finite-dimensional two-timescale stochas-
tic approximation to a Banach space setting, and prove that the
continuous dynamics of the process converge to equilibrium in the
case of potential games. These results combine to give a provably-
convergent learning algorithm in which players do not need to
keep track of the controls selected by other agents.

I. INTRODUCTION

There has been much recent activity in using game-
theoretical learning within distributed control systems. This
research traverses from utility function design [1–3], through
analysis of suboptimalities due to the use of distributed selfish
controllers [4] to the design and analysis of game-theoretical
learning algorithms with specific control-inspired objectives
(reaching a global optimum, fast convergence, etc.) [5, 6].

In this context, considerable interest has arisen from the
approach in which the independent controls available to a
system are distributed among a set of agents, henceforth
called “players”. To complete the game-theoretical analogy, the
controls available to a player are called “actions”. Each player
is assigned a utility function which depends on the actions
of all players (as does the system-level utility). Each player’s
utility could be set to the global utility of the joint action
selected by all players. However, as argued by [1], encoding
the system utility into player-specific utility functions usually
results in improved performance. Wonderful life utility [1, 2]
and Shapley value utility [4] are two common approaches, and
most proposed alternatives also result in a potential game [7]
(possibly in an extended sense [3]) where the optimal system
control is a Nash equilibrium of the game. Thus, by repre-
senting a control problem as a potential game, the controllers’
main objective amounts to reaching a Nash equilibrium.

On the other hand, like much of the economic literature
on learning in games [8], the vast majority of this corpus of
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research has focused on situations where each player’s controls
comprise a finite set. However, the assumption of discrete
action sets is frequently problematic in control, engineering
and economics: after all, prices are not discrete, and neither
are the controls in a large number of engineering systems. For
numerous examples see [9–13]. We therefore focus on control
problems (presented as potential games) with continuous ac-
tion sets and propose an actor-critic reinforcement learning
algorithm that provably converges to equilibrium. Building
on recent work on single population or two-player games
in the economics literature [14, 15], our analysis relies on
two novel contributions of independent interest. The first is
the combination of two-timescales stochastic approximation
techniques [16] with so-called “abstract stochastic approxima-
tion” on Banach spaces, e.g. [17]. Our second contribution is
the convergence analysis of the mean field dynamics of this
process on the space of probability measures on the action
space. Combined with our stochastic approximation results, we
thus obtain the convergence of our actor-critic reinforcement
learning algorithm to equilibrium in potential games.

There are several other approaches to learning in continuous
action games, from disconnected literatures. Deterministic
differential equation approaches have focused on the replicator
dynamics [18], the Brown–von Neumann–Nash dynamics [19],
and the best-response dynamics [20, 21] in continuous time. In
discrete time learning [22–24] consider a gradient-ascent-like
scheme, while several approaches have been proposed to learn
pure strategy equilibria based on variational inequality theory
— see e.g. [25–28] and references therein. Our work initiates a
new and different approach in which full mixed strategies are
adapted in a discrete-time stochastic learning process which
does not require full sharing of current strategies.

II. ACTOR–CRITIC LEARNING

Throughout this paper, we will focus on control problems
presented as potential games with finitely many players and
continuous action spaces. Such a game comprises a finite
set of players labelled i ∈ {1, . . . , N}. For each i there
exists an action set Ai ⊂ R which is a compact interval.1
When each player selects an action ai ∈ Ai this results
in a joint action a = (a1, . . . , aN ) ∈ A =

∏N
i=1A

i. We
use the notation (ai, a−i) to refer to the joint action a in
which Player i uses action ai and all other players use action
a−i = (a1, . . . , ai−1, ai+1, . . . , aN ). Each player i is also
associated with a bounded and continuous utility function
ui : A → R. In a potential game [7], there exists a potential
function φ : A→ R such that

ui(ai, a−i)− ui(ãi, a−i) = φ(ai, a−i)− φ(ãi, a−i)

1The analysis transfers easily to other convex, compact bodies.
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for all i ∈ {1, . . . , N}, for all a−i and for all ai, ãi.
Methods for constructing potential games from system utility
functions [1–3] usually ensure that the potential corresponds
to the system utility, so maximising the potential function
corresponds to maximising the system utility.

Game-theoretical analyses usually focus on mixed strategies
where a player selects an action to play randomly. A mixed
strategy for Player i is defined to be a probability distribution
over the action space Ai. Specifically, let Bi be the Borel
sigma-algebra on Ai and let P(Ai,Bi) denote the set of
all probability measures on Ai. A mixed strategy is then an
element πi ∈ P(Ai,Bi). Such a mixed strategy need not admit
a density with respect to Lebesgue measure, and in particular
may contain an atom at a particular action ai.

Returning to our game-theoretical considerations, we extend
the utilities ui linearly to the space ∆ =

∏N
i=1 P(Ai,Bi)

of mixed strategy profiles. As before we use the nota-
tion (πi, π−i) to refer to the mixed strategy profile π in
which Player i uses πi and all other players use π−i =
(π1, . . . , πi−1, πi+1, . . . , πN ). We also write (ai, π−i) for the
strategy profile (δai , π

−i), where δai is the Dirac measure at
ai. Hence ui(ai, π−i) is the utility to Player i for selecting ai
when all other players use strategy π−i.

A central concept in game theory is the best response
correspondence of Player i, the set of mixed strategies πi

that maximise ui(πi, π−i) for any particular π−i; a Nash
equilibrium is a fixed point of this correspondence. In a
learning context however, discontinuities in best response
correspondences can cause difficulties [8]. We focus instead
on a smoothing of the best response. For a fixed η > 0, the
logit best response with noise level η of Player i to strategy
π−i is defined in [14, 15] and shown to be the absolutely
continuous mixed strategy Liη(π−i) ∈ P(Ai,Bi) with density

liη(π−i)(ai) =
exp

{
η−1ui(ai, π−i)

}∫
Ai

exp {η−1ui(bi, π−i)} dbi
. (1)

To ease notation, let Lη(π) =
(
L1
η(π−1), . . . , LNη (π−N )

)
.

Smooth best responses also play an important part in discrete
action games, particularly when learning is considered. They
were introduced in stochastic fictitious play by [29] (see also
[30–32] for example) to ensure the played mixed strategies in
a fictitious play process converge; in classical fictitious play
the played strategies are (almost) always pure. The technique
was also required by [33–35] to allow simple reinforcement
learners to converge to logit equilibria.

The existence of fixed points of Lη is shown by [14, 15];
such a fixed point is a joint strategy π such that πi = Liη(π−i)
for each i. Such profiles π are called logit equilibria and the
set of all such fixed points will be denoted by LEη . Logit
equilibria approximate Nash equilibria when η is sufficiently
small, so for small η elements of LEη concentrates most of
its mass near to a critical point of the potential function φ.

One of the motivations for learning in a control setting is that
full utility functions might not be known in advance, and play-
ers might not observe the actions of all other players. Using fic-
titious play (or, indeed, most standard game-theoretical tools)
does not satisfy this requirement because they assume full

Algorithm 1 Actor-critic Reinforcement Learning
Parameters: step-size sequences αn, γn.
Initialize critics Qi0, actors πi0; n← 0.
Repeat

n← n+ 1;
for each player i = 1, . . . , N do simultaneously

sample action ain from distribution πi;
update critic:

Qin+1 = Qin + γn
(
ui(·, a−in )−Qin

)
(2a)

sample bin ∼ Liη(Qin) and update actor:

πin+1 = πin + αn
(
δbin − π

i
n

)
. (2b)

until termination criterion is reached.

knowledge of payoff functions and opponent actions. This is
what motivates the simple reinforcement learning approaches
[33–35]. The scheme in this article extends the actor–critic
approach of [36] to the continuous action space setting. It
learns both a value function Qi : Ai → R that estimates
the function ui(ai, π−i) for the current value of π−i, while
also maintaining a separate mixed strategy πi ∈ P(Ai,Bi).
The critic, Qi, informs the update of the actor, πi. In turn the
observed utilities received by the actor, πi, inform the update
of the critic Qi. The procedure is given in Algorithm 1. It is
the main focus of our paper, so some remarks are in order:
Remark 1. To implement this algorithm an individual need
not actually observe the action profile a−in , but only needs
the utility ui(·, a−in ). This means a player need know only
about the players who directly affect her utility function,
allowing a degree of modularisation in large systems. In (2a),
it is assumed that a player can access the function ui(·, a−in )
determining how much they would have received for each
action against the selected joint action a−in . Even though this
assumption restricts the applicability of our method, it is
harmless in many practical settings—e.g. in congestion games
ui(·, a−in ) can be calculated by observing the utilisation levels.
Remark 2. The logit response Liη used to sample bin in (2b)
is now parameterised by Qin instead of π−i. This is a trivial
change in which Qi(·) replaces ui(·, π−i) in (1).
Remark 3. Also in (2b), the players update towards a sampled
bin instead of toward the full function Liη(Qin). This is so that
the critic πin can be represented as a collection of weighted
atoms, instead of as a complicated and continuous probability
measure. Representing πin as a collection of atoms means that
sampling ain ∼ πin is particularly easy.

On the other hand, sampling bin ∼ Liη(Qin) could be
difficult for general Qin. One solution would be to use a
sequential Monte Carlo sampler [37] to produce samples from
the slowly evolving distribution Liη(Qin). The representation
of Qin is also potentially troublesome and we do not address
it here. A solution would be to assume that each ui(an)
can be represented as a finite linear combination of basis
functions. Another would be to slowly increase the size of a
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Fourier or wavelet basis as n gets large, resulting in vanishing
bias terms which can be easily incorporated in the stochastic
approximation framework introduced below.
Remark 4. Finally note that we assume all players use the same
values for η, αn and γn. Allowing player-dependent values of
ηi causes only notational challenges later. Allowing player-
dependent learning rates αin and γin is easily accommodated
so long as αin/α

j
n → 1 and γin/γ

j
n → 1 as n → ∞. See [36]

for an analysis in which these conditions do not hold.
The remainder of this article works to prove the following

theorem, while also providing several auxiliary results of
independent interest along the way:

Theorem 1. In a continuous-action-set potential game with
bounded Lipschitz rewards and isolated equilibrium compo-
nents, the actor–critic algorithm (2), with step sizes satisfying
(A3) below, converges strongly to a component of the equilib-
rium set LEη (a.s.).

III. TWO-TIMESCALES STOCHASTIC APPROXIMATION

The analysis of systems such as Algorithm 1 is enabled by
the use of two-timescales stochastic approximation techniques
[16]. By allowing αn/γn → 0 as n → ∞, the system can
be analysed as if the ‘fast’ update (2a), with higher learning
parameter γn, has fully converged to the current value of the
‘slow’ system (2b), with lower learning parameter αn. Note
that it is not the case that we have an outer and inner loop, in
which (2a) is run to convergence for every update of (2b): both
the actor Qn and the critic πn are updated at every iteration.
It is simply that the two-timescales technique allows us to
analyse the system as if there were an inner loop.

That being said, the results of [16] are only cast in the frame-
work of finite-dimensional spaces. We have already observed
that with continuous action spaces Ai, the mixed strategies πi
are probability measures in the space P(Ai,Bi), and the critics
Qi are L2 functions. Placing appropriate norms on these spaces
results in Banach spaces, and in this section we combine the
two-timescales results of [16] with the Banach space stochastic
approximation framework of [14].

To that end, consider the general two-timescales stochastic
approximation system

xn+1 = xn + αn+1 [F (xn, yn) + Un+1 + cn+1] , (3a)
yn+1 = yn + γn+1 [G(xn, yn) + Vn+1 + dn+1] , (3b)

where
• xn and yn are sequences in the Banach spaces (X, ‖·‖X)

and (Y, ‖ · ‖Y ) respectively.
• {αn} and {γn} are the learning rate sequences.
• F : X × Y → X and G : X × Y → Y comprise the

mean field of the process.
• {Un} and {Vn} are stochastic processes in X and Y

respectively.
• cn ∈ X and dn ∈ Y are transient bias terms.

We will study this system using the asymptotic pseudotrajec-
tory approach of [38], which is already cast in the language of
metric spaces; since Banach spaces are metric, the framework
of [38] still applies to our scenario. This modernises the

approach of [17] while also introducing the two-timescales
technique to ‘abstract stochastic approximation’.

Our assumptions, which are simple extensions to those of
[16] and [38], can now be stated as follows:
A1) Noise control.

a) For ξ being either α or γ, let τ ξn =
∑n
j=1 ξj (with τ ξ0 =

0), and for t ∈ R+ let mξ(t) = sup{k ≥ 0; τ ξk ≤ t}. For
all T > 0, we assume that

lim
n→∞

sup
k∈{n+1,...,mα(ταn+T )}


∥∥∥∥∥∥
k−1∑
j=n

αj+1Uj+1

∥∥∥∥∥∥
X

 = 0,

lim
n→∞

sup
k∈{n+1,...,mγ(τγn+T )}


∥∥∥∥∥∥
k−1∑
j=n

γj+1Vj+1

∥∥∥∥∥∥
Y

 = 0.

b) {cn}n∈N and {dn}n∈N are bounded sequences such that
‖cn‖X → 0 and ‖dn‖Y → 0 as n→∞.

A2) Boundedness and continuity.
a) There exist compact sets C ⊂ X and D ⊂ Y such that
xn ∈ C and yn ∈ D for all n ∈ N.

b) F and G are bounded and uniformly continuous on C×D.
A3) Learning rates.

a)
∑∞
n=1 αn = ∞ and

∑∞
n=1 γn = ∞ with αn → 0 and

γn → 0 as n→∞.
b) αn/γn → 0 as n→∞.

A4) Mean field behaviour.
a) For any fixed x̃ ∈ C and initial value y0 ∈ D,

dy

dt
= G(x̃, y) (4)

has unique solution trajectories remaing in D. Further-
more (4) has a unique globally attracting fixed point
y∗(x̃), and y∗ : C → D is Lipschitz continuous.

b) For any initial value x0 ∈ C, the differential equation

dx

dt
= F (x, y∗(x)) (5)

has unique solution trajectories that remain in C.
Assumption A1 is the standard assumption for noise control

in stochastic approximation. It has caused difficulty in abstract
stochastic approximation, but recent works [14, 39] provide
martingale noise type criteria that guarantee A1(a) holds in
useful Banach spaces. Assumption A2 is simply a boundedness
and continuity assumption. Assumption A3 provides the two-
timescales nature of the scheme, with both learning rate
sequences converging to 0, but αn doing so faster than γn.
Finally Assumption A4 provides both the existence of unique
solutions of the relevant mean field differential equations, and
the useful separation of timescales in continuous time which
is directly analogous to Assumption (A1) of [16].

Our first lemma demonstrates that we can analyse the system
as if the fast system {yn} is calibrated to the slow system {xn}.
Lemma 2. Under Assumptions A1–A4,

‖yn − y∗(xn)‖Y → 0 as n→∞.
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Proof: Let zn = (xn, yn) and let Z = X × Y , with
‖ · ‖Z the induced product norm from the topologies of X and
Y . Under this topology, Z is a Banach space, and C ×D is
compact. The updates (3) can be expressed as

zn+1 = zn + γn+1

[
H(zn) +Wn+1 + κn+1

]
, (6)

where H : Z → Z is such that H(zn) = (0, G(zn)) for 0 ∈ X ,
Wn =

(
αn
γn
Un, Vn

)
, and

κn+1 =

(
αn+1

γn+1

[
F (zn) + dn+1

]
, en+1

)
.

Assumptions A1–A4 imply the assumptions of Theorem 3.3
of [14]. Most are direct translations, but the noise must be
carefully considered. For any n ∈ N, any T > 0, and any
k ∈ {n+ 1, . . . ,mγ(τγn + T )},∥∥∥∥∥∥
k−1∑
j=n

γj+1(Wn+1 + κn+1)

∥∥∥∥∥∥
Z

≤

∥∥∥∥∥∥
k−1∑
j=n

γj+1Wn+1

∥∥∥∥∥∥
Z

+

(
sup

k′≥n+1
‖κk′‖Z

)mγ(τγn+T )−1∑
j=n

γj+1

Since κn → 0 and
∑mγ(τγn+T )−1
j=n γj+1 ≈ T , the second term

converges to 0 as n → ∞. Hence, using assumption A1 to
control the first term, we get that

lim
n→∞

sup
k∈{n+1,...,mγ(τγn+T )}

∥∥∥∥∥∥
k−1∑
j=n

γj+1(Wn+1 + κn+1)

∥∥∥∥∥∥
Z

= 0.

Assumption A4(a) implies that {(x, y∗(x)) : x ∈ C} is
globally attracting for the flow defined by

dz

dt
= H

(
z(t)

)
. (7)

Hence Theorem 3.3 of [14] and Theorem 6.10 of [38] give
that zn → {(x, y∗(x)) : x ∈ C}. The result follows by the
continuity of y∗ assumed in A4(a).

This allows the consideration of the slow timescale.

Theorem 3. Suppose that Assumptions A1–A4 hold. Then xn
converges to an internally chain transitive set [38] of the flow
induced by the mean field differential equation (5).

Proof: Rewrite (3a) as

xn+1 = xn + αn+1

[
F
(
xn, y

∗(xn)
)

+ Un+1 + c̃n+1

]
, (8)

where c̃n+1 = F (xn, yn) − F (xn, y
∗(xn)) + cn+1. To show

that this is a well-behaved stochastic approximation process we
need to show that c̃n can be absorbed into Un such that the
equivalent Assumption A1 of [14] can be applied to Un + c̃n.

By Lemma 2 we have ‖yn−y∗(xn)‖Y → 0. Uniform conti-
nuity of F implies that ‖F (xm, ym)−F (xm, y

∗(xm))‖X → 0.
The rest of the proof uses identical arguments as that of Lemma
2 to show that Theorem 3.3 of [14] applies.

Combining with Theorem 5.7 of [38], where internally chain
transitive sets are discussed, gives the result.

IV. CONVERGENCE OF THE ACTOR–CRITIC ALGORITHM

In this section we demonstrate that the actor–critic algo-
rithm (2) can be analysed using the two-timescales stochastic
approximation framework of Section III. Our first task is to
define the Banach spaces in which the algorithm evolves.

Note that the set P(Ai,Bi) of probability distributions on Ai
is a subset of the space M(Ai,Bi) of finite signed measures
on (Ai,Bi). To turn this space into a Banach space, the most
convenient norm for our purposes is the bounded Lipschitz
(BL) norm, as in [14, 15] and references therein.

Suppose that utility functions ui are bounded and Lipschitz
continuous. Since their domain is a bounded interval of R we
can assume that each Qin lies in the Banach space L2(Ai) of
functions Ai → R with a finite L2 norm. Hence we consider
the vectors Q

n
= (Q1

n, . . . , Q
N
n ) as elements of the Banach

space Y = ×Ni=1L
2(Ai) with ‖Q‖Y = maxi=1,...,N ‖Qi‖L2 .

Theorem 4. Consider the actor–critic algorithm (2). Suppose
that for each i the action space Ai is a compact interval of R,
and the utility function ui is bounded and uniformly Lipschitz
continuous. Suppose also that {αn}n∈N and {γn}n∈N are
chosen to satisfy Assumption A3 as well as

∑
n∈N α

2
n < ∞

and
∑
n∈N γ

2
n <∞. Then, under the bounded Lipschitz norm,

{πn}n∈N converges with probability 1 to an internally chain
transitive set of the flow defined by the N -player logit best
response dynamics

dπ

dt
= Lη(π)− π. (9)

Proof: We take (X, ‖·‖X) = (Σ, ‖·‖BL), and (Y, ‖·‖Y ).
This allows a direct mapping of the actor–critic algorithm (2)
to the stochastic approximation framework (3) by taking

xn = πn, yn = Q
n
, cn = dn = 0,

F (π,Q) = Lη(Q)− π, Un+1 = (δb1n , . . . , δbNn )− Lη(Q),

G = (G1, . . . , GN ), Gi(π,Q) = ui(·, π−i)−Qi,
Vn = (V 1

n , . . . , V
N
n ), V in+1 = ui(·, a−in )− ui(·, π−in ).

Theorem 3 means we need only verify Assumptions A1–A4.
A1: Un is of exactly the form studied by [14] and there-
fore Proposition 3.6 of that paper suffices to prove the con-
dition on the tail behaviour of

∑
j αj+1Uj+1 holds with

probability 1. The Vn+1 are martingale difference sequences,
since E(ui(·, a−in ) | Fn) = ui(·, π−in ), and the Qn+1 are L2

functions. Hence Proposition A.1 of [14] suffices to prove
the condition on the tail behaviour of

∑
j γj+1Vj+1 holds

with probability 1 under the L2 norm. Since cn and dn are
identically zero, we have shown that A1 holds.
A2: ∆ is a compact subset of Σ under the bounded Lipschitz
norm (see Prop. 4.6 of [14]), so taking C = ∆ suffices.
Furthermore, with bounded continuous reward functions ui it
follows that the Qin are uniformly bounded and equicontin-
uous and therefore remain in a compact set D. G is clearly
uniformly continuous on the compact set C×D. The continuity
of Lη , and therefore F , is shown in Lemma C.2 of [14].
A3: The learning rates are chosen to satisfy this assumption.
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A4: For fixed π̃, the differential equations Q̇i = ui(·, π̃−i)−
Qi converge to Qi = ui(·, π̃−i). Furthermore ui(·, π−i) is
Lipschitz continuous in π−i, so part (a) is satisfied. Equation
(5) then becomes the logit best response dynamics of [14, 15],
which is shown to have unique solution trajectories.

It is demonstrated in [14] that logit equilibria are global
attractors in two-player zero-sum games with continuous ac-
tion sets. Hence, by Corollary 5.4 of [38] we instantly obtain
the result that any internally chain transitive set is contained in
LEη . However two-player zero-sum games are not particularly
relevant for control systems: an equivalent result is required for
multiplayer potential games. Note that evolution of strategies
under the logit best response dynamics in a potential game is
identical to that in the identical interest game in which the
potential acts as the global utility. We therefore carry out our
convergence analysis for the logit best response dynamics (9)
in N -player identical interest games with continuous action
spaces. See [32] for related issues. For the remainder of this
section we work to prove the following theorem:

Theorem 5. In a potential game with continuous bounded
rewards, in which the connected components of the set LEη of
logit equilibria of the game are isolated, any internally chain
transitive set of the flow induced by the smooth best response
dynamics (9) is contained in a connected component of LEη .

Proof: The natural Lyapunov function for the logit best
response dynamics (9) in an identical interest game is

Vη(π) = −

[
u(π) + η

N∑
i=1

νi(πi)

]
(10)

where ui(π) = u(π) for all i and νi(πi) =
−
∫
Ai
pi(xi) log pi(xi) dxi is the entropy of of a distribution

πi with density pi. However the entropy is only well-defined
when the density exists, whereas we need to study the
convergence of (9) over the whole space ∆. Therefore define
∆D to be the subset of ∆ consisting of π such that each πi

is absolutely continuous with a density pi which is Lipschitz
continuous with constant D and satisfying pi(ai) ∈ [D−1, D]
for all ai ∈ Ai. For the remainder of this article, assume
that D is sufficiently large that Lη(π) ∈ ∆D for all π ∈ ∆
(see Appendix C of [14]). This in turn implies both that
LEη ⊂ ∆D, and that ∆D is forward invariant under the
logit best response dynamics. We will first show that any
internally chain transitive set of (9) is contained in ∆D, then
use Lyapunov function arguments on ∆D.

Start by noting that

π(t) = e−tπ(0) +

∫ t

0

es−tLη(π(s)) ds.

Since Lη(π(s)) ∈ ∆D for all s it is immediate that π(t)
approaches ∆D at an exponential rate. It then follows from
techniques in the proof of Proposition 5.3 of [38] that any
internally chain transitive set of the flow is contained in ∆D.

For Vη defined in (10) to be a useful Lyapunov function,
it must be continuous on ∆D with respect to the bounded

Lipschitz norm that we use on strategy space ∆. Note that u
is multilinear and therefore continuous. Therefore it suffices
to show that the entropy νi(πi) is continuous in πi. Consider
πi and π̃i with densities p and q respectively such that
p(x), q(x) ∈ [D−1, D] for all x ∈ Ai, and both p and q are
Lipschitz continuous with constant D. We calculate that

|ν(P )− ν(Q)| ≤
∫
Ai
|p(ai)− q(ai)|| log(p(ai))|dai

+

∫
Ai
q(ai)| log(p(ai))− log(q(ai))|dai

≤ (logD +D2)

∫
Ai
|p(ai)− q(ai)|dai,

since log is Lipschitz on [D−1, D] with constant D. That the
final integral is arbitrarily small for sufficiently close πi and
π̃i under the BL norm follows from trivial calculations, and
relies on the fact that p and q are Lipschitz.

We now show that the function Vη is strictly decreasing for
any trajectory in ∆D whenever π /∈ LEη . Using the Gateaux
derivative, we get that

V̇η(π) = dVη(π, π̇) = −
N∑
i=1

[
du((πi, π−i), π̇i) + ηdνi(πi, π̇i)

]
Note that du((πi, π−i), π̇i) =

∫
Ai
u(ai, π−i))π̇i(dai), and that

dνi(πi, π̇i) = −
∫
Ai

log(pi(ai))π̇i(dai) [14, equation (D.3)].
Re-arranging the definition of liη(π−i) from (1), and noting
that

∫
Ai
π̇i(dai) = 0, then yields∫

Ai
u(ai, π−i)π̇i(dai) = η

∫
Ai

log(liη(π−i)(ai))π̇i(dai).

Putting these together and rearranging shows that

V̇η(π) = −η
N∑
i=1

{
KL(liη(π−i) ‖ pi) +KL(pi ‖ liη(π−i))

}
where KL(· ‖ ·) is the Kullback–Leibler divergence, which is
non-negative and zero only when the two arguments are equal.
Therefore Vη is strictly decreasing unless pi = liη(π−i) for all
i, which is exactly the condition that π ∈ LEη .

As demonstrated by [38], the existence of a Lyapunov func-
tion is insufficient to complete the result, and Sard’s theorem
(as used by [32] for example) does not apply in this case, even
under Smale’s generalisation to Banach spaces. However since
Vη is necessarily constant on connected components of LEη ,
Lemma 6 suffices to prove the theorem.

Proof of Theorem 1: Theorems 4 and 5 combine to
show that πn converges to LEη under the bounded Lipschitz
norm, which is weak convergence. To establish our strong
convergence claim, note that every probability measure in
LEη—and hence every (weak) limit point of πn—is nonatomic
and absolutely continuous with respect to Lebesgue measure
on R. The result follows immediately.
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APPENDIX

Lemma 6. Let V : M → R be a strict Lyapunov function
for some flow Φ on a metric space M . If the connected
equilibrium components of Φ are isolated, and V is constant
on each component, every internally chain transitive set of Φ
is contained in such a component.

Proof: Recall that an internally chain transitive set Λ is a
compact, connected, invariant and attractor-free set [38]. Let
V0 = min{V (x) : x ∈ Λ} and Λ0 = {x ∈ Λ : V (x) = V0}.
It follows that Λ0 only consists of equilibria of V : otherwise,
a trajectory x(t) with x(0) ∈ Λ0 would have V (x(t)) < V0
∀t > 0, contradicting that Λ is forward invariant.

Suppose there exists some x ∈ Λ with V (x) > V0. V is
continuous, and constant on equilibrium components (which
are isolated). So we can take ε > 0 small enough that the
closed set Λε = {x ∈ Λ : V (x) ≤ V0 + ε} is strictly larger
than Λ0 and contains no other equilibria of Φ except those in
Λ0. Since V is continuous, and is a strict Lyapunov function,
all forward trajectories with x(0) ∈ Λε will be in the interior
of Λε for all t > 0. Hence by [38, Lemma 5.2] Λε, and hence
Λ, contains an attractor. This is a contradiction, so we must
have V (x) = V0 for all x ∈ Λ, i.e. Λ = Λ0.
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