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Abstract we present a case study of an event from 20 August (day 232) of 2006, when the Cassini
spacecraft was sampling the region near 32 Rs and 22 h LT in Saturn’s magnetotail. Cassini observed a
strong northward-to-southward turning of the magnetic field, which is interpreted as the signature of
dipolarization of the field as seen by the spacecraft planetward of the reconnection X line. This event was
accompanied by very rapid (up to ~1500 km s~") thermal plasma flow toward the planet. At energies above
28 keV, energetic hydrogen and oxygen ion flow bursts were observed to stream planetward from a
reconnection site downtail of the spacecraft. Meanwhile, a strong field-aligned beam of energetic hydrogen
was also observed to stream tailward, likely from an ionospheric source. Saturn kilometric radiation emissions
were stimulated shortly after the observation of the dipolarization. We discuss the field, plasma, energetic
particle, and radio observations in the context of the impact this reconnection event had on global
magnetospheric dynamics.

1. Introduction

Reconnection in planetary magnetotails can result in significant reconfiguration of the magnetic field,
acceleration of plasma flows, and energization of charged particles. Such changes can be measured in situ
by orbiting spacecraft and remotely sensed through auroral imaging, mapping of energetic neutral atoms
(ENAs), or measurement of radio emissions. Tailward of the X line, we may expect field and plasma to be
broken off in the form of “plasmoids,” lumps of field and plasma that are ultimately free to escape
downtail. Planetward of the X line, we may expect that the field will dipolarize, as closed field lines snap
back toward the planet following reconnection, crossing the equatorial plane at shorter radial distances.

Much work has been published on the properties of dipolarizations at Earth, from analysis of the (often
asymmetric) bipolar magnetic field signature of the dipolarization front [e.g., Ohtani et al., 2004; Runov
et al, 2009] to the pressure, density, and temperature changes associated with inward moving plasma
populations [e.g., Sergeev et al., 2009; Runov et al., 2011], and the bulk flow patterns that follow energetic
reconnection events [e.g., Lui et al., 1977; Schindler and Birn, 1987; Angelopoulos et al., 1994; Paterson et al.,
1998; Raj et al., 2002]. Intense beams are commonly observed in the outer plasma sheet/plasma sheet
boundary layer (PSBL) during the substorm recovery phase, with the energy and strength of beams
exhibiting latitude dependence, where beams observed closer to the lobes are faster and weaker than those
near the equator [e.g. Onsager et al., 1990, 1991] (where speed variations are interpreted as a time-of-flight
effect on recently reconnected field lines).

Recently, Sundberg et al. [2012] explored the characteristics of several dipolarizations in Mercury’s tail using
data from the MESSENGER spacecraft. They comment on many similarities between dipolarization fronts at
Mercury and Earth, with hermean dipolarization field signatures displaying a sharp, rapid increase followed
by a slower return to preonset values and with expected nonadiabatic heating of the plasma sheet (as the
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ion cyclotron period is on the order of the dipolarization time scale). Differences in spatial scales can arise due
to the small size of Mercury’s magnetosphere, while the short lifetime of events is attributed to the lack of
steady field-aligned current systems at Mercury, in the absence of an ionosphere in which to close currents.

At Jupiter, the situation is different again. In particular, the role of lobe reconnection in flux closure in the
Jovian system is a subject of some debate [e.g., McComas and Bagenal, 2007; Cowley et al., 2008], while
most recently, Vogt et al. [2014] estimated that the average reconnection event in Jupiter’s tail closes
4-8GWb of flux, ~1% of the typical ~720 GWb of flux contained in the Jovian tail [Vogt et al., 2011].
Kasahara et al. [2011, 2013] observed dipolarization fronts in the Jovian tail and interpreted decreases in
plasma density, dropouts in energetic particle fluxes, and increases in reconnection outflow speed as
evidence of transition from closed (plasma sheet) to open (lobe) field line reconnection at Jupiter. Kronberg
et al. [2012], using data from the Galileo Energetic Particle Detector, observed field-aligned beams of ions
and electrons associated with reconnection jets.

Saturn represents a unique parameter space for dipolarizations: unlike the Earth or Mercury, rapid planetary
rotation and internal plasma loading strongly influence magnetospheric dynamics, although perhaps not to
the same extent as at Jupiter. Several studies have explored the effect of reconnection in Saturn’s tail both in
terms of local changes and more global influence. In particular, several authors have examined plasmoids and
traveling compression regions (TCRs) tailward of the reconnection site [e.g., Jackman et al., 2007, 2008, 2014;
Hill et al., 2008] using magnetometer and plasma data. Thus far, the study of the response of the region
planetward of the X line has been somewhat limited [e.g., Bunce et al., 2005; Thomsen et al., 2013; Mitchell
et al, 2014] and may represent an important “missing piece of the puzzle” for our understanding of the
role of magnetic reconnection in Saturn’s global magnetospheric dynamics.

The first published example of a dipolarization following reconnection at Saturn was from Bunce et al. [2005]
who reported a reduction in total field strength, a change in field orientation indicative of a dipolarization, an
intensification and low-frequency extension of the Saturn kilometric radiation (SKR) emission, and a
significant heating and energization of the local plasma. They interpreted these observations, made from a
radial distance of ~16 Rs (1 Rs=60268km) and a local time of 3.6h, as evidence of a solar wind
compression-induced reconnection event on the outbound pass of the Cassini Saturn Orbit Insertion
maneuver. A further example of a dipolarization was presented by Russell et al. [2008], who examined the
magnetic field data associated with the reconfiguration from a spacecraft position at 29.4 Rs downtail and
01:36 LT. Jackman et al. [2013] presented another event and discussed the expected auroral counterpart of
field dipolarizations, in the form of discrete spots formed by diversion of the cross-tail current into the
ionosphere via a scenario analogous to the terrestrial substorm current wedge [McPherron et al., 1973].
Most recently, Thomsen et al. [2013] surveyed Saturn’s duskside magnetotail, finding occasional evidence
of plasma flowing toward the planet, and presenting one particular case study of a dipolarization,
including the first description of the corresponding plasma data at Saturn for such an event.

The question of what type of magnetospheric circulation leads to the observed signatures of reconnection is
an open one at Saturn. The Vasyliunas cycle is internally driven and involves reconnection of closed field lines
[Vasyliunas, 1983], while the Dungey cycle is driven by interaction with the solar wind and hence involves
reconnection of open field lines [Dungey, 1961]. Attempts have been made to differentiate between the
two types of reconnection in terms of field and plasma signatures [e.g., Jackman et al., 2011; Masters et al.,
2011] and in terms of theoretical predictions for flow composition [e.g., Cowley et al., 2005; Badman and
Cowley, 2007; Thomsen et al., 2013]. The plasma on closed field lines might be expected to include heavy,
water group ions from the moon Enceladus, while the plasma on open field lines might be expected to
consist primarily of protons and/or helium ions from the solar wind [e.g., Young et al., 2005]. Most recently,
Thomsen et al. [2014] explored the statistical distribution of plasma flows in Saturn’s magnetosphere
(where ion densities were sufficiently high to make reliable measurements) and argued that the global
flow pattern does not seem consistent with the pattern expected for a system dominated by the Dungey
cycle; in that, there is a lack of significant inward moving plasma. Rather, an average pattern consisting of
strongly azimuthal flows and modest outflow at larger radial distances is observed. A similar pattern was
reported by Kane et al. [2014] using energetic ion anisotropies.

In this paper we discuss a case study of a field dipolarization observed in Saturn’s tail. This event was uncovered
during a survey of the Cassini data from 2006, the aim of which was to find evidence of reconnection events,
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Figure 1. Cassini trajectory for 2006 days 221-245, encompassing one on Cassini were operational and had
orbit of the spacecraft about the planet as the spacecraft traveled from ~ favorable viewing positions, allowing us
dawn, through noon, dusk, and then back via midnight. The blue to build a multi-instrument picture of
and red asterisks are the timings of plasmoids and dipolarizations, dynamics during this interval. In section 2,
respectively (from the list identified by Jackman et al. [2014]). The
dipolarization in question for this study occurred on day 232 of 2006,

and the green circle surrounds day 232. The black dots are plotted we present interpretation and discussion;
every day from day 222 to day 244. and in section 4, we summarize.

we outline the observations; in section 3,

2. Observations

In this paper we use data from the Cassini magnetometer [Dougherty et al., 2004], the Cassini Plasma
Spectrometer (CAPS) [Young et al.,, 2004], the Magnetospheric Imaging Instrument (MIMI) [Krimigis et al.,
2004], and the Radio and Plasma Wave Science (RPWS) instrument [Gurnett et al., 2004]. The field and
particle data sets allow us to build a complete picture of the local magnetosphere, while the radio
emission information gives us a global picture of changing magnetospheric dynamics. Specifically, we use
two sensors on CAPS. The ion mass spectrometer (IMS) measures energy and composition for ions with
energy per charge (E/q) of 1eV/e-50eV/e using an electrostatic analyzer and subsequent time-of-flight
detector. The electron spectrometer (ELS) has a measurement range of ~0.6 eV/e-28 keV/e, in 63 logarithmically
spaced energy levels. Information from two of the MIMI sensors is also used in this analysis: the Charge Energy
Mass Spectrometer (CHEMS) and the lon and Neutral Camera (INCA). CHEMS is able to determine both the
mass per charge and the mass of ions, with an energy range from 3 to 236 keV for H" and from 8 to 236 keV
for O* ions. Thus, by combining CAPS and MIMI data in this study, we can examine the behavior of ions over
an energy range of a few eV up to a few MeV.

The event we are focusing on occurred on 2006 day 232 (20 August) when the Cassini spacecraft was ~32 Rs
downtail, at a local time of 22:00 and a latitude of ~13.8°. Figure 1 shows one revolution of the Cassini
spacecraft about Saturn over a 24 day interval encompassing this event. This figure illustrates the dynamic
nature of Saturn’s tail region, with the timings of many plasmoids and dipolarizations marked by the
blue and red asterisks, respectively. No travelling compression regions were observed during this orbit.
These events come from the list of Jackman et al. [2014], and they are identified by south-to-north and
north-to-south turnings of the magnetic field, respectively. Slavin et al. [2002] used radially aligned
spacecraft in Earth’s tail to show a close correlation between observation of earthward flow bursts and
tailward plasmoid ejections. Furthermore, Fu et al. [2012] examined 9years of data from the Cluster
spacecraft at Earth and found the occurrence rate of dipolarization fronts to match that of substorms very
closely. If we have an analogous situation at Saturn, we might expect for each observation of a plasmoid that
there is an equivalent dipolarization on the other side of the X line and vice versa. Thus, this orbit represents
an interval with above average activity, with 14 plasmoids and 5 dipolarizations observed by Cassini in
24 days. Indeed, a plasmoid was observed at 10:01 on day 232, several hours before the event in question
here, perhaps indicating an extended interval of tail driving and subsequent relaxation.

2.1. Overview of the Interval

Figure 2 shows the magnetic field and plasma data between 15:00 and 18:00 on 2006 day 232. The upper four
panels show the magnetic field data at 1 min resolution in the Kronocentric Radial Theta Phi (KRTP) coordinate
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Figure 2. Cassini magnetometer and CAPS data for the interval from 15:00 to 18:00 on 2006 day 232 (20 August). The top
four panels show the magnetic field in KRTP coordinates. The vertical dashed lines in the top four panels bracket the main
magnetic field change (as identified in the By component) over an ~23 min interval. The next two panels show energy-time
spectrograms from anode 5 of the CAPS electron spectrometer (ELS) and anode 3 of the ion mass spectrometer (IMS)
instruments, respectively. The bottom two panels show the electron density and temperature integrated over an actuator
cycle (method described in Arridge et al. [2009b]). The solid lines above and below the central crosses denote the error bars.
ELS measures electrons in the 0.5 eV-28 keV energy range.

system. In this spherical polar system, referenced to Saturn’s spin axis, the radial component (B,) is positive
outward from Saturn, the theta component (B) is positive southward, and the azimuthal component (B,) is
positive in the direction of planetary corotation (in a prograde direction). The lower four panels show the
time-energy spectrograms of the electrons and ions and electron densities and temperatures. The effect of
spacecraft photoelectrons is visible at the bottom of the electron spectrogram. The electron moments were
obtained by building a pitch angle distribution over an ~3 min actuation of CAPS and then numerically
integrating the distribution to calculate the number density (n) and the parallel and perpendicular
temperatures (Tperp and Tpar). The temperatures reported are total temperatures where T=(2Tperp + Tpar)/3.
The error bars indicate the formal errors associated with counting statistics and the background subtraction
and are lower limits since they do not include geometric factor uncertainties, or additional systematic effects
associated with spacecraft potential corrections [Arridge et al., 2009a], pitch angle bin sizes, or the generally
incomplete pitch angle coverage (Arridge, personal communication).

At the beginning of the interval shown in Figure 2, the spacecraft was orbiting in a region characterized by a
strong, quiet magnetic field and a large positive radial field component. We interpret this region as the
northern magnetotail lobe. The average lobe field expected at a radial distance of 32 Rs is 3.92+0.53 nT
(3.4 to 4.5nT) from the fit of Jackman and Arridge [2011]. The observed field strength just prior to the data
gap was ~4.4nT at the upper end of this range. A slightly elevated lobe field strength could imply a tail lobe
that is loaded with open flux and perhaps primed for reconnection. Data from the Michigan Solar Wind Model
(MSwiM) model [Zieger and Hansen, 2008; not shown here] indicate that there was a significant increase in
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solar wind velocity and dynamic pressure at Saturn sometime between day 229 and day 231, although Saturn is
far from apparent opposition at this time, and thus, the MSwiM propagations are not very reliable. The ENLIL solar
wind propagation model data also indicate a solar wind velocity and dynamic pressure increase at this time
(Felici, personal communication), albeit with a time error of up to 4days. If a solar wind compression hit
Saturn’s magnetopause, it could stimulate the addition of open flux to the lobes and hence lead to the
observed increase in lobe magnetic field strength [e.g., Jackman et al., 2004; Badman et al., 2005]. The very low
fluxes in the CAPS data from 15:00 on day 232 confirm that this is a region largely empty of plasma. There is
then a brief data gap (in all instruments) from ~15:15 to 15:35.

Following this data gap, the spacecraft entered a region characterized by fluctuations of the field and a
reduction of the radial field component. The CAPS data indicate the presence of denser plasma post data
gap, and this may be interpreted as the motion of the spacecraft from lobe field lines before the data gap
to plasmasheet-type field lines immediately after the data gap (suggestive of an expansion or vertical
motion of the plasmasheet to higher latitudes up over the spacecraft). The electron temperature in this
region is ~400-700 eV (given its time-dependent behavior), while the density in this region is ~10% el/m?>.

The B, component had been small and positive prior to the data gap, representing “steady state/background”
field conditions [Jackman and Arridge, 2011]. Following the data gap, it fluctuated close to zero before
exhibiting a local minimum of northward (negative) field at ~15:47. This northward field may be understood in
terms of regular, wavy plasma sheet motion [Jackman et al, 2009a]. Such features are also commonly seen
ahead of dipolarization fronts in Earth’s magnetosphere [e.g., Ohtani et al, 2004]. Following this northward
turning, the field sharply and strongly turned southward, with a total field change of ~2.49 nT over 23 min. We
interpret this as representative of a dipolarization, where the spacecraft is planetward of the X line. Immediately
after the data gap, CAPS observed a narrowly peaked ion distribution (with an energy of 9744 eV), which we
show below to be a sunward streaming flow, along with a weak but rather hot (~600 eV) electron distribution
that is found to be dominantly bidirectionally field aligned (not shown here). This 600 eV temperature can be
compared to the typical quiescent temperature of ~100eV in the plasma sheet and to the “disturbed” state
where the electrons are even hotter (~1keV) [Arridge et al., 2009b]. After ~15:45, i.e., the start of the southward
rotation of the field, the electron fluxes increase, and the ion flow is observed at lower energies. Following the
end of the dipolarization, the ion flow is seen at higher energies again. The Bg and B, components indicate
that the field was swept back at this time. From ~16:50 onward, the total field strength and the radial
component continued to drop, while B, was closer to zero, indicating reduced bendback of the field. The
character of the electron spectrogram also changed to reflect more “plasmasheet-like” plasma, and the fast
planetward ion flow was no longer present.

2.2. Plasma Flow

The data presented in Figure 2 indicate that a dynamic event occurred in the magnetotail, the consequences
of which are observed by the spacecraft after the data gap. As mentioned above, the narrow (in energy) ion
population seen in CAPS is found to be streaming in the Saturnward direction. This streaming can be seen in
the panels of Figure 3, which show the color-coded ion counts within the field of view of the CAPS instrument
for several time intervals between ~15:30 and 16:55. Each panel is drawn for the energy of the peak counts
during that interval. From this figure, we can see that the spacecraft was rolling during this interval, and
thus, the CAPS instrument had good all-sky coverage. Anodes 1 and 2 were looking outward (downtail),
and anodes 7 and 8 were looking inward (planetward). From the CAPS IMS data, we can infer that even
though the energy of the peak in each time interval varied (as shown in Figure 3), the flows were
directed consistently planetward with a slight component in the corotation direction and with a velocity
of ~600-1500km s~ (see also McAndrews et al. [2009a] for preliminary analysis of this interval). These
flow speeds are inferred from the energy of the peak counts (highest-energy flows in the 15:32-15:42
and 16:15-16:30 intervals) and thus represent an upper limit to the flow speed (because there may be
some contribution to the energy from the thermal speed; however, as the flows are relatively narrow in
most cases, the thermal speed is small compared to the flow speed). These flow speeds are consistent with
both the MIMI INCA and CHEMS data. McAndrews et al. [2009b, 2014] presented a very comprehensive
survey of plasma ions at Saturn and found that ion flows are typically 150-200kms~' and predominantly
in the corotational direction out to 30 Rs, with some outward flow beyond this distance. Thus, the flows
observed here represent a significant deviation from the usual behavior in the tail plasma sheet. When
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Figure 3. All-sky images of the ion distribution over various intervals, with times labeled at the top left of each panel. The plots represent slices through the observed
distributions at the energy per charge labeled at the top left of each individual plot (the distribution peak). With the exception of the third panel, for 16:03-16:15 (reversed
for display purposes), the look direction away from Saturn is in the center (i.e., for inward moving flow). The radial distance from the center is proportional to the polar
angle of the viewing direction relative to the center direction (away from Saturn for all panels except the third). Thus, the entire outer circle corresponds to the look
direction away from Saturn (toward Saturn for panel 3, 16:03-16:15), and the dashed circle halfway to the outer boundary indicates look directions that are 90° away from
Saturn’s direction. The azimuth in the plots (indicated by the angle markings around the circumference of the outer circle, given in degrees) corresponds to the azimuth of
the look direction relative to a meridian containing the direction to Saturn and Saturn’s spin (and magnetic dipole) axis, measured about the axis pointing toward Saturn.
The corotation direction (on the right-hand side of each plot, other than the 16:03-16:15 panel, where it lies on the left-hand side) is marked by a filled triangle.
Planetward flows are seen between the corotation direction and the anti-Saturnward look direction (i.e., inside of the dotted 90° circle or outside that circle for 16:03-16:15).
The hydrogen speeds for each interval (with increasing time) are 1.37 x 10%, 812, 627, 149 10%,1.15x 10°, and 1.25x 103 km's .

seen at Earth, such fast, planetward flowing populations at the edge of the plasma sheet can be associated
with reconnection occurring tailward of the spacecraft (or occasionally can be explained as reflection of
particles from a dipolarization front [e.g., Zhou et al., 2012]). In this case, based on our multi-instrument
analysis, we adopt the former interpretation that reconnection ongoing tailward of the spacecraft is
producing the observed directional flows.

2.3. Plasma and Energetic Particle Composition

Plasma composition can be a key diagnostic of the source of the field-aligned flows. Specifically, if we
interpret the directional flows as originating in tail reconnection, the presence or absence of water group
ions should help distinguish between reconnection of open lobe field lines (Dungey reconnection) and
internal reconnection of closed field lines (Vasyliunas reconnection). Planetward of the X line, if reconnection
of open field lines occurred, we may expect a flow of light ions (e.g, H" or He™ from the solar wind, or other
light ions originally of ionospheric origin, cf., the polar wind model of Glocer et al. [2007]). If, on the other hand,
reconnection occurred on closed field lines holding magnetospheric plasma, we would expect the outflow
from the reconnection site to contain water group ions. Water group ions exclusively originate from within the
magnetosphere, and as such, they are an excellent tracer of reconnection on closed field lines carrying
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Figure 4. Energy per charge versus time-of-flight spectrograms from the CAPS/IMS spectrometer. The left-hand panel is for
the interval from 15:30 to 17:00 and the right-hand panel for 19:50-21:30. The straight line indicates the locus of artificial
counts from secondary electrons produced when ions strike the CAPS/ELS detector (see Young et al. [2004]).

internally generated plasma. We might expect the heavy ions to be somewhat depleted relative to light
ions on the planetward side of the X line due to equatorial confinement. However, the larger-scale
height of the higher-energy ions means there should still be enough of the heavy water group ions to
serve as tracers of internal reconnection.

For information regarding the plasma composition in the directional planetward flows, we refer to Figure 4,
which shows two energy per charge versus time-of-flight spectrograms from CAPS/IMS: the first for the
interval from 15:30 to 17:00, which contained the flows, and the second for a “typical” plasma sheet
interval several hours after the event (19:50-21:30). By way of context, the right-hand panel shows the
species typically present in the plasma sheet: a combination of light (H" and m/q =2, which could be H,*
or He*™) and water group (O*, OH*, H,0* and H;0") ions. The populations within the planetward
directional flows are in stark contrast to this. In their case (left-hand panel from 15:30 to 17:00), CAPS
detects light ions, primarily H* (m/g=1) and a few with m/q=2 (He*" or H,"). The energy of the hydrogen
ions is ~3.4-11.6 keV (see also Figure 3). There is a distinct absence of heavier water group (W*) ions at this
time (some arrive at the spacecraft after

80 ~17:00 as the more isotropic plasma sheet

Energetic ion abundance returns, but they are absent throughout the
. 2006 232 15:30-17:00 . . - i
_ 64.5% MIMICHEMS  (E>8 keV) entire dipolarization/energization interval).
o | || There are two possible reasons for the lack
& 60 . . . -
° of observation of heavy ions. First, it is
o . . ..
c possible that the heavy ions are not visible
B if they are centrifugally confined closer to
S 40 .
2 the equator and thus do not reach the
o latitude of the spacecraft (13.8°) in this
> .
= 18.8% case. However, we note that the magnetic
= 20| S7 -
o 12.1% field and plasma data indicate that the
plasmasheet expanded over the spacecraft
2.1% 2.4% and thus the spacecraft found itself
0 .
H+ H2+ He++ He+ W+ sampling a heated outer plasmasheet
increasing ion mass population, which should contain some

Figure 5. Relative abundance of energetic ions (mass-per-charge data,
8-235 keV/e) obtained with MIMI/CHEMS between 15:30 and 17:00 of
day of year 232/2006. The number of counts for each ion species is
normalized to the total. The W* ion group consists of 0", OH*, H,0",
and H30™. lon species are presented in increasing mass order. Although
they have the same mass per charge (m/q=2), H2+ and He*" can be
separated due to their different mass (2amu and 4 amu, respectively).

oxygen. A second reason for the lack of
W* observation is that if oxygen ions are
present and travel at the same speed as
the hydrogen ions in this example, their
energy would be ~54-186keV, above
the range visible to CAPS (maximum
of 28 keV).
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Figure 6. Angular distributions for hydrogen and oxygen measured by the INCA sensor for the time period of 14:23-17:45. The time period is broken into two panels,
where the top two rows in each panel show hydrogen, while the bottom two rows show oxygen. As Cassini rolls about its Z axis during this observation, a full
360°x120° angular distribution is obtained every four INCA images (about 27 min). Each INCA image of 16 x 16 pixels consists of the color-coded H* or 0" intensities
(c/cm2 srskeV) and the 30° 60° 90°, 120°, and 150° pitch angle isocontours denoted by the thin white lines. Note that the logarithmic color bar has a different
scale for each species and energy. The thick vertical white line in the top denotes the data gap after 15:04. The blue triangles indicate the direction from which one
would expect enhancements in the intensities produced by flow in the nominal corotation direction. The anisotropy is consistent with a flow direction fairly close
to corotational prior to 15:04 UT and after 17:00 UT. The green circles are shown in the approximate location of Saturn in the INCA field of view for the bottom
row of angular distributions in each panel. Flow away from Saturn would appear near the green circles (which are also close to field aligned), whereas flows toward
Saturn would appear near the top of each frame.

In order to explore the composition of higher-energy particle populations, we first examine data from MIMI
CHEMS, which measures ions just above the CAPS range, between 3-236 keV per charge for H and 8-236 keV
for O*. Figure 5 displays a histogram showing relative energetic ion abundances from the CHEMS instrument.
The CHEMS data allow us to distinguish the m/q =2 species from the CAPS time-of-flight plot above, and we
find that H," (magnetospheric constituent) is ~6 times more abundant than He*™ (solar wind constituent)
when averaged over the interval from 15:30 to 17:30, indicating a magnetospheric composition of the
energetic ion population. The energy of the water group (containing oxygen) is precisely in the range
predicted above (~54-186 keV).

In order to explore the energetic particles in more detail, Figure 6 shows data from INCA for hydrogen (top two
panels of each row, 35-55 keV and 13-24 keV) and oxygen (bottom two panels of each row, 168-231 keV and
89-129 keV) species separately, over time intervals spanning from 14:23 to 17:45. CHEMS and INCA agree well
throughout this interval. The data from 14:23 to 15:04 confirm the quiet, empty lobe-like picture presented
above from magnetometer (MAG) and CAPS. Interestingly, there is a weak O* and a weak H* population
seen in two of the lobe spectra. These may be due to finite gyroradius remote sensing of the plasmasheet
because they appear to be nongyrotropic, fill less than 180° in gyrophase, and are peaked at 90° pitch

JACKMAN ET AL.

QUASI STEADY SATURN TAIL RECONNECTION 3610



@AG U Journal of Geophysical Research: Space Physics 10.1002/2015JA020995

2006-08-20 (232) 15:00 2006-08-20 (232) 18:00
107
108
10° 8 20. -
z 10t 5 -
5 2 154
3 © -
g m L
— i3] |
2 104
3 r
102 r
10'
g
15:00 17:00 18:00
Ry 31.77 32.16 32.36
Lon 196.34 26343 296.98
Lat 13.82 13.78 13.75
LT 2192 21.95 21.96
L 3369 34.10 34.30
uIoNA 20140811
Orbit 27

Figure 7. Frequency-time spectrogram from the RPWS instrument for the interval from 15:00 to 18:00 on day 232 of 2006.

angles. Immediately following the data gap, there is evidence of an anisotropic flow toward the planet. This flow
is initially present in both H" and O*, with an increase in the strength of the O* ions after ~15:51 likely associated
with a further increase in the flow velocity (note the accompanying increase in the CAPS directional flow energy
in Figure 2). A similar delay is seen by CHEMS, but we note that these water group ions appear as soon as CHEMS
is in a favorable configuration to see them. While the anisotropy of the energetic ions is indeed strong, it has a
relatively broad pitch angle distribution (~90-180°) and thus might be termed a “flow burst.” Even within the
MIMI observations, we see differences in the anisotropy width between species. The anisotropy is slightly
more confined in oxygen than in hydrogen, because the bulk flow energy of the oxygen is higher and thus
represents a larger fraction of the oxygen total (bulk flow + thermal) energy (yielding a more dominant flow
anisotropy). The anisotropic flow in both hydrogen and oxygen continues through to 16:45. Later in the day,
from 17:11, there is evidence of some tailward flow, with an increasingly isotropic distribution thereafter and
a return to a lower intensity plasma sheet.

2.4. Global Magnetospheric Dynamics

In order to explore the effect that this reconnection event may have had on global magnetospheric dynamics,
in Figure 7, we show data from the Radio and Plasma Wave Science (RPWS) instrument in the form of a
frequency-time spectrogram from 15:00 to 18:00. The dipolarization as identified from the magnetometer
data began at ~15:47, continuing until ~16:10, with further directional ion flows and disturbed field for some
time thereafter, perhaps implying ongoing reconnection. From Figure 7, we see that there is some emission
at lowest frequencies of 10-30kHz from ~16:30, which can indicate emission from a high-altitude source
[e.g., Lamy et al, 2013]. This is followed by a strong intensification and low-frequency extension of the SKR
emission from ~17:20 onward. We note that the timing of this SKR emission observation may have been
delayed due to observational issues whereby the spacecraft needs to move into the appropriate viewing
region in order to be within the SKR emission cone [Lamy et al, 2008]. SKR onset at the planet may thus
occur earlier than observation at the spacecraft. Furthermore, as the SKR is a current-driven instability, there
is a finite time (minimum of the Alfvén transit time) from the onset of reconnection in the tail for the current
coupling with the ionosphere to be established and for sufficient current to build up in the ionosphere to
drive the SKR. Alfvén speeds in the lobes can be >4000 km/s [Arridge et al., 2009b], but taking a conservative
estimate of 1000 km/s, the one-way Alfvén travel time to traverse 30 Rs is ~30 min. For these reasons, we can
understand a delay between in situ observations of reconnection in the tail and the appearance of likely
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Figure 8. MIMI INCA, magnetometer, and CAPS data combined with a schematic figure to aid interpretation of the interval. (top) The angular distributions for
hydrogen and oxygen obtained by the INCA sensor for the time period of 14:23-17:45, in a similar format to Figure 6, with hydrogen in the top two rows and
oxygen in the bottom two rows (although shown as one continuous stretch of data in this case). (bottom left) The north-south (By) magnetic field component and
the CAPS IMS spectrogram in the same format as Figure 2 from 15:00 to 18:00. The horizontal black bars marked A, B, and C in the magnetometer data panel

(matched to the corresponding MIMI data above) show the intervals that for which the magnetotail topology is sketched schematically in the top right of the
figure. The schematic sketches on the bottom right are meridional cuts through the nightside magnetosphere. The star in each panel represents the spacecraft.

associated SKR emission. Mitchell et al. [2005] noted that bursts of ENA activity were well correlated
with enhancements in the intensity of the SKR, while Jackman et al. [2009b] focused in particular on the
generation of a potential drop at higher altitudes that would lead to the observed low-frequency extension
of the radio emission. The ~90 min time delay between the observation of the start of the dipolarization and
the response of the radio emissions is within the correlation time scales explored by authors such as Mitchell
et al. [2005] (but as noted above, this delay may be shorter than observed). What does this imply for the
speed of the dipolarization front? Given that the SKR is observed to brighten from ~17:20, we can thus
estimate the speed of the dipolarization front (southward turning starting at 15:47) if we assume transport
from the site of the dipolarization (32 Rg) in to ~15 Rs, where the ENA brightenings that are typically
associated with SKR intensifications occur. Mitchell et al. [2009] noted that at this distance, pressure gradients
associated with the injected plasma drive strong enough field-aligned currents to generate SKR. A
population initiated at 32 Rs at 15:47 would have to travel at 183kms ™' to reach 15 Rs by 17:20. We note
that this bulk flow velocity is much slower than the directional flow speeds but is of the appropriate order of
magnitude when compared to the speed of terrestrial dipolarization fronts [e.g., Nakamura et al., 2002; Runov
et al., 2009].

3. Discussion

In this paper we have presented magnetic field, low-energy plasma, and energetic particle observations, as
well as radio and plasma wave data for a dipolarization event observed by the Cassini spacecraft in
Saturn’s tail. Below, we discuss the observations in terms of a timeline of the event.

3.1. Timeline of the Event

Figure 8 includes a combination of MIMI-INCA, CAPS, and magnetometer data, along with a schematic
illustration of three intervals (A, B, and C) which correspond to distinct stages of the reconfiguration of the
magnetotail in this event. We discuss the timeline of observations with reference to Figure 8 below.
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In interval A from Figure 8, representing the interval around 15:04 prior to the data gap, the quiet magnetometer
data, “empty” CAPS spectrograms, and low fluxes in MIMI indicate that Cassini was in the lobes. Any observation
of 0" or H" ions by INCA during this interval can be attributed to finite gyroradius “leakage,” whereby energetic
ions can escape from closed plasmasheet field to adjacent lobe field lines. We note, for example, that the
gyroradius of a 100 keV O* ion in a field strength of 5nT is 0.6 Rs, and thus, it can be easy for such energetic
particles to cross from the higher-latitude plasmasheet to the nearby lobe.

Interval B from Figure 8 corresponds to the interval from 15:30 to 16:10 after the data gap and encompasses the
northward (15:30-15:44) to southward (15:44-16:10) turning of the field, which we interpret as a dipolarization
associated with reconnection tailward of the spacecraft. This magnetic signature is accompanied by some
intriguing low-energy plasma and energetic particle flows.

Immediately after the data gap, the field strength decreased while field fluctuation increased. This combined
with the appearance of sunward ion fluxes and few hundred eV electrons indicates that the spacecraft had
entered a closed field line region. Several authors have noted that there is not always a smooth transition
between the lobes and the plasma sheet [Arridge et al., 2009b; Jackman and Arridge, 2011; Simon et al.,
2010; Sergis et al., 2011], with different particle populations and different energies having different scale
heights and behaviors. The electron population observed immediately after the data gap in this case
is consistent with what Arridge et al. [2009b] have called the “outer plasma sheet.” The temperature
immediately after the data gap was ~500 eV, with electron densities of a few hundred m™>. The sunward
directional ion flows observed during this interval (speeds of ~1300km/s between 15:32 and 15:42) are
consistent with flow from a reconnection site tailward of the spacecraft.

The addition of the MIMI data provides further information on the behavior of plasma and energetic particles
at this time. In addition to the sunward directional ion flow seen clearly in CAPS, MIMI sees sunward flow and
an additional tailward streaming hydrogen component around 15:37, particularly at the highest energies.
A similar population was present (but weaker) before the data gap, though at somewhat lower energies.
The planetward flowing plasma between 90 and 180° pitch angle has a much softer spectrum than the
simultaneously observed tailward flow. The energetic oxygen (in the bottom of the MIMI data in Figure 8)
shows only planetward flow. The planetward flow of energetic hydrogen and oxygen observed in this case
is consistent with the spacecraft position planetward of a downtail reconnection site. Direct connection of
the spacecraft to an active reconnection site cannot be uniquely established on the basis of the data
presented here; however, the observations are certainly consistent with the products of reconnection.

With regard to the tailward flow of energetic hydrogen, a simple analogy with Earth might interpret this as
bidirectional streaming indicative of a PSBL-type structure [e.g., Eastman et al., 1984; Walsh et al., 2011] as
particles which mirror closer to the planet are reflected back downtail. However, the strongly field aligned
nature of the tailward H* at this time is inconsistent with a population that has mirrored close to the
planet, as is its presence on lobe field lines prior to the data gap. Rather, we interpret it as a population of
ionospheric ions which have been accelerated at low altitude in a high field region. The tailward
population (highly field aligned, hydrogen only) is rather different to the planetward population (not well
ordered by the field, hydrogen, and oxygen). lonospheric outflows are generally composed of light ions
[e.g., Glocer et al., 2007; Nagy et al., 2009], mainly because the scale heights of light ions are higher than
they are for heavy ions, placing the light ions at sufficiently high altitudes to be accelerated by waves
and/or field-aligned electric fields. Such a population is likely produced in a “pressure cooker” region
driven by intense field-aligned currents associated with the event [e.g., Carlson et al., 1998; Mitchell
et al., 2009].

Interval C of Figure 8 corresponds to the interval from 16:10 to 17:00 when the initial magnetic dipolarization
signature had finished. CAPS continued to observe further planetward ion flows, indicating that Cassini
continues to be immersed in flows from ongoing reconnection. Indeed, the directional CAPS flows
observed at this time are some of the fastest of the interval, with speeds up to 1500 km/s (15:15 to 16:30)
and composition primarily light ions (W* ions are not observed until 17:00 at the earliest). The INCA data
show a substantial population of W* at energies above the CAPS energy range and are consistent with this
picture of high flow speeds. Meanwhile, the magnetic field remains disturbed. The CAPS directional flow
speeds are much faster than typical plasma flows in this region of the tail and much faster than the
~200 km/s return flow observed in the case study by Masters et al. [2011].
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Finally, from 16:58 onward, the energetic particle data show an increasingly isotropic distribution, which,
combined with the CAPS observations, indicate a return to more typical plasma sheet. Thus, the in situ
spacecraft data from this local time meridian indicate that the magnetotail is returning to a more
quiescent state as in situ reconnection signatures cease. However, the RPWS instrument registers strong
Saturn kilometric radiation emission and low-frequency extension from ~17:20, the likely response of the
auroral zone to currents driven by the injection from the tail, and perhaps indicating ongoing activity
elsewhere in the nightside magnetosphere.

3.2. Interpretation of the Event

3.2.1. Long-Duration/Quasi-Steady Reconnection

The distinguishing feature of this event in terms of the magnetic field observations is the 23 min
dipolarization signature, indicative of field lines contracting back toward the planet following
reconnection. However, the plasma and energetic particles also provide an intriguing insight into the
magnetospheric dynamics during this interval. Several strong planetward energy-collimated flows are seen
in CAPS, with similar flows in MIMI. The fact that they are persistently sunward (with the exception of a
small interval of tailward energetic H* that may be associated with the tail reconnection but only through
field-aligned currents coupling with the ionosphere) indicates that we are seeing the response to
reconnection that is occurring tailward of the spacecraft. Moreover, the presence of substantial fluxes
of energetic 0", especially after ~16:20, indicates that the reconnection involves internally loaded
magnetospheric field lines, i.e., Vasyliunas-type reconnection. The dominance of H," over He™ as seen
from the CHEMS data supports this picture. The directional flows are relatively long lived, with energized
ions persisting for ~1.5 h, much longer than the ~23 min dipolarization field signature. The long duration
of the planetward flow interval represents ~14% of a planetary rotation, and a corotational flow of
200 km/s could move up to ~2.1h in local time during this period, covering a significant fraction of the
nightside of the planet in this time. If the duration over which the CAPS directional flows are observed is
taken to represent the extent of tail activity, this could thus imply quasi-steady reconnection in Saturn’s
tail for a significant fraction of a planetary rotation, which could have a significant impact on the topology
of the field and the nature of plasma flows in the region.

Such long-lasting reconnection has been reported before, where Thomsen et al. [2013] observed a long-lasting
inflow event, with water-depleted plasma observed moving planetward over ~2.5 h. They suggested that this
event might represent the dipolarization exhaust from a quasi-steady reconnection event tailward of the
spacecraft, with the exhaust continuing as new longitudinal sectors rotated into the reconnection region.
Such long-lived reconnection could be part of the answer to the mass budget imbalance discussed by
Jackman et al. [2014], whereby large-scale plasmoid break-off has been shown to be insufficient to match the
mass added to the magnetosphere. The mean duration of a plasmoid event from that study was ~17.71 min,
while plasmoids observed within a “viewing region” of the nightside of the planet are estimated to remove
~2.59kg/s of plasma, a small fraction of the estimated ~100kg/s loaded into the magnetosphere by
Enceladus [Bagenal and Delamere, 2011]. If reconnection is ongoing for an hour or more, a significant amount
of mass could be released in this time. At the end of Thomsen et al's [2013] dipolarization event, the
character of the plasma changed and the spacecraft observed a return to higher densities, larger W* fraction,
and more typical azimuthal flow. They interpreted this as signifying the arrival of a new longitudinal sector at
the spacecraft where reconnection was not occurring. We see a similar pattern in our event (after interval C
from Figure 8) where the tail returns to a more quiescent state, with isotropic plasma distributions and more
typical plasma sheet populations with less disturbed field.

3.2.2. Planetward Flow: A Relatively Rare Observation at Saturn

In this paper we present an example of very strong planetward flow. How unusual is this event? McAndrews
et al. [2009b, 2014] presented a bulk flow map of Saturn’s nightside over radial distances from 10 to 50 Rs.
Their results showed that flow was primarily in the corotation direction. They found no evidence for significant
inflowing plasma (despite favorable instrument pointing on many occasions), although they noted that
they expect planetward flow to exist at least occasionally in order to account for the low-density plasma
populations that they observe on Saturn’s nightside. Thomsen et al. [2013, 2014] analyzed Cassini’s dusk
and nightside orbits for intervals where the CAPS instrument viewing was balanced inward versus outward
and found “numerous” significant examples of planetward plasma flow, primarily premidnight and inside
of 25 Rs, with one such event identified as a dipolarization. However, flow speeds were generally lower
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than corotation. Thus, the suggestion from those studies was that tail reconnection in the dusk sector has not
yet proceeded to involve lobe field lines. It is also likely that the outward stretching mass-loaded flux tubes in
Saturn’s middle magnetosphere may inhibit the Saturnward return flow of newly reconnected flux in all but a
few cases. Most recently, Kane et al. [2014] surveyed the energetic ion anisotropies at Saturn and found some
evidence of inflow at local times greater than 3 h (the interval not covered in Thomsen et al.'s [2013] study).
These studies are illustrations of the additional phenomenology present in the Saturn system compared to
Earth. The production of large amounts of plasma within the magnetosphere and the rapid rotation of the
planet itself lead to the strong corotational influence, with flow maps indicating predominantly azimuthal
motion (as opposed to radially inward or outward plasma flow following large-scale reconnection events).
We thus infer that the case presented here is a rather rare observation: an example of strong, narrow, fast
planetward flow, indicative of the occurrence of reconnection downtail of the spacecraft. We note,
however, that the associated SKR signature is a relatively common one, and thus, it is possible that this
type of event occurs more commonly than we can observe in situ. Perhaps the paucity of such in situ
observations is linked to the small amount of time that Cassini spends near the plasma sheet-lobe boundary.

4, Summary and Conclusions

In this paper we have presented a rare observation of strong planetward flow following a reconnection
episode in Saturn’s tail. The reconnection event involves a dipolarization of the field, the result of
reconnection at a site tailward of the spacecraft. The dipolarization precedes by slightly more than an hour
the occurrence of an SKR enhancement like those that have been previously associated with plasmoid
formation and release. Prior to the appearance of the dipolarization front at the spacecraft, the effect of
this reconnection is sensed through the appearance of strong planetward flows of H' ions (with speeds
of 600-1500 km/s), as well as planetward flow of energetic hydrogen and oxygen. In addition, beams of
field-aligned hydrogen ions flowing tailward were observed near the lobe boundary, presumably due to
ionospheric outflow related to reconnection-driven currents. The reconnection episode as inferred from
the planetward directional flow duration lasts on the order of ~1.5h, a significant fraction of a planetary
rotation. The continuing presence of energetic O* ions throughout the event demonstrates that this must
be a case of long-lasting Vasyliunas-type reconnection occurring beyond 32 Rs in the premidnight region,
perhaps indicating quasi-steady reconnection of the type suggested by Thomsen et al. [2013]. Because of
the persistent presence of O, we find little evidence for lobe involvement in the reconnection.
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