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1. Introduction 

The ability to produce functional assemblies of molecules and control their physical and chemical 

properties in the solution/solid state has found significant applications in biomedical engineering. 

In particular, the design and fabrication of novel biomaterials, via supramolecular chemistry 

approaches,[1] and innovative nano/micro fabrication strategies has facilitated the design of 

biocompatible materials with highly desirable properties. 

Materials in which the specific intra-/inter-molecular interactions of their components drive their 

assembly into hierarchical (and potentially functional) assemblies abound in nature (e.g. catalytic 

enzymes or mechanically strong structural proteins such as mussel byssus or silks), and offer 

inspiration for the supramolecular engineering of materials properties. Polymers incorporating 

such supramolecular organization are an emerging class of novel materials because they integrate 

the physicochemical (and in certain cases mechanical) properties present in conventional 

polymeric materials with dynamic reversibility originating from the reversibility of the intra-/inter-

molecular interactions at specific length scales. Consequently, the parameters that traditionally 

determine the properties of a polymer, such as chain length, crosslinking, chain dynamics, and 

chain conformation, can be reversibly adjusted in situ, leading to the development of stimuli 

responsive biomaterials or selectively active biochemistries. The ability to synthesise 

bioresponsive systems using polymer-based materials with supramolecular features has led to a 

surge in research interest directed towards their development as next generation biomaterials for 

drug delivery, medical device design and tissue engineering.  

Concurrently, the industrial model for fabrication of materials is undergoing a revolution 

facilitated through the development of advanced formulation processes and methodologies. In 

particular, significant advances in regenerative scaffold formation (i.e. as an artificial extracellular 

matrix) are emerging from the fields of additive manufacturing, bioprinting and nanolithographic 

fabrication. These approaches have synergistically facilitated the development of biomaterials by 

enabling biomimicry on novel length scales which may enhance their physicochemical 

properties[2]. Current processing techniques allow the generation of materials with micron to 

nanoscale architecture/topography, and offer the potential to pattern bioactive molecules with 

high spatial resolution. Encouragingly, the combination of next-generation methodologies with 

medical imaging techniques is helping to drive a personalised medicine approach towards 

biomaterial design. 

Here we review recent advances in functional assemblies for biomedical applications, with an 
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emphasis on novel approaches in the design of self-assembled, biomimetic and bioresponsive 

biomaterials for drug delivery and tissue regeneration. Advances in the use of DNA as a structural 

material for bioengineering are presented.  Moreover, the controlled self-assembly of peptides, 

proteins and polysaccharides into intrinsically biocompatible soft materials is discussed in terms of 

their supramolecular design and different applications. We further review the use of 

supramolecular assemblies of polymers  (biopolymers and shape memory polymers) for 

regenerative medicine applications. Finally, we discuss the prospects for using 2D and 3D printing 

technologies to fabricate biocompatible substrates and scaffolds.  

2 DNA assemblies 

Polynucleic acids such as DNA/RNA can self-assemble with high fidelity rendering them a powerful 

template for the organization and deposition of unique chemistries in high resolution at the 

nanometre scale. Although pristine DNA chemistries can be assembled with very high order, an 

area of research is emerging which focuses on supramolecular DNA assembly and exploiting DNA 

interactions to create highly-ordered chemical arrays. Specifically, DNA building blocks can be 

coupled with synthetic chemistries, polymers and nanostructures. Thus the approaches of 

supramolecular chemistry are augmented through the predictable and modular nature of DNA 

interactions.  

The chemical composition of DNA along with its highly specific base pairing rules endow it with a 

unique programmability inspired by the genetic code of life. The notion that DNA could be 

programmed to assume new structural motifs was first articulated by Seeman in 1982, with the 

introduction of branched DNA junctions that could be assembled via the ligation of double 

stranded DNA (dsDNA) oligomers with sticky ends (extensions to one of the strands that could 

hybridize with a complementary sequence on another appropriately designed dsDNA oligomer,[3] 

Figure 1A and 1B. Based on this approach, a variety of structures have been synthesized, including 

lattices,[4] cubes[5] and closed polyhedral.[6] 2D crystals of double crossover (DX) DNA have also 

been formed by sticky end ligation to form DNA tiles,[7] which can assemble into periodic 2D 

lattices comprising thousands of constituent tiles. Complex, aperiodic assemblies of DNA tiles can 

be formed by using a preassembled input DNA strand that encodes the required pattern 

information, around which other oligonucleotides assemble into specified tiles.[8] Aperiodic arrays 

can also be assembled algorithmically starting from a well-designed tile seed[9] in a form of 

computational assembly. In addition to 2D arrays, 3D DNA wireframe nanostructures,[10] as well as 

3D DNA crystals,[11] have also been synthesized by sticky end ligation, with some designs reaching 
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macroscopic dimensions.[12] Figure 1C and 1D shows several representative examples of DNA 

structural assemblies formed by sticky end cohesion. 

 

Figure 1. Programming DNA to assume new structural motifs. (A) Sticky end cohesion and ligation. (B) Double and 
triple crossover DNA structural motifs. (C,D) Two-dimensional arrays of DNA nanostructures formed by sticky end 
cohesion with associated AFM images of synthesized structures. Modified from N. C. Seeman and reproduced with 
permission of the publisher.[13] 

Even more complex DNA nanostructures became possible with the advent of DNA origami.[14] 

Formation of DNA origami involves the intricate folding (Figure 2A) of a single scaffold strand of 

viral DNA by approximately 200 short strands, called “staples,” that bind together specific 

sequences along the viral strands in a pre-programmed manner, resulting in the creation of the 

desired shapes (Figure 2B). DNA origami surpasses the tiles mentioned above in size and scale. 

Whereas the building blocks of the tiles contain about 100-500 nucleotide pairs, the DNA origami 

scaffold consists of about 8000 nucleotides (the staples are approximately 40 bases) [15] The result 

is that a single origami structure is approximately 100 nm on a side. Of course, for many 

applications, larger structures are required, and DNA origami can be made to self-assemble into 

arrays using sticky ends at selected sites on the edges of the origami. Linear,[16] crossing[17] and 

more arbitrary 2D networks[18] are possible using different hierarchical organization schemes. 

3D origami structures are also possible (Figure 2C), and are emerging as promising tool for both 

materials science and biological applications.[19] Hollow cubes or cages, formed by interconnecting 

multiple origami sheets using staple strands at their edges[20] can be opened or closed using an 

appropriate DNA “key”. Solid origami structures are formed by stacking double helix cylinders that 

comprise scaffold and staple strands into multiple layers.[21] Notably, these structures are formed 

in a one-pot reaction, as is planar origami. Different solid shapes (e.g., bricks, rods, crosses, nuts, 

etc.) can be built by modifying the size of the cylinders and the staples that connect them.[21] 
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Larger structures can be achieved by bridging between the solid building blocks using additional 

staple strands. Careful design of the cylinders can build a small degree of strain between adjacent 

layers, resulting in curved, solid origami structures with complex designs.[22, 23]  

 

Figure 2 Supramolecular DNA arrays formulated thought the DNA origami process. (A) DNA origami concept showing 
the stapling together of a viral strand of DNA with short oligomers (B) Gallery of origami shapes (C) Curved 3D DNA 
origami nanostructures. Modified from Seeman et al., Rothemund et al. and Han et al. and reproduced with 
permission of the publisher[14, 23, 24] 

The notion that DNA-based structures could be used as scaffolds for the assembly of biological[25] 

and non-biological materials was first articulated by Seeman in 1990.[26] 1D[27] and 2D[28] periodic 

arrays of inorganic materials, such as Au nanoparticles and semiconducting quantum dots[29], have 

been created using DX tiles. 2D DNA origami scaffolds have been the subject of intense study for 

this type of assembly, with demonstrations of assembly of homogeneous metallic 

nanoparticles,[30] quantum dots[31] and even carbon nanotubes[32]. The keys to this sort of 

decoration of the origami with non-biological materials are (a) the functionalization of the material 

with a biomolecule and (b) modification of the staple strands on the origami with a 

complementary linker. This has recently been exploited to assemble heterogeneous 

nanomaterials, including different size metallic nanoparticles and different aptamers which have 

been placed on the same origami scaffold using this approach with a spatial resolution of 

approximately 6 nm.[33]  
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Shortly after the first report of 2D DNA crystals,[7] such structures were further used to create 

arrays of DNA and protein molecules[34]. Interestingly, Koyfman et al have demonstrated the 

specific attachment of periodic 2D DNA arrays to cells using two different methods involving 

biotin-streptavidin and specific antibody-cell surface[35]. Via precise DNA origami design and 

through their controlled interaction with the cell surface, this approach paves the way to the 

engineering of cell/surface and cell/cell networks into microtissuses.  

Self-assembly of DNA has recently been identified as a powerful approach for targeted 

intracellular delivery of therapeutic payloads through the formulation of nanoparticulate 

carriers.[36, 37] Interestingly, DNA nanostructures can readily pass through the membrane barrier[38] 

and survive within cells from 24 up to 60 hours[39]. 1D DNA nanostructures exhibit cellular uptake 

[40], with rolling circle amplification-templated DNA nanotubes showing increased stability and the 

capability of entering human cervical cancer[41]. Cell internalization has also been quantified for 2D 

DNA origami[42]. Moreover, cell entry pathways of 3D DNA (tetrahedral) nanostructures have 

notably been investigated[43] and modulated via single-particle tracking.[44]. Additionally the 

stability of DNA nanostructures in tissue culture has been recently thoroughly investigated[45].   

A recent study by Sellner et al. reported on the DNA tile-assembly method to synthesise DNA-

based nanotubes as carrier systems for cytosine-phosphate-guanine (CpG) sequences in vivo. Local 

microinjection of DNA nanoconstructs in intact muscle tissue of healthy mice tissue were observed 

to accumulate intracellularly in resident macrophages. The inclusion of CpG sequences along the 

nanotube chemistry induced a strongly elevated immune response, particularly the recruitment of 

leukocytes from postcapillary venules to the tissue and nuclear translocation of p65, a subunit of 

the NF-kB transcription factor complex, which is commonly used as an indicator of NF-kB 

activation.[46] 3D DNA nanostructures have also been employed for intracellular delivery, allowing 

the transport of immunostimulatory oligonucleotides via the use of CpG functionalised DNA 

tetrahedra[47]. These functional nanostructures have shown the ability to enter macrophage-like 

RAW264.7 cells without the aid of transfection agents. Following their cellular uptake, 

downstream pathways were activated thanks to the presence of the CpG motifs, inducing 

immunostimulatory effects [47]. 

Employing a different apporach, Li et al. explored Y-shaped monomers with three sticky ends, Y-

shaped monomers with one sticky end, and DNA linkers with two sticky ends as building blocks for 

size-controllable and stimuli-responsive DNA nanohydrogels and investigated these DNA hydrogels 

as effective targeted gene delivery vectors.[48] The authors concluded that these hydrogels were 
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effective for targeted and stimuli-responsive gene therapy, noting that cancer therapy strongly 

inhibited cell proliferation and migration in target A549 cells.  

DNA self-assembly has also been employed to develop a nuclear-uptake nanodrug system carried 

by a cell-targeted near-infrared (NIR)-responsive nanotruck for drug-resistant cancer therapy. Via 

DNA hybridization, small drug-loaded gold nanoparticles were self-assembled on the surface of a 

silver-gold nanorod which was also modified with a cell type-specific internalizing aptamer. By 

using this nanodrug delivery system, anticancer drugs were efficiently accumulated in the nuclei to 

effectively kill cancer cells.[37] 

Aside from delivery [38, 49] complementary to the efforts to assemble functional materials on DNA 

origami is work aimed at controlling the placement of the origami on surfaces.[50] This is driven by 

the fact that most of the assembly on origami to date is oriented toward applications in 

nanoelectronics and plasmonics. Lipid-bilayer-anchored DNA origami structures can be assembled 

into prescribed superstructures in a programmed manner. The reported DNA-based artificial 

system can mimic the dynamic assembly of membrane-associated protein clusters that play an 

essential role in deformation of cellular membranes.[51] 

By and large, the spatial targeting and multivalent properties[33] of DNA nanostructures are 

unrivaled by existing techniques. This makes them ideal nanoplatforms for biological 

applications[25]. DNA nanostructures have indeed been employed to transport molecular payloads 

to cells[52], for cancer-drug delivery[53], to map pH gradients along different cellular entry 

pathways[54], as synthetic vaccine platforms[55], to deliver siRNAs into cells to silence target 

genes[56], as intracellular logic sensors[57], and as biological “computing platforms” in living 

animals[58]. 

3. Poly(amino acid) assemblies 

3.1. Peptide assemblies 

The design and synthesis of peptides that self-assemble controllably into ordered nanostructures 

is a powerful approach for the development of soft biomaterials[59]. Moieties capable of mimicking 

the natural ECM environment can be employed both in fundamental studies of cell-matrix 

interactions, and in the development of biomimetic materials for regenerative medicine and tissue 

engineering that have prospects for clinical translation[60]. 
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In this context, peptides are ideal building blocks because of their intrinsic biocompatibility and 

the multitude of strategies that can be adopted to fabricate novel materials via self-assembly.[61] 

Various intermolecular interactions have been employed in the design of peptide-based self-

assembling materials, including hydrogen bonding, electrostatic interactions, as well as 

hydrophobic interactions (between aliphatic residues) and π-π stacking (between aromatic 

residues).[62] Peptide materials have been designed to form supramolecular nanostructures 

presenting biochemical and physicochemical cues that control cell behaviour.[63, 64, 65] The 

strategies employed have ranged from biologically inspired ones (e.g. α-helix coils, β-sheets, 

collagen), to novel approaches (cyclic peptides and amphiphiles).[66] Different shapes, such as 

micelles, vesicles and nanofibres, have been obtained.[67] Moreover, the 3D spatial distribution of 

chemical moieties has been controlled by changing the peptide conformation to more accurately 

mimic the natural biochemical cues of the ECM-cell interface.[68, 69]  

Fibrous supramolecular nanostructures formed via peptide self-assembly have been designed to 

display cell-binding epitopes. β-sheet fibril scaffolds are typically obtained by alternating 

polar/non-polar amino acid sequences, while two antiparallel β-strands can be joined by a loop to 

form β-hairpins. Additionally, β-helices can associate with each other to form coiled-coils. Triple 

helical assembly that mimic collagen can also be obtained with Pro-Hyp-Gly peptides units.[64] 

Interestingly, De Santis et al. have designed a symmetrical sequence template comprising two 

generic α-helical modules, N- and C-terminal, with the same number of heptads (structural motifs 

that consist of a repeating pattern of seven amino acids). They studied the formation of 

supramolecular fibres varying the total number of heptads, and promoted staggered coiled-coil 

assembly via oppositely charged heptads.[70] Different assembly patterns resulted from the 

synergistic interplay between peptide length, net charge and folding, and supramolecular 

cooperativity.[70] Moreover, the same research group has reported a self-assembling peptide gel 

that supports mammalian cell proliferation and resists bacterial colonization. These fibrous 

networks proved to be attractive biomimetic architectural models for different extracellular 

matrices.[71]  

Nanofibres formed via self-assembly of peptide amphiphiles (PAs), have also generated great 

interest in the field of regenerative medicine.[69] PAs tend to contain alkyl tails covalently attached 

to the end of a peptide chain, encouraging their self-assembly into anisotropic nanostructures that 

can chemically and mechanically interact with cells. PA nanofibres presenting a neurite-promoting 

laminin epitope IKVAV were shown to induce selective differentiation of neural progenitor cells.[72] 
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The direct injection of these peptide amphiphile solutions into rat spinal cords was further shown 

to trigger the localized self-assembly of the aforementioned 3D scaffold and promote axon 

elongation after injury.[73] More recently, Mammadov et al. developed PA nanofibres containing 

laminin-derived peptide signals along with a heparan-sulfate-mimicking group.[74] These scaffolds 

significantly promoted neurite outgrowth by PC-12 cells and were shown to be effective even in 

the presence of inhibitory components of the central nervous system. 

Interestingly, self-assembling peptides carrying a di-glycine linker and the functional motifs 

SKPPGTSS, PFSSTKT and RGD, were recently reported to act as nanofibre-based 3D tissue culturing 

systems for neural cells by Koutsopoulos and Zhang.[75] The authors of this work showed that 

neural stem cells present marked differentiation into projection neurons, astrocytes and 

oligodendrocytes when encapsulated in the aforementioned hydrogel matrices. Moreover, the 

long-term (up to 5 months) culturing in serum-free medium achievable with this system, can allow 

for more realistic biological studies of neural cells in a biomimetic 3D environment (Figure 3). 

Figure 3 Molecular models of a self-assembling peptide ac-(RADA)4-CONH2 and of a modified self-assembling peptide 
carrying a di-glycine linker and the functional motifs SKPPGTSS, PFSSTKT and RGDS. Color code: carbon, grey; oxygen, 
red; nitrogen, blue; hydrogen, white. (B) Molecular model of the self-assembling peptide and of the nanofiber formed 
upon assembly of the peptide monomers. (C) SEM picture of the peptide nanofibers inside the hydrogel. (D) Picture of 
the peptide hydrogel. (E-F) Microscopy image volume representation of neural cells encapsulated in the peptide 
hydrogel. Images were aquiredf at 2 week culture in which nestin(+) neural progenitors, cells (green) and Tuj1(+) 
neurons (red) appear at different z-planes; Scale bar is 200 μm. Modified from Koutsopoulos et al and reproduced 
with permission of the publisher.[75] 

Ionic self-complementary peptides and PAs have also been developed as β-sheet forming systems 

that assemble into nanofibres and 3D scaffolds for nerve repair.[76] Very recently, Li et al. have 

shown that aligned RGDS-PA gels are able to satisfy the requirements of mimicry of native nerve 
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ultrastructure and bioactivity.[77] Schwann cell proliferation, attachment, and alignment were 

demonstrated employing the aforementioned biomaterial. Remarkably, in vivo testing revealed 

the recovery of motor and sensory function in animals treated with conduit/PA constructs.[77] A 

different study by Angeloni et al. showed that sonic hedgehog (SHH) treatment of cavernous 

nerves via aligned PAs nano-fibres significantly improves erectile function.[78] The use of (C16)-

V2A2E2-(NH2) PA monodomain noodle gels was shown to promote nerve regeneration and 

suppress penile apoptosis.[78] This study demonstrated the important role of SHH in the 

regeneration of CN in prostatectomy and diabetic patients, potentially paving the way to 

important clinical applications. 

Recent reviews have also discussed the application of peptide nanofibres in bone regeneration 

and biomineralization.[64, 65] Notably a 3D self-assembling leucine zipper (LZ) hydrogel that was 

synthesized and functionalized with RGD domains. In vivo implantation of the LZ scaffolds in a 

mouse model showed them to be relatively non-immunogenic (i.e., absence of a foreign body 

reaction to the scaffold), while experiments with human marrow showed the biological property 

of the hydrogel to promote cell attachment/proliferation and its ability to support 

neovascularization.[79] 

Additionally, self-assembling peptide scaffolds have been successfully employed for cartilage 

tissue engineering. Peptide-based nanofiber networks highly resembling natural extracellular 

matrixes have been shown the ability to regenerate cartilage tissue both in vitro and in vivo.[80] 

Peptide amphiphiles designed to form nanofibres and display a high density of binding epitopes to 

transforming growth factor β-1 (TGFβ-1), have been employed for articular cartilage 

regeneration.[81] In vitro experiments indicated that these materials promote the chondrogenic 

differentiation of human mesenchymal stem cells (MSCs).  Additionally, these epitope-modified 

supramolecular nanofibres enhanced the regenerative potential of microfracture-treated chondral 

defects in a rabbit model.  

Angiogenesis, the process of new blood vessel generation, plays an important role in tissue growth 

and regeneration. Peptide-based assemblies have been employed to enhance or inhibit this 

process.[64] PA-based nanofilaments have been designed to display on their surfaces a VEGF-

mimetic peptide, because VEGF is one of the most potent angiogenic signaling proteins.[82] 

Proangiogenic behaviour in endothelial cells was demonstrated in vitro, while in vivo experiments 

showed that the nanofibres increased tissue perfusion, functional recovery, limb salvage, and 

treadmill endurance. In a more recent study, the same research group has discussed the synthesis 
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and the anti-angiogenic activity, both in vitro and in vivo, of supramolecular nanostructures 

formed via the self-assembly of small PAs containing the G-helix motif of maspin.[83] In vitro cell 

assays demonstrated that these short nanofibres inhibit endothelial cell motility via G-helix 

mediated pathways, and block tubulogenesis at sub-micromolar concentrations. In vivo studies 

further showed evidence of the nanostructures’ effectiveness at inhibiting angiogenesis in the 

chicken embryo chorioallantois. Notably, Kumar et al. have reported multidomain peptide 

sequences (MDPs) conjugated with a VEGF mimic to promote angiogenesis. The MDPs consisted of 

terminally charged residues that flank alternating hydrophilic and hydrophobic residues and 

associate into bilayers of antiparallel β-sheets. Kumar et al. have synthesized MDPs with 

KKSLSLSLSLSLSLSLKK as the base peptide sequence, modified with a VEGF mimic. Nanofibrous 

hydrogels of these peptides were shown to be cytocompatible, and were delivered by simple 

syringe injection demonstrating excellent tissue integration. The hydrogels were rapidly infiltrated 

by hematopoietic and mesenchymal cells forming a robust vascular network.[84]  

Anti-inflammatory peptide amphiphiles have also been used in tissue regeneration, and exhibited 

potent angiogenic responses, limited tissue collagen accumulation, and the modulation of 

macrophage response in regenerated bladder tissue.[85] Additionally, heparin-binding PAs (HBPA) 

have been designed to release growth factors for both angiogenesis and cardiovascular disease.[86] 

Heparin is a natural biopolymer known to interact with different growth factors. Self-assembling 

peptide nanofibres presenting heparin were shown to bind paracrine factors. Moreover, 

significant preservation of haemodynamic function was observed when these nanomaterials were 

injected into the heart following coronary artery ligation in a mouse ischaemia-reperfusion model 

of acute myocardial infarction.[87] 

Interestingly, cell fate can be controlled via the proper design of self-assembling peptide-based 

nanostructures. Kuang et al. have demonstrated that hydrogels/nanonets of self-assembled 

aromatic tripeptide amphiphiles can selectively form around the pericellular space of cancer cells 

that overexpress phosphatases and thereby induce apoptosis of the cancer cells.[88] Differently, 

Stupp and et al. have systematically studied the influence of hydrogen bonding, hydrophobic 

domains and charge of PA materials on their interactions with cells.[89] They demonstrated that 

cell viability is affected by intermolecular interactions: the disruption of the cell membrane can be 

induced by the interaction of less cohesive assemblies with the lipid membrane and materials that 

induce cell death can create a barrier to cell migration in 3D cultures.[89]  
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In order to combine the intrinsic biocompatibility and nanoscale control of peptide assemblies 

with the stability and processability of synthetic polymers, different studies have exploited co-

assembly strategies between polymers and peptides for scaffold fabrication in tissue engineering. 

Indeed, peptide-polymer conjugates have been co-electrospun with a host polymer to fabricate 

peptide gradient scaffolds.[90] The peptide-polymer conjugate system specifically and dynamically 

bind glycosaminoglycans secreted by cells.  Employing a different approach, Capito et al. have 

reported on the formation of macroscopic sacs membranes used to encapsulate cells. These sacs 

were obtained via the self-assembly of a charged megadalton polymer and peptide amphililes.[91] 

Various membranes were further fabricated via the selective assembly of hyaluronic acid with 

positively charged PA containing anti-cancer PAs bearing a (KLAKLAK)2 peptide sequence. In this 

way ad hoc designed membranes were able to be used as reservoirs for sustained release of 

cytotoxicity (upon enzymatic degradation).[92] In a similar way, Mendes et al. used a positively 

charged multidomain peptide, with and without the arginine-glycine-aspartic acid-serine (RGDS) 

cell-adhesive peptide sequence, and a high molecular weight negatively charged biopolymer, to 

assemble bioactive membranes.[93] A photolithography patterning process was then used for the 

fabrication of membranes displaying posts, holes, channels and pores ranging from 10 to 20 μm. 

Cell adhesion, spreading, and morphology were reported to be significantly affected by the surface 

topographical patterns and the different concentrations of RGDS of the membranes.[93] 

In this context, a more recent study has further highlighted the ability of modulating certain 

cellular activities through matrix engineering. Ferreira et al. have indeed designed a PA able to 

self-assemble with hyaluronan into membranes containing a proteolytic domain sensitive to 

matrix metalloproteinase-1.[94] This study suggests that membranes that include the matrix 

metalloproteinase-1 cleavable sequence stimulate protease secretion, leading to cell-mediated 

degradation processes.[94] 

3.2. Protein assemblies 

Proteins have evolved in biology for task-specific roles (catalysis, energy transfer, structure). 

Processes such as catalysis and energy transfer are commonly undertaken by proteins with well-

defined structures in specific locations in biological pathways, whereas the proteins responsible 

for structural roles are either structures formed from well-defined numbers of individual protein 

building blocks (e.g. viral capsids) or assemblies of ill-defined numbers of individual protein 

building blocks (e.g. cytoskeletal actin). Proteins can be isolated from a variety of sources, 

including mammals (e.g. collagens, elastins, fibronectins, keratins and laminins), non-mammals 
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(e.g. mussel byssus, silkworm/spider silks), plants (e.g. soy or zein) and recombinamers (genetically 

engineered recombinant proteins typically produced by fermentation in bacteria or yeast), and are 

widely used in drug delivery and tissue engineering.[95] 

Researchers have made incredible progress in the use of viral capsids as self-assembling templates 

for new materials with potential for application in nanotechnology (e.g. light harvesting, 

photocatalysis, biomedicine) [96] . Virus-based or virus-inspired assemblies represent drug and 

nucleic acid delivery devices in which the biodistribution of the therapeutic agent can be 

controlled by ligand-cell receptor interactions, which may markedly enhance the effectiveness of 

the drug (and ideally reduce side effects associated with the toxicity of the therapeutic), 

encouraging the development of virus-like protein assemblies/cages exhibiting viral functions such 

as cell recognition/penetration and compartment-aimed payload delivery. Consequently, virus-

based or virus-inspired assemblies are a hot topic in the field of protein engineering drug 

delivery,[97, 98, 99] or indeed tissue engineering,[100] and various approaches to their safe 

manufacture and use are under investigation.[101] 

The natural role of viruses as vectors for DNA and RNA delivery inspired their use for the delivery 

of therapeutic DNA and RNA payloads in the field of gene therapy, now a multimillion dollar 

industry. Gene therapy was first used commercially in China for the treatment of certain cancers 

with Gendicine; thereafter, gene therapies were developed in Russia for the treatment of 

peripheral artery disease with Neovasculgen®, and the treatment of lipoprotein lipase deficiency 

with Glybera in Europe. Gene therapies are currently being investigated for a variety of conditions, 

including haemophilia, lymphocytic leukemia, multiple myeloma and Parkinson’s disease, and we 

expect to see many more clinically translated gene therapies in coming years. 

It is noteworthy that the viral payload need not necessarily be DNA or RNA, and the payload could 

instead be a low [98, 99] or high molecular weight[102] therapeutic. Indeed, the delivery of low 

molecular weight therapeutics such as porphyrins  (capable of generating singlet oxygen upon 

illumination) facilitates the application of such nanoscale assemblies for photodynamic therapy for 

the treatment of cancers or pathogens[103]. Likewise, it is possible to deliver drugs to specific 

tissues (e.g. liver[104], colon[105] ) including tissues that are typically challenging to deliver drugs to 

(e.g. across the blood-brain barrier [106]), highlighting their prospects for use as theranostic agents 

(i.e. agents capable of diagnosis of a condition and its treatment)[107] [108]. 

Furthermore, viruses and virus-like assemblies can be repurposed for tissue engineering 

applications. Indeed, two-and three-dimensional scaffolds based on such assemblies can be 
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employed as an artificial ECM capable of regulating cellular functions as reviewed by Zhao and et 

al.[100] Such scaffolds are particularly interesting as viruses such as Tobacco mosaic virus has been 

shown to have low immunogenicity towards mammals (e.g. mice) [109]. 

Biomaterials based on other proteins are incredibly popular biomaterials; their popularity stems 

from their ease of processing into various materials morphologies (e.g. fibers, films, foams, gels or 

particulates), the structural diversity of the proteins available (both from natural and recombinant 

sources) which yields materials with highly tunable chemical, mechanical and topographical 

properties. A comprehensive overview is beyond the scope of this review as the literature is even 

vaster than that for self-assembling peptides, therefore we direct the reader towards a selection 

of reviews [[110, 111]. Clearly, when contemplating preparing non-viral protein-based biomaterials 

the use of proteins isolated from the extracellular matrix (collagen, elastin, fibronectin, laminin) is 

popular, in part because we may be able to use a patient’s own ECM-derived proteins to make 

such materials which is particularly important in patients with weak immune systems. 

Consequently, there are abundant reports of extracellular matrix protein-based biomaterials 

either as isolated components, or as mixtures isolated after decellularization processes[112]. There 

are also interesting reports of ECM-mimetic recombinamers which yield proteins with improved 

solubilities than their natural counterparts (e.g. elastin-mimetic proteins) [113]; and indeed non-

mammalian proteins Soy[114], Zein[115], Mussel byssus[116], or silks from various species used for 

drug delivery[117] or tissue scaffolds (e.g. for invertebral discs[118] or bones[119]).  

4. Polysaccharide assemblies 

The abundant supply of natural polysaccharides such as alginate, cellulose, chitin or hyaluronic 

acid (mammalian ECM), and low/no immunogenic response to the polymers have made them 

popular components in drug delivery devices and tissue scaffolds.[120] 

Alginates are isolated from the cell walls of algae and are widely used components of bulk 

hydrogels.[121] Doxorubicin functionalized alginates have been encapsulated inside PA nanofibers 

functionalized for targeting the folate receptor, and such supramolecular assemblies were shown 

to display 6-fold higher cytotoxicity against MDA-MB-231 breast cancer cells compared to those 

without the targeting groups.[122] In-situ gelation of suspensions of MSCs in alginate triggered by 

Ca2+ ions has been reported to produce injectable hydrogels that enable chondrogenic 

differentiation of the MSCs in vitro, and when implanted in nude mice the hydrogels facilitated 

cartilage tissue regeneration.[123] 

While cellulose is incredibly important for building (wood) and printing (paper) industries its poor 
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solubility has made it challenging to work with, however the isolation of nanocellulose crystals 

(which are hierarchically ordered fibrillar assemblies of cellulose) has invigorated research in its 

application in biomedicine.[124] Supramolecular assemblies of nanocellulose fibrils decorated with 

β-cyclodextrins with pluronic polymers threaded through them were shown to form bulk 

hydrogels suitable for the delivery of doxorubicin.[125] Bulk hydrogels composed of nanocellulose 

fibrils embedded in gelatin-rich in-situ crosslinking gels were shown to induce the differentiation 

of HepaRG progenitor cells to organotypic 3D spheroids with bile duct compartments in the core 

that expressed hepatocyte markers, metabolic activity and vectorial molecular transport towards 

the bile duct compartment.[126] 

Chitin is isolated from the cell walls of fungi and animal exoskeletons, and once deacetylated 

yields cationic chitosan.[127] Supramolecular self-assembled nanocomplexes of oleyl-conjugated 

trimethyl chitosan, poly(γ-(4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-L-glutamate), oleyl-PEG-

mannose (OPM), and plasmid DNA encoding luciferase were capable of mannose receptor-

mediated endocytosis and permeable to the cellular and endosomal membranes of HepG-2 cells, 

thereby enabling non-viral gene delivery that outperforms commercial transfection reagents, 

including LPF2000, PEI, and jetPEI, by up to 2 orders of magnitude.[128] With a view towards 

engineering the soft component of bones, supramolecular gels formed from polyelectrolyte 

complexes of chitosan and ulvan were shown to be suitable for osteoblasts culture in vitro.[129] The 

removal of a 3D printed sacrificial template embedded in hydrogen bond crosslinked assemblies of 

nanochitosan fibrils yielded porous hydrogels (in which the pore structure was dictated by the 

structure of the sacrificial template) that were coated with gelatin and calcium phosphate and 

shown to support the differentiation of human MSCs towards osteogenic outcomes.[130] 

Hyaluronic acid is a natural non-sulfated glycosoaminoglycan that plays important roles in cell-cell 

interactions, cell adhesion and migration, and binds to the cell-surface glycoprotein CD44. CD44 is 

itself involved in a multitude of biological processes, is overexpressed in many tumours, and 

involved in cancer metastasis. This renders drug loaded supramolecular assemblies of hyaluronic 

acid interesting vehicles for cancer cell-targeted drug delivery;[131] for example decoration of 

hyaluronic acid with hydrophobic cholesterol moieties encouraged their self-assembly into 

micellar structures capable of delivering complexes of 2b RNA-binding protein and siRNA to 

murine melanoma (B16F10) cells and suppress the activity of the target RFP gene.[132] It would also 

be possible to fill the cavity left after excision of a tumour with a supramolecular hydrogel formed 

from mixtures of hyaluronic acid derivatives displaying curcurburitils and polyamine-decorated 
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hyaluronic acid derivatives. Such gels were able to support the growth and proliferation of NIH3T3 

mouse fibroblast cells, and were shown to be both rapidly integrated with no noticeable immune 

response after 7 days of implantation in nude mice.[133] Exciting subsequent studies incorporating 

engineered MSCs producing enhanced green fluorescence protein demonstrated that the MSCs 

remain alive in the gels and emit the fluorescence when implanted in mice for more than 60 days. 

Interestingly, the long-term expression of mutant interleukin-12 by the engineered MSCs within 

the supramolecular hydrogels results in effective inhibition of tumour growth with a significantly 

enhanced survival rate.[134] Moreover, these hydrogels also allow the differentiation of hMSCs to 

be temporally controlled by changing the release profiles of transforming growth factor-β3 and/or 

dexamethasone from the hydrolyzable dexamethasone displaying curcurburitil derivative (Dexa-

CB[6]), and have potential for cartilage regeneration (Figure 4).[135] 

 

Figure 4. Histological analysis of neocartilage formation in vivo by the differentiation of hMSCs in monoCB[6]/DAH-
HA hydrogels. Gels were prepared without and with free dexamethasone or Dexa-CB[6] in the absence and presence 
of TGF-β3 and analysis performed via staining with H&E, Alcian blue, and Safranin-O at 4 weeks. Modified from Jung et 
al. and reproduced with permission of the publisher.[135] 

 

5. Synthetic polymer assemblies 

5.1. Drug delivery and tissue scaffolds 

Monodisperse biopolymers such as DNA and proteins have inspired the development of synthetic 

polymers that are monodisperse (e.g. dendrimers)[98] or effectively monodisperse (e.g. block 

copolymers prepared via living polymerizations).[136] Such polymers can hierarchically assemble 
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into well-defined polymer assemblies in direct analogy to the biopolymers that inspired their 

creation.[137, 138] Well-defined polymer-based assemblies of this nature are relatively new, and the 

development for biomedical applications has focused primarily on drug delivery systems.[138, 139] 

However, we believe that functional supramolecular assemblies of polymers show incredible 

promise for both drug delivery[140] and tissue engineering[141] as we highlight below. Some systems 

self-assemble because of their surfactant-like properties, whereas others require the addition of 

one or more components to induce self-assembly, and cyclodextrins (which form inclusion 

complexes with the other component(s)) are a popular means of achieving this.[142] 

Polyaspartic acid residues are found in natural calcium-based biominerals,[143, 144] and polyaspartic 

acid-base biomaterials biomineralized with calcium phosphate have been shown to support the 

adhesion and proliferation of MSCs, and such materials may find application in bone tissue 

engineering.[143] Supramolecular assemblies of β-cyclodextrin functionalized poly(aspartic acid) 

derivatives with adamantane functionalized RGD peptides and adamantane functionalized 

camptothecin, and in vitro studies showed them to be potent delivery vehicles for camptothecin 

to COS 7 and HeLa cells.[145] Supramolecular vesicular aggregates composed of folate decorated 

poly(aspartic acid) derivatives (polyaspartyl-hydrazide copolymers) that were capable of delivering 

low molecular weight gemcitabine to cancer cell lines, with a significantly higher uptake by MCF-7 

cells which over-express the folate receptor than BxPC-3 cells which do not over-express this 

receptor; their pharmacokinetics showed that they were removed from the circulatory system at a 

slower rate than the native drug, and prolonged gemcitabine plasma concentration was observed 

for up to 16 hours.[146] Likewise, supramolecular assemblies based on the FDA approved 

polycaprolactone[147] have been investigated for their potential in drug delivery; and 

supramolecular hydrogels prepared from α-cyclodextrin-based inclusion complexes with diblock 

copolymers (polycaprolactone-co-polyethyleneglycol) grafted with chitooligosaccharides were 

capable of sustained release of a model high molecular weight drug (a protein, bovine serum 

albumin).[148] Further, hydrogels composed of electroactive α-cyclodextrin complexes of 

polyethyleneglycol derivatives terminated with electroactive aniline oligomers were shown to 

facilitate the electrical stimulation (a square wave, frequency of 100 Hz, 50% duty cycle, and 

electrical potential of 0.5 V were applied for 0.5 hours every day) of rat cardiomyoblast (HC92) 

cells residing therein which promoted their proliferation relative to non-stimulated controls.[149] 

Meijer and et al. have produced some of the most exciting work in this field, and developing 

supramolecular materials based on polymers displaying quadruple hydrogen-bonding ureido-
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pyrimidinone (UPy) moieties.[150] Indeed, oligocaprolactones terminated with UPy moieties were 

shown to be processable into a variety of biomedically relevant materials morphologies including 

films, fibers, and 3D printed foams.[150] These materials supported the adhesion and proliferation 

of fibroblasts in vitro, and when implanted in rats, certain formulations showed evidence of 

vascularization after 5 days, with relatively minimal immunogenicity.[150, 151] An interesting study of 

supramolecular polymers formed from poly(caprolactone) derivatives terminated with quadruple 

hydrogen-bonding ureido-pyrimidinone moieties and hydroxyapatite nanoparticles functionalized 

with ureido-pyrimidinone moieties, reported their ability to support the adhesion and 

proliferation of MSCs, with a view to their use as bone tissue scaffolds.[152] Moreover, hydrogels 

formed from ureidopyrimidinone (UPy) terminated poly(ethylene glyocol) have been shown to be 

effective drug delivery vehicles, enabling the delivery of protein drugs to kidneys with incredibly 

low inflammation (14 to 23 times less endotoxin than the value permitted by the FDA);[153] and 

analogous gels enabled the delivery of growth factors to kidneys (Figure 5).[154]

 

Figure 5 A Modular Injectable Supramolecular Delivery System: In-vivo growth factor delivery in the kidney. (A) 
After 7 days, the effect of BMP7 delivery under the renal capsule from the hydrogels was studied in the kidney cortex 
(C). The hydrogel was eroded and a thick capsule was formed which is proposed to be composed of the kidney capsule 
(Kc), the fibrous capsule (Fc) and possible remnants of the hydrogel (H), indicated with (Kc +Fc (+H)). The kidney 
morphology was evaluated with a periodic acid Schiff base (PAS) staining. As references, the contralateral kidney 
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(contral.) and the kidney with only saline (ctrl) are shown. The presence of myofibroblasts in the renal cortex was 
evaluated with an α-smooth muscle actin (α-SMA) staining. All scale bars represent 100 μm. (B) Schematic 
representation of the cortex at the site of implantation after 7 days. Morphometry was used to quantify the presence 
of myofibroblasts in the renal cortex using the α-SMA staining. Modified from Dankers et al. and reproduced with 
permission of the publisher.[154] 

5.2. Smart biomedical devices using shape-memory polymers (SMPs) 

Shape-memory polymers (SMPs) are able to memorize a macroscopic shape, exist in a temporary 

shape under specific conditions of temperature, stress and environmental stimuli, and then relax 

to the original permanent, stress-free condition;[155, 156] and SMPs have been used as functional 

textiles,[157] active aircraft equipment,[158] interactive electronic apparatuses,[159] and adaptive 

biomedical devices.[160, 161] 

SMPs are typically classified by the type of stimulus which elicits a physicochemical response (e.g. 

temperature,[162] solvation,[163] pH,[164] electrical fields,[165, 166] magnetic fields[167] or light); and as 

well as stimuli descriptors, SMPs can be further classified by their material properties, i.e. polymer 

crystallinity index, crosslinking profile, mechanism responsible for the shape-memory effect,[168] 

and to predict responsiveness the architecture of the polymer needs to be considered with 

respect to the presence of chemical/physical crosslinks, yielding thermoset or thermoplastic 

polymers, respectively.[169] Physically crosslinked polymers show reversible interaction, and can be 

either amorphous or semicrystalline (i.e. the transition temperature is either a glass transition 

temperature (Tg), or a melting point (Tm)[169-171] ), however, the covalent bonds present in 

thermoplastic polymers connecting switching components can be difficult to reverse. Moreover, 

the shape-memory effect of polymer systems are attributed to the microphase separation of the 

net-points, which depends on the molecular weight and composition of the crosslinked 

segments.[170] Based on the nature of the net-point and switching components, thermally 

activated SMPs can be categorized into four main groups:[172] 1) physically crosslinked net-points 

with amorphous molecular switches; 2) physically crosslinked net-points with semicrystalline 

molecular switches; 3) chemically crosslinked net-points with amorphous molecular switches; 4) 

chemically crosslinked net-points with semicrystalline molecular switches.[171] The first two groups 

are thermoplastics and the last two are thermosetting SMPs,[173] examples of which are depicted 

in Figure 6. 
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Figure 6. Schematic of thermoplastic and thermosetting polymer networks. Modified from Liu et al. and reproduced 
with permission of the publisher.[174] 

In thermoplastic SMPs, hard segments are responsible for chain-chain interactions via hydrogen 

bonding or dipole-dipole interactions. Good moldability, high modulus below Ttrans and high 

deformability are some advantages of physically crosslinked block copolymers.[171] However, the 

molecular weight of the polymer chains needs to be high enough for entanglement or phase 

separation.[171] Certain polyurethanes (PU) show promise as SMPs and have many advantages due 

to their excellent shape-memory properties and biocompatibility.[169] PUs include urethane bonds 

(carbamates) generated from the reaction of diisocyanates with glycol chain extenders as hard 

segments and suitably chosen diisocyanates, commonly polyether chains, as soft segments.[175] 

Shape-memory properties, transition temperature range and melting point of these smart 

polymers can be controlled by changing the soft to hard segment ratio.[176] 

Chemically crosslinked SMPs have higher stiffness and shape-memory effects, high transition 

temperature and environmental durability in comparison with thermoplastics, [174] and are 

prepared either by adding a multi-functional crosslinker during the polymerization or in the post 

curing process.[177] The shape-memory phenomena in SMPs appear via changing of the chemical 

structure, the degree of crosslinking and the fraction of amorphous and crystalline domains.[178] 

Instead of direct heating, thermo-responsive polymers can be triggered to show shape-memory 

function by applying electricity, magnetism, light, microwave or moisture.[165, 179] With direct 

triggering, both programming and recovery stages are possible; however, indirect stimuli work 

only during the recovery process making use of another stimulus necessary for the temporary 

fixation. Generally, indirect stimuli include water, electric current and magnetic field; whereas 

light can considered as either a direct or indirect stimulus.[180] In order to enhance the response of 

SMPs, multiple stimuli can be applied simultaneously or shape changes can be triggered step-by-

step.[165, 181] 
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To exemplify the use of SMPs for biomedical devices, we highlight light-responsive systems,[182] 

that typically incorporate photo-cleavable units (e.g. cinnamic acid-based molecules) or 

photoisoimerizable units (e.g. azobenzenes)[180] as depicted in Figure 7. Photo-crosslinkable sites 

in polymer networks respond to the light of wavelength λ1 and the temporary shape (Figure 4-c) is 

stable until the polymer is exposed to an appropriate stimulus light,[183] yielding light-actuated 

biodegradable SMPs that can be applied as smart sutures for wound closure.[184] 

 

Figure 7. Schematic of molecular mechanism of photo activated SMP (a) Deforming polymer by applying stress, (b) 
photo-fixing with light of wavelength λ1, (c) Unloading external stress, (d) photo-cleaving by exposing to light of 
wavelength λ2. 

 

Interest in this field has increased considerably, after the commercial success of SMP products as 

drug delivery systems and medical devices for minimally invasive surgery has been growing. The 

main application of these smart materials are listed in Table 1. Clearly, changing the chemistry of 

SMPs in order to modify their biocompatibility, strength, shape recovery and biodegradability are 

particularly important areas for future research. 
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Table 1. Applications of shape-memory polymers in regenerative medicine. 

Reference Material Application 

[185] 

[155] 

[156] 

[157] 

PCG  

PCL  

PLGA  

PLGA 

Drug delivery 

158[160, 186, ] PU Clot removal/ 

Aneurysm 

187[] 

 

168[] 

Oligo(caprolactone)- diol + 

oligo(dioxaxonoligo(dioxaxone) 

+ diisocyanates 

Styrene-butadiene + PCL 

Suture 

170[188, ] 

189[] 

190[] 

PU MM5520 

PEG + PCL 

Crosslinked chitosan+ ethylene 

glycol diglycidyl ether 

Block co-polymers PCTBV 

Stents 

172[173, ] PGD 

 PCLDMA 

Tissue engineering 

scaffolds 

 

6. Future Perspectives 

The development of materials for drug delivery and tissue engineering is an exciting 

multidisciplinary field. The focus of research is beginning to shift from bioinert materials (e.g. 

gold/mercury amalgam in teeth, titanium or polymethylmethacrylates in bone) towards 

biomimetic biomaterials, naturally focusing on composite materials produced from hierarchically 

structured supramolecular assemblies. Interesting examples of drug delivery systems and tissue 

scaffolds have been produced from these materials, and show promise not only in vitro, but in 

vivo. New advances in both the understanding of self-organization and the control of matter at the 
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nanoscale, are bridging the gap between materials and life sciences. In particular, stimuli-

responsive and chemically dynamic materials[191] show great promise for the advancement of this 

field of study and for applications in regenerative medicine. 

In addition, while the use of 3D printing technologies for biomedical engineering is still in its 

nascent stages,[192] we believe that such technologies have great potential for manufacturing the 

next generation of biomaterials with topographical information on length scales above those 

currently manageable with supramolecular chemistry alone. This is particularly important because 

cells respond to topographical cues (i.e. information stored in the topography of the surface that 

they are interfacing with, particularly as regards cell adhesion, orientation, and migration.[193] 

Moreover, 3-dimensional (3D) cell culture offers a more realistic micro- and local-environment 

than 2-dimensional cell culture paradigms.[194] An important factor in the production of working 

tissue engineering scaffolds is the possibility of a reproducible and controlled method of micro- 

and sub-micro structuring. A versatile class of the scaffold production techniques which enable the 

fabrication of tailor made structures directly from computer data via Computer Aided Design / 

Computer Aided Manufacturing (CAD/CAM), are laser-based Additive Manufacturing (AM) 

fabrication techniques[195-197]. A number of them have been implemented and commercialized, 

such as Laser-assisted Bioprinting (LaB), selective laser sintering (SLS), stereolithography (SL) and 

Direct Laser Writing (DLW) by Multiphoton Polymerization (MPP).  

Laser-assisted Bioprinting (LaB)[198, 199, 200] is based on laser-induced forward transfer (LIFT), i.e. the 

selective forward ablation and deposition of materials using lasers. LaB offers the possibility of 

printing patterns with a high spatial resolution from a wide range of materials in the solid or liquid 

state. Here, a laser pulse is focused on a thin film of the material to be transferred (the bio-ink, 

which can be biomaterials, cells, biomolecules) through a transparent support (Figure 8A). A small 

fraction of the film is transferred to a receptor substrate that is placed parallel to the film-support 

system, a few microns away.[201] The volume of the material transferred will depend on the optical 

properties of the bio-ink in respect to the laser properties (wavelength, pulse duration). If the 

biomaterial is transparent to the laser wavelength, then an intermediate, heat absorbing layer 

might be needed; usually a thin film of metal such as Au, Cr, Ti, Ag, or a photo-decomposing 

volatile polymer (e.g. triazene).[200] An almost infinite number of materials can be transferred using 

LaB, including hydrogels,[202] biomolecules,[203] and living cells,[199, 204] with minimal effect in the 

materials properties. Importantly, it was demonstrated that it could be used to make 3D 

structures, such as capillary patterns for vascular engineering,[205] a cardiac patch which included 
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MSCs and endothelial cells,[206] and skin;[207] and moreover, it is the only laser-based AM technique 

able to directly print biomaterials and cells simultaneously. 

Differently, SLS employs a high power laser to sinter layers of material in powder form in order to 

build 3D structures as depicted in Figure 8B. SLS has been extensively used to create replication 

masters for biomedical implants;[208] hard scaffolds for bone and cartilage tissue engineering,[209] 

often employing mixtures of poly--caprolactone (Figure 8C and 8D) with calcium phosphates to 

more accurately mimic bone;[210] and for soft tissue engineering it has been used to prepare poly-

-caprolactone-based cardiac[211] tissue scaffolds.  

 

Figure 8 Schematic of laser assisted bioprinting (LaB) and selective laser melting systems (A) LaB offers the 
possibility of printing patterns with a high spatial resolution from a wide range of materials in the solid or liquid state. 
Here, a laser pulse is focused on a thin film of the bio-ink. A small fraction of the film is transferred to a receptor 
substrate that is placed parallel to the film-support system, a few microns away. (B) Selective laser melting systems 
employ a high power laser to sinter layers of material in powder form, in order to build 3D structures in a sequential 
manner. (C,D) High and low magnification SEM images of a poly-ɛ-caprolactone scaffolds made using SLS for cardiac 
regeneration. Modified from Yeong et al. and reproduced with permission of the publisher.[212] 

 

SLA employs a UV laser to polymerize UV-curable liquid resin precursors[213] layer by layer[214] with 

either commercially available or custom-made apparatuses,[214, 215] using UV-curable derivatives of 
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poly(propylene fumarate),[216] polylactide,[217] poly-ɛ-caprolactone,[218] etc.[219] and it has been 

used to prepare soft tissue scaffolds for aortic valves,[220] microvascular networks,[221] and 

trachea.[222] Current limitations of SLA are the resolution and availability of materials which are 

photostructurable, biocompatible and biodegradable, which are areas for future research.  

Interestingly, Direct Laser Writing (DLW) by Multi-Photon Polymerization (MPP), as depicted in 

Figure 9A, allows the construction of structures with sub-100 nm resolution,[197, 223] albeit at the 

expense of writing speed which has limited the size of the constructs prepared by DLW to small 

scale cell studies, as opposed to whole organ printing.[195] A variety of materials can be employed 

to make hard, soft and even composite materials,[224] including polymers and proteins as 

pioneered by Campagnola and et al. with bovine serum albumin (BSA), fibrogen, fibronectin, and 

collagen.[225] Subsequently structures have been printed using biopolymers such as gelatin[226]  and 

hyaluronic acid,[227] or synthetic polymers polycaprolactone,[228] or polylactide (Figure 9B).[229, 230] 

Moreover, it is possible to use DLW/MLP to print within another structure, as exemplified by 

printing proteins inside a hydrogel for neural cell guidance,[231] and excitingly to encapsulate a live 

C-elegans worm in a protein-based hydrogel.[232]  

 

Figure 9 Direct Laser Writing by Multiphoton Polymerization (A) Scaffolds or device morphology is delineated via 
computer aided design software. These designs are transferred into command signals to control a beam of a sub-
picosecond length pulse laser is focused inside the volume of a transparent photosensitive material, causing it to 
absorb two or more photons and polymerize locally. (B) PC-12 pheochromocytoma cells growing on polylactide 
structures fabricated via direct laser writing by multiphoton polymerization. Modified from Melissinaki et al. and 
reproduced with permission of the publisher.[229] 

In order to achieve sub-100 nm spatial resolution, different patterning approaches have been 

employed in recent years.[233] Electron beam (e-beam) lithography[234] has been for example used 

for patterning proteins[235] and DNA[236] with high fidelity. E-beam uses high-energy (typically 

several tens of keV) electrons to ablate an electron-sensitive substrate (commonly known as a 
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resist), depicted in Figure 10A, with a resolution down to the sub-5 nm regime, Figure 10B. This 

versatile technique has been used to generate nanoscale patterns of a functional supramolecular 

“host” templates composed of diaminotriazine-functionalized polystyrene upon which thymine-

functionalized CdSe-ZnS QDs assemble via complementary hydrogen-bonding interactions (Figure 

11),[237] and other studies have focused on cell-substrate interactions that determine contact 

guidance,[238] adhesion[239] and differential cell behaviour[240] in response to the substrates. 

 

 

Figure 10. An overview of the Electron-beam system and system resolutions. (A) Electron beam column optics 
showing the main column and deflection components. (B) Pairs of HSQ nanodots at different inter-pair spacings 
(indicated in each panel). The dots are ~ 5 nm. Modified from Melissinaki et al. and reproduced with permission of the 
publisher.[241]  
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Figure 11 Electron-beam assisted fabrication of functional supramolecular arrays of thymine functionalised 
quantum dots. (A) Creation of nanopatterned PS-Triaz templates using Electron-beam lithography and 
functionalization of these features using the complementary Thy-QDs. (B) A “lock and key” disassembly of Thy-QDs 
using thymine acetate methyl ester with an N-methyl thymine acetate methyl ester control. (b) Fluorescent image of 
patterns after the assembly of Thy-QDs. (c) Fluorescent image after incubation in thymine acetate solution, showing 
the complete erasure of fluorescence. (d) Fluorescent image of after incubation in N-methylated thymine acetate 
solution showing no visible change in fluorescence. Modified from Subramani et al. and reproduced with permission 
of the publisher.[237] 

In addition to the aforoemtioned apporaches , nano- and micro-imprint lithography have been key 

technologies for investigating the role of topographical information on cell-substrate interactions. 

E-beam generated structures can be reliably transferred into biological and polymeric materials 

through imprint lithography which can be employed as a high-throughput technique for patterning 

of proteins[242], peptides[243], and synthetic polymers[240] with high fidelity. 

Imprinted arrays of topographical and biochemical patterns have been utilized extensively in vitro 

to modulate the phenotype[244] of primary cells and to enhance differentiation of stem cells 

towards osteogenic,[245] neurogenic,[246] adipogenic[247] and myogenic[248] lineages. Indeed, arrays 

of RGD-functionalized sub-10 nm metal dots were employed to study the role of the geometric 

organization of extracellular matrix (ECM) binding ligands on the adhesion and spreading of 

fibroblasts, identifying a minimum cell spreading adhesive unit that involves the clustering of at 

least 4 integrins within ∼60 nm.[249] Interestingly, stem cells have been shown to maintain their 

stem cell markers on patterned substrates for up to eight weeks in vitro culture without 
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phonetypic drift,[240] and even when cells were cultured in osteodifferentiation media only modest 

levels of osteogenic markers were noted. 

Although both lithographic and additive manufacturing techniques have generated an abundance 

of interesting studies performed in vitro, these technologies have yet to be effectively translated 

into clinical advances, and the concept of controlled morphological and topographical 

modification in tissue engineering has not produced compelling data to date in preclinical studies. 

However, we believe 3D printing technologies represent the future of manufacturing patient-

specific biomaterials for drug delivery and tissue engineering;[192, 250] and moreover that 

components produced by the field of synthetic biology (e.g. engineered proteins, DNA, polymer-

biomolecule hybrids) will play an increasingly large role as the building blocks of drug delivery 

devices and tissue scaffolds in the (near) future. [110, 251] 
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