
IDEAL STRUCTURE OF THE ALGEBRA OF BOUNDED OPERATORS

ACTING ON A BANACH SPACE

TOMASZ KANIA AND NIELS JAKOB LAUSTSEN

In memoriam: U�e Haagerup (1949�2015)

Abstract. We construct a Banach space Z such that the lattice of closed two-sided
ideals of the Banach algebra B(Z) of bounded operators on Z is as follows:

{0} ⊂ K (Z) ⊂ E (Z) ⊂⊂
M1

M2

⊂
⊂B(Z).

We then determine which kinds of approximate identities (bounded/left/right), if any,
each of the four non-trivial closed ideals of B(Z) contains, and we show that the maximal
ideal M1 is generated as a left ideal by two operators, but not by a single operator, thus
answering a question left open in our collaboration with Dales, Kochanek and Koszmider
(Studia Math. 2013). In contrast, the other maximal ideal M2 is not �nitely generated as
a left ideal.

The Banach space Z is the direct sum of Argyros and Haydon's Banach space XAH
which has very few operators and a certain subspace Y of XAH. The key property of Y
is that every bounded operator from Y into XAH is the sum of a scalar multiple of the
inclusion map and a compact operator.

1. Introduction and statement of main results

A Banach space E has very few operators if E is in�nite-dimensional and every bounded
operator on E is the sum of a scalar multiple of the identity operator and a compact
operator; that is, B(E) = KIE + K (E), where K = R or K = C denotes the scalar �eld
of E. Resolving a famous, long-standing open problem, Argyros and Haydon [2] established
the existence of such Banach spaces by proving the following spectacular result.

Theorem 1.1 (Argyros and Haydon). There exists a Banach space XAH such that:

(i) XAH has very few operators;

(ii) XAH has a shrinking Schauder basis;

(iii) the dual space of XAH is isomorphic to `1.

The starting point of the present paper is the observation that XAH contains a sub-
space Y which has certain special properties, as speci�ed in following theorem; of these,
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property (iv) is by far the most important, and also the hardest to achieve. We are deeply
grateful to Professor Argyros for having explained to us how to contruct such a subspace;
details of its construction will be given in Section 2.

Theorem 1.2. Argyros and Haydon's Banach space XAH contains a closed, in�nite-dimen-

sional subspace Y which has the following four properties:

(i) Y is the closed linear span of a certain subsequence of the Schauder basis for XAH,
and hence Y has a shrinking Schauder basis;

(ii) Y has in�nite codimension in XAH, and hence Y is uncomplemented in XAH;

(iii) the dual space of Y is isomorphic to `1;

(iv) every bounded operator from Y into XAH is the sum of a scalar multiple of the inclu-

sion map J : Y → XAH and a compact operator.

In the remainder of this paper, we shall consider the Banach space

Z = XAH ⊕ Y, (1.1)

where XAH and Y are as in Theorems 1.1 and 1.2, respectively. For de�niteness, we shall
equip Z with the `∞-norm; that is, ‖(x, y)‖ = max{‖x‖, ‖y‖} for x ∈ XAH and y ∈ Y ; all
our results will, however, be of an isomorphic nature, so that any equivalent norm will do.
Theorems 1.1(i) and 1.2(ii)+(iv) imply that every bounded operator T on Z has a unique
representation as an operator-valued (2× 2)-matrix of the form

T =

(
α1,1IXAH +K1,1 α1,2J +K1,2

K2,1 α2,2IY +K2,2

)
, (1.2)

where α1,1, α1,2 and α2,2 are scalars, IXAH and IY denote the identity operators on XAH and
Y , respectively, J : Y → XAH is the inclusion map, and the operators K1,1 : XAH → XAH,
K1,2 : Y → XAH, K2,1 : XAH → Y and K2,2 : Y → Y are compact.
Using this notation, we see that the sets

M1 = {T ∈ B(Z) : α2,2 = 0} and M2 = {T ∈ B(Z) : α1,1 = 0} (1.3)

are maximal two-sided ideals of codimension one in B(Z). Our �rst main result gives
a complete description of the lattice of closed two-sided ideals of B(Z). Its statement
involves the following notion, which goes back to Kleinecke [14].

De�nition 1.3. A bounded operator on a Banach space E is inessential if it belongs to
the pre-image of the Jacobson radical of the Calkin algebra B(E)

/
F (E), where F (E)

denotes the norm-closure of the ideal of �nite-rank operators on E.

We write E (E) for the set of inessential operators on the Banach space E. This is a
closed two-sided ideal of B(E) which is proper if (and only if) E is in�nite-dimensional.
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Theorem 1.4. The Banach algebra B(Z) of bounded operators on the Banach space Z
de�ned by (1.1) contains exactly six closed two-sided ideals, namely

B(Z)

{{{{{{{{{

CCCCCCCCC

M1

CCCCCCCCC
M2

{{{{{{{{{

E (Z) = M1 ∩M2

K (Z)

{0},

where M1 and M1 are given by (1.3), and the lines denote proper inclusions, with the

larger ideal at the top.

We note that in the diagram, above, the smaller ideal has codimension one in the larger
ideal in each of the inclusions, except the bottommost.

Remark 1.5. Not many in�nite-dimensional Banach spaces E are known for which a
complete classi�cation of the closed two-sided ideals of B(E) exists. Indeed, to the best
of our knowledge at the time of writing, the following list contains all such examples:

(i) the classical sequence spaces E = `p(I) for 1 6 p < ∞ and E = c0(I), where I is an
arbitrary in�nite index set; these results are due to Calkin [5] for countable I and
p = 2; Gohberg�Markus�Feldman [10] for countable I and general p (including c0);
Gramsch [11] and Luft [21] for p = 2 and arbitrary I; and Daws [9] in full generality;

(ii) the c0-direct sum of the sequence of �nite-dimensional Hilbert spaces of increasing
dimension, that is, E =

(⊕
n∈N `

n
2

)
c0
, and its dual space

(⊕
n∈N `

n
2

)
`1
(see [16] and [17],

respectively);

(iii) E = XAH by Theorem 1.1, above;

(iv) Tarbard's variants of the Argyros�Haydon space: for each n ∈ N, there is a Banach
space E such that E admits a strictly singular operator S which is nilpotent of
order n+ 1, and every bounded operator on E has the form

∑n
j=0 αjS

j +K for some
scalars α0, . . . , αn and a compact operator K (see [24, Theorem 2.1]);

(v) E = C(Ω), where Ω is the Mrówka space constructed by Koszmider [15], assuming
the Continuum Hypothesis (see [13, Theorem 5.5]; this result has also been obtained
independently by Brooker (unpublished));
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(vi) certain Banach spaces constructed by Motakis, Puglisi and Zisimopoulou [22]: for
every countably in�nite compact metric space Ω, there is a Banach space E such
that the Banach algebra B(E)/K (E) is isomorphic to the algebra C(Ω) of scalar-
valued, continuous functions de�ned on Ω. (The classi�cation of the closed two-sided
ideals of B(E) is not stated explicitly in [22], but it is an easy consequence of [22,
Theorem 5.1], together with the following two facts: (1) E is a L∞-space, so it has
the bounded approximation property, and therefore K (E) is the minimum non-zero
closed two-sided ideal of B(E); (2) the closed ideals of the Banach algebra C(Ω) for
a compact Hausdor� space Ω are precisely the zero sets of the closed subsets of Ω.)

In each of the cases (i)�(v), above, the lattice of closed two-sided ideals of B(E) is linearly
ordered, whereas in case (vi), it is in�nite. Hence the Banach space Z given by (1.1)
appears to be the �rst Banach space E for which we have a complete classi�cation of the
lattice of closed two-sided ideals of the Banach algebra B(E), and this lattice is �nite, but
it is not linearly ordered.

Note added in proof. We shall here describe another family of Banach spaces E such that
the lattice of closed two-sided ideals of B(E) is �nite and not linearly ordered. For each
n ∈ N, we apply [2, Theorem 10.4] to obtain Banach spaces X1, . . . , Xn, each having very
few operators, each having a Schauder basis, and such that every bounded operator from
Xj to Xk is compact whenever j, k ∈ {1, . . . , n} are distinct. Take m1, . . . ,mn ∈ N, and
set E = Xm1

1 ⊕ · · · ⊕ Xmn
n . Then K (E) is the smallest non-zero closed two-sided ideal

of B(E), and we have

B(E)/K (E) ∼= Mm1(K)⊕ · · · ⊕Mmn(K),

where Mm(K) denotes the algebra of scalar-valued (m × m)-matrices. By Wedderburn's
structure theorem (see, e.g., [7, Theorem 1.5.9]), this shows that every �nite-dimensional,
semi-simple complex algebra can arise as the Calkin algebra of a Banach space. Moreover,
we note that the choice m1 = · · · = mn = 1 gives a counterpart of the result of Motakis,
Puglisi and Zisimopoulou that we described in (vi), above, in the case where the underlying
space Ω is �nite.
Returning to the general case where m1, . . . ,mn ∈ N are arbitrary, we may consider each

bounded operator T on E as an operator-valued (n× n)-matrix (Tj,k)
n
j,k=1, where we have

Tj,k ∈ B(Xmk
k , X

mj

j ) for each j, k. Since Mm(K) is simple for each m ∈ N, the map

N 7→
{

(Tj,k)
n
j,k=1 : Tj,j ∈ K (X

mj

j ) (j /∈ N)
}

is an order isomorphism of the power set of {1, . . . , n} onto the lattice of non-zero closed
two-sided ideals of B(E). Hence the lattice of closed two-sided ideals of B(E) has 2n + 1
elements, and it is not linearly ordered for n > 2.
Let us �nally remark that the ideal lattices obtained in this way are di�erent from that

of B(Z) that we described in Theorem 1.4, above; for instance, none of these lattices has
precisely six elements.

After seeing Argyros and Haydon's main results as they were stated in Theorem 1.1,
above, Dales observed that they imply that the Banach algebra B(XAH) is amenable [2,
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Proposition 10.6], thus disproving a long-standing conjecture of B. E. Johnson. In contrast,
we note that B(Z) does not share this property.

Proposition 1.6. The Banach algebra B(Z) is not amenable.

The study of amenability is intimately related to the existence of approximate identities,
as explained in [7, Section 2.9], for instance. Our second main result, which will be proved
in Section 4, describes what kinds of approximate identities, if any, can be found in each of
the four non-trivial closed two-sided ideals of B(Z). Before we state this result formally,
let us introduce the relevant terminology.

De�nition 1.7. A net (ej)j∈J in a Banach algebra A is a left approximate identity if the
net (eja)j∈J converges to a for each a ∈ A , and a right approximate identity if the net
(aej)j∈J converges to a for each a ∈ A . If in addition supj∈J ‖ej‖ < ∞, then (ej)j∈J is a
bounded left or right approximate identity. A bounded two-sided approximate identity is a
net which is simultaneously a bounded left and right approximate identity.

Theorem 1.8. (i) The ideal M1 has a bounded left approximate identity, but it has no

right approximate identity.

(ii) The ideal M2 has a bounded right approximate identity, but it has no left approximate

identity.

(iii) The ideal E (Z) = M1 ∩M2 has no left or right approximate identity.

(iv) The ideal K (Z) has a bounded two-sided approximate identity.

Our third and �nal main result uses the Banach space Z to answer two questions that
were left open in [8] regarding the maximal left ideals of the Banach algebra B(E) for
an in�nite-dimensional Banach space E. To set the stage for this result, we require some
background information from [8], beginning with the easy observation that, for each non-
zero element x of E, the set

ML x = {T ∈ B(E) : Tx = 0} (1.4)

is a maximal left ideal of B(E), and it is generated as a left ideal by a single operator,
namely any projection P ∈ B(E) with kerP = Kx. The maximal left ideals of the
form (1.4) were termed �xed in [8], inspired by the analogous terminology for ultra�lters,
and the following question was studied extensively:

Is every �nitely-generated, maximal left ideal of the Banach algebra B(E)
necessarily �xed?

Indeed, a positive answer to this question was established for many Banach spaces E,
but, somewhat surprisingly, it was also shown that the answer is not always positive: for
E = XAH⊕ `∞, the Banach algebra B(E) contains a non-�xed, singly-generated, maximal
left ideal of codimension one, namely

K1 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T1,1 is compact

}
.

The Banach space E = XAH ⊕ `∞ is evidently not separable. We shall show in Section 5
that a similar example exists based on the separable Banach space Z given by (1.1). This
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example will also enable us to answer another question implicitly left open in [8] (see
[8, Proposition 2.2] and the remark following it) because the non-�xed, �nitely-generated
maximal left ideal of B(Z) that we identify is not generated by one, but by two operators.
More precisely, our result is as follows.

Theorem 1.9. The ideals M1 and M2 are the only non-�xed, maximal left ideals of B(Z),
and

(i) M1 is generated as a left ideal by the two operators(
IXAH 0

0 0

)
and

(
0 J
0 0

)
, (1.5)

but M1 is not generated as a left ideal by a single bounded operator on Z;

(ii) M2 is not �nitely generated as a left ideal.

Remark 1.10. In a post on Mathematics Stack Exchange, Petry [23] asked whether there
is a one-sided version of the Nakayama lemma, in the following speci�c sense: let R be a
unital non-commutative ring, and let L be a �nitely-generated left ideal of R such that
L = L · L (that is, each element of L can be written as the sum of products of elements
of L). Must L be generated (as a left ideal) by a single idempotent element?
In reply, Schwiebert outlined an example which shows that the answer is in general nega-

tive. We observe that our results provide another such example. Indeed, let R = B(Z),
and let L = M1. Theorem 1.9(i) shows that L is �nitely generated, but not by a single
element (idempotent or not), while Theorem 1.8(i) in tandem with Cohen's Factorization
Theorem (see, e.g., [7, Corollary 2.9.25]) implies that each element of L can be written as
the product of two elements of L. Being a Banach algebra, this example has a very di�erent
�avour from Schwiebert's, which is based on an algebra over a �nite �eld constructed by
Andruszkiewicz and Puczyªowski [1].

2. The construction of the subspace Y and the proof of Theorem 1.2

Schauder decompositions. Let E be a Banach space. A sequence (Fj)j∈N of non-zero
subspaces of E is a Schauder decomposition for E if, for each x ∈ E, there is a unique
sequence (xj)j∈N, where xj ∈ Fj for each j ∈ N, such that the series

∑∞
j=1 xj is norm-

convergent with sum x. In this case, for each n ∈ N, we can de�ne a projection Pn ∈ B(E)
by Pnx =

∑n
j=1 xj; this is the n

th canonical projection associated with the decomposition.
The number supn∈N ‖Pn‖ turns out to be �nite; this is the decomposition constant.
A Schauder decomposition (Fj)j∈N for E is:

• shrinking if ‖x∗ − P ∗nx∗‖ → 0 for each x∗ ∈ E∗;
• �nite-dimensional (or an FDD for short) if dimFj <∞ for each j ∈ N.
(Note: the case where each Fj is one-dimensional, say Fj = Kbj (j ∈ N), corre-
sponds to (bj)j∈N being a Schauder basis for E.)

We shall require the following elementary observation concerning compact operators into
or out of a Banach space with an FDD. It goes back to at least [3, Remark, p. 14] in the
case of a single Banach space with a Schauder basis. For completeness, we outline a proof.
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Lemma 2.1. Let D and E be Banach spaces, where E has an FDD, and denote by (Pn)n∈N
the canonical projections associated with this FDD.

(i) For each bounded operator S : D → E, the following two conditions are equivalent:

(a) S is compact;

(b) ‖S − PnS‖ → 0 as n→∞.

(ii) Suppose that the FDD for E is shrinking. Then, for each bounded operator T : E → D,
the following three conditions are equivalent:

(a) T is compact;

(b) ‖T − TPn‖ → 0 as n→∞;

(c) ‖Txj‖ → 0 as j → ∞ for every bounded block sequence (xj)j∈N with respect to

the FDD for E.

Proof. Let C = supn∈N ‖Pn‖ <∞ be the decomposition constant.
(i). The implication (b)⇒(a) is clear because Pn has �nite-dimensional image for each

n ∈ N. Conversely, suppose contrapositively that, for some ε > 0 and each m ∈ N, there
is an integer n > m such that ‖(IE − Pn)S‖ > ε. By recursion, we can choose a sequence
(xj)j∈N of unit vectors in D and a strictly increasing sequence (kj)j∈N of natural numbers
such that ‖(IE−Pkj)Sxj‖ > ε and ‖(IE−Pm)Sxj‖ < ε/2 whenever j,m ∈ N andm > kj+1.
This implies that

(C + 1)‖Sxi+j − Sxi‖ > ‖(IE − Pki+j
)Sxi+j‖ − ‖(IE − Pki+j

)Sxi‖ >
ε

2
(i, j ∈ N),

which shows that no subsequence of (Sxi)i∈N is Cauchy, and therefore the operator S is
not compact.
(ii). The equivalence of conditions (a) and (b) follows by dualizing (i) and using

Schauder's theorem together with the fact that (P ∗n)n∈N are the canonical projections as-
sociated with an FDD for the dual space E∗ of E.
The implication (b)⇒(c) is easy because, for every block sequence (xj)j∈N in E and each

n ∈ N, we can �nd j0 ∈ N such that Pnxj = 0 whenever j > j0.
(c)⇒(b). Suppose contrapositively that, for some ε > 0 and each m ∈ N, there is an

integer k > m such that ‖T (IE − Pk)‖ > ε. Then we can �nd a unit vector w ∈ E
and a further integer j > k such that ‖T (Pj − Pk)w‖ > ε, and hence we can recursively
choose integers 1 6 k1 < j1 6 k2 < j2 6 · · · and unit vectors w1, w2, . . . ∈ E such that
‖T (Pji − Pki)wi‖ > ε for each i ∈ N. This implies that (xi)i∈N := ((Pji − Pki)wi)i∈N is a
2C-bounded block sequence for which (c) fails. �

The Bourgain�Delbaen construction. Argyros and Haydon used the Bourgain�Del-

baen construction [4] to de�ne their Banach space XAH. We shall now summarize those
parts of this method that are required for our present purposes. We follow the notation
and terminology used in [2] as far as possible, with the notable exception that our focus is
on both real and complex scalars, whereas [2] considered real scalars only. For this reason,
it is convenient to introduce a single symbol for the following countable, dense sub�eld of
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the scalar �eld K that will play the role of the rationals in the real case:

L =

{
Q for K = R
Q + iQ for K = C.

(2.1)

For a (non-empty, countable) set Γ, we consider the Banach spaces

`∞(Γ) =
{
x : Γ→ K : sup

γ∈Γ
|x(γ)| <∞

}
and `1(Γ) =

{
x∗ : Γ→ K :

∑
γ∈Γ

|x∗(γ)| <∞
}
,

and identify `∞(Γ) with the dual space of `1(Γ) via the duality bracket

〈x∗, x〉 =
∑
γ∈Γ

x∗(γ)x(γ) (x∗ ∈ `1(Γ), x ∈ `∞(Γ)).

We write eγ and e∗γ for the elements of `∞(Γ) and `1(Γ), respectively, given by

eγ(γ) = 1 = e∗γ(γ) and eγ(η) = 0 = e∗γ(η) (η ∈ Γ \ {γ}).

Let p = 1 or p = ∞. Then suppx denotes the support of an element x ∈ `p(Γ). Given a
non-empty subset ∆ of Γ, we identify `p(∆) with the subspace {x ∈ `p(Γ) : suppx ⊆ ∆}
of `p(Γ).
The Bourgain�Delbaen construction, as Argyros and Haydon present it, begins with the

singleton set ∆1 = {1} and the functional c∗1 = 0. A sequence (∆n)n∈N of non-empty, �nite,
disjoint sets is then de�ned recursively, together with functionals c∗γ ∈ span{e∗η : η ∈ Γn}
for each n ∈ N and γ ∈ ∆n+1, where Γn :=

⋃n
j=1 ∆j, in such a way that the sequence

(d∗γ)γ∈Γ := (e∗γ − c∗γ)γ∈Γ

is a Schauder basis for the Banach space `1(Γ), where Γ :=
⋃
j∈N ∆j, endowed with the lex-

icographic order induced by ∆1,∆2, . . . (The �nite sets ∆1,∆2, . . . are a priori unordered;
they can each be given an arbitrary linear order to ensure that Γ is linearly ordered.) In
particular, the �nite-dimensional subspaces span{d∗γ : γ ∈ ∆n} (n ∈ N) form an FDD

for `1(Γ). We write P ∗(0, n] for the n
th canonical projection on `1(Γ) associated with this

decomposition; that is, P ∗(0, n] is given by P ∗(0, n]d
∗
γ = d∗γ if γ ∈ Γn and P

∗
(0, n]d

∗
γ = 0 otherwise.

For later reference, we note that the image of P ∗(0, n] is given by

span{d∗γ : γ ∈ Γn} = span{e∗γ : γ ∈ Γn} = `1(Γn). (2.2)

Let (dγ)γ∈Γ be the sequence of coordinate functionals in `1(Γ)∗ = `∞(Γ) associated with
the Schauder basis (d∗γ)γ∈Γ for `1(Γ). The Bourgain�Delbaen space X(Γ) determined by
the set Γ is now de�ned as the closed subspace of `∞(Γ) spanned by {dγ : γ ∈ Γ}, so that,
by de�nition, (dγ)γ∈Γ is a Schauder basis for X(Γ). Denote by P(0, n] the adjoint of the
projection P ∗(0, n] for each n ∈ N. Since the image of P(0, n] is equal to span{dγ : γ ∈ Γn},
we may consider P(0, n] as an operator into X(Γ). We observe that the subspaces

Mn := span{dγ : γ ∈ ∆n} (n ∈ N)

form an FDD for X(Γ), and (P(0, n]|X(Γ))n∈N are the associated projections.
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Let n ∈ N. By (2.2), we may regard P ∗(0, n] as a surjection onto `1(Γn). The adjoint

of this operator, which we shall denote by in : `∞(Γn) → `∞(Γ), plays an important role
in the study of Bourgain�Delbaen spaces. It is an extension operator, in the sense that
in(x)(γ) = (x)(γ) for each x ∈ `∞(Γn) and γ ∈ Γn, and it satis�es

‖x‖∞ 6 ‖in(x)‖∞ 6M‖x‖∞ (x ∈ `∞(Γn)), (2.3)

where M is the basis constant of (d∗γ)γ∈Γ. We can describe in explicitly by the formula
in = P(0, n]|`∞(Γn). In particular, its image is spanned by {dγ : γ ∈ Γn}, and so we may
regard in as an operator from `∞(Γn) into X(Γ).
Let x ∈ span{dγ : γ ∈ Γ}. By the range of x, we understand the smallest interval I of N

such that x ∈ span
{
dγ : γ ∈

⋃
i∈I ∆i

}
. We write ranx for the range of x. Suppose that

ranx ⊆ (p, q] for some non-negative integers p < q. Then, as observed in [2, p. 12], the
element u := x|Γq ∈ `∞(Γq) satis�es

x = iq(u) and suppu ⊆ Γq \ Γp. (2.4)

Suppose that x 6= 0, and set m = max ranx ∈ N. Then we de�ne the local support of x by

locsuppx := supp(x|Γm) = {γ ∈ Γm : x(γ) 6= 0}.

Further, suppose that x = in(w) for some n ∈ N and w ∈ `∞(Γn). Then we have n > m
because in[`∞(Γn)] = span{dγ : γ ∈ Γn}, and hence

x(γ) = 〈e∗γ, in(w)〉 = 〈P ∗(0,n]e
∗
γ, w〉 = w(γ) (γ ∈ Γm), (2.5)

which proves that locsuppx = (suppw) ∩ Γm.
We reserve the term `block sequence' for a block sequence with respect to the FDD

(Mn)∈N, in the following precise sense. Let I be a non-empty (�nite or in�nite) inter-
val of N. A block sequence indexed by I is a sequence (xi)i∈I in X(Γ) \ {0} such that
xi ∈ span{dγ : γ ∈ Γ} for each i ∈ I and max ranxi−1 < min ranxi whenever i 6= min I.

The set ΓAH. Argyros and Haydon's Banach space XAH is the Bourgain�Delbaen space
X(ΓAH) determined by a very clever choice of ΓAH :=

⋃
j∈N ∆AH

j that we shall now attempt
to describe, following [2, Section 4]. The �rst step is to �x two fast-increasing sequences
(mj)j∈N and (nj)j∈N of natural numbers which satisfy the following conditions (see [2,
Assumption 2.3]):

• m1 > 4 and n1 > m2
1;

• mj+1 > m2
j and nj+1 > m2

j+1(4nj)
log2mj+1 for each j ∈ N.

The recursive de�nition of the sets (∆AH

n )n∈N and the associated functionals (c∗γ)γ∈ΓAH

requires that several other objects are de�ned simultaneously, as part of the same recursion.
Indeed, we shall also choose a strictly increasing sequence (Nn)n∈N0 of integers and construct
four maps called `rank', `age', σ and `weight'. Each of these maps will be de�ned on the
set ΓAH. The �rst three will take their values in N, while `weight' maps into the set
{1/mj : j ∈ N}. The map σ must be injective and satisfy σ(γ) > rank γ for each γ ∈ ΓAH.
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As we have already mentioned, the recursion begins with the set ∆AH

1 = {1} and the
functional c∗1 = 0. We set N0 = 0 and de�ne

rank γ = age γ = 1, σ(γ) = 2 and weight γ =
1

m1

(γ = 1 ∈ ∆AH

1 ).

Now assume recursively that, for some n ∈ N, we have de�ned the sets ∆AH

1 , . . . ,∆AH

n

and the functionals c∗γ for γ ∈ ΓAH

n (where ΓAH

n :=
⋃n
j=1 ∆AH

j by convention, as above),

as well as the integers N0 < N1 < · · · < Nn−1 and the maps rank, age, σ : ΓAH

n → N and
weight : ΓAH

n → {1/mj : j ∈ N}, where σ is injective and satis�es σ(γ) > rank γ for each
γ ∈ ΓAH

n . Choose Nn > Nn−1 such that the set

Bp,n :=

{ ∑
η∈ΓAHn \ΓAHp

aηe
∗
η : aη ∈ L,

∑
η

|aη| 6 1 and the

denominator of aη divides Nn! for each η ∈ ΓAH

n \ ΓAH

p

}
is a 2−n-net in the unit ball of `1(ΓAH

n \ ΓAH

p ) for each p ∈ {0, 1, . . . , n − 1}, where we

have introduced ΓAH

0 := ∅ for convenience. (When talking about `the denominator' of an
element aη of L in the complex case, we suppose that aη has been written in the form
aη = (j + ki)/m for some j, k ∈ Z and m ∈ N.) We admit into ∆AH

n+1 elements γ of two
types:

(i) Elements of type 1 are triples of the form

γ =
(
n+ 1,

1

mj

, b∗
)
,

where b∗ ∈ B0,n and j ∈ {1, . . . , n+ 1}. If j is even, then we admit each γ of this
form into ∆AH

n+1, whereas if j is odd, we admit γ into ∆AH

n+1 if and only if b∗ = e∗η, where

η ∈ ΓAH

n has weight 1/m4i−2 for some i ∈ N, and this weight satis�es 1/m4i−2 < 1/n2
j .

In both cases we de�ne

c∗γ =
b∗

mj

, rank γ = n+ 1, weight γ =
1

mj

and age γ = 1.

(ii) Elements of type 2 are quadruples of the form

γ =
(
n+ 1, ξ,

1

mj

, b∗
)
,

where j ∈ {1, . . . , n+ 1}, ξ ∈ ∆AH

p for some p ∈ {1, . . . , n − 1}, weight ξ = 1/mj,
age ξ < nj and b∗ ∈ Bp,n. Again, if j is even, then we admit each γ of this form
into ∆AH

n+1, whereas if j is odd, we admit γ into ∆AH

n+1 if and only if b∗ = e∗η, where

η ∈ ΓAH

n \ ΓAH

p has weight 1/m4σ(ξ). In both cases we de�ne

c∗γ = e∗ξ +
b∗ − P ∗(0, p]b∗

mj

, rank γ = n+ 1, weight γ =
1

mj

, age γ = 1 + age ξ.
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It remains to extend the de�nition of σ to ∆AH

n+1. Set m = maxσ[ΓAH

n ]. Then m > n,
and we may therefore de�ne σ(γ) for γ ∈ ∆AH

n+1 by assigning to it any value in N ∩ (m,∞)
that we wish, as long as we choose distinct values for distinct elements of ∆AH

n+1. This
completes the recursive construction and hence the de�nition of Argyros and Haydon's
Banach space XAH.

Remark 2.2. For later reference, we record the following two facts.

(i) As noted in [2, p. 17], the basis constant M of (d∗γ)γ∈ΓAH is at most 2.

(ii) The Schauder basis (dγ)γ∈ΓAH of XAH is shrinking, so that (d∗γ)γ∈ΓAH forms a Schauder

basis for the dual space X∗
AH

, and therefore X∗
AH
∼= `1(ΓAH). Indeed, the proof of

[2, Proposition 5.12] shows that the FDD (Mn)n∈N for XAH is shrinking, and hence
the conclusion follows from the elementary general fact that if a Schauder basis has
a �nite-dimensional blocking which is shrinking, then the basis is itself shrinking.

We are now ready to de�ne the subspace Y of XAH that will have the properties stated
in Theorem 1.2.

De�nition 2.3. We begin by recursively de�ning a sequence (∆′n)n>2 of non-empty, proper
subsets of (∆AH

n )n>2.
To start the recursion, we choose an element β0 in ∆AH

2 and set ∆′2 = {β0}. This is
certainly a non-empty subset of ∆AH

2 . It is also proper because ∆AH

2 contains at least two
distinct elements, namely (2, 1/m2,±e∗1).
Now let n > 2, and assume recursively that we have de�ned non-empty, proper subsets

∆′2, . . . ,∆
′
n of ∆AH

2 , . . . ,∆AH

n , respectively. Set Γ′n =
⋃n
j=2 ∆′j, and de�ne

∆′n+1 = {γ ∈ ∆AH

n+1 : c∗γ(η) 6= 0 for some η ∈ Γ′n}. (2.6)

Then ∆′n+1 is non-empty because it contains the element (n + 1, 1/m2, e
∗
β0

). To see that

∆′n+1 is a proper subset of ∆AH

n+1, choose ζ ∈ ∆AH

2 \∆′2. Then we have

γ :=
(
n+ 1,

1

m2

, e∗ζ

)
∈ ∆AH

n+1,

and c∗γ(η) = e∗ζ(η)/m2 = 0 for each η ∈ ΓAH \ {ζ} ⊇ Γ′n, so that γ /∈ ∆′n+1. This completes
the recursion.
Set Γ′ =

⋃∞
n=2 ∆′n, and de�ne Y to be the closed subspace of XAH spanned by the basic

sequence (dγ)γ∈Γ′ .

The de�nition of Y shows immediately that Y is in�nite-dimensional and has in�nite
codimension in XAH (because the sets Γ′ and ΓAH \ Γ′ are in�nite), and that (dγ)γ∈Γ′ is a
Schauder basis for Y . This basis is shrinking because it is a subsequence of the shrinking
basis (dγ)γ∈ΓAH for XAH. Thus clauses (i) and (ii) of Theorem 1.2 are satis�ed. To establish
the other two clauses, we require some further observations concerning Γ′ and Y .

Lemma 2.4. Let γ ∈ ΓAH. Then:

(i) γ ∈ Γ′ \ {β0} if and only if c∗γ|Γ′ 6= 0;

(ii) γ ∈ Γ′ if and only if d∗γ|Γ′ 6= 0.
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Proof. Set n = (rank γ)− 1 ∈ N0, so that γ ∈ ∆AH

n+1.
(i). This is (almost) immediate from the de�nition of Γ′. Indeed, if γ ∈ Γ′ \ {β0}, then

we have n > 2 and c∗γ(η) 6= 0 for some η ∈ Γ′n by (2.6), so that c∗γ|Γ′ 6= 0.
Conversely, suppose that c∗γ(η) 6= 0 for some η ∈ Γ′. Then rank η 6 n because

supp c∗γ ⊆ Γn. Hence η ∈ Γ′n, and therefore γ ∈ ∆′n+1 by (2.6). We cannot have γ = β0

because rank β0 = 2, so that supp c∗β0 ⊆ Γ1 = {1}, which is disjoint from Γ′.
(ii). Recall that d∗γ = e∗γ − c∗γ.
Suppose �rst that γ ∈ Γ′. Then d∗γ(γ) = 1 because c∗γ(γ) = 0, and so d∗γ|Γ′ 6= 0.
Conversely, suppose that d∗γ(η) 6= 0 for some η ∈ Γ′. If γ = η, then γ ∈ Γ′. Otherwise

e∗γ(η) = 0, so that c∗γ(η) 6= 0, and the conclusion follows from (i). �

Lemma 2.5. Let γ ∈ Γ′. Then dγ|ΓAH\Γ′ = 0.

Proof. We shall prove the result inductively by showing that dγ(η) = 0 for each m ∈ N and
η ∈ ∆AH

m \∆′m. To begin the induction, we observe that this is true whenever m 6 rank γ
because supp dγ ⊆ {γ} ∪ (ΓAH \ ΓAH

rank γ) (see [2, p. 12]).

Now let m > rank γ and η ∈ ∆AH

m+1 \∆′m+1, and assume inductively that dγ(ξ) = 0 for
each ξ ∈ ΓAH

m \ Γ′m. By Lemma 2.4(i), we have c∗η|Γ′ = 0 and thus

c∗η =
∑

ξ∈ΓAHm \Γ′m

c∗η(ξ)e
∗
ξ .

This implies that

dγ(η) = 〈dγ, d∗η + c∗η〉 = 0 +
∑

ξ∈ΓAHm \Γ′m

c∗η(ξ)dγ(ξ) = 0

by the induction hypothesis, and hence the induction continues. �

To state the following two results concisely, we set Γ′0 = Γ′1 = ∅.
Corollary 2.6. Let y ∈ Y . Then:

(i) supp y ⊆ Γ′.

(ii) Suppose that ran y ⊆ (p, q] for some non-negative integers p < q. Then y = iq(y|ΓAHq
)

and supp(y|ΓAHq
) ⊆ Γ′q \ Γ′p.

Proof. (i). By the de�nition of Y , it su�ces to show that supp dγ ⊆ Γ′ for each γ ∈ Γ′,
that is, dγ(η) = 0 for each η ∈ ΓAH \ Γ′, which is true by Lemma 2.5.
(ii). This follows by combining (i) with (2.4). �

Corollary 2.7. Let p < q be natural numbers. Then

iq[`∞(Γ′q \ Γ′p)] = span{dγ : γ ∈ Γ′q \ Γ′p}.

Proof. Set F = span{dγ : γ ∈ Γ′q \ Γ′p}. Corollary 2.6(ii) implies that F ⊆ iq[`∞(Γ′q \ Γ′p)],
so that

|Γ′q \ Γ′p| = dimF 6 dim iq[`∞(Γ′q \ Γ′p)] 6 dim `∞(Γ′q \ Γ′p) = |Γ′q \ Γ′p| <∞.
Hence iq[`∞(Γ′q\Γ′p)] has the same �nite dimension as its subspace F , so they are equal. �
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Proof of Theorem 1.2(iii). Since Y has a shrinking basis, its dual is separable, so by a result
of Lewis and Stegall (see [18, the second corollary of Theorem 2]), it su�ces to show that Y
is a L∞-space. This follows from an argument similar to [2, Proposition 3.2]. Indeed,
(span{dγ : γ ∈ Γ′q})∞q=2 is an increasing sequence of subspaces of Y whose union is dense
in Y , and these subspaces are uniformly isomorphic to the �nite-dimensional `∞-spaces of
the corresponding dimensions by (2.3) and Corollary 2.7 (applied with p = 1). �

Clause (iv) of Theorem 1.2 is, not surprisingly, signi�cantly harder to prove than clauses
(i)�(iii). We shall follow closely Argyros and Haydon's proof of [2, Theorem 7.4], which
shows that all bounded operators on XAH have the form scalar-plus-compact. `Rapidly
increasing sequences' play a central role in this proof; their de�nition is as follows.

De�nition 2.8. A rapidly increasing sequence (or RIS for short) inXAH is a block sequence
(xi)i∈I indexed by a non-empty (�nite or in�nite) interval I of N such that there are a
constant C > 0 and a strictly increasing sequence (ji)i∈I of natural numbers satisfying

(i) ‖xi‖∞ 6 C for each i ∈ I;
(ii) max ranxi−1 < ji for each i ∈ I \ {min I};
(iii) |xi(γ)| 6 C/mk for each i ∈ I and each γ ∈ ΓAH with weight γ = 1/mk for some

k ∈ N ∩ [1, ji).

If we need to specify the constant C in this de�nition, we refer to a C-RIS.

We say that a RIS (xi)i∈I is semi-normalized if infi∈I ‖xi‖∞ > 0. (Note that condition (i),
above, ensures that supi∈I ‖xi‖∞ <∞.)
Let W be a subset of XAH. By a RIS in W , we mean a sequence (xi)i∈I that is a RIS in

the above sense and satis�es xi ∈ W for each i ∈ I.

Our �rst aim is to establish the following variant of [2, Proposition 5.11] for bounded
operators de�ned on the subspace Y of XAH.

Proposition 2.9. Let T be a bounded operator from Y into a Banach space. Then the

following three conditions are equivalent:

(a) every RIS (xi)i∈N in Y has a subsequence (x′i)i∈N such that ‖Tx′i‖ → 0 as i→∞;

(b) every bounded block sequence (xi)i∈N in Y has a subsequence (x′i)i∈N such that

‖Tx′i‖ → 0 as i→∞;

(c) the operator T is compact.

As in [2], the proof of this result relies heavily on the following two notions.

De�nition 2.10. A block sequence (xi)i∈N in XAH \ {0} has:
• bounded local weight if inf

{
weight γ : γ ∈

⋃
i∈N locsuppxi

}
> 0;

• rapidly decreasing local weight if, for each i ∈ N and γ ∈ locsuppxi+1, we have
weight γ < 1/mqi , where qi := max ranxi.

Proposition 2.11 ([2, Proposition 5.10]). Let (xi)i∈N be a bounded block sequence in

XAH \ {0}, and suppose that (xi)i∈N has either bounded local weight or rapidly decreasing

local weight. Then (xi)i∈N is a RIS.
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Proof of Proposition 2.9. The implication (b)⇒(a) is obvious.
(b)⇔(c). Each subsequence of a bounded block sequence is evidently itself a bounded

block sequence. Hence condition (b) is equivalent to the formally stronger statement that
‖Txi‖ → 0 as i → ∞ for every bounded block sequence (xi)i∈N in Y , and this latter
statement is in turn equivalent to condition (c) by Lemma 2.1(ii), which applies because
the basis (dγ)γ∈Γ′ for Y is shrinking.
It remains to prove that (a)⇒(b), which we shall accomplish by adapting the proof of

[2, Proposition 5.11]. We begin by observing that since each subsequence of a RIS is a
RIS, condition (a) is equivalent to the formally stronger statement that ‖Txi‖ → 0 as
i → ∞ for every RIS (xi)i∈N in Y . Suppose that this statement holds true, let (xj)j∈N be
a bounded block sequence in Y , and choose integers 0 = q0 < q1 < q2 < · · · such that
ranxj ⊆ (qj−1, qj] for each j ∈ N. Fix j, k ∈ N, set uj = xj|ΓAHqj

and, for each γ ∈ ΓAH

qj
,

de�ne

vkj (γ) =

{
uj(γ) if weight γ > 1/mk

0 otherwise
and wkj (γ) =

{
uj(γ) if weight γ < 1/mk

0 otherwise.

Then we have uj = vkj + wkj , ‖vkj ‖∞ ∨ ‖wkj ‖∞ = ‖uj‖∞ 6 ‖xj‖∞ and

supp vkj ∪ suppwkj = suppuj ⊆ Γ′qj \ Γ′qj−1

by Corollary 2.6(ii). Hence ykj := iqj(v
k
j ) and zkj := iqj(w

k
j ) satisfy ykj + zkj = iqj(uj) = xj,

they both belong to span{dγ : γ ∈ Γ′qj \ Γ′qj−1
} by Corollary 2.7, and their norms are at

most 2‖xj‖∞ by (2.3) and Remark 2.2(i). Thus (ykj )j∈N and (zkj )j∈N are bounded block
sequences in Y . Using (2.5), we obtain

locsupp ykj ⊆ supp vkj =
{
γ ∈ suppuj : weight γ >

1

mk

}
,

so that (ykj )j∈N has bounded local weight, and it is therefore a RIS by Proposition 2.11.

Hence the assumption implies that ‖Tykj ‖ → 0 as j → ∞, so that we can recursively

choose integers 1 < j1 < j2 < · · · such that ‖Tykjk‖ → 0 as k → ∞. Set k1 = 1 and,

recursively, de�ne kp+1 = qjkp for p ∈ N. Then (z
kp
jkp

)p∈N is a bounded block sequence with

rapidly decreasing local weight, so it is a RIS by Proposition 2.11, and hence ‖Tzkpjkp‖ → 0

as p→∞. It now follows that x′p := xjkp = y
kp
jkp

+ z
kp
jkp

(p ∈ N) is a subsequence of (xj)j∈N
such that ‖Tx′p‖ → 0 as p→∞. �

We shall next establish a lemma which generalizes [2, Lemma 7.2 and Proposition 7.3].
While we shall require it only for Υ = Γ′, we have chosen to state it in greater generality to
highlight that, unlike Proposition 2.9, it does not depend on any special properties of the
set Γ′. The statement of this lemma involves three further notions. First, for a subspaceW
of XAH, we denote by W ∩ LΓAH the set of w ∈ W such that w(γ) ∈ L for each γ ∈ ΓAH,
where we recall that L is the sub�eld of the scalar �eld given by (2.1). Second, for natural
numbers p < q, we write P ∗(p, q] for the operator P ∗(0, q] − P ∗(0, p] and denote by P(p, q] its
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adjoint. Third, we require the following piece of terminology, which originates from [2,
De�nition 6.1].

De�nition 2.12. Let C > 0 and j ∈ N. A (C, j, 0)-exact pair is a pair (z, η) ∈ XAH×ΓAH

that satis�es:

• |〈d∗ξ , z〉| 6 C/mj for each ξ ∈ ΓAH, weight η = 1/mj, ‖z‖∞ 6 C and z(η) = 0;

• |z(ξ)| 6 C/mi∧j for each i ∈ N \ {j} and each ξ ∈ ΓAH with weight ξ = 1/mi.

Lemma 2.13. Let C > 0, let W = span {dγ : γ ∈ Υ} for some non-empty subset Υ
of ΓAH, and let T : W → XAH be a bounded operator.

(i) Let (xi)i∈I be a C-RIS in W , where I is a non-empty interval of N. Then, for each

ε > 0, there is a (C + ε)-RIS (yi)i∈I in W ∩ LΓAH such that ‖xi − yi‖∞ 6 ε for each

i ∈ I.
(ii) Suppose that dist(Txi,Kxi)→ 0 as i→∞ for every RIS (xi)i∈N in W ∩LΓAH. Then

dist(Txi,Kxi)→ 0 as i→∞ for every RIS (xi)i∈N in W .

(iii) Let δ > 0, and let (xi)i∈N be a C-RIS in W ∩ LΓAH such that dist(Txi,Kxi) > δ for

each i ∈ N. Then, for each j ∈ N and p ∈ N0, there are z ∈ span{xi : i ∈ N} ⊆ W,
q ∈ N ∩ (p,∞) and η ∈ ∆AH

q such that the following �ve conditions are satis�ed:

(1) ran z ⊆ (p, q);
(2) (z, η) is a (16C, 2j, 0)-exact pair;
(3) Re(Tz)(η) > 7δ/16;
(4) ‖(IXAH − P(p, q])Tz‖∞ < δ/m2j;
(5) Re〈Tz, P ∗(p, q]e∗η〉 > 3δ/8.

(iv) For every RIS (xi)i∈N in W , dist(Txi,Kxi)→ 0 as i→∞.

Proof. Clauses (i) and (ii) are both proved by standard approximation arguments. We
omit the details.
(iii). Since (xi)i∈N is a bounded block sequence with respect to the shrinking basis (dγ)γ∈Υ

for W , it is weakly null in W . Being bounded, the operator T is automatically weakly
continuous, so that (Txi)i∈N is weakly null in XAH. Now the remainder of the proof of
[2, Lemma 7.2] carries over verbatim. (Note the need for the real part in conditions (3)
and (5); this is due to the fact that we consider complex as well as real scalars.)
(iv). Assume towards a contradiction that there is a RIS (xi)i∈N in W such that

dist(Txi,Kxi) 6→ 0 as i → ∞. By (ii), we may suppose that xi ∈ W ∩ LΓAH for each
i ∈ N. We may now proceed exactly as in the proof of [2, Proposition 7.3] to reach a
contradiction, using (iii) instead of [2, Lemma 7.2] and noting that the element

z =
1

n2j0−1

n2j0−1∑
i=1

zi

de�ned in [2, p. 34] belongs to W , so that we may apply the operator T to it. �

Finally, we can prove clause (iv) of Theorem 1.2.
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Proof of Theorem 1.2(iv). Lemma 2.13(iv) shows that, for each RIS (xi)i∈N in Y , there is
a scalar sequence (λi)i∈N such that ‖Txi − λixi‖∞ → 0 as i→∞. Suppose that (xi)i∈N is
semi-normalized. Then, arguing as in the proof of [2, Theorem 7.4], we deduce that (λi)i∈N
is convergent and that the limit is independent of the choice of (λi)i∈N and (xi)i∈N; that is,
we have a scalar λ such that

‖Txi − λxi‖∞ 6 ‖Txi − λixi‖∞ + |λ− λi| ‖xi‖∞ → 0 as i→∞ (2.7)

for every semi-normalized RIS (xi)i∈N in Y .
We shall now complete the proof by showing that the operator T − λJ is compact. By

Proposition 2.9, we must show that every RIS (xi)i∈N in Y has a subsequence (x′i)i∈N such
that ‖Tx′i−λx′i‖∞ → 0 as i→∞. If (xi)i∈N is semi-normalized, then this follows from (2.7)
(and there is no need to pass to a subsequence). Otherwise (xi)i∈N has a subsequence (x′i)i∈N
which is norm-null, in which case the conclusion is obvious (because the operator T − λJ
is bounded). �

3. The lattice of closed two-sided ideals of B(Z): the proofs of

Theorem 1.4 and Proposition 1.6

Denote by T2 the algebra of upper triangular (2×2)-matrices over K. Since every bounded
operator on Z has a unique matrix representation of the form (1.2), we can de�ne unital
algebra homomorphisms by

ϕ :

(
α1,1IXAH +K1,1 α1,2J +K1,2

K2,1 α2,2IY +K2,2

)
7→
(
α1,1 α1,2

0 α2,2

)
, B(Z)→ T2, (3.1)

and

ψ :

(
α1,1 α1,2

0 α2,2

)
7→
(
α1,1IXAH α1,2J

0 α2,2IY

)
, T2 → B(Z). (3.2)

Clearly kerϕ = K (Z), and the composition ϕ ◦ ψ is equal to the identity operator on T2,
so that we have a split-exact sequence

{0} // K (Z)
ι // B(Z)

ϕ
// T2

ψ
oo // {0},

where ι : K (Z)→ B(Z) is the inclusion map.

Proof of Theorem 1.4. For each two-sided ideal I of T2, the pre-image ϕ−1[I ] under ϕ is
a two-sided ideal of B(Z). The identity ϕ−1[I ] = ψ[I ] + K (Z) shows that this ideal is
closed (as the sum of a �nite-dimensional subspace and a closed subspace), and the map
I 7→ ϕ−1[I ] is an order isomorphism of the lattice of two-sided ideals of T2 onto the
lattice of closed two-sided ideals of B(Z) that contain K (Z). Since XAH and Y both have
Schauder bases, K (Z) is the minimum non-zero closed two-sided ideal of B(Z). Hence the
conclusion follows from the standard elementary fact that the lattice of two-sided ideals
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of T2 is given by

T2

yyyyyyyy

DDDDDDDD{(
α1,1 α1,2

0 0

)
: α1,1, α1,2 ∈ K

}
= R1

>>>>>>
C2 =

{(
0 α1,2

0 α2,2

)
: α1,2, α2,2 ∈ K

}
������

rad T2 = R1 ∩ C2 =

{(
0 α1,2

0 0

)
: α1,2 ∈ K

}

{0},
where rad T2 denotes the Jacobson radical of T2, and the lines denote proper inclusions
with the larger ideal at the top. �

Proof of Proposition 1.6. Endow T2 with an algebra norm. (Since T2 is �nite-dimensional,
all norms on it are equivalent, so it does not matter which one we choose.) Then T2 is a
standard example of a non-amenable Banach algebra, for instance because the map(

α1,1 α1,2

0 α2,2

)
7→
(

0 α1,2

0 0

)
, T2 → rad T2,

is a bounded derivation which is not inner (and its codomain rad T2 is a dual Banach
T2-bimodule because it is a �nite-dimensional two-sided ideal of T2). Moreover, the map

A 7→ ψ(A) + K (Z), T2 → B(Z)/K (Z), (3.3)

where ψ is given by (3.2), is an algebra isomorphism, which is automatically bounded
because its domain is �nite-dimensional, so that T2 is isomorphic to a quotient of B(Z),
and hence the conclusion follows from [7, Proposition 2.8.64(ii)]. �

Remark 3.1. The proof of Proposition 1.6 shows that the algebra homomorphism ϕ given
by (3.1) is bounded because it is the composition of the quotient homomorphism of B(Z)
onto B(Z)/K (Z) with the inverse of the isomorphism (3.3).

4. Approximate identities: the proof of Theorem 1.8

Recall that, for n ∈ N, P(0, n]|XAH is the nth canonical projection associated with the
shrinking FDD (Mk)k∈N = (span{dγ : γ ∈ ∆AH

k })k∈N for XAH. Clearly the subspace Y is
P(0, n]-invariant, and the restriction P(0, n]|Y is the nth canonical projection associated with
the shrinking FDD (span{dγ : γ ∈ ∆′k})∞k=2 for Y . Consequently Lemma 2.1 implies the
following result, which establishes all the positive statements concerning the existence of
bounded approximate identities in Theorem 1.8.

Proposition 4.1. (i) The sequence((
IXAH 0

0 P(0, n]|Y

))
n∈N

is a bounded left approximate identity in M1.
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(ii) The sequence ((
P(0, n]|XAH 0

0 IY

))
n∈N

is a bounded right approximate identity in M2.

(iii) The sequence ((
P(0, n]|XAH 0

0 P(0, n]|Y

))
n∈N

is a bounded two-sided approximate identity in K (Z).

The non-existence statements in Theorem 1.8 will all be easy consequences of the fol-
lowing lemma.

Lemma 4.2. The inclusion map J : Y → XAH has distance 1 to the ideal of compact

operators, in the sense that

inf
{
‖J −K‖ : K ∈ K (Y,XAH)

}
= 1.

Proof. The right-hand side dominates the left-hand side because ‖J‖ = 1.
On the other hand, given ε > 0 and K ∈ K (Y,XAH), we can �nd n ∈ N such that
‖K −P(0, n]K‖ 6 ε/2 by Lemma 2.1(i). Riesz's lemma (see, e.g., [6, Lemma 1.1.1]) implies
that there exists a unit vector y ∈ Y such that ‖y−P(0, n]x‖∞ > 1− ε/2 for each x ∈ XAH,
and hence

‖J −K‖ > ‖(J −K)y‖∞ > ‖y − P(0, n]Ky‖∞ − ‖Ky − P(0, n]Ky‖∞ > 1− ε,
from which the conclusion follows. �

Proof of Theorem 1.8(i). For each

T =

(
α1,1IXAH +K1,1 α1,2J +K1,2

K2,1 K2,2

)
∈M1,

where α1,1, α1,2 ∈ K and K1,1, . . . , K2,2 are compact, we have∥∥∥∥(0 J
0 0

)
−
(

0 J
0 0

)
T

∥∥∥∥ =

∥∥∥∥(−JK2,1 J − JK2,2

0 0

)∥∥∥∥ > ‖J − JK2,2‖ > 1

by Lemma 4.2. Hence M1 has no right approximate identity.
The other statements are proved similarly. �

5. Maximal left ideals of B(Z): the proof of Theorem 1.9

The key ingredient in our proof of Theorem 1.9, besides the properties of XAH and Y stated
in Theorems 1.1 and 1.2, is the following extension theorem of Grothendieck (see [12,
pp. 559�560], or [19, Theorem 1]), which applies to compact operators into XAH or Y
because they are both isomorphic preduals of `1.

Theorem 5.1 (Grothendieck). Let E be a subspace of a Banach space F , and let G be a

Banach space whose dual space is isomorphic to L1(µ) for some measure µ. Then every

compact operator from E into G has an extension to a compact operator from F into G.
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We shall also require the following elementary observation regarding the maximal two-
sided ideals

R1 =

{(
α1,1 α1,2

0 0

)
: α1,1, α1,2 ∈ K

}
and C2 =

{(
0 α1,2

0 α2,2

)
: α1,2, α2,2 ∈ K

}
of T2 that were introduced in the proof of Theorem 1.4. This observation is probably well
known, but we include a short proof for completeness.

Lemma 5.2. The ideals R1 and C2 are the only maximal left ideals of T2.

Proof. Both R1 and C2 have codimension one in T2, so that they are maximal as left ideals.
Let L be any maximal left ideal of T2. As noted in the proof of Theorem 1.4, the

Jacobson radical of T2 is given by

rad T2 =

{(
0 α1,2

0 0

)
: α1,2 ∈ K

}
.

This ideal is not maximal as a left ideal because it is properly contained in R1 and C2.
Hence the de�nition of the Jacobson radical as the intersection of all the maximal left
ideals of T2 implies that L contains rad T2 properly, and consequently we can �nd(

α1,1 0
0 α2,2

)
∈ L

with either α1,1 6= 0 or α2,2 6= 0. In the �rst case we conclude that(
β 0
0 0

)
=

(
β/α1,1 0

0 0

)(
α1,1 0
0 α2,2

)
∈ L (β ∈ K),

so that R1 ⊆ L , and hence R1 = L by the maximality of R1. A similar argument shows
that L = C2 in the second case. �

Proof of Theorem 1.9. As in the proof of Theorem 1.4, we see that L 7→ ϕ−1[L ] de�nes
an order isomorphism of the lattice of left ideals of T2 onto the lattice of closed left
ideals of B(Z) that contain K (Z). By [8, Corollary 4.1], every non-�xed, maximal left
ideal of B(Z) contains E (Z) and hence K (Z), and therefore Lemma 5.2 shows that
M1 = ϕ−1[R1] and M2 = ϕ−1[C2] are the only non-�xed, maximal left ideals of B(Z).
(i). For each T = (Tj,k)

2
j,k=1 ∈M1, the operator T2,2 is compact, so that it has a compact

extension T̃2,2 : XAH → Y by Theorems 1.2(iii) and 5.1. Moreover, we may express T1,2

in the form T1,2 = α1,2J + K1,2, where α1,2 ∈ K and K1,2 : Y → XAH is compact, and

then another application of Theorem 5.1 gives a compact operator K̃1,2 : XAH → XAH that
extends K1,2. Hence we have

T =

(
T1,1 0
T2,1 0

)
+

(
0 T1,2

0 T2,2

)
= T

(
IXAH 0

0 0

)
+

(
α1,2IXAH + K̃1,2 0

T̃2,2 0

)(
0 J
0 0

)
,

which shows that M1 is generated as a left ideal by the pair of operators given by (1.5).
On the other hand, to see that M1 is not generated as a left ideal by a single bounded

operator, assume the contrary, and let R = (Rj,k)
2
j,k=1 be a generator of M1. Take
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α1,1, α1,2 ∈ K and compact operators K1,1 and K1,2 such that R1,1 = α1,1IXAH + K1,1

and R1,2 = α1,2J + K1,2. Since the operators given by (1.5) both belong to M1, we can
�nd bounded operators S = (Sj,k)

2
j,k=1 and T = (Tj,k)

2
j,k=1 on Z such that(

IXAH 0
0 0

)
= SR and

(
0 J
0 0

)
= TR. (5.1)

Write S1,1 = βIXAH + U1,1 and T1,1 = γIXAH + V1,1, where β, γ ∈ K and U1,1 and V1,1 are
compact. The �rst part of (5.1) implies that βα1,1 = 1 and βα1,2 = 0, so that necessarily
α1,2 = 0, while the second part shows that γα1,1 = 0 and γα1,2 = 1. This is clearly
impossible, and hence M1 cannot be generated as a left ideal by a single operator.
(ii). Assume towards a contradiction that M2 is the left ideal of B(Z) generated by the

operators R1, . . . , Rn for some n ∈ N. The de�nition (1.3) of M2 implies that, for each
j ∈ {1, . . . , n}, we can �nd βj, γj ∈ K and Kj ∈ K (Z) such that Rj = Sj +Kj, where

Sj =

(
0 βjJ
0 γjIY

)
. (5.2)

By [8, Corollary 4.7], the operator

Ψ: z 7→ (R1z, . . . , Rnz), Z → Zn,

is bounded below, and it is thus an upper semi-Fredholm operator; that is, Ψ has �nite-
dimensional kernel and closed image. Since the set of upper semi-Fredholm operators is
closed under compact perturbations (see, e.g., [6, Corollary 1.3.7]), the operator

S : z 7→ Ψz − (K1z, . . . , Knz) = (S1z, . . . , Snz), Z → Zn,

is also an upper semi-Fredholm operator, so that its kernel is �nite-dimensional. This,
however, contradicts the fact that S(x, 0) = (0, . . . , 0) for each x ∈ XAH by (5.2). �
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