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ABSTRACT. We provide a graded and quantum version of the category of rooted cluster alge-
bras introduced by Assem, Dupont and Schiffler and show that every graded quantum cluster
algebra of infinite rank can be written as a colimit of graded quantum cluster algebras of finite
rank.

As an application, for each k we construct a graded quantum infinite Grassmannian admitting
a cluster algebra structure, extending an earlier construction of the authors for k = 2.

1. INTRODUCTION

Cluster algebras, as introduced by Fomin and Zelevinsky ([4]), are certain commutative rings
with a combinatorial structure on a distinguished set of generators, which can be grouped into
overlapping sets of a given cardinality, called clusters. The original definition requires clusters
to be finite but lately, for a variety of reasons, it has become important to allow infinite clusters,
that is, cluster algebras of infinite rank.

Much of the motivation for considering infinite rank cluster algebras comes from represen-
tation theory: various types of categorifications of cluster algebras have been studied and these
categories often naturally have structures corresponding to infinite clusters. Examples include
the additive categorifications due to Igusa and Todorov ([15],[14]) and the monoidal categori-
fications of Hernandez and Leclerc ([12]). In earlier work, we considered a category whose
infinite rank cluster structure has been studied by Holm and Jørgensen ([13]) and showed that
their category is related to a family of cluster algebras of infinite rank that are themselves re-
lated to the infinite Grassmannians of (2-)planes in a space of countably infinite dimension
([8]). Other related work includes [6] and [16].

Cluster algebras have also been generalised in other ways. The notion of a graded cluster
algebra has been used by various authors, more or less explicitly; a systematic exposition and
exploration of some general properties may be found in [7] by the first author. We note that
graded cluster algebras are particularly important when studying cluster algebra structures on
the (multi-)homogeneous coordinate rings of projective varieties, as one naturally expects.

Another important generalisation concerns the quantization of cluster algebras, that is, a
noncommutative version of the theory. This was done by Berenstein and Zelevinsky ([3]) and
has been followed by work of a large number of authors demonstrating that many families of
quantizations of coordinate rings of varieties have quantum cluster algebra structures.

In this work, our main aim is to bring these three parts of cluster algebra theory together, to
study graded quantum cluster algebras of infinite rank.

More specifically, Assem, Dupont and Schiffler ([1]) have introduced a category Clus of
rooted cluster algebras. The objects of Clus are pairs consisting of a cluster algebra and a
fixed initial seed. Fixing a distinguished initial seed allows for the definition of natural maps
between cluster algebras, so-called rooted cluster morphisms, which are ring homomorphisms
commuting with mutation and which provide the morphisms for the category Clus.

In the first part of this paper, we will introduce a corresponding category for the graded
quantum case. We can loosely characterise the difference from the classical case as follows:
there are more objects (since there are many choices of grading and/or quantization) but fewer

Date: 17th November 2017.
1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/42415346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 JAN E. GRABOWSKI AND SIRA GRATZ

morphisms (since the morphisms are required to preserve the extra structure), but the properties
of the category are largely unchanged.

The main technical issues concern the definition of a rooted cluster morphism. By following
the lead given by the classical case, we obtain a natural definition but the intrinsic rigidity of
the noncommutative setting means that it is in fact very constraining. We ask that morphisms
are algebra homomorphisms and so the quasi-commutation relations between variables in the
same cluster must be preserved exactly.

In the second part, we generalise results of the second author ([11]) on colimits. In the
classical case, one may show that the category Clus is neither complete nor cocomplete, that
is, limits and colimits do not in general exist. However, it has sufficient colimits to express any
cluster algebra of infinite rank as a colimit of cluster algebras of finite rank. Here, we prove the
latter result for graded quantum cluster algebras, our main theorem:

Theorem 1.1. Every graded quantum rooted cluster algebra of infinite rank can be written as
a colimit of graded quantum rooted cluster algebras of finite rank.

As an application, we extend our previous construction of the infinite quantum Grassman-
nian Oq(Gr(2,∞)) from [8], where we relied heavily on properties of the infinite rank cluster
category studied by Holm and Jørgensen ([13]). Here we construct infinite graded quantum
Grassmannians Oq(Gr(k,∞)) for all k, as colimits of the quantum cluster algebra structures
on Grassmannians Oq(Gr(k, n)) ([9]).
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rie und Diskrete Mathematik, Leibniz Universität Hannover for their hospitality in June 2014,
during which time this work was begun. Part of this work has been carried out in the framework
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gemeinschaft (DFG). The second author gratefully acknowledges financial support through the
grant HO 1880/5-1

2. ROOTED CLUSTER ALGEBRAS

Cluster algebras were introduced by Fomin and Zelevinsky in [4] and their quantum ana-
logues by Berenstein and Zelevinsky in [3]. Throughout this paper we work with (graded)
(quantum) cluster algebras of geometric type.

The definition of a quantum cluster algebra requires some technical preparation and, in the
interest of brevity, we refer the reader to the recent work of Goodearl and Yakimov ([5]) for a
detailed exposition. In particular we follow [5] in considering quantum cluster algebras with
multiple quantum parameters, which generalises [3], where only the single parameter case was
treated. The main deviations from [5] will be that we will permit quantum seeds of arbitrary
cardinality and that we will incorporate gradings into the picture from the start.

Let M be a matrix whose rows are indexed by a set R and columns by a set C. Then given
I ⊆ R and J ⊆ C, we denote by M |JI the submatrix of M with rows indexed by I and columns
indexed by J . If I = R, we write simply M |J and correspondingly write simply M |I if J = C.
Columns (respectively, rows) of a matrix M will be denoted M j (resp. Mi).

2.1. Seeds. Throughout, given K-algebra elements X1, . . . , Xr and a = (a1, . . . , ar)
T ∈ Zr

we set

Xa =
r∏

i=1

Xai
i

as a shorthand for monomials, where the empty product is defined to be 1. If a = (ai)i∈I is an
I-indexed family of integers with finite support (that is, the set Supp(a) = {i ∈ I | ai 6= 0} is
finite), we write Xa =

∏
i∈Supp(a) X

ai
i .
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Let var be a set; this set will be the indexing set for our cluster variables and all their
associated data. By mild abuse of notation, we denote by Zvar the free Abelian group on a
basis {ei | i ∈ var}. Note that, by the definition of an infinitely generated free Abelian group,
a ∈ Zvar may be identified with a var-indexed family of integers with finite support.

A (var×var)-indexed family q = (qkj)k,j∈var of elements of K∗ is called a multiplicatively
skew-symmetric matrix1 if qkk = 1 and qjk = q−1

kj for all j 6= k. There is an associated
skew-symmetric bicharacter Ωq : Zvar × Zvar → K∗ given by Ωq(ek, ej) = qkj .

A multiplicatively skew-symmetric matrix q as above gives rise to a quantum torus Tq. This
is defined to be the quotient of K<Y ±1

i | i ∈ var> (the noncommutative Laurent polynomial
algebra generated by the Yi) by the ideal generated by the set {YkYj − qkjYjYk | j, k ∈ var}.
Then Tq has a K-basis {Y a | a ∈ Zvar}.

The subalgebra of Tq generated by the set {Yi | i ∈ var} will be denoted Aq and called
quantum affine space.

Given a multiplicatively skew-symmetric matrix r = (rkj), we write r·2 = (r2
kj). Then Tr·2

has a K-basis {Y (a) = Sr(a)Y a | a ∈ Zvar} where Sr(a) =
∏

j<k r
−ajak
jk (again, the empty

product is defined to be 1). It is straightforward to check that Y (ei) = Yi for i ∈ var and
Y (a)Y (b) = Ωr(a, b)Y

(a+b). The pair consisting of Tr·2 and the K-basis {Y (a) | a ∈ Zvar} will
be called the based quantum torus associated to r.

This brings us to the definitions of a toric frame and an exchange matrix.

Definition 2.1 ([5, Definition 2.2]). Let F be a division algebra over K. A map M : Zvar → F
is a toric frame if there exists a multiplicatively skew-symmetric matrix r such that

(a) there is an algebra embedding φ : Tr·2 → F given by φ(Yi) = M(ei) for all i ∈ var,
(b) φ(Y (a)) = M(a) for all a ∈ Zvar and
(c) F = Fract(φ(Tr·2)).

Note that the toric frame M determines the matrix r uniquely: for j > i we set rij =
M(ei)M(ej)

M(ei+ej)

and write r(M) for this matrix.

Definition 2.2. A (var× var)-indexed integer matrix B̃ is an exchange matrix if

(1) B̃ is locally finite, that is, all rows and columns of B̃ have finite support when consid-
ered as var-indexed families;

(2) B̃ is sign-skew-symmetric: for all i, j ∈ var, B̃ijB̃ji ≤ 0 and B̃ijB̃ji = 0 implies
B̃ij = B̃ji = 0.

Let us fix a subset ex ⊆ var of exchangeable indices; the elements of var \ ex will be
called frozen indices. We are adopting the convention that exchange matrices B̃ have rows and
columns indexed by var; that is, in the quiver setup (where we associate a quiver to a skew-
symmetric matrix in the usual way), we permit arrows between frozen vertices. The ex × ex
submatrix of B̃ will be called the principal part and denoted B.

Definition 2.3 ([5, §2.3]). Given a multiplicatively skew-symmetric matrix r and an exchange
matrix B̃, we say that the pair (B̃, r) is compatible if the integers tkj = Ωr(B̃

k, ej) satisfy

tkj = 1 for all k ∈ ex, j ∈ var, k 6= j

tkk are not roots of unity, for all k ∈ ex.

1It is natural to regard (I × I)-indexed (or indeed, (I × J)-indexed) families of integers or elements of K as
matrices, even when I is not necessarily ordered, in line with the finite and countable situations, and we shall do
so.
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Compatible pairs may be mutated. Recall ([2]) the matrices E and F associated to an ex-
change matrix B̃ and a choice of exchangeable index k defined as follows:

Eij =


δij if j 6= k

−1 if i = j = k

max(0,−bik) if i 6= j = k

Fij =


δij if i 6= k

−1 if i = j = k

max(0, bkj) if i = k 6= j

Since B̃ is locally finite, so are E and F .
In [2] and [5], signed versions of these matrices are defined and it is then shown that mutation

does not depend on the choice of this sign, so we have given here only E = E+ and F = F+.
Also, in those papers, the more usual var× ex exchange matrices are considered; however the
extension of these to square matrices by the same formulæ remains valid.

Then for a compatible pair (B̃, r) and k ∈ ex, we may define the mutation of B̃ as the matrix
µk(B̃) = EB̃F . Here and throughout we use the usual notation for matrix multiplication:
since at least one of the matrices concerned will always be locally finite, the standard definition
(AB)ij =

∑
k aikbkj remains valid.

We also define the mutation of r as

µk(r)ij =
∏
k,l

b
EkiElj

kl

It is shown in [5, Proposition 2.6] that the pair (µk(B̃), µk(r)) is again compatible, provided
that the principal part of B̃ is skew-symmetrizable. We will work in geometric type and so
assume that the latter condition indeed holds.

Given an exchange matrix, we may define an associated grading matrix, as follows.

Definition 2.4. Let I be a set. A ZI-grading for an exchange matrix B̃ is a (var× I)-indexed
family of integers G such that B̃TG = 0. That is, for all k ∈ ex,

∑
j∈var
l∈I

bjkgjl = 0.

Gradings may also be mutated, by setting µk(G) = ETG where E is as defined previously.

Remark 2.5. Although we introduce gradings at this early stage in the exposition, rather than as
a later addition, the reader may—if they so wish—ignore references to the grading, by taking
G = 0 in the statements above and below.

Similarly, those interested in graded classical cluster algebras may recover that case by con-
sidering the multiplicatively skew-symmetric matrix with r(M)kj = 1 for all k ≤ j.

The starting point for a graded quantum cluster algebra is a graded quantum seed, which
consists of a toric frame, an exchange matrix satisfying a compatibility condition with the toric
frame, a grading and (to facilitate certain definitions later) also records the sets var and ex, as
well as a third set inv.

Definition 2.6 (cf. [3]). A graded quantum seed of a division algebra F is a tuple
Σ = (M, B̃,G,var, ex, inv) where M : Zvar → F is a toric frame, B̃ is an exchange matrix
and G is a grading for B̃ such that

(a) the pair (B̃, r(M)) is compatible, where r(M) is the matrix of M and
(b) the principal part of B̃, B̃|exex, is skew-symmetrizable.

The sets var and ex are as above and inv is a fixed subset of var \ ex.
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The images of the standard basis vectors, M(ei) ∈ F , will be called the quantum cluster
variables of the quantum seed. The variables M(ei) for i ∈ ex will be called exchangeable or
mutable; the variables M(ei) for i ∈ var \ ex will be called frozen or coefficients. By abuse of
terminology, we will sometimes simply talk about seeds when we mean graded quantum seeds.

Remark 2.7. In contrast to [11], ex ⊂ var is a collection of indices rather than cluster variables.

Mutation of quantum seeds is defined via certain automorphisms: details are given in [5,
§2.5]. We state Corollary 2.6 of [5], which suffices for our purposes.

For k an exchangeable index and B̃ = (bij) an exchange matrix, set

[bk]+ =
∑
bik>0

bikei and

[bk]− =
∑
bik<0

bikei

Note that the kth column of B̃ may be recovered as B̃k = [bk]+ − [bk]−.

Corollary 2.8 ([5, Corollary 2.6]). For all pairs (M, B̃), with M and B̃ as previously, and for
all k ∈ ex, there exists a toric frame µk(M) : Zvar → F such that

(a) the matrix of µk(M) is equal to µk(r(M)),
(b) the toric frame satisfies

µk(M)(ej) = ej for j 6= k

µk(M)(ek) = M(−ek + [bk]+) +M(−ek + [bk]−)

(c) mutation is involutive: µk(µk(M, B̃)) = (M, B̃). �

Then for k ∈ ex, we may define the mutation of a graded quantum seed

Σ = (M, B̃,G,var, ex, inv)

to be the tuple
µk(Σ) = (µk(M), µk(B̃), µk(G),var, ex, inv)

where each of the first three components has its mutation as defined above and the remaining
components are unchanged under mutation.

2.2. Rooted cluster algebras. We can successively mutate a seed Σ along what are called
Σ-admissible sequences. Mutation along all possible Σ-admissible sequences will provide a
prescribed set of generators of the cluster algebra associated to the seed Σ, the definition of
which we will recall in this section.

Definition 2.9 ([1, Definition 1.3]). Let Σ = (M, B̃,G,var, ex, inv) be a graded quantum
seed and F the division algebra associated to M . For l ≥ 1 a sequence (x1, . . . , xl) of elements
for F is called Σ-admissible if

• x1 = M(eix1 ) for some ix1 ∈ ex; and
• for every 2 ≤ k ≤ l, we have xk = (µixk−1

◦ . . . ◦ µix1
)(M)(eixk ) for some ixk

∈ ex.

We will call the integer sequence (ix1 , . . . , ixk
) the mutation index sequence associated to

(x1, . . . , xk).
The empty sequence of length l = 0 is Σ-admissible for every seed Σ and mutation of Σ

along the empty sequence leaves Σ invariant. We denote by

S(Σ) = {µixl
◦ . . . ◦ µix1

(Σ) | l ≥ 0, (x1, . . . , xl) Σ-admissible}
the set of all graded quantum seeds of F which can be reached from Σ by iterated mutation
along Σ-admissible sequences and call it the mutation equivalence class of Σ.
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Since mutation is involutive, it is clear that mutation along Σ-admissible sequences induces
an equivalence relation on seeds, where two seeds Σ and Σ′ are mutation equivalent if and only
if there exists a Σ-admissible sequence (x1, . . . , xl) with µixl

◦ . . .◦µix1
(Σ) = Σ′. The mutation

class of a seed Σ is thus really an equivalence class. Mutation equivalence of exchange matrices
is defined analogously.

Remark 2.10. It is a direct consequence of the definition of mutation (Corollary 2.8(b)) that
if two seeds Σ and Σ′ are mutation equivalent, then the coefficients of Σ are precisely the
coefficients of Σ′. That is, if ex and ex′ are the exchangeable indices for Σ and Σ′ respectively,
then ex = ex′ and var \ ex = var \ ex′. Further, any two mutation equivalent seeds give rise
to toric frames with the same division algebra F as their codomains.

Given a graded quantum seed Σ = (M, B̃,G,var, ex, inv), consider the mutation equiv-
alence class S(Σ) of graded quantum seeds of F containing Σ. Let V(Σ) be the set of all
quantum cluster variables in S(Σ), that is,

V(Σ) = {M ′(ei) | (M ′, B̃′, G′,var, ex, inv) ∈ S(Σ), i ∈ var}.
We also denote by cl(Σ) the set {M(ei) | i ∈ var}, which we call the cluster of Σ. Set

clex(Σ) = {M(ei) | i ∈ ex} ⊆ cl(Σ).
Let D be a unital subring of K containing the subgroup generated by the set

{Ωr(M)(f, g) | f, g ∈ Zvar}.

Definition 2.11. The graded quantum cluster algebra2 C(Σ)D associated to a graded quan-
tum seed Σ = (M, B̃,G,var, ex, inv) is the unital D-subalgebra of F generated by V(Σ) ∪
{M(el)

−1 | l ∈ inv}.
The rooted graded quantum cluster algebra with initial seed Σ is the pair (C(Σ)D,Σ).

That is, the quantum cluster algebra is generated by all quantum cluster variables in quantum
seeds mutation equivalent to (M, B̃), together with the inverses of the frozen variables whose
index lies in inv. Note that while two seeds in the same mutation class give rise to the same
cluster algebra, they do not give rise to the same rooted cluster algebra. We can think of rooted
cluster algebras as pointed versions of cluster algebras.

Remark 2.12. We have followed [5] in stating a definition whereby a specified subset of the
frozen variables, the set inv ⊆ var \ ex, have inverses in the quantum cluster algebra; in the
original cluster algebras literature, this subset typically contains all the frozen variables, but
in applications this set may be taken to be much smaller or even empty (for example, cluster
algebra structures on Grassmannians).

In this general setting, Goodearl and Yakimov prove that the quantum Laurent phenomenon
holds, namely that any quantum cluster variable in C(Σ)D may be written as a Laurent poly-
nomial in the quantum cluster variables of the initial seed (or indeed any seed). We refer the
reader to [5, §2.5] for a precise statement and proof.

In what follows we will always take D = K and suppress K in the notation: all of our cluster
algebras will be defined over K. From now on, we will also simply say “cluster algebra”
to refer to a graded quantum cluster algebra, and hence “rooted cluster algebra” for the pair
(C(Σ),Σ). As mentioned in Remark 2.5, classical commutative cluster algebras and ungraded
cluster algebras are simply special cases.

We call the rooted cluster algebra (C(Σ),Σ) skew-symmetric if the matrix B̃ is skew-sym-
metric (according to the obvious definition in general, bkj = −bjk). The rank of the rooted
cluster algebra (C(Σ),Σ) is defined as the cardinality of var.

2We will use C for the cluster algebra, rather thanA as in [1] and [11], and reserveA for quantum affine spaces.
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Remark 2.13. Here we follow [11] in our definition of rank. Traditionally, the rank of a clus-
ter algebra C(Σ) is defined as the cardinality of the set of exchangeable variables of Σ, while
we define it as the cardinality of the cluster of Σ. The main interest in this paper is in cluster
algebras of infinite rank, and when we talk about those we explicitly want to include cluster al-
gebras associated to seeds with infinitely many coefficients but only finitely many exchangeable
variables.

We also note that the use of the word “grading” in Definition 2.4 is justified: a ZI-grading
in the sense defined there assigns to the cluster variable M(ei) the multi-degree Gi and this
extends via mutation to an algebra ZI-grading on C(Σ) for which every cluster variable is
homogeneous. We refer the reader to [7] for a more detailed discussion of cluster algebra
gradings.

3. ROOTED CLUSTER MORPHISMS AND THE CATEGORY OF ROOTED CLUSTER ALGEBRAS

3.1. Rooted cluster morphisms.

Definition 3.1 ([1, Definition 2.1]). Let Σ and Σ′ be seeds and let f : C(Σ)→ C(Σ′) be a map
between their associated cluster algebras. A Σ-admissible sequence (x1, . . . , xl) whose image
(f(x1), . . . , f(xl)) is Σ′-admissible is called (f,Σ,Σ′)-biadmissible.

Definition 3.2 ([1, Definition 2.2]). Let

Σ = (M, B̃,G,var, ex, inv) and Σ′ = (M ′, B̃′, G′,var′, ex′, inv′)

be seeds and let (C(Σ),Σ) and (C(Σ′),Σ′) be the corresponding rooted cluster algebras.
A rooted cluster morphism from (C(Σ),Σ) to (C(Σ′),Σ′) is a graded K-algebra homomor-

phism f : C(Σ)→ C(Σ′) satisfying the following conditions:
(CM1) f(cl(Σ)) ⊆ cl(Σ′) ∪K.
(CM2) f(clex(Σ)) ⊆ clex′(Σ

′) ∪K.
(CM3) the homomorphism f commutes with mutation along (f,Σ,Σ′)-biadmissible sequences,

i.e. for every (f,Σ,Σ′)-biadmissible sequence (x1, . . . , xl) we have

f(µixl
◦ . . . ◦ µix1

(y)) = µif(xl)
◦ . . . ◦ µif(x1)

(f(y))

for all y ∈ cl(Σ) with f(y) ∈ cl(Σ′).

Some comments on the definition are required. Firstly, given a rooted cluster morphism, we
have an induced function f : var→ var′ where var′ = var′ t {∞} given by

f(i) =

{
j if f(M(ei)) = M ′(ej)

∞ if f(M(ei)) ∈ K

Note that a priori, f need not be injective or surjective.
Next, by graded algebra homomorphism, we mean a graded homomorphism of degree zero,

i.e. f(C(Σ)a) ⊆ C(Σ′)a for all a ∈ ZI , where C(Σ)a denotes the homogeneous component of
C(Σ) of degree a. In particular, if f(M(ei)) ∈ cl(Σ′), the degree of f(M(ei)) must be the same
as the degree of M(ei).

Since elements of K are of degree zero, this also implies that only elements of cl(Σ) that
have degree zero can be mapped to K under f . That is, G

f
−1

(j)
= G′j for all j ∈ im f ⊆ var′

and if f(i) =∞, we must have Gi = 0.
Secondly, note that the condition that f is an algebra homomorphism is very restrictive in

the noncommutative setting: it immediately implies that for all i, j ∈ f
−1

(var′), the cluster
variables f(M(ei)) and f(M(ej)) have the same quasi-commutation relation as M(ei) and
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M(ej), i.e. r(M)
f
−1

(j)
= r(M ′)j for all j ∈ im f . Again, if f(M(ei)) ∈ cl(Σ′), this has strong

implications for M(ei).

Definition 3.3 ([10]). Let q be a multiplicatively skew-symmetric matrix. A subset z ⊆ var
such that for all z ∈ z, qzj = qjz = 1 for all j ∈ var will be called a q-central subset of var.

Given a q-central subset z, the centre of the quantum torus Tq contains the subalgebra gener-
ated by {Y ±1

z | z ∈ z}, hence the name. Examining the condition for compatible pairs above,
we see that a mutable variable cannot be r(M)-central: if M(ek) is r(M)-central then tkk = 1
for any exchange matrix B̃, which is not permitted.

Then since elements of K are central, if f(M(ei)) ∈ K we must have that M(ei) is central
and so is not mutable. Hence the following observation:

Lemma 3.4. Let f be a rooted cluster morphism as above. Then f−1(∞) ⊆ var \ ex is
r(M)-central.

Note however thatM(ei) being r(M)-central does not necessarily imply f(i) =∞; ifM(ei)
is r(M)-central but f(i) 6= ∞, we simply deduce that M ′(ef(i)) is r(M ′)-central. That is, we
may have central coefficients whose image is not in K.

Then in the definition of a rooted cluster morphism, we may replace (CM2) with

(CM2′) f(clex(Σ)) ⊆ clex′(Σ
′).

The above discussion shows that in fact (CM2′) is not a stronger assumption.
From now on by abuse of notation we write C(Σ) for the rooted cluster algebra (C(Σ),Σ).

Example 3.5. Let q ∈ K∗. Consider the following seeds:

• Σ = (M, B̃,G,var, ex, inv), with

r(M) =

 1 q 1
q−1 1 1
1 1 1

 B̃ =

 0 1 0
−1 0 −1
0 1 0

 G =
(
0 1 0

)
var = {1, 2, 3} ex = {2} inv = ∅

Set xi = M(ei). Then, associating to the skew-symmetric matrix B̃ a quiver in the
usual way, we may represent the initial cluster as

x1 x2 x3

0 1 0

where we indicate the degree of the element by the integers over each vertex.
• Σ′ = (M ′, B̃′, G′,var′, ex′, inv′), with

r(M ′) =

1 1 1
1 1 q
1 q−1 1

 B̃′ =

 0 1 0
−1 0 1
0 −1 0

 G′ =
(
1 0 1

)
var′ = {0, 1, 2} ex′ = {1, 2} inv′ = ∅

Set yi = M ′(ei). Then we may represent the initial cluster as

y0 y1 y2

1 0 1
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As an example of the calculation of quantum cluster variables, we have that

µ2(x2) = Sr(M)(1,−1, 1)x(1,−1,1) + Sr(M)(0,−1, 0)x(0,−1,0)

= (r12r
−1
13 r23)x1x

−1
2 x3 + x−1

2

= qx1x
−1
2 x3 + x−1

2

The rooted cluster morphism f : C(Σ) → C(Σ′) we consider is defined on the initial cluster
variables as

x1 7→ y1, x2 7→ y2, x3 7→ 1.

That is,

x1 x2 x3

0 1 0

y1y0 y2 1

1 0 1 0

This extends to a homomorphism of the associated rooted graded quantum cluster algebras and
we see that it is also graded of degree 0. Notice that x3 is r(M)-central (and 3 /∈ ex) and
f(x3) = 1 is also central. We also visibly have that f satisfies (CM1) and (CM2′).

The induced function on var is f : var→ var′, f(1) = 1, f(2) = 2 and f(3) =∞.
To verify (CM3), notice that the only exchangeable cluster variable in Σ whose image is

exchangeable in Σ′ is x2 with f(x2) = y2, so the first entry of every (f,Σ,Σ′)-biadmissible
sequence has to be x2. Via the above calculation and a similar one for µ2(y2), we have

f(µ2(x2)) = f(qx1x
−1
2 x3 + x−1

2 ) = qy1y
−1
2 + y−1

2 = µ2(y2) = µf(2)(f(x2))

and, since f(xi) 6= f(x2) for i = 1, 3, we have

f(µ2(xi)) = f(xi) = µf(2)(f(xi))

for these values of i. Furthermore, the only exchangeable cluster variable in µ2(Σ) whose im-
age is exchangeable in µ2(Σ′) is µ2(x2) with f(µ2(x2)) = µ2(y2), so all (f,Σ,Σ′)-biadmissible
sequences have alternating entries x2 and µ2(x2). Since mutation is involutive, the ring homo-
morphism f commutes with mutation along any of these sequences. Thus axiom (CM3) is
satisfied and f is a rooted cluster morphism.

3.2. The category of rooted cluster algebras. Considering rooted cluster algebras and rooted
cluster morphisms gives rise to a category. Recall that by convention by “rooted cluster” we
mean “rooted graded quantum cluster”; by adopting this convention, the next definition of [1]
can be given as a verbatim statement, interpreted in our more general setting.

Definition 3.6 ([1, Definition 2.6]). The category of rooted cluster algebras Clus is the category
which has as objects rooted cluster algebras and as morphisms rooted cluster morphisms.

In [1, Section 2] it was shown that Clus satisfies the axioms of a category, the key point
being the composibility of rooted cluster morphisms. The argument of [1, Proposition 2.5]
carries over identically to the graded quantum setting.

3.3. Coproducts and connectedness of seeds. Assem, Dupont and Schiffler showed in [1,
Lemma 5.1] that countable coproducts exist in the category Clus of rooted cluster algebras.
Following their proof, we obtain the corresponding result in our setting, except with arbitrary
coproducts.
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Lemma 3.7. The category Clus admits all coproducts.

Proof. Let I be a set and {C(Σi) | i ∈ I} a family of rooted cluster algebras. For any i ∈ I ,
we have Σi = (Mi, B̃i, Gi,vari, exi, invi). Here Mi : Zvari → Fi with Fi the skew-field of
fractions of a quantum torus Ti = Tr(Mi)·2 . Also, each Gi is a vari ×Di matrix, for some set
Di.

We define a new seed Σ = (M, B̃,G,var, ex, inv) by
• var =

⊔
i∈I vari;

• ex =
⊔

i∈I exi;
• inv =

⊔
i∈I invi;

• M : Zvar → F with F the skew-field of fractions of
⊗

i∈I Ti, defined by r(M)jk =
r(Ml)jk if j, k ∈ varl, and 1 otherwise;
• B̃ the (var × ex)-indexed matrix with B̃jk = (B̃l)jk if j ∈ varl and k ∈ exl, and 0

otherwise;
• G the var × (

⊔
Di)-indexed matrix with Gjk = (Gl)jk if j ∈ varl and k ∈ Dl, and 0

otherwise.
Note that the last two definitions are the natural generalisation to arbitrary indexing sets of
the direct sum of matrices, placing the B̃i (respectively Gi) on the diagonal of B̃ (resp. G)
and completing to a matrix by zeroes elsewhere. The definition of r(M) is similar but is the
multiplicatively skew-symmetric analogue of this.

Via the natural isomorphism Zvar ∼=
⊕

i∈I Zvari , it is straightforward to see that M is a
toric frame. Also B̃ is locally finite, as every B̃i is, and compatibility of M and B̃ follows
immediately from the compatibility of Mi and B̃i for all i. Similarly, G is a grading for B̃ and
hence Σ is a well-defined graded quantum seed.

For any i ∈ I , we have a canonical inclusion ji : Fi → F , as the ith tensor factor, and clearly
this induces a rooted cluster morphism C(Σi)→ C(Σ).

The remainder of the proof exactly follows the argument of [1]. That is, if C(Θ) is a rooted
cluster algebra and for any i ∈ I we have a rooted cluster morphism gi : C(Σi) → C(Θ),
there exists exactly one graded ring homomorphism h : FΣ → FΘ satisfying h(x) = gi(x),
since tensor products are coproducts. Hence there exists exactly one rooted cluster morphism
h : C(Σ)→ C(Θ) satisfying h ◦ ji = gi for all i ∈ I and we are done. �

Taking coproducts of a family {C(Σi)}i∈I of rooted cluster algebras amounts to taking what
can be intuitively described as the disjoint union Σ of their seeds. The seeds Σi will be full sub-
seeds of the seed Σ which are mutually disconnected. We refer to [11, Section 3.4] for a more
in depth discussion of connectedness of seeds and the relationship with coproducts, which also
applies in our more general setting. In general, we say that a seed Σ = (M, B̃,G,var, ex, inv)
is connected, if for all k 6= l ∈ var there exists a finite sequence i0, . . . , ij ∈ var such that
k = i0, l = ij and for all 1 ≤ m ≤ j we have B̃imim+1 6= 0.

In particular, as discussed in [11], every connected component of a seed has a countable
cluster. As a consequence, one does not currently gain much from considering uncountable
clusters. The usual operations on seeds, namely mutations along (finite) admissible sequences,
affect only finitely many connected components and hence only operate on a countable full
subseed which is not connected to its invariant complement. So for all practical purposes one
can restrict to working with countable seeds without any substantial loss of generality.

3.4. Monomorphisms and epimorphisms in Clus. There is a substantial discussion of both
monomorphisms and epimorphisms in the category of classical rooted cluster algebras in [1].
We expect that many of the statements, and indeed proofs, can be carried over to the graded
quantum setting. However, we shall not do this here, as our principal goal is the claim of the
title.
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We note, though, that in [10] the first author and Launois prove the following, which is a
generalisation of the notion of simple specialisation of [1, §6.1].

Let C(M, B̃,G,var, ex, inv)D be a graded quantum cluster algebra and let r = r(M) be
the matrix associated to the toric frame M .

Let z ⊆ var \ ex be r-central and let Zvar\z denote the free Abelian group with basis
{ej | j ∈ var \ z}. Let ι : Zvar\z → Zvar be the associated natural inclusion.

Set F̄ = Fract(Tr̄·2), where Tr̄·2 = Tr·2 is defined as the toric frame with respect to r·2 =
r·2|var\z.

Then M̄ : Zvar\z → F̄ , M̄ = M ◦ ι is a toric frame with associated matrix r(M̄) = r̄.
Furthermore, (B̄ = B̃|var\zvar\z, r̄) is a compatible pair and the pair (M̄, B̄) is a quantum seed of
F̄ .

Assume that {Yz | z ∈ z} are all of degree zero with respect to G; set Ḡ = G|var\z.

Proposition 3.8. The map

πC : C(M, B̃,G,var, ex, inv)D → C(M̄, B̄, Ḡ,var \ z, ex, inv \ z)D

defined by

Yi 7→

{
Ȳi if i ∈ var \ z
1 if i ∈ z

is a surjective algebra homomorphism.

In the nomenclature of [1], πC is an ideal surjective rooted cluster morphism.
The condition that z ⊆ var \ ex, i.e. consists of frozen indices, can likely be relaxed, cf. [1,

Corollary 6.4].

4. ROOTED CLUSTER ALGEBRAS OF INFINITE RANK AS COLIMITS OF ROOTED CLUSTER
ALGEBRAS OF FINITE RANK

In this section, we show that every rooted cluster algebra of infinite rank can be written as a
linear colimit of rooted cluster algebras of finite rank. This yields a formal way to manipulate
cluster algebras of infinite rank by viewing them locally as cluster algebras of finite rank.

4.1. Colimits and limits in Clus. We start by recalling the definition of colimits and limits
(their dual notion). Let C and J be categories and let F : J → C be a diagram of type J in the
category C, i.e. a functor from J to C.

The colimit colim(F ) of F (if it exists) is an object colim(F ) ∈ C together with a family
of morphisms fi : F (i) → colim(F ) in C indexed by the objects i ∈ J such that for any
morphism fij : i→ j in J we have fj ◦ F (fij) = fi and for any object C ∈ C with a family of
morphisms gi : F (i) → C in C for objects i ∈ J such that gj ◦ F (fij) = gi for all morphisms
fij : i → j in J , there exists a unique morphism h : colim(F ) → C such that the following
diagram commutes.

C

colim(F )

h

OO

F (i)

gi

CC

fi

::

F (fij)
// F (j)

gj

\\

fj

ee

The limit lim(F ) of F (if it exists) is defined dually.
A category is called complete, respectively cocomplete, if it has all small limits, respectively

colimits.
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4.2. Rooted cluster algebras of infinite rank as colimits. We will now show our main re-
sult that there are sufficient colimits such that every graded quantum rooted cluster algebra of
infinite rank is isomorphic to a colimit of graded quantum rooted cluster algebras of finite rank.

When the initial seed of an infinite rank rooted cluster algebra is connected, we can even
write it as a linear colimit. A colimit colim(F ) in a category C is called linear if the index
category J of the diagram F : J → C is a set endowed with a linear order viewed as a category.
A diagram F : J → C where J is endowed with a linear order ≤ is just a linear system of
objects in C, that is a family of objects {Ci}i∈J and a family of morphisms {fij}i≤j∈J such
that fjk ◦ fij = fik and fii = idCi

for all i ≤ j ≤ k in J . In order to explicitly construct a
suitable linear system of rooted cluster algebras of finite rank, we use the fact that in certain
nice cases inclusions of subseeds give rise to rooted cluster morphisms.

Definition 4.1. Let Σ = (M, B̃,G,var, ex, inv) in F and Σ′ = (M ′, B̃′, G′,var′, ex′, inv′)
in F ′ be graded quantum seeds. We say that Σ is a full subseed of Σ′ if

(1) var ⊆ var′, ex ⊆ ex′ and inv ⊆ inv′

(2) F ⊆ F ′
(3) B̃′ |varvar= B̃
(4) M ′(a) = M(a) for all a ∈ Zvar′ with Supp(a) ⊆ var.
(5) G′ is a (var′ × I)-grading and G is a (var× I)-grading with G′ |var= G.

If Σ is a full subseed of Σ′, we say that Σ and Σ′ are connected only by coefficients in Σ if
additionally B̃′ij = 0 for all i ∈ ex and j ∈ var′ \ var.

Remark 4.2. The definition of full subseed is in line with [11], but is slightly more general than
the one given in [1]: We allow frozen variables in Σ to be exchangeable in Σ′, whereas in [1],
a seed Σ is only called a full subseed of Σ′ if all of the above conditions for a full subseed are
met and additionally all frozen variables in Σ are frozen variables in Σ′.

Remark 4.3. To check the condition of being connected only by coefficients, particularly for
quivers, the contrapositive statement is perhaps more instructive: Σ and Σ′ are connected only
by coefficients if for all i ∈ ex, if B̃ij 6= 0 then j ∈ var. That is, looking at a mutable vertex
i in the quiver for Σ, viewed as a full subquiver of the quiver for Σ′, all arrows to or from i
should be to vertices that already belonged to Σ.

Lemma 4.4. Let
Σ = (M, B̃,G,var, ex, inv)

in F be a full subseed of
Σ′ = (M ′, B̃′, G′,var′, ex′, inv′)

in F ′ and let them be connected only by coefficients in Σ. Let (x1, . . . , xl) be a Σ-admissible
sequence. Then (x1, . . . , xl) is a Σ′-admissible sequence and Σ̃ = µixl

◦ . . . ◦ µix1
(Σ) is a full

subseed of Σ̃′ = µixl
◦ . . . ◦ µix1

(Σ′), where Σ̃ and Σ̃′ are only connected by coefficients in Σ̃.

Proof. We prove the claim by induction over the length l of the Σ-admissible sequence
(x1, . . . , xl). The statement is true for l = 0 by assumption. Assume now the statement is true
for all Σ-admissible sequences of length l and consider a Σ-admissible sequence (x1, . . . , xl+1).
We have xl+1 = µixl

◦ . . . ◦ µix1
(M)(eixl+1

) for some ixl+1
∈ ex. By the inductive hypothesis,

we have xl+1 = µixl
◦. . .◦µix1

(M)(eixl+1
) = µixl

◦. . .◦µix1
(M ′)(eixl+1

) and thus (x1, . . . , xl+1)

is Σ′-admissible.
Set now µixl

◦ . . . ◦ µix1
(Σ) = Σl = (M l, B̃l, Gl,var, ex, inv) and µixl

◦ . . . ◦ µix1
(Σ′) =

Σ′l = (M ′l, B̃′l, G′l,var′, ex′, inv′). By the inductive hypothesis Σl is a full subseed of Σ′l and
they are only connected by coefficients in Σl.
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We have
Σ̃ = (µixl+1

(M l), µixl+1
(B̃l), µixl+1

(Gl),var, ex, inv)

and
Σ̃′ = (µixl+1

(M ′l), µixl+1
(B̃′l), µixl+1

(G′l),var′, ex′, inv′).

We have var ⊆ var′, ex ⊆ ex′ and inv ⊆ inv′ and F ⊆ F ′ by assumption. For notational
convenience set k = ixl+1

.
Consider first µk(B̃′l): We have

µk(B̃′l)ij =

{
−b′lij if i = k or j = k

b′lij + 1
2
(|b′lik|b′lkj + b′lik|b′lkj|), otherwise.

Comparing with µk(B̃l) yields µk(B̃′l)ij = µk(B̃l)ij if i, j ∈ var. If i ∈ ex and j ∈ var′\var,
then the inductive hypothesis (bearing in mind that k ∈ ex) yields µk(B̃′l)ij = 0.

Consider now µk(M ′l): We have µk(M ′l)(ei) = M ′l(ei) = M l(ei) for all i ∈ var \ {k}. For
i = k we get

µk(M ′l)(ek) = M ′l(−ek + [(b′l)k]+) +M ′l(−ek + [(b′l)k]−).

By the inductive hypothesis on the exchange matrices we have−ek +[(b′l)k]+ = −ek +[(bl)k]+
and −ek + [(b′l)k]− = −ek + [(bl)k]− and thus Supp(−ek + [(b′l)k]+) ⊆ var and
Supp(−ek + [(b′l)k]−) ⊆ var. By the inductive hypothesis on the toric frames we have

µk(M ′l)(ek) = M l(−ek + [(bl)k]+) +M l(−ek + [(bl)k]−) = µk(M l)(ek).

Since the values of the entries in the matrices r(M ′) |varvar and r(M) are equal, with r(M)ij =
M(ei)M(ej)M(ei + ej)

−1 = r(M ′)ij for i, j ∈ var, we have Sr(M ′)(a) = Sr(M)(a) for all
a ∈ Zvar′ with Supp(a) ⊆ var. Thus the toric frame M ′ takes the same values as M on all
elements of Zvar′ with support in var.

Finally, consider µk(G′l): It is straightforward to check (cf. for example Section 3 in [7]) that
for the rows of µk(G′l) we have µk(G′l)i = G′li if i 6= k and µk(G′l)k = (−ek − [(b′l)k]−)TG
and similarly, µk(Gl)i = Gl

i if i 6= k and µk(Gl)k = (−ek − [(bl)k]−)TG. By the the inductive
hypothesis on the exchange matrices it follows directly that µk(G′l) |var= µk(Gl). �

In general, if Σ is a full subseed of Σ′, the natural inclusion F → F ′ does not give rise to
a rooted cluster morphism C(Σ)→ C(Σ′), even in the classical setting (see [1, Remark 4.10]).
However, it does if Σ and Σ′ are connected only by coefficients in Σ .

Theorem 4.5. Let
Σ = (M, B̃,G,var, ex, inv)

in F be a full subseed of
Σ′ = (M ′, B̃′, G′,var′, ex′, inv′)

in F ′, connected only by coefficients in Σ. Then the natural inclusion f : F → F ′ restricts to a
rooted cluster morphism f : C(Σ)→ C(Σ′).

Proof. By Lemma 4.4, every quantum cluster variable x ∈ V(Σ) is a quantum cluster variable
in V(Σ′) and f(x) = x. Furthermore, since inv ⊆ inv′, we have

{M(el)
−1 | i ∈ inv} = {M ′(el)

−1 | i ∈ inv} ⊆ {M ′(el)
−1 | i ∈ inv′}.

Thus, the image of C(Σ) under f lies in C(Σ′) and by Lemma 4.4, f respects the gradings of all
cluster variables and thus it is a graded K-algebra homomorphism. Axioms (CM1) and (CM2′)
are satisfied by definition and axiom (CM3) is satisfied by Lemma 4.4. �



14 JAN E. GRABOWSKI AND SIRA GRATZ

For any given rooted cluster algebra C(Σ) we can build a linear system {C(Σi)}i∈Z of rooted
cluster algebras whose initial seeds are finite full subseeds Σi of Σ such that for all i ∈ Z, the
seeds Σi and Σ are only connected by coefficients of Σi. Further, we can construct it in a way
such that for all i ≤ j the seed Σi is a full subseed of Σj and the two are connected only by
coefficients of Σi. This construction yields a linear system of rooted cluster algebras of finite
rank which has the desired rooted cluster algebra C(Σ) as its colimit.

Theorem 4.6. Every rooted graded quantum cluster algebra is isomorphic to a colimit of
rooted graded quantum cluster algebras of finite rank in the category Clus.

Proof. Let C(Σ) be a rooted cluster algebra with initial seed Σ = (M, B̃,G,var, ex, inv).
Since we can write any cluster algebra as a coproduct of connected cluster algebras, without
loss of generality we can assume that Σ is connected.

We construct a linear system of rooted cluster algebras as follows. Pick i0 ∈ var \ ex and
set

Σ0 = (M0, [0], G0,var0, ex0, inv0)

with
• var0 = {i0}
• ex0 = ∅

• inv0 =

{
{i0} if i0 ∈ inv

∅ otherwise
• M0 : Zvar0 → F0, where F0 is the subdivision algebra of F generated by M(ei0) and
M0(1) = M(ei0)
• G0 = Gi0 .

Inductively define full subseeds Σi of Σ by setting

Σi+1 = (Mi+1, B̃
i+1, Gi+1,vari+1, exi+1, invi+1),

where
• vari+1 = vari ∪ {l ∈ var | B̃kl 6= 0 for some k ∈ vari}
• exi+1 = vari ∩ ex
• invi+1 = vari ∩ inv
• Mi+1 : Zvari+1 → Fi+1, where Fi+1 is the subdivision algebra of F generated by
{M(ek) | k ∈ vari+1} and Mi+1(a) = M(a) for all a ∈ Zvari+1 , where we can
view a as a vector in Zvar by filling up the vector with zeroes.
• B̃i+1 = B̃ |vari+1

vari+1

• (Gi+1) = G |vari+1
.

Note that because B̃ is sign-skew-symmetric, B̃kl 6= 0 is equivalent to B̃lk 6= 0.
It is routine to check that Σi is a graded quantum seed. The required properties are inherited

from those of Σ, noting that we implicitly define the chain of subalgebras F0 ⊆ F1 ⊆ · · · such
that the toric frame conditions hold.

The key point is to observe that since these seeds are full subseeds, for k ∈ exi we have
Supp(B̃i

k) = Supp(B̃k), that is, at any point where we need to verify a compatibility condition
with the exchange matrix, the restricted exchange matrix differs from the full one only by the
removal of zeroes outside the relevant indexing set.

Because B̃ is locally finite, for all i ≥ 0 the indexing set vari in the seed Σi is finite. By
definition, the seed Σi is a full subseed of the seed Σi+1 for all i ≥ 0 and all the seeds Σi are
full subseeds of Σ.
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We now want to show that for all 0 ≤ i < j the seeds Σi and Σj are connected only by
coefficients of Σi. Let k ∈ exi with B̃j

kl 6= 0. Since k ∈ exi ⊆ vari−1 and B̃j
kl = B̃kl it follows

that l ∈ {t ∈ var | B̃tm 6= 0 for some m ∈ vari−1} ⊆ vari and thus the seeds Σi and Σj are
only connected by coefficients in Σi. Analogously one shows that the seeds Σi and Σ are only
connected by coefficients in Σi.

By Theorem 4.5 for 0 ≤ i ≤ j, the natural inclusion fij : vari → varj gives rise to a rooted
cluster morphism fij : C(Σi) → C(Σj). For all 0 ≤ i ≤ j ≤ k we have fjk ◦ fij = fik and
fii = idC(Σi), so the morphisms form a linear system of rooted cluster algebras of finite rank.
Further, again by Theorem 4.5, for i ≥ 0 the natural inclusion fi : vari → var gives rise to
a rooted cluster morphism fi : C(Σi) → C(Σ). We show that C(Σ) together with the maps
fi : C(Σi)→ C(Σ) for i ≥ 0 is in fact the colimit of this linear system in the category of rooted
cluster algebras.

Because we assumed Σ to be connected and the toric frames agree, we have cl(Σ) =⋃
i≥0 cl(Σi). Since every exchange relation in C(Σ) is an exchange relation in C(Σi) for all

i large enough (by virtue of the exchange matrices B̃i being arbitrarily large restrictions of the
exchange matrix B̃ and the toric frames agreeing), any fixed element of C(Σ) is contained in
C(Σi) for all i sufficiently large.

Let Σ′ = (M ′, B̃′, G′,var′, ex′, inv′) be a seed such that for all i ≥ 0 there are rooted cluster
morphisms gi : C(Σi) → C(Σ′) compatible with the linear system fij : C(Σi) → C(Σj). We
define a K-algebra homomorphism f : C(Σ) → C(Σ′) by f(x) = gi(x), whenever x ∈ C(Σi),
i.e. it is the unique K-algebra homomorphism making the following diagram commute.

C(Σ′)

C(Σ)

f

OO

C(Σi)

gi

DD

fi

;;

fij // C(Σj)

gj

ZZ

fj

cc

Since the morphisms gi all respect the gradings of C(Σi), and these are compatible with the
grading of C(Σ), it follows that f is a graded K-algebra homomorphism.

For every x ∈ cl(Σ), there exists a k ≥ 0 such that x ∈ cl(Σi). Thus f(x) = gi(x) for
all i ≥ k lies in cl(Σ′), because gi is a rooted cluster morphism for all i ≥ 0. Thus the ring
homomorphism f satisfies axiom (CM1), and analogously axiom (CM2′). Let now (x1, . . . , xl)
be a (f,Σ,Σ′)-biadmissible sequence and let y ∈ cl(Σ) such that f(y) ∈ cl(Σ′). Then there
exists an i ≥ 0 such that y ∈ cl(Σi) and the sequence (x1, . . . , xl) is (gi,Σi,Σ

′)-biadmissible.
Thus we get

f(µxl
◦ . . . ◦ µx1(y)) = f ◦ fi(µxl

◦ . . . ◦ µx1(y))

= gi(µxl
◦ . . . ◦ µx1(M(ei))) = µgi(xl) ◦ . . . ◦ µgi(x1)(gi(y)))

= µf(xl) ◦ . . . ◦ µf(x1)(f(y)).

Therefore the ring homomorphism f satisfies (CM3) and is a rooted cluster morphism. Thus
C(Σ) satisfies the required universal property. �

5. INFINITE VERSIONS OF HOMOGENEOUS COORDINATE RINGS OF GRASSMANNIANS VIA
THE PLÜCKER EMBEDDING

Let [a, b] = {i | a ≤ i ≤ b} with the convention that [a, b] = ∅ if b < a. Fix k and define

Iij = [1, k − i] t [(k + j)− (i− 1), k + j].
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FIGURE 1. Initial clusters for quantum cluster algebra structures on
Oq(Gr(3, 7)) (upper) and Oq(Gr(3, 8)) (lower).

Then the quantized coordinate ring over the Grassmannian Oq(Gr(k, n)) is a graded quantum
cluster algebra over K with initial cluster

ΣGr(k, n)
def
= {∆Iij

q | (i, j) ∈ ([1, k]× [1, n− k]) ∪ (0, 0)}.

Here ∆
Iij
q denotes the quantum Plücker coordinate with indexing set Iij; see [9] for detailed

definitions.
We use the indexing set var = ([1, k] × [1, n − k]) ∪ (0, 0) for the cluster. The mutable

indices are then the subset ex = [1, k − 1]× [1, n− k − 1]. We set inv = ∅.
Notice that for all (i, j) ∈ ex, we have that Iij ∩ {n} = ∅; that is, no mutable Plücker

coordinate in this cluster has an indexing set involving n. This property will be key in what
follows.

The exchange matrix for this cluster is the matrix associated to the quiver for which there is
an arrow (i1, j1)→ (i2, j2) if and only if the indices satisfy the following conditions:

(1) (i1, j1) = (0, 0), (i2, j2) = (1, 1)
(2) (i2, j2) = (i1 + 1, j1)
(3) (i2, j2) = (i1, j1 + 1)
(4) (i2, j2) = (i1 − 1, j1 − 1)

Here, we simply ignore any arrows whose tail index does not belong to var but we do allow
arrows between frozen vertices. These have no effect on the cluster algebra but are necessary
for what follows.

This cluster is illustrated for (k, n) = (3, 7) and (k, n) = (3, 8) in Figure 1.
The grading we choose is the Z-grading G = 1, i.e. Gi = 1 for all 1 ≤ i ≤ |var|.
We will not need to explicitly describe the associated toric frame: it is fully determined by

the quasi-commutation rules for quantum Plücker coordinates described by Scott ([17]).
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Then we have the following proposition.

Proposition 5.1. Let ιn : Oq(Gr(k, n)) → Oq(Gr(k, n + 1)), ιn(∆I
q) = ∆I

q , be the natural
embedding. Then ιn : (Oq(Gr(k, n)),ΣGr(k, n)) → (Oq(Gr(k, n + 1)),ΣGr(k, n + 1)) is a
rooted (graded quantum) cluster morphism.

Proof. It is straightforward to check that ΣGr(k, n) is a full subseed of ΣGr(k, n+1), connected
only by coefficients. Then the result follows immediately from Theorem 4.5. �

The map ι7 : Oq(Gr(3, 7)) → Oq(Gr(3, 8)) can be visualised via Figure 1. In particular
no exchangeable variable from Oq(Gr(3, 7)), considered in Oq(Gr(3, 8)) is connected to the
“new” variables indexed by 128, 178 and 678, this being the “connected only by coefficients”
condition.

Then the main colimit theorem above yields the following.

Theorem 5.2. The family of rooted cluster morphisms {ιn | n ≥ 1} has a colimit, a rooted
graded quantum cluster algebra which we denote by Oq(Gr(k,∞)).

This algebra is generated by the set {∆I
q | I ⊂ N, |I| = k} and has as relations all (higher)

quantum Plücker relations.

Proof. It is clear that Oq(Gr(k,∞)) with the stated properties may be constructed as a colimit
of algebras arising from the system {ιn}. Then Theorem 4.6 shows us that this colimit has pre-
cisely the colimit cluster structure, i.e. that the colimit is compatible with the cluster structures
on each finite Grassmannian. �

This generalises to arbitrary k the construction of the authors in [8] for k = 2 (see also [11,
§4.4]).
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