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We report diffusion quantum Monte Carlo calculations of the interlayer binding energy of bilayer
graphene. We find the binding energies of the AA- and AB-stacked structures at the equilibrium
separation to be 11.5(9) and 17.7(9) meV/atom, respectively. The out-of-plane zone-center optical
phonon frequency predicted by our binding-energy curve is consistent with available experimental
results. As well as assisting the modeling of interactions between graphene layers, our results will
facilitate the development of van der Waals exchange–correlation functionals for density functional
theory calculations.

PACS numbers: 61.48.Gh, 71.15.Nc, 02.70.Ss

van der Waals (vdW) interactions play a crucial role
in a wide range of physical and biological phenomena,
from the binding of rare-gas solids to the folding of pro-
teins. Significant efforts are therefore being made to de-
velop computational methods that predict vdW contri-
butions to energies of adhesion, particularly for materi-
als such as multilayer graphene. This task has proved to
be challenging, however, because vdW interactions are
caused by nonlocal electron correlation effects. Standard
first-principles approaches such as density functional the-
ory (DFT) with local exchange–correlation functionals
do not describe vdW interactions accurately. One tech-
nique for including vdW interactions in a first-principles
framework is to add energies obtained using pairwise in-
teratomic potentials to DFT total energies; this is the
so-called DFT-D scheme [1–4]. The development of vdW
density functionals (vdW-DFs) that can describe vdW
interactions in a seamless fashion is another promising
approach [5–8]. DFT-based random-phase approxima-
tion (RPA) calculations of the correlation energy [9, 10]
provide a more sophisticated method for treating vdW
interactions; however, RPA atomization energies are typ-
ically overestimated by up to 15% for solids [11, 12],
and hence the accuracy of this approach is unclear.
Symmetry-adapted perturbation theory based on DFT
allows one to calculate the vdW interactions between
molecules and hence, by extrapolation, between nanos-
tructures [13]. Finally, empirical interatomic potentials
with r−6 tails may be used to calculate binding energies
[14, 15], although such potentials give a qualitatively in-
correct description of the interaction of metallic or π-
bonded two-dimensional (2D) materials at large separa-
tion [16].

A key test system for methods purporting to describe
vdW interactions between low-dimensional materials is
bilayer graphene (BLG). Several theoretical studies have

TABLE I: BE of BLG (both AA- and AB-stacked) obtained
in recent theoretical studies. The layer separations d quoted
in the table are the ones used in the calculations, not nec-
essarily the optimized bond length for the given method.
“SAPT(DFT)” and “DFT-LCAO-OO” denote symmetry-
adapted perturbation theory based on DFT and linear com-
bination of atomic orbitals-orbital occupancy based on DFT,
respectively. “MBD” denotes many-body dispersion calcula-
tions.

Stacking Method d (Å) BE (meV/atom)

AA vdW-DF [17] 3.35 10.4

AA DFT-D [17] 3.25 31.1

AA DMC (pres. wk.) 3.495 11.5(9)

AB DFT-LCAO-OO [18] 3.1–3.2 70(5)

AB SAPT(DFT) [19] 3.43 42.5

AB vdW-DF [7] 3.6 45.5

AB vdW-DF [17] 3.35 29.3

AB DFT-D [17] 3.25 50.6

AB DFT-D [20] 3.32 22

AB MBD [21] 3.37 23

AB DMC (pres. wk.) 3.384 17.7(9)

used methods based on DFT to calculate the binding
energy (BE) of BLG. Some of the results are summa-
rized in Table I, but there is very little consensus. In
this work we provide diffusion quantum Monte Carlo
(DMC) data for the BE of BLG and the atomization
energy of monolayer graphene (MLG), which we have
extrapolated to the thermodynamic limit. We find the
DMC BE of BLG to be somewhat less than the BEs pre-
dicted by DFT-D, although the latter vary significantly
from scheme to scheme. The DMC method is the most
accurate first-principles technique available for studying
condensed matter. Our data can therefore be used as a
benchmark for the development of vdW functionals.
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We have used the variational quantum Monte Carlo
and DMC methods as implemented in the casino code
[22] to study MLG and BLG. In the former method,
Monte Carlo integration is used to evaluate expectation
values with respect to trial many-body wave-function
forms that may be of arbitrary complexity. In the DMC
method [23, 24], a stochastic process governed by the
Schrödinger equation in imaginary time is simulated to
project out the ground-state component of the trial wave
function. Fermionic antisymmetry is maintained by the
fixed-node approximation, in which the nodal surface is
constrained to equal that of the trial wave function [25].
DMC methods have recently been used to study the BE
of hexagonal boron nitride bilayers [26].

Our many-body trial wave-function form consisted of
Slater determinants for spin-up and spin-down electrons
multiplied by a symmetric, positive Jastrow correla-
tion factor exp(J) [24]. The Slater determinants con-
tained Kohn-Sham orbitals that were generated using the
castep plane-wave DFT code [27] within the local den-
sity approximation (LDA). We performed test DMC cal-
culations for 3 × 3 supercells of MLG and AB-stacked
BLG using Perdew-Burke-Ernzerhof (PBE) [28] orbitals.
The effect of changing the orbitals on the DMC total en-
ergies (and hence the BE) was statistically insignificant.

To improve the scaling of our DMC calculations and
to allow the use of 2D-periodic boundary conditions,
the orbitals were re-represented in a B-spline (blip) ba-
sis [29]. The Jastrow exponent J consisted of polyno-
mial and plane-wave expansions in the electron–ion and
electron–electron distances [30]. The free parameters in
the Jastrow factor were optimized by unreweighted vari-
ance minimization [31, 32]. The DMC energy was ex-
trapolated linearly to zero time step and we verified that
finite-population errors in our results are negligible [33].
The fixed-node error is of uncertain magnitude, but it
is always positive, and should largely cancel when the
BE is calculated. We used Dirac–Fock pseudopotentials
to represent the C atoms [34, 35] and fixed the in-plane
lattice parameter at the experimental value of a = 2.460
Å.

The principal source of uncertainty in our BE results is
the need to use finite simulation cells subject to periodic
boundary conditions in DMC calculations for condensed
matter. Finite-size errors in DMC total energies con-
sist of (i) pseudorandom, oscillatory single-particle finite-
size errors due to momentum quantization and (ii) sys-
tematic finite-size errors due to the inability to describe
long-range two-body correlations and the difference be-
tween 1/r and the 2D Ewald interaction [36, 37] in a finite
periodic cell. By dividing the electron–electron interac-
tion energy into a Hartree term (the electrostatic energy
of the charge density) and an exchange–correlation en-
ergy (the interaction energy of each electron with its ac-
companying exchange–correlation hole) and considering
the long-range nonoscillatory behavior of the hole pre-

dicted by the RPA, it can be shown that the systematic
finite-size error in the interaction energy per electron of a
2D-periodic system is negative and scales asymptotically
with system size N as O(N−5/4) [38]. The leading-order
long-range finite-size error in the kinetic energy per elec-
tron behaves in a similar fashion. The finite-size error in
the atomization energy is therefore positive and scales as
O(N−5/4), and the finite-size error in the BE per atom
must also exhibit the O(N−5/4) scaling. We also inves-
tigated finite-size errors in the asymptotic BE using the
Lifshitz theory of vdW interactions [39, 40] with a Dirac
model of electron dispersion in graphene. To study finite
system sizes, we introduced a cutoff wavelength that de-
pended on the cell size and layer separation. However,
near the equilibrium separation, short-range interactions
are important and the contribution to the finite-size error
from the Lifshitz theory is negligible. In order to elim-
inate finite-size effects and obtain the atomization and
binding energies in the thermodynamic limit, we studied
simulation cells consisting of arrays of 3 × 3, 4 × 4, and
6 × 6 primitive cells for MLG and BLG at the equilib-
rium layer separation and 3× 3 and 5× 5 cells for BLG
at nonequilibrium layer separations. We used canonical-
ensemble twist averaging [41] (i.e., averaging over offsets
to the grid of k vectors) to reduce the oscillatory single-
particle finite-size errors in the ground-state energies of
MLG and BLG. To obtain the twist-averaged energy of
MLG in a simulation cell containing NP primitive cells,
we performed DMC calculations at twelve random offsets
ks to the grid of k vectors, then fitted

E(NP ,ks) = Ē(NP )+b[ELDA(NP ,ks)−ELDA(∞)] (1)

to the DMC energies per atom E(NP ,ks). The model
function has two fitting parameters: Ē(NP ), which
is the twist-averaged DMC energy per atom, and b.
ELDA(NP ,ks) is the DFT-LDA energy per atom of
MLG obtained using the offset k-point grid correspond-
ing to the supercell used in the DMC calculations, and
ELDA(∞) is the DFT-LDA energy per atom obtained us-
ing a fine (50×50) k-point mesh. Finally, we extrapolated
our total-energy data to infinite system size by fitting

Ē(NP ) = E(∞) + cN
−5/4
P (2)

to the twist-averaged energies per atom, where the ex-
trapolated energy per atom E(∞) and c are fitting pa-
rameters. The atomization energy of MLG is the differ-
ence between the energy of an isolated, spin-polarized C
atom and the energy per atom of MLG.

Our DMC atomization energies of MLG as a function
of system size are plotted in Fig. 1. We find the static-
nucleus DMC atomization energy to be 7.395(3) eV/atom
with a Slater–Jastrow trial wave function. This is lower
than the DMC result of 7.464(10) eV/atom reported in
Ref. [42]. Most of this disagreement arises from the use
of different pseudopotentials in the two works [33]. The
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FIG. 1: (Color online) Twist-averaged (TA) and non-TA at-

omization energies of MLG against N
−5/4
P as calculated by

DMC, where NP is the number of primitive cells in the sim-
ulation supercell.

DFT-PBE phonon zero-point energy (ZPE) of MLG was
calculated using the method of finite displacements in a
6× 6 supercell [43] and found to be 0.165 eV/atom. The
ZPE is a correction to be subtracted from the static-
nucleus atomization energy. In principle, an accurate
first-principles atomization energy for graphene could be
used to estimate the BE of graphite by taking the differ-
ence of the experimental atomization energy of graphite
[7.371(5) eV/atom [44]] and the ZPE-corrected atomiza-
tion energy of MLG. However, the spread of DFT atom-
ization energies resulting from different choices of pseu-
dopotential (of order 40–70 meV/atom [33]) implies that
first-principles pseudopotential calculations cannot cur-
rently be used to calculate the BE of graphite by this
approach.

Despite a great deal of theoretical and experimental
work, the BE of graphene layers remains poorly under-
stood. The cleavage energy of graphite has been mea-
sured to be 43(5) meV/atom [14], the BE to be 35(10)
meV/atom [45], and the exfoliation energy to be 52(5)
meV/atom [46]. More recent experimental work has
found the cleavage energy to be 31(2) meV/atom [47].
It has been suggested that the latter result may be sub-
stantially underestimated, because the experimental data
were analyzed using a Lennard-Jones potential, which
gives qualitatively incorrect interlayer BEs at large sep-
aration [48]. Similar difficulties of interpretation may
affect the other experimental results in the literature.
The results obtained in these works are widely scattered.
The DMC method has previously been applied to calcu-
late the BEs of AB- and AA-stacked graphite [49, 50],
which were found to be 56(5) and 36(1) meV/atom, re-
spectively, although these calculations were performed in
relatively small simulation supercells, and finite-size ef-
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FIG. 2: (Color online) Twist-averaged (TA) BLG BE against

N
−5/4
P as calculated by DMC, where NP is the number of

primitive cells in the simulation supercell. The inset shows
non-twist-averaged BEs. The layer separations are the vdW-
DF [52] equilibrium values of 3.495 and 3.384 Å for the AA-
and AB-stacked structures, respectively.

fects may limit the accuracy of the results obtained.

For BLG, we restrict our attention to the nonretarded
regime [51], in which the BE is simply the difference be-
tween the nonrelativistic total energy per atom in the
monolayer and the bilayer. We used vdW-DF layer sep-
arations of d = 3.495 Å and 3.384 Å [52] for the AA- and
AB-stacked configurations, respectively. In Fig. 2 we plot
the twist-averaged BEs of AA- and AB-stacked BLG as
a function of system size. Non-twist-averaged BEs are
shown in the inset to Fig. 2 and, as expected, show large
oscillations due to momentum-quantization effects. For
widely separated graphene layers with nonoverlapping
charge densities, single-particle finite-size errors cancel
perfectly when the BE is calculated. However, when the
layers are closer together, the cancellation is no longer
perfect. In practice, near the equilibrium separation,
the single-particle errors in the BE correlate closely with
the single-particle errors in the total energy of BLG. To
evaluate the BE in the thermodynamic limit, we twist-
averaged the BE using Eq. (1) with the BE per atom in
place of E(NP ,ks) and the DFT-LDA total energy per
atom of BLG in place of ELDA(NP ,ks). We then extrap-
olated the twist-averaged BE to infinite system size using
Eq. (2). As shown in Fig. 2, the BE of AB-stacked BLG
is larger than that of AA-stacked BLG, confirming that
the former is the more stable structure.

The area of a simulation cell with NP unit cells is
A =

√
3NPa

2/2, where a is the lattice parameter of
graphene. If we define the linear size L of the cell via
πL2 = A then we may express the twist-averaged BE
per atom as Ēbind(L) = Ebind(∞) + c′L−5/2, where c′ is
−0.31(5) and −0.43(5) eV Å5/2 for the AA-stacked and
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AB-stacked geometries, respectively. The BE is reduced
at small supercell sizes L. The use of a finite supercell
crudely models the situation where the Coulomb inter-
action between electrons is screened by a metallic sub-
strate. Hence a metallic substrate is expected to weaken
the binding of BLG.

In Fig. 3 we plot the BE of AB-stacked BLG against
the interlayer separation, as calculated by DFT, DFT-D,
and DMC. The layer separations we have studied are
not in the asymptotic regime in which the BE falls off as
d−3, where d is the interlayer separation [53]. We have
fitted the function Ebind(d) = A4d

−4+A8d
−8+A12d

−12+
A16d

−16 to our DMC BE data, where the {Ai} are fitting
parameters, which we find to be A4 = −2.9×103 meV Å4,
A8 = −2.97×105 meV Å8, A12 = 6.18×107 meV Å12, and
A16 = −1.63×109 meV Å16. This function fits the DMC
data well, with a χ2 value of 0.007 per data point. The
BE found at the minimum of the fitting curve is 17.8(8)
meV/atom at the equilibrium separation of 3.43(4) Å.
Although the separation that minimizes our fitted BE
curve for AB-stacked BLG is somewhat larger than the
separation used in our calculation of the BE reported in
Table I, the difference between the BEs is not statistically
significant. The Tkatchenko–Scheffler [4] DFT-D scheme
shows roughly the same equilibrium separation as DMC,
but the magnitude of the BE is substantially larger. In
general, the three DFT-D methods studied [4, 54, 55]
disagree with each other and with DMC. Indeed, the
magnitude of the BE (if not the shape of the BE curve)
is best described by the LDA. Our fitted BE curve en-
ables us to calculate the out-of plane zone-center optical
phonon frequency ωZO′ of AB-stacked BLG [56]. A com-
parison of ωZO′ frequencies obtained by DFT, DMC, and
experiment [57] is shown in Table II. Our DFT-LDA fre-
quency is in reasonable agreement with the result (76.8
cm−1) reported in Ref. [58]. The difference between the
ωZO′ frequency predicted by our fit to our DMC data and
the experimental result is negligible [3(7) cm−1] [33].

In summary, we have used the DMC method to de-
termine the BE of BLG. Our approach includes a full,
first-principles treatment of vdW interactions. We have
found the static-nucleus atomization energy of MLG to
be 7.395(3) eV/atom, although the uncertainty in this
result due to the use of nonlocal pseudopotentials may
be as much as 70 meV/atom [33]. We find the BEs of
AA- and AB-stacked BLG near their equilibrium separa-
tions to be 11.5(9) and 17.7(9) meV/atom, respectively.
Our results indicate that current DFT-D and vdW-DF
methods significantly overbind 2D materials.

We acknowledge financial support from the UK En-
gineering and Physical Sciences Research Council (EP-
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University’s High-End Computing facility, N8 HPC pro-
vided and funded by the N8 consortium and EPSRC
(Grant No. EP/K000225/1), and the ARCHER UK Na-
tional Supercomputing Service. We would like to thank
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FIG. 3: (Color online) BE curve of AB-stacked BLG as a
function of interlayer distance calculated using DFT, DFT-
D, and DMC methods. Our DFT-D calculations used the
Tkatchenko–Scheffler (TS) [4], Ortmann–Bechstedt–Schmidt
(OBS) [54], and Grimme [55] vdW corrections.

TABLE II: The equilibrium separation d0, static-lattice BE at
equilibrium separation, and out-of-plane zone-center optical-
phonon frequency ωZO′ of AB-stacked BLG obtained by DFT,
DFT-D, DMC, and experiment. The minimum of the curve
fitted to the DMC BE data, which is reported in this table, is
in statistical agreement with the DMC BE obtained using a
fixed layer separation of 3.384 Å, which is reported in Table
I.

Method d0 (Å) BE (meV/at.) ωZO′ (cm−1)

DFT-PBE 4.40 1.53 16

DFT-LDA 3.28 13.38 84

DFT-D (TS) 3.35 38.03 111

DFT-D (OBS) 3.15 62.70 133

DFT-D (Grimme) 3.25 27.08 95

DMC (pres. wk.) 3.43(4) 17.8(8) 83(7)

Exp. [57] 80(2)

Exp. [59] 89.7(15)

S. Milana and A. C. Ferrari for providing their experi-
mental phonon data.
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I. ATOMIZATION ENERGY OF MONOLAYER GRAPHENE

Table I compares the atomization energies of monolayer graphene predicted by density functional theory (DFT)
with different functionals and by diffusion quantum Monte Carlo (DMC). Our DFT static-nucleus atomization
energies were obtained using the local density approximation (LDA) and Perdew–Burke–Ernzerhof (PBE) functionals
with both ultrasoft [1] and Dirac–Fock pseudopotentials [2] using a plane-wave cutoff energy of 220 Ry. Our DMC
calculations used the pseudopotential locality approximation [3]. We compare our results with previous results in the
literature [4, 5]. Both DFT-PBE and DFT-LDA calculations overestimate the atomization energy, but the error in
the LDA result is significantly larger.

TABLE I: Static-nucleus atomization energy Eatom of monolayer graphene obtained in various DFT and DMC studies. The
bond lengths quoted in the table are the ones used in the calculations, not necessarily the optimized bond length for the given
method.

Method Pseudopotential Bond length (Å) Eatom (eV/atom)

DFT-LDA [6] 1.412 8.96

DFT-LDA [4] 1.420 8.873

DFT-LDA (pres. wk.) Ultrasoft [1] 1.420 8.632

DFT-LDA (pres. wk.) Dirac–Fock [2] 1.420 8.578

DFT-PBE [5] Norm-conserving [7] 1.440 7.847

DFT-PBE [6] 1.424 7.93

DFT-PBE [8] Dirac–Fock [9] 1.421 7.906

DFT-PBE (pres. wk.) Ultrasoft [1] 1.420 7.873

DFT-PBE (pres. wk.) Dirac–Fock [2] 1.420 7.837

DMC [8] Dirac–Fock [9] 1.421 7.464(10)

DMC (pres. wk.) Dirac–Fock [2] 1.420 7.395(3)

The DFT results in Table I show that using different pseudopotentials changes the calculated atomization energy of
graphene by 40–70 meV/atom, which is very large on the scale of the binding energy (BE) of graphite. However, DFT-
LDA and DFT-D calculations at different layer separations show that both ultrasoft and Dirac–Fock pseudopotentials
give the same value for the BE of AB-stacked bilayer graphene (BLG): see Table II. The cancellation of pseudopotential
errors between bilayer and monolayer graphene is much larger than between monolayer graphene and an isolated C
atom, so our calculation of the BE of BLG is expected to be significantly more accurate than our calculation of the
atomization energy of graphene. It should be noted that pseudopotential errors are at least as bad in DMC calculations
as in DFT; although DMC is a highly accurate method, it cannot do better than permitted by the pseudopotentials
used to model atoms.

II. FINITE-POPULATION ERRORS IN OUR DIFFUSION MONTE CARLO DATA

We have carried out calculations to investigate finite-population errors [13] in our DMC calculations. Figures
1(a) and 1(b) show the non-twist-averaged DMC ground-state energy per atom for a 3 × 3 supercell of monolayer
graphene and the DMC energy of an isolated, spin-polarized C atom against the reciprocal of the target configuration
population. The DMC energies have been extrapolated linearly to zero time step in each case. The function fitted
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TABLE II: Comparison of DFT and DFT-D BEs of AB-stacked BLG at equilibrium separation 3.384 Å using ultrasoft and
Dirac–Fock pseudopotentials.

Method Pseudopotential BE (meV/atom)

DFT-PBE Dirac–Fock [2] 6.03

DFT-PBE Ultrasoft [1] 4.87

DFT-LDA Dirac–Fock [2] 12.39

DFT-LDA Ultrasoft [1] 13.53

DFT-D (TS) [10] Dirac–Fock [2] 38.35

DFT-D (TS) [10] Ultrasoft [1] 38.22

DFT-D (OBS) [11] Dirac–Fock [2] 59.32

DFT-D (OBS) [11] Ultrasoft [1] 59.58

DFT-D (Grimme) [12] Dirac–Fock [2] 27.01

DFT-D (Grimme) [12] Ultrasoft [1] 26.57

to the DMC data in Fig. 1 is E(Npop) = E(∞) + B/Npop, where Npop is the target configuration population [13].
For our Slater–Jastrow trial wave function, we find that B = 1.4(6) eV for monolayer graphene in a 3 × 3 supercell.
The gradient B is of marginal significance. For populations in excess of 512 configurations the expected bias in the
DMC energy is less than 2.7(12) meV/atom. We used target populations of 1024 configurations in our production
calculations for supercells of 3 × 3 primitive cells and target populations of 512 configurations for larger supercells.
Population-control biases are always positive and must largely cancel out of the BE of BLG. For an isolated C
atom, the value of B is not statistically significant. We have used a target population of 1024 configurations in our
calculation for the C atom; the resulting population-control bias in the DMC energy is less than 1 meV.
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FIG. 1: (a) Non-twist-averaged DMC ground-state (GS) energy of a 3× 3 cell of monolayer graphene and (b) DMC GS energy
of a C atom as a function of the reciprocal of the configuration population N−1

pop.

III. TIME-STEP ERRORS IN OUR DIFFUSION MONTE CARLO DATA

Figure 2(a) shows the non-twist-averaged ground-state DMC energies of 3×3 supercells of monolayer graphene and
AB-stacked BLG as a function of time step. Linear extrapolations to zero time step using time steps of 0.01 and 0.04
a.u. are shown by dashed lines. The differences between the results of linear extrapolation using the time steps 0.01
and 0.04 a.u. and those obtained using three time steps 0.001, 0.005, and 0.01 a.u. are 11(3) and 13(3) meV/atom
for the bilayer and monolayer, respectively. These differences indicate the magnitude of the error in the atomization
energy due to residual time-step bias.

Figure 2(b) shows the non-twist-averaged DMC BE of a 3 × 3 cell of AB-stacked BLG against time step. Unlike
the total energy, the BE varies linearly with time step across the range time steps considered. The difference between
the extrapolated BE using time steps of 0.01 and 0.04 a.u. and that extrapolated using all the time steps shown in
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Fig. 2(b) is 1(2) meV/atom, which is negligible. Time-step bias largely cancels between the bilayer and monolayer
energies, and the remaining bias in the BE may easily be removed by linear extrapolation to zero time step.
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FIG. 2: (a) Non-twist-averaged DMC energy of a 3 × 3 cell of monolayer graphene (MLG) and AB-stacked BLG as a function
of time step. (b) Non-twist-averaged DMC BE of a 3 × 3 cell of AB-stacked BLG against time step.

IV. CHOICE OF FITTING FUNCTION FOR THE BINDING-ENERGY CURVE

We have investigated different fitting functions for our DMC BE data for AB-stacked BLG. In Fig. 3 we compare
the following fits to the DMC BE:

Fit 1a The maroon long-dashed line shows a fit of

Ebind(d) = a+ b(d− d0)2 + c(d− d0)3 (1)

to the DMC BE data at interlayer separations d = 2.8, 3.384, and 3.84 Å, where a, b, and c are fitting parameters
and d0 = 3.384 Å is fixed at the vdW-DF interlayer equilibrium separation [14].

Fit 1b The red short-dashed line shows a fit of Eq. (1) to the DMC BE data at interlayer separations d = 2.6, 2.8,
3.384, and 3.84 Å. This time a, b, c, and d0 are all fitting parameters.

Fit 1c The green dot-dashed line shows a fit of Eq. (1) to the DMC BE data at interlayer separations d = 2.8, 3.384,
3.84, and 4.3 Å. Again, a, b, c, and d0 are all fitting parameters.

Fit 1d The blue dash-double dotted line shows a fit of Eq. (1) to all our DMC BE data. Again, a, b, c, and d0 are
all fitting parameters.

Fit 2 The solid black line shows a fit of

Ebind(d) = α exp(−βd) + γd−4 (2)

to all our DMC BE data, where α, β, and γ are fitting parameters [15].

Fit 3 The solid magenta line shows a fit of

Ebind(d) = A4d
−4 +A8d

−8 +A12d
−12 +A16d

−16 (3)

to all our DMC BE data, where the {Ai} are fitting parameters.

Equation (3) has the correct d−4 form of decay for the BE at intermediate range and has a reasonable model of
the hard-core repulsion. The χ2 values obtained with Fits 2 and 3 are 1.3 and 0.007 per data point, respectively,
compared with 0.4 per data point for Fit 1d, which has the same number of fitting parameters as Fit 3. The χ2 value
per data point for Fits 1a–1c is zero, because the number of data points is equal to the number of parameters. Fit 2
shows unphysical behavior: the exponential term prefers to be attractive while the d−4 tries to be repulsive. We have
therefore used Fit 3 to obtain the breathing-mode frequency presented in the main body of our article.
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FIG. 3: DMC BE of AB-stacked BLG against interlayer separation using different fitting curves.
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FIG. 4: Histogram of E′′bind(d0) obtained in bootstrap Monte Carlo sampling of Fits 1d, 2, and 3 with 10,000 samples.

In Table III we compare the equilibrium separation d0, the corresponding BE Ebind(d0), the curvature E′′bind(d0),
and the out-of-plane optical phonon frequency (the breathing mode ZO′) obtained with the different fits to our DMC
BE data.

To evaluate error bars on quantities such as the second derivative of the BE at the minimum and the corresponding
phonon frequency, we used bootstrap Monte Carlo sampling of our data together with repeated χ2 fits. In Fig. 4,
histograms of E′′bind(d0) for Fits 1d, 2 and 3 are shown. The phonon frequencies obtained using Fits 2 and 3 are in
good agreement, although the difference between Fits 1d and 3 is more significant. However, we believe Fit 3 to be
more reliable because it is constructed to have the correct asymptotic behavior.
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