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Quantum Monte Carlo methods provide in principle a highly accurate treatment of the many-body
problem of the ground and excited states of condensed systems. In practice, however, uncontrolled
errors such as those arising from the fixed-node and pseudopotential approximations can be prob-
lematic. We show that the accuracy of some quantum Monte Carlo calculations is limited by using
available pseudopotentials. The use of pseudopotentials involves several approximations, and we
will focus on one which is relatively simple to correct during the pseudopotential design phase. It
is necessary to include angular momentum channels in the pseudopotential for excited angular mo-
mentum states and to choose the local channel appropriately to obtain accurate results. Variational
and diffusion Monte Carlo calculations for Zn, O, and Si atoms and ions demonstrate these issues.
Adding higher-angular momentum channels into the pseudopotential description reduces such errors
without a significant increase in computational cost.

I. INTRODUCTION

Computational electronic structure methods have been
extremely useful in developing our understanding of the
atomic and electronic structures of real materials. As
methods have become more accurate and their implemen-
tations increasingly efficient, simulations and calculations
have taken some of the burden of finding and character-
izing new materials off experimental work.1

Density-functional theory (DFT), in particular, has
been widely applied in recent decades. It is computa-
tionally efficient compared to other methods with simi-
lar accuracy, and robust, user-friendly software packages
have made the method easy to apply. However, its ac-
curacy is still insufficient for some applications, and the
lack of a systematic way to improve its results or esti-
mate its errors has hampered progress. In particular,
electron correlation effects can be significant in many
complex materials and are not captured accurately by
many commonly-used density functionals. The develop-
ment of functionals, which accurately describe the elec-
tronic band gap, van der Waals interactions, and other
electronic properties of materials, is still an active area
of research.2–5

These issues are overcome by methods which treat
quantum many-body effects explicitly from the outset
such as quantum Monte Carlo (QMC). QMC methods
are among the most accurate many-body methods and
can reliably and accurately predict ground-state expec-
tation values for many systems. In fact, they have often
been used as a benchmark for DFT work.6–9 Among the
quantum Monte Carlo methods, variational Monte Carlo
(VMC), diffusion Monte Carlo (DMC), and auxillary-
field quantum Monte Carlo10 are the most mature in
terms of applicability to solid state systems. We treat
only VMC and DMC in this work and refer to them col-

lectively as QMC.
As computers become faster and high-quality software

packages for QMC such as CASINO,11 QMCPACK,12

QWALK,13 and CHAMP14 mature, these calculations
are becoming less challenging. It is therefore important
to identify and propagate the best-practice procedures
for performing these calculations as they become more
routine.

QMC and other correlated-electron methods usually
employ the pseudopotential approximation to reduce
the computational cost, particularly for heavy elements.
The common form is the non-local, norm-conserving
pseudopotential15 which applies different radial poten-
tial functions to each angular-momentum component of
the wavefunction.

In this work, we determine the error in the energy due
to an insufficient number of angular-momentum chan-
nels in the pseudopotential and discuss other sources of
error in QMC calculations. We show that pseudopoten-
tials that include channels to account for higher angular-
momentum components of the wavefunction are neces-
sary for performing accurate pseudopotential calculations
in QMC. Such pseudopotentials are not the norm in the
literature, and we suggest that this be corrected in order
that QMC methods be suitable for routine application to
scientifically and technologically interesting systems.

II. BACKGROUND

The computational cost of all-electron QMC scales ap-
proximately as Z5.5 or Z6.5 with respect to the atomic
number.16,17 This makes the direct application of all-
electron QMC to heavy atoms difficult. In practice, many
properties of atoms are primarily due to the behavior
of and interactions between valence electrons, and so a
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pseudopotential approximation is commonly used to re-
move core electrons from the calculation and reduce the
necessary computational effort.

Modern pseudopotentials are non-local in the sense
that they act differently on distinct angular-momentum
components of the wavefunction. This is necessary to
accurately capture the effects of the nucleus and core
electrons on the valence electrons, since the pseudopo-
tential not only represents the effective electrostatic po-
tential but also enforces orthogonality of valence orbitals
to lower-energy states of the same angular momentum.

Of course, there is no clear distinction between core
and valence electrons in many-body methods as the elec-
trons are indistinguishable particles. Thus, the pseu-
dopotential approximation does require neglecting ex-
change and correlation interactions between the valence
and removed core electrons as well as that between the
core electrons themselves. These errors are not explicitly
accounted for in the calculations. However, the core-core
interactions largely cancel out when considering energy
differences, and the core-valence interactions may be kept
small by a choice of core size which leads to significant
spatial separation between the core and valence electron
densities. These techniques may be able to produce re-
sults as accurate as all-electron calculations.17 Addition-
ally, the use of core-polarization potentials can account
for some core-valence correlations.18–20

To introduce non-local pseudopotentials in QMC, the
electron-ion potential of any given atom is divided into
a local potential, V̂loc, and a nonlocal potential operator,
V̂nl. The local potential is applied to the whole wavefunc-
tion, and the nonlocal corrections account for the differ-
ences between the local potential and the potentials that
should be seen by each angular-momentum component
of the wavefunction:

V̂loc + V̂nl =

Nel∑
i=1

V ps
loc(ri) +

Nel∑
i=1

V̂ ps
nl,i. (1)

The nonlocal potential operator V̂ ps
nl,i acts on a function

f(ri) by

V̂ ps
nl,if(ri) =

∑
l,m

V ps
nl,l(ri)Ylm(Ωi)

∫
4π

Y ∗lm(Ω′i)f(r′i)dΩ′i ,

(2)
where the angular integral in the operator projects the
wavefunction onto spherical harmonics. The V ps

nl,l(r) are
functions of only the electron-nuclear distance r and ac-
count for the difference between the desired l-dependent
potential and the local channel. The local potential,
or local channel, V ps

loc(r), is by convention chosen to be
the exact potential associated with one of the angular-
momentum components, so the sum in Eq. (2) need not
include this local component.6

The choice of local channel itself is arbitrary but is
often chosen for convenience during the pseudopotential
design process. In particular, judicious choice of the local
channel is often necessary to avoid the problem of ghost

states which can arise due to the Kleinman-Bylander
transformation.21 The same choice of local channel that
is suitable for that transformation may not be optimal
with regards to accuracy of QMC calculations.22

In an independent electron theory such as Hartree-
Fock or DFT, atomic wavefunctions are composed of
some number of the lowest-energy single-particle or-
bitals. For example, in these frameworks, the elec-
tronic configuration of an oxygen atom may be writ-
ten as 1s22s22p4. Notice that this wavefunction con-
tains no angular-momentum components above l = 1.
Thus, a non-local pseudopotential in the above form
which acts on these single-atom wavefunctions need not
include terms V ps

nl,l for l > 1 if it is to be used to calcu-
late ground-state atomic properties using a one-electron
theory.

The situation is not so simple in the case of solids
and other extended systems where bonding changes the
wavefunctions in a way that effectively introduces higher
angular-momentum components. Indeed, in the case of
systems such as bulk Si and other second row elements,
wavefunctions with higher angular-momentum character
will be present. In this case, it may be necessary to use a
pseudopotential with a d-channel, even at the DFT level
(especially in the high-pressure regime). However, these
errors often cancel when considering energy differences
and are frequently neglected in practice.23,24

In QMC and other correlated-electron methods, excita-
tions of the wavefunction into higher angular-momentum
states arise immediately, i.e., even for isolated atoms. In
VMC, wavefunctions may be represented by the prod-
uct of a Slater determinant of single particle orbitals and
the so-called Jastrow factor. The Jastrow is a positive
function of inter-particle distances, and its purpose is to
directly account for many-body correlation effects. Nat-
urally, the VMC wavefunction is then no longer entirely
composed of the lowest-order spherical harmonics. The
situation in DMC and other correlated-electron methods
is analogous.6

Notice from Eq. (1) that, in the absence of a pseu-
dopotential channel to deal with the higher-angular mo-
mentum components of the wavefunction, these compo-
nents simply feel the local channel. This is incorrect and
may be drastically so, especially in the case where the
local channel was designed to enforce orthogonality to
the lower-energy orbitals with a particular angular mo-
mentum. This can lead to sizable errors in total energy
calculations.

Now, this effect is not a particularly surprising one and
certainly has been understood by some in the density-
functional theory community since the beginnings of the
use of pseudopotentials in that field (see, for example,
Ref. 25). However, inclusion of so-called higher angular-
momentum channels is not the normal practice in the
development of potentials for use with QMC.

There are a limited number of pseudopotential types
available for use with QMC. The application of projector-
augmented waves26 or ultra-soft pseudopotential27 tech-
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TABLE I. Choices of angular-momentum channels and local
channels for the various pseudopotentials considered for oxy-
gen, silicon and zinc.

Standard Augmented
Channels Local Channels Local

O s, p s or p s, p, d s or p
Si s, p s or p s, p, d s or p
Zn s, p, d s or d s, p, d, f s, d, or f

niques in QMC is currently not feasible since the DMC
operators for the projectors and the augmentation charge
are unknown, but a number of semi-local pseudopoten-
tials have been developed with QMC applications in
mind. Greeff et al. developed a carbon pseudopotential
which included s- and p-channels.28 Ovcharenko et al.
applied a similar methodology to produce pseudopoten-
tials for Be to Ne and Al to Ar with lmax = 1.29 Burkatzki
et al. present potentials for many of the main group
elements30 and for the 3d transition metals.31 Their Si
and Zn potentials have 3 channels, and their O poten-
tial has 2. These authors all cite the rule of thumb that
lmax should be at least as high as the highest angular-
momentum component in the atomic core. Trail et al.
developed a variety of pseudopotentials for all elements
from H to Hg. These all have exactly 3 channels and
are associated with the CASINO code which, until re-
cently, only supported pseudopotentials with exactly 3
channels.32

III. METHODOLOGY

We determine how the number of channels and the
choice of local channel affects the energy for several atoms
and ions. We compute the total energies and first and
second ionization energies of the oxygen, silicon, and zinc
atoms using several related pseudopotentials. These el-
ements provide interesting test cases due to their varied
electronic structures. Additionally, we are interested in
the application of QMC methods to bulk semiconductors
such as Si and ZnO.8,9

Hartree-Fock (HF) pseudopotentials were gener-
ated with the OPIUM code33 using the Troullier-
Martins (TM)34 and Rappe-Rabe-Kaxiras-Joannopoulos
(RRKJ)35 methods. HF has been found to be preferable
to DFT for the generation of pseudopotentials for many-
body methods.28 A singly ionized reference configuration
was used, and a grid search over the design parameter
space (including fitting method) was performed with the
objective of minimizing error under the fitting theory for
pseudopotential and all-electron valence energy levels for
a set of test configurations. Some preference was given
to softness of the potentials as well. In case that param-
eters corresponding to high angular momentum channels
had no effect on the energies at the single particle level
of theory, parameters were chosen identical to the next-
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FIG. 1. (color online) Pseudopotentials for O, Si, and Zn.

highest channel. In the end, we used an RRKJ pseu-
dopotential for oxygen and TM pseudopotentials for zinc
and silicon. Mean absolute errors at the HF level were
7 meV, 10 meV, and 33 meV for the O, Si, and Zn fits,
respectively.36

Table I lists the angular-momentum channels and the
choice of local channel for each pseudopotential. For each
element, we consider (i) pseudopotentials with the mini-
mum number of channels (s and p for O and Si; s, p and
d for Zn) and (ii) pseudopotentials that contain an addi-
tional angular-momentum channel (d for O and Si; f for
Zn). We refer to the first set as standard pseudopoten-
tials and the second as augmented. For the local channel,
we consider the s and p channels for O and Si and the s, d
or f channels for Zn. One (augmented) pseudopotential
was fit for each element, and then appropriate channels
removed to obtain the standard versions. The choice of
local channel can be delayed until the energy calculation.
This results in the 13 pseudopotentials listed in Table I.

Figure 1 shows the distance dependence of the angu-
lar momentum channels for the various pseudopotentials.
For Si and Zn, we confirmed that the pseudopotentials
accurately describe the lattice parameters of the ground
state crystal structure and for O, we confirmed that the
pseudopotential reproduces the dimer bond length at the
DFT level.

QMC calculations were performed using the CASINO
code.11 We implemented support for pseudopotentials
with an arbitrary number of angular-momentum chan-
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nels in CASINO. Total energy calculations are performed
on the 9 isolated ions with each of the applicable pseu-
dopotentials. Our Slater-Jastrow trial wavefunctions
consisted of a Jastrow factor multiplying a linear combi-
nation of Slater determinants of single-particle orbitals.
The minimum number of Slater determinants was cho-
sen to account for the correct spin groundstates of the
atoms and ions; a single determinant was sufficient for
the case of O+, Si2+, Zn0, Zn+, and Zn2+, while three
determinants were required for O0, O2+, Si0, and Si+.
The single-particle orbitals were generated using the
PWSCF code37 with the B3LYP exchange-correlation
functional38 and for efficiency were expressed in a B-
spline basis.39,40 Plane-wave cutoffs of 70 Ry for oxygen
and silicon and 100 Ry for zinc were used to converge the
total energies to 2 meV. Occupancies were fixed so that
the wavefunctions have the correct symmetry.

The Jastrow factor is a non-negative function of
inter-particle distances and includes two-body electron-
electron and electron-nucleus and three-body electron-
electron-nucleus terms as implemented in CASINO.41

Parameters were added to the Jastrow factor of the trial
wavefunction gradually during its optimization. The
Jastrow parameters were optimized using variance min-
imization42 followed by energy minimization in the final
step.43 The backflow transformation44 was not found to
provide any significant benefit in these cases. Trial wave-
functions were evaluated by their mean energy plus three
times the statistical error in the energy, following Ref. 45.

Several additional details of our VMC calculations are
noteworthy. First, the integral in Equation (2) is per-
formed on a spherical grid in real space. This integra-
tion mesh must be chosen to be sufficiently dense to ac-
curately calculate the contributions to the energy from
higher angular-momentum components of the wavefunc-
tion and thus evaluating the effects which are the focus
of this paper. Secondly, it is the default behavior of the
CASINO code that the non-local contributions to the
energy are assumed constant and are not recalculated
during a variance minimization step. In many systems,
this improves the runtime of the algorithm significantly
while still giving good results — in some cases it actually
improves the performance of the variance minimization.
However, as we will see, the non-local contributions are
significant in many of our calculations. We found it nec-
essary in many cases to recalculate the non-local contri-
butions to the energy at each step of the optimization
to ensure the stability of the optimization process during
Jastrow optimization.

Our DMC calculations were performed using the pseu-
dopotential locality approximation.46 For each system,
we performed at least 256 · 106 steps with a target popu-
lation of 2, 000 walkers. We carried out the DMC calcu-
lations using a time steps of 0.0025 and 0.01 Ha−1 and
extrapolated the DMC results to a zero time step, ob-
taining corrections to the total energies of less than 1, 9,
and 25 meV in the total energies and 1, 6, and 6 meV
in the ionization energies for Si, O, and Zn, respectively.
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FIG. 2. (color online) Total VMC energy in Hartree and
statistical error in the energy of each species with respect to
each Hamiltonian. Pseudopotentials are denoted according to
the choice of local channel and as ‘aug’ if they are augmented
with an additional channel or ‘std’ otherwise.
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FIG. 3. (color online) Total DMC energy in Hartree and
statistical error in the energy of each species with respect to
each Hamiltonian. Pseudopotentials are labeled as in Fig. 2.

Finally, atomic ionization energies are simply differences
between the total energies of the appropriate species.

IV. RESULTS AND DISCUSSION

Figures 2 and 3 show the energies for each ion-
pseudopotential combination for VMC and DMC, respec-
tively. The error bars indicate only the statistical uncer-
tainties in the energies associated with the QMC calcu-
lations. First, it is important to notice the scale of the
axes. The magnitude of variation in the total energies
differs between the three elements; for Si, it is on the or-
der of milli-Hartrees, while for Zn, it is on the order of
tenths of Hartrees, with oxygen falling in between.
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The VMC and DMC total energies for the different
choices of pseudopotentials and local channels exhibit
similar trends. The energies for the different choices of
local channels of the augmented pseudopotential (the two
or three left-most filled data points in each panel) agree
significantly better with each other, than for the case of
the standard pseudopotentials. That is, for the standard
pseudopotentials the choice of local channel has a large
effect on the total energy since the higher angular compo-
nents of the wavefunction see that local channel. When
using the augmented potentials, more of the wavefunc-
tion sees the correct potential, and the choice of local
channel has less effect on the result of the calculation.

If we take the calculations with augmented potentials
to indicate the correct result, we can understand the er-
rors in the other total energies in terms of which poten-
tials are applied to certain components of the wavefunc-
tion. Focus on the channel associated with augmentation
for each species in Figure 1, i.e. on the d-channel for O
and Si, and on the f -channel for Zn. In each case, the
s-channel is more repulsive, and the p-channel more at-
tractive over much of their domains. Thus, we expect
that calculations in which high angular momentum com-
ponents of the wavefunction incorrectly see the s-channel
to be too high in energy. Indeed these data points (which
are the second right-most point in each frame of the to-
tal energy plots) exhibit this trend in the case of O and
Zn. Similarly, the right-most data point in each frame
corresponds to a calculation wherein any higher l com-
ponent of the wavefunction sees the d-channel, and these
results are erroneously low in energy. Even the residual
differences between the energies calculated using the aug-
mented potentials follow this trend. This is indicative of
small amounts of yet-higher l character in the wavefunc-
tions.

To understand the importance of virtual excitations
that might be present in the many-body ground state of
each of the species we consider the excitation energies
for these atoms and ions to higher angular momentum
states. Table II lists the measured lowest energy exci-
tation to a higher angular-momentum state for each of
the three atoms for the various charge states.47–50 The
excitation energies of these states increase with the level
of ionization. Additionally, as expted the d levels are rel-
atively high in oxygen but low in silicon. The f levels
in Zn trend in between. Thus, we expect that the effects
of the choice of local channel on the total energy will be
more pronounced for the neutral species relative to the
positive ones and for silicon relative to oxygen. Indeed,

TABLE II. Lowest-energy excitations in eV to higher-l states
for each species from experiment.47–50

Species O Si Zn
Neutral 12.08 5.86 8.53
Singly-Ionized 28.7 9.84 14.54
Doubly-Ionized 40.23 17.72 31.9
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FIG. 4. Comparison of the ionization energies in eV for oxy-
gen, silicon and zinc in DFT, VMC and DMC for the differ-
ent choices of pseudopotential with experimental values.50 As
described in the text, all-electron, single-determinant DMC
results are in much better agreement with experiment.

for the silicon species, the decreasing significance of the
extra channel with increasing charge is clear. This effect
is less readily apparent in oxygen and zinc data and is
likely obscured by correlation effects. This effect, due to
the lower excitation energies here, has implications not
only for the atomic wavefunctions. Lower-energy excited
states of the atoms and ions are more likely to participate
in bonding in molecules and solids, and it is important
to design pseudopotentials to account for that.

Figure 4 shows the first and second ionization ener-
gies for each element. For all three elements, the use
of the augmented pseudopotentials improves the accu-
racy of DMC for the first and second ionization ener-
gies. Furthermore, in all cases the DMC ionization en-
ergies are less sensitive to the choice of local channel for
the augmented pseudopotentials than for the standard
pseudopotentials. The magnitude of errors in our ion-
ization energies are comparable with other DMC pseu-
dopotential results in the literature (see for example
Refs. 10, 20, 31, and 51). As a check, we performed an all-
electron, single-determinant DMC calculation of an iso-
lated oxygen atom with a Slater-Jastrow trial wavefunc-
tion and obtained an ionization energy of 13.611(7) eV,
in very close agreement with the experimental value of
13.618054(7) eV.50

For O and Si we compare the accuracy of our DMC
pseudopotentials calculations for the 1st ionization with
all-electron CCSD(T) calculations using the aug-cc-
pVQZ basis set.52 The experimental ionization energies
of O and Si are 13.529 and 8.123 eV, respectively. The
deviations from the experimental values for oxygen and
silicon are 0.09 eV and 0.03 eV, respectively, for the all-
electron CCSD(T) method and 0.14 and 0.03 eV, respec-
tively, for the pseudopotential DMC calculations using
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the augmented potentials and the highest angular mo-
mentum channel as the local channel. This close agree-
ment indicates not only the accuracy and usefulness of
the optimized pseudopotentials for O and Si but also that
the neglect of core-polarization and relaxations as well as
core-valence correlations for these atoms has a small ef-
fect on the ionization energies.

For the case of Zn, we observe significantly larger er-
rors of about 1 eV for the 1st and 2nd ionization en-
ergy. Several sources of errors may explain the deviation
of our pseudopotential results from experimental values.
We calculated spin-orbit corrections to the total energies
at the DFT level and found that they largely cancel in
the ionization energies, resulting in corrections too small
to account for the observed differences in the ionization
energies between QMC and experiment (less than 3 meV
for O and less than 1 meV for Zn).

The pseudopotential approximation itself leads to sev-
eral errors other than those focused on in this paper. By
removing explicit treatment of core electrons from the
calculation, we neglect correlations between the core and
valence electrons. This is minimized but not altogether
eliminated by designing pseudopotentials so that the core
and valence electrons are spatially separated. The core-
valence correlation may be particularly important for the
case of zinc where the 3d valence electron states have siz-
able spatial overlap with the 3p core electron states and
may explain the large errors in the ionization energies
there. However, the magnitude of corrections obtained
using published core-polarization potentials32 was negli-
gible.

Pseudopotential calculations for Sc and Ti using small-
core pseudopotentials by Burkatzki et al. resulted in
DMC ionization energies up to 0.4 eV above the ex-
perimental value, indicating that including the 3p states
in the valence somewhat improves the accuracy. How-
ever, calculations of the ionization energies for the same
pseudopotential using CCSD(T), a many-body quantum
chemistry method, resulted in significantly improved ion-
ization energies compared to DMC, indicating that it
is not the pseudopotential approximation but the fixed-
node approximation that may be the dominant source of
errors in their case.31

Evaluation of the pseudopotentials in DMC is sub-
ject to the locality approximation46 used in this work
or the lattice-regularized method by Casula.53 Pozzo and
Alfè54 found that, in magnesium and magnesium hydride,
the errors of the locality approximation and the lattice-
regularized method are comparably small, but that the
lattice-regularized method requires a much smaller DMC
time step. We calculated oxygen ionization energies us-
ing the lattice-regularized method of Casula and found
the results changed by less than 30 meV.

In addition to the pseudopotential approximation, a
second primary source of errors in our O and Zn ioniza-
tion energies at the DMC level arises from the fixed-node
approximation. Fixed node errors can be eliminated by
providing an initial trial wavefunction with correct nodal
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FIG. 5. (color online) Variance in local energy in atomic
units and associated statistical error of each VMC calcula-
tion. Hamiltonians are labeled as in Figure 2.

structure. Variances in the local energy for each VMC
calculation are shown in Fig. 5. Eigenstates of the Hamil-
tonian have zero variance, and higher variances typically
indicate a worse approximation of the ground-state wave-
function. High variances can originate from poor single-
particle orbitals or from difficulty optimizing the param-
eters of the Slater-Jastrow trial wavefunctions and are
indicative of poorly-optimized variational wavefunctions.

Figure 5 indicates that our optimized trial wavefunc-
tions are best for Si and increasingly worse for O and
Zn. For silicon, our variational Slater-Jastrow were well-
optimized as evidenced by the low variance in the local
energy. The fixed node error is correspondingly small,
and we see that the choice of local channel and inclusion
of higher angular momentum channels has a clear bearing
on the accuracy of calculated ionization energies. In the
case of oxygen and zinc, the effect of these pseudopoten-
tial design choices on our results was swamped by other
issues which made it difficult to obtain good trial wave-
functions at the VMC level.

A possible reason for the trouble in optimizing a Slater-
Jastrow wavefunction for Zn stems from the poor descrip-
tion of the 3d-levels of the zinc atom in DFT. Semilocal
functionals are known to place the 3d level of the Zn
atom significantly too high.55,56 This results in an incor-
rect description of the d-channel of the pseudopotential
and of the 3d-orbital in the trial wave function which is
reflected in both the large energy variance and large de-
viation of the QMC ionization energy from experiment.
Each of these issues could lead to suboptimal VMC trial
wavefunctions and then, by way of the fixed-node ap-
proximation, to errors in the DMC results.
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V. CONCLUSIONS

In this paper, we have shown that pseudopotentials
which include channels to account for higher angular-
momentum components of the wavefunction are neces-
sary for performing accurate pseudopotential calculations
in QMC. For O, Si and Zn, we determined how the num-
ber of angular-momentum channels and the choice of lo-
cal channel in the pseudopotential affects the total en-
ergy and ionization energies of these atoms in QMC. We
find a sizable error in the total energies for any choice
of local channel when the pseudopotentials do not in-
clude at least one additional angular-momentum chan-
nel above the highest angular-momentum component of
the ground state wavefunction of the atom. This is
because, contrary to single-electron mean-field methods
such as DFT and HF, atomic ground state wavefunctions
in correlated-electron methods include higher angular-
momentum character. These components effectively see
the wrong potentials when using standard pseudopoten-
tials.

This effect was demonstrated for the case of isolated
ions where it is least severe. Because of the effect of bond-
ing on the wavefunctions, this situation is expected to
be more pronounced in the case of solids and molecules.
Nonetheless it appears to be the dominant source of error
in our calculated silicon ionization energies. In the case of
zinc and oxygen, it has an effect of similar magnitude, but
errors arising from the pseudopotential and fixed node
approximations appear to dominate at the DMC level.

All-electron, single-determinant QMC methods ob-

tain very high accuracy and are systematically improv-
able through the use of multi-determinant wavefunctions.
However, the pseudopotential approximation is often a
practical necessity. Although QMC methods are becom-
ing more widely used, they are still not routine, and best
practices for obtaining reliable results are still evolving.
Our results suggest that one such best practice is to in-
clude at least one channel in the pseudopotential above
the highest angular-momentum component of the ground
state wavefunction in single-particle methods. Addition-
ally, this highest channel should be used as the local
channel as it will generally be most similar to missing,
yet-higher angular-momentum channels.
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26 P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
27 D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
28 C. W. Greeff and J. W. A. Lester, J. Chem. Phys. 109,

1607 (1998).
29 I. Ovcharenko, A. Aspuru-Guzik, and J. William

A. Lester, J. Chem. Phys. 114, 7790 (2001).
30 M. Burkatzki, C. Filippi, and M. Dolg, J. Chem. Phys.

126, 234105 (2007).
31 M. Burkatzki, C. Filippi, and M. Dolg, J. Chem. Phys.

129, 164115 (2008).
32 J. R. Trail and R. J. Needs, J. Chem. Phys. 122, 174109

(2005).
33 “Opium pseudopotential code,” http://opium.

sourceforge.net/.
34 N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993

(1991).
35 A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D.

Joannopoulos, Phys. Rev. B 41, 1227 (1990).
36 See EPAPS Document No. for the potential parameters.
37 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,

C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococ-
cioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fab-
ris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougous-
sis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari,
F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,
L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P.
Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcov-
itch, J. Phys.: Condens. Matter 21, 395502 (2009).

38 A. D. Becke, J. Chem. Phys. 98, 1372 (1993).
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