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Abstract—For commercial Wireless Sensor Network (WSNs)
deployments it is necessary to estimate the network lifetime.
It must be possible before network deployment to determine
how long a network maintains operational before maintenance is
required and batteries have to be replaced. Unfortunately, node
lifetime is very dependent on the radio environment in which the
node is operated. As we will demonstrate in this paper the node
lifetime in a very busy radio environment can be up to 11 times
shorter than in a quiet environment. WSNs employ duty-cycled
communication protocols where receivers periodically sample
the channel to determine if it has to remain active to receive
a message. Radio interference triggers the receive mechanism
causing an unnecessary wake-up which leads to an increase in a
node’s energy consumption. In this paper we present a method
for estimating node energy consumption in a target radio environ-
ment. We describe how to capture the essential characteristics of
the radio environment and how to use this information to predict
node lifetime. We demonstrate the usability of the proposed
method using the well known WSN communication protocol
ContikiMAC. Our evaluation comprising real-world scenarios
shows that the proposed method is able to accurately predict
node lifetime.

I. INTRODUCTION

In commercial Wireless Sensor Network deployments, it is
often necessary to estimate the power consumption of nodes
before devices are deployed. For example, it is necessary to
estimate power consumption of nodes to calculate the dimen-
sions of power harvesting devices - such as solar panels - or
to plan maintenance cycles for battery replacement. Through
this, predicted energy consumption decides, in many cases, if
a WSN application is commercially feasible or not. Thus, it
is very important to have methods and tools which allow us
to forecast energy consumption accurately.

The dominant energy consumer in most WSN nodes is the
radio transceiver, so naturally it is important to reduce radio
transceiver usage as much as possible in order to conserve
energy. A vast number of WSN communication protocols have
been developed in recent years aiming at this goal through duty

cycling.
Duty-cycled Medium Access Control (MAC) protocols are

employed and nodes periodically alter transceiver operation
between an energy efficient sleep state and an energy costly
listen state. The transmitter sends a message such that it coin-
cides with the listening phase of the receiver. The frequency
and duration of the transceiver’s listen state dominate the
energy consumption of the node.

State of the art WSN MAC protocols such as Contiki’s
ContikiMAC or TinyOS’s LPL minimise this costly listening
phase by performing short channel busy checks which are
prolonged when transmission activity is recognised. Unfortu-
nately, interference from other wireless devices in the same
frequency space (such as WiFi) also cause an active channel
event and triggers an extension of the listen phase, as the
interference is indistinguishable from real traffic using this
mechanism. Consequently, energy consumption of a listening
node is dependent on the interference present in a nodes
deployment location, and furthermore as we will demonstrate,
a nodes energy consumption in a very busy radio environment
can be up to 11 times higher than in a quiet environment.

As the feasibility of a WSN application depends on the
achievable node lifetime, and the energy consumption of a
node depends on the interference patterns, we were able to
develop a generic method for capturing interference character-
istics and predicting a node’s energy consumption. Interference
is captured for a period of time in the target deployment area,
then, using a mathematical model it is possible to estimate the
energy consumption of the node in this deployment scenario.

However, deriving a model for a MAC protocol as a closed-
form solution is both difficult and inflexible when considering
a variety of MAC protocols. To overcome this we describe
a Monte Carol solver which can easily be programmed to in-
corporate various MAC protocol specifics, and allows accurate
energy consumption forecasting in noisy environments.

This paper describes how to model the energy related as-
pects of a MAC protocol and how to predict energy consump-
tion. The prediction method is evaluated using the well known
MAC protocol ContikiMAC, and the accuracy of predictions is
demonstrated by analysing energy consumption of real nodes
in a variety of radio environments.

The specific contributions of this paper are:
• Energy Model: We describe how a closed form solution

for energy consumption prediction based on interference
measurements can be derived. We describe a closed form
solution for Contiki’s ContikiMAC protocol.

• Energy Solver: We describe a Monte Carlo solver for
energy consumption prediction based on interference
measurement. We show that the solver is able to provide
accurate results while providing more flexibility than a
closed form solution.
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• Evaluation: We describe a set of experiments carried out
in different interference environments. Experiments show
that lifetime prediction with an accuracy of up to 2% is
possible.

In the following section we discuss related work. Section III
describes in detail low-power MAC protocols, and how their
energy consumption is dependant on interference levels. In
particular we describe ContikiMAC used in this study as
an example protocol. Section IV discusses how interference
patterns in a deployment area can be captured. Section V
shows how a closed form solution and Monte Carlo solver
can be constructed to predict energy consumption in an
interference environment. Section VI describes the evaluation
of the proposed estimation method. Section VII concludes the
paper.

II. RELATED WORK

Reducing energy consumption has featured frequently in
wireless sensor network research, alongside methods to de-
tect and classify local interference in deployments. To our
knowledge, little work has been carried out on adjoining these
two domains: estimating energy consumption with respect to
interference. In the following section, we discuss related work
in both areas.

Simulation of sensor network hardware has proven a viable
method for estimating energy consumption before deployment
[1], [2], [3]. The authors in [1] extend TOSSIM [4], a
sensor network simulator, to measure energy consumption and
estimate battery life. The simulator, restricted to TinyOS [5]
runs code native to the host machine, estimating execution
time for each block of code. Conversely, [2] and [3] emulate
hardware directly, improving accuracy at the cost of execution
time.

Simulation of heterogeneous interference and its impact
on neighboring sensor networks is a prerequisite to accurate
energy consumption in WSNs, that is missing from these
works. TiQ [6] is an extension to a network simulator which
supports heterogeneous networks, hence exceeding this limi-
tation. Energy consumption however, is not measured, and the
authors only briefly discuss the accuracy of their results in this
context.

Simulating networks offline has advantages over testbed
experiments, including repeatability, lower costs and scalabil-
ity. However, estimations made off-line can quickly become
invalid in a changing environment. Our on-line approach
works in conjunction with WSN applications, able to provide
continual predictions on future energy use based on channel
conditions.

Online estimation techniques are used during deployment
to monitor energy usage, for example to curtail energy use to
meet certain lifetime goals [7]. Dunkels et al. [8] implement
an on-line energy estimation technique in Contiki [9]. These
approaches measure the state of components, such as radio,
sensors and LEDs, to calculate consumption. Our technique
predicts the energy use of one component: the radio, based on

MAC protocol paramaters, and converges over a much shorter
period.

Classifying local interference is useful for channel selection
[10] and tuning interference mitigation techniques. Sampling
the channel energy over time across a single channel [11], or
multiple adjacent channels [10], [12], is a vaiable method for
classification, by searching for known interference signatures.
Periodically sampling the channel is itself costly in terms of
energy. The authors in [13] instead glean information about lo-
cal interferers from standard network operation, taking longer
to classify interence while reducing energy consumption.

Our work does not aim to mitigate interference, rather
enable accurate prediction of node energy consumption in the
presence of heterogeneous interference sources.

III. LOW-POWER MEDIUM ACCESS CONTROL

The greatest source of a node’s energy consumption in
typical WSN deployments is the radio, therefore it is necessary
to keep the radio switched off as much as possible. However,
to ensure a node can still receive messages the radio must be
periodically reactivated to check for incoming transmissions.

These periodic checks are costly and dominate energy cost
in a network with low traffic volume and it is therefore the
aim to keep these checks brief. To shorten the radio on time
for such checks, state of the art MAC protocols use the radio’s
Clear Channel Assessment (CCA) feature. With CCA the
energy present on the channel is determined which can be
used to estimate if another node is sending or not. To execute
a CCA only the time required to power up the transceiver and
to read the CCA value is required, and only if channel activity
is detected is further time (and therefore energy) invested to
receive and decode the entire transmission. This procedure
is much more efficient than, for example, putting the radio
periodically in listen mode and waiting for it to lock onto an
incoming transmission.

In this work we consider ContikiMAC [14], a well known
MAC protocol used with the Contiki OS which follows the
aforementioned scheme. We discuss in detail how this protocol
uses CCA and how the mechanism relates to energy consump-
tion. In this work we use the duty cycle, the percentage of time
a node’s radio is active, as energy consumption metric. This is
a valid approach as state of the art WSN radios use nearly the
same energy in all active modes of operation (send, receive,
listen).

A. ContikiMAC

ContikiMAC is designed for IEEE 802.15.4 radios such as
the commonly used CC2420. The basic operation of Contiki-
MAC is illustrated in Figure 1. A sender repeats transmission
of a data packet until a receiver acknowledges reception of
one of the transmissions with an acknowledgement (ACK).
Repeated transmission of data packets is necessary to en-
sure synchronisation between sender and receiver. A receiver
periodically checks the channel for transmissions using two
CCA operations separated apart (typically by 500µs). In its
default setting ContikiMAC uses a Channel Check Rate (CCR)
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Figure 1: ContikiMAC’s sending and receiving behaviour under interference. In (1) and (2) the receiver interprets interference as incoming
transmission and prolongs unnecessarily the energy costly listen phase. In (3) the receiver deducts correctly from the CCA that a packet trail
is transmitted and the packet is received. In (4) the receiver carries out a periodic CCA without presence of transmission or interference.

Variable Tmote Default
T1 = T2 294µS
T3 122µS
TW 500µS
NMAX 10
NSIL 5

Table I: The default ContikiMAC variable values as used on the
Tmote Sky platform.

of 8Hz. Two CCA operations are necessary to ensure that
an incoming transmission is reliably detected as one CCA
may fall in between repeat transmissions. Depending on the
outcome of the two CCA checks a receiver executes different
steps necessary to receive the transmitted packet. We describe
these steps in detail in the next paragraph.

As shown in Figure 1 the reception mechanism can either be
triggered by legitimate senders (see (3) in Figure 1). However,
a present interference signal will trigger as well these energy
costly mechanisms (see (1) and (2) in Figure 1).

B. ContikiMAC Channel Check

ContikiMAC’s channel check procedure can be described
in detail using a state machine as shown in Figure 2. The
receiver wakes, starts the radio and then carries out the first of
the double CCA checks (CCA1) as shown in Figure 1. CCA1
is denoted in grey in Figure 2 as it contributes to the energy
consumption of the node. CCA1 requires T1 which comprises
the time necessary to start the radio and the time required to
take the CCA sample. If CCA1 returns an idle channel the
radio is set to power down to sleep for Tw. After Tw the
second CCA, CCA2 is carried out. CCA2 again contributes
to the node’s energy budget; the radio is powered up and a
CCA sample is taken requiring T2 radio on time (T2 = T1).
If CCA2 returns idle the radio is turned off as no incoming
transmission was detected and the node will wake again for the
next channel check and run again through this state machine. If
either CCA1 or CCA2 have detected a busy channel the radio
is kept in an active state and the node attempts to receive
the message. Periodically a further CCA check is carried out
(CCA3) to check if the transmission is still ongoing. CCA3
requires a shorter duration T3 than CCA1 or CCA2 as the
radio is kept active and no radio startup time is required.
Between subsequent CCA3 checks a delay of Tw is used.
As the radio is active to receive data, this time contributes
to the energy budget of the node. Two variables Nsil and

Nmax control for how long the listen period is extended to
receive a transmission. Nsil is used to specify a maximum
number of idle (silent) CCA3 checks can be observed before
the radio is set to sleep. Nmax is used to specify the maximum
number of CCA3 checks that should be performed before the
radio returns to sleep. Table I shows all parameters defining
the ContikiMAC channel check procedure and lists parameter
values for the Tmote Sky platform with CC2420 radio as used
in our evaluation.

Obviously the time the radio is active during ContikiMAC’s
channel check depends strongly on the success or failure of
the various CCA. These in turn depend on interference which
might be present in the channel.

IV. INTERFERENCE REPRESENTATION

To estimate the impact of interference on energy con-
sumption it is necessary to capture interference patterns in
a deployment area in a sensible way. Capturing interference is
challenging as interference is dynamic and can change over
time. It is also not guaranteed that an interference pattern
measured in one place is the same at other (nearby) locations.
However, recent studies have shown that interference patterns
are, in many scenarios, stable over long periods and are
very similar in nearby locations (see [15]). In particular this
is true in scenarios that lack mobility as found with most
current WSN applications. Thus, it is feasible to capture
an interference pattern at a deployment site and to use this
pattern to estimate the energy consumption of a node deployed
at this location in the future. In particular, as we aim to
use interference patterns to estimate energy consumption and
ultimately node lifetime (in the order of years) short term
interference changes (spikes) are not of a concern. In our
experiments we show that these assumptions hold and that
it is indeed feasible to measure interference patterns in a
deployment area and to use this information for prediction.

For the purpose of this work interference is only of a
concern if it lies above the CCA threshold. As described, a
node uses the CCA mechanism to determine if the channel
is busy or not. The channel energy is measured and if it is
above the energy threshold the CCA mechanisms returns with
a negative result. Thus, we can for the purpose of this work
represent interference as a binary signal, indicating only if
interference is below or above the CCA threshold.

It would be possible to collect an interference trace (as
binary signal) in the deployment area over a longer time period
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Figure 2: Flowchart of ContikiMAC’s channel check procedure.
Elements contributing to the idle duty cycle are shaded gray.

and to use this trace to evaluate the channel check performance
of a MAC protocol in this environment. If we assume the
captured interference trace is representative for the deployment
area this would give provide a valid energy consumption
estimation. However, capturing such an interference trace is
memory intensive and thus not feasible if sensor nodes them-
selves are used to capture the interference characteristic. To
avoid this complexity it is possible to simply record statistical
properties of the interference signal and to use these properties
to evaluate protocol performance. For example, it is possible to
simply record the distribution of idle period lengths (durations
without interference signal above the CCA threshold) and

busy period lengths (see [15] for further details). A further
reduction of detail is possible by aggregating this data and
simply representing the interference pattern as the amount of
time the channel is observed to be busy (interference signal
observed above the CCA threshold). In this work we use this
coarse-grained representation of an interference pattern; we
use p to denote the probability of the channel being observed
busy due to an interference signal above the CCA threshold.
It is very easy to obtain this channel busy probability p via
measurements with sensor node hardware and as we will
show in our experimental evaluation, this interference rep-
resentation is sufficiently detailed to evaluate MAC protocol
performance. We show that using this representation, accurate
energy consumption prediction in practical WiFi interference
environments is possible.

V. ESTIMATING ENERGY CONSUMPTION

Using ContikiMAC as an example we show how a closed
form solution can be derived for a MAC protocol to estimate
energy consumption based on a recorded interference pattern.
As previously outlined, interference is described as channel
busy probability p and we use the duty cycle (denoted D), the
percentage of time a node’s radio is active, to measure energy
consumption.

As the development of a closed form solutions is very
complex and has to be repeated for every new MAC protocol
(and even every variation of a MAC protocol) we describe as
well a generic Monte Carlo Solver that can be easily adapted
to different MAC variations. As we show, a solver provides
more flexibility while providing sufficiently accurate results.

A. Closed Form Solution

To give a closed form solution for energy consumption it
is necessary to calculate the expected radio receiver on time
E(p) for a MAC protocol’s channel check sequence. E is a
function of the parameter p which denotes the probability of
the channel being busy. p is known via measurements in the
deployment area as described previously. If it is known how
many channel checks a MAC protocol performs per unit of
time we can calculate the duty cycle D(p). Using D(p) it
is possible to calculate energy consumption as it is known
how much energy the radio consumes when it is active. If
we assume that the MAC protocol performs periodic channel
checks with a frequency of f the duty cycle D(p) is given as:

D(p) = E(p) · f (1)

E(p) can be calculated by taking all possible variations
of the of the channel check sequence into account. We now
show this calculation for ContikiMAC as an example. E(p) for
ContikiMAC is composed of three main elements, Eii, Eib and
Eb, which correspond to different branches in the ContikiMAC
channel check state machine as shown in Figure 2:

E(p) = Eii + Eb + Eib (2)



Eii represents the case where ContikiMAC’s first CCA
(CCA1) returns clear followed by a clear result from the
second CCA (CCA2). The probability for this branch of the
state machine being executed is Pii = (1 − p)2. If this path
is executed the radio receiver on-time is the time required to
execute the two CCA with duration T1 and T2. Thus, the term
Eii is given as:

Eii(p) = (1− p)2 · ((T1 + T2)) (3)

Eb represents the case where ContikiMAC’s first CCA
returns busy and ContikiMAC enters a procedure in which
the channel is periodically checked via a CCA (CCA3 with
duration T3). In this procedure the node evaluates if a de-
tected channel activity is part of an incoming transmission.
A maximum number of Nmax + 1 CCA’s are carried out,
with Nmax = 10 for a default ContikiMAC configuration. The
procedure may terminate before Nmax + 1 CCA’s are carried
out if Nsil +1 consecutive clear CCA’s are encountered, with
Nsil = 5 for a default ContikiMAC configuration. Between
each CCA a delay of Tw is included, which contributes to the
radio on time as ContikiMAC keeps the radio active during the
entire procedure. The very first CCA in this procedure returns
always busy as there is no time delay between this CCA and
the busy CCA leading into this procedure.

For the default ContikiMAC configuration, as given in Table
I, exactly 7 possibilities exist for the procedure to terminate
before the maximum number of Nmax +1 = 11 CCA checks
are carried out. For example, after the first CCA in the
procedure – which always returns busy – we could encounter
a sequence of 6 idle CCA which leads to a termination of the
procedure after 7 CCA checks. The probability of this path is
given by p · (1 − p)6. Considering all possible paths through
the state machine we can give Eb as:

Eb(p) = p · (1− p)Nsil
·

(

(Nsil · (T3 + Tw) + T1)

+

(Nmax−Nsil−2)
∑

m=1

m
∑

n=1

[

pn · (1− p)(m−n)

·

(

(Nsil +m) · (T3 + Tw) + T1

)]

)

+p ·
(

1−
(

(1− p)Nsil

+

(Nmax−Nsil−2)
∑

m=1

m
∑

n=1

[

pn · (1− p)(m−n)
])

)

·

(

(Nmax − 1) · (T3 + Tw) + T1

)

(4)

Eib represents the case where ContikiMAC’s first CCA
(CCA1) returns clear but the second CCA (CCA2) returns busy
which then leads to the execution of the same procedure as
described for Eb. The difference here is the resulting duration
of the radio on time as two CCA are executed before entering
the procedure of repeated follow-up CCA checks. Eib can be
given as:
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Figure 3: ContikiMAC’s duty cycle in dependence of the channel
busy probability p for different CCR (CCR =16 is ContikiMAC’s
default setting). For CCR =16 ContikiMAC’s idle duty cycle ranges
between 0.47% (no interverence) and 5.211% (interference signal is
always present). Closed form solution and Monte Carlo solver provide
identical results (shown for CCR =16).

Eib(p) = p · (1− p)Nsil+1
·

(

(Nsil · (T3 + Tw) +

T1 + T2)

+
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∑
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m
∑
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[

pn · (1− p)(m−n)

·

(
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)]

)

+p ·
(

1−
(

(1− p)(Nsil+1)

+

(Nmax−Nsil−2)
∑

m=1

m
∑

n=1

[

pn · (1− p)(m−n)
])

)

·

(

(Nmax − 1) · (T3 + Tw) + T1 + T2

)

(5)

The expected duty cycle of ContikiMAC in the presence of
varying interference is shown in Figure 3 for different channel
check rates. Clearly, interference has a significant impact on
energy consumption of a node. We obtain D(0) = 0.471% and
D(1) = 5.211%. Hence, with no interference, ContikiMAC
with a channel check rate of 8 would obtain a minimum
radio on time of 0.47% and with 100% interference the radio
on time would be 5.211%. According to our model a node
running ContikiMAC will consume 11 times more energy in
a busy interference environment than in an interference free
situation. Obviously, communication would not possible in
an environment with continuous interference but the model
shows that interference levels must be taken into account when
planning a deployment’s lifetime.

B. Monte Carlo Solver

Using ContikiMAC as an example, we have demonstrated
that it can be quite complex to derive a closed form solution
for the expected duty cycle of MAC protocols. A simpler and
more flexible solution to determine the expected duty cycle
is to employ a Monte Carlo solver. The functionality of the



channel check sequence employed by a MAC protocol (as
shown in Figure 1 for ContikiMAC) is implemented for the
solver. To determine the expected radio receiver on time E(p)
the implementation of the MAC’s channel check sequence is
executed N times and for each run the resulting radio on time
En(p) is recorded. E(p) is calculated as:

E(p) = 1/N ·

N
∑

n=1

En(p) (6)

The implementation of the channel check sequence requires
an emulation of a CCA check. Within the Monte Carlo solver
a simple function is used which returns a positive or negative
CCA result based on the measured interference level given by
the probability p of observing a busy channel.

Our Monte Carlo solver is implemented using the LUA
scripting language. New MAC protocols can be included by
simply implementing one function representing the channel
check sequence. Input for the solver is the measured inter-
ference in form of the channel busy probability p and the
frequency f with which the channel check sequence is carried
out by the MAC protocol. Output of the solver is the expected
duty cycle D(p).

Algorithm 1 shows the core function of the Monte Carlo
solver used to evaluate the expected radio on time E(p) as
stated in Equation 6. The algorithm is the implementation of
ContikiMAC’s channel check procedure as shown in Figure 2.
Clearly it is easier to adjust this implementation to accommo-
date changes in a MAC design than to change the closed form
solution as described in the previous sections.

A result of the Monte Carlo solver is shown in Figure 3 for
CCR =16. Comparison of the result with the result provided
by the closed form solution shows little deviation. The largest
deviation between both methods is 0.25% for a channel
busy probability of p = 0.3. Hence we conclude that the
Monte Carlo solver is sufficiently accurate for practical energy
consumption estimation while providing flexibility to handle
different MAC protocols or adjustment of MAC protocol
mechanics.

VI. EVALUATION

To evaluate the described methods for prediction of energy
consumption in an interference environment we carry out three
different types of experiments. In the first experiment we use
controlled WiFi interference to evaluate accuracy of the energy
consumption prediction under different levels of interference
in a practical setting. In the second set of experiments we
analyse the efficiency of our energy consumption prediction in
two deployment settings. The third experiment evaluates the
impact of traffic on the prediction accuracy of our estimation
method.

A. Experiment1: Controlled Interference

This experiment is carried out in a lab. A WiFi access point
is placed in one corner, with a client situated in the opposite
corner to generate interference for nodes deployed in the lab.

Input: busy probability: p
Result: radio on time: E

E = 0; first = 0; silence = 0; max = 0;

E += T1;
if cca_clear( p ) == FALSE then

return E;
end
E += T2;
if cca_clear( p ) == FALSE then

return E;
end
while TRUE do

if first != 0 then
first++;
period++;
if cca_clear(busy_prob) == TRUE then

silence++;
else

silence = 0;
end
if (silence > Nsil) OR (max > Nmax) then

return E;
end
E += T3 + Tw;

end
end

Algorithm 1: The core function of the Monte-Carlo solver
used to evaluate the expected radio on time En(p). This
function is run N times to evaluate the expected radio on
time E(p) as shown in Equation 6. The algorithm is the
implementation of ContikiMAC’s channel check procedure
as shown in Figure 2.

The WiFi client transmits data for interference purposes using
the iperf tool [16]. Different data rates are used to generate
interference levels with increasing busy probability p. Table II
shows the traffic rates used and the corresponding resulting
busy probability p. p is measured during each experimental
run of 5min duration during which we also measure the duty
cycle. We then use the measured busy probability p as input for
the Monte Carlo solver which allows us to compare duty cycle
prediction and measurement for a given interference setting.
We use traffic rates which correspond to a busy probability
range from 1.74% to 23.81%. As there is always interference
present (background WiFi interference from access points in
the building) the lowest level of busy probability is p = 1.74%.
In this situation no controlled interference is created and
only background interference is included. The highest busy
probability is p = 23.81%; we do not use higher levels as in
such case a deployed sensor network would become infeasible
as interference levels would be too high.

Figure 4 shows the results of our experiment. As it can
be seen, duty cycle measurement and prediction are very
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Busy Probability p [%] Data Rate [kbit/s]
1.74 0
3.91 500
7.55 2000

13.10 4000
23.81 8000

Table II: The mapping of WIFi data rates and measured channel busy
probability p. Experiments were carried out in an environment with
background activity and even with no artificially induced interference
a busy probability of p = 1.74% is recorded.

close. The graph shown corresponds to the the graph shown
in Figure 3. The largest deviation of the prediction from the
measurement is for p = 7.55% with 7.4%. Thus we conclude
that an accurate prediction (i.e. with less than 7.4% deviation)
of energy consumption in a deployment area is feasible if the
interference in form of channel busy probability p is known.
In this experiment p is measured while measuring energy
consumption and therefore an accurate value of p is known.
In practice p (or a worst-case value of p) would need to be
estimated before deployment.

B. Experiment 2: Uncontrolled Interference

In two separate deployments we evaluate the accuracy of
the energy consumption estimation over a longer period of
time. In both deployments (in a meeting room and in an
office) two sensor nodes are deployed. One node is used to
record the environmental interference in form of the channel
busy probability p on a minutely basis while the other node
is used to record the duty cycle at 5-minute intervals. From
this collected data we calculate an hourly average for the
measured duty cycle and an hourly average for the channel
busy probability.

The results of these experiments are depicted in Figure 5 and
Figure 6. In both setups it is clear that duty cycle estimation
follows closely the actual observed duty cycle. The average
deviation of the predicted duty cycle from the measured duty
cycle is 6.23% and 2.09%. The worst case deviation is 13.1%
and 12.94%.
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Figure 5: ContikiMAC’s duty cycle estimated and measured over time
(CCR =8). This experiment was carried out in a meeting room.
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Figure 6: ContikiMAC’s duty cycle estimated and measured over time
(CCR =8). This experiment was carried out in an office.

In both scenarios the achieved duty cycle lies well above
the minimal 0.47% ContikiMAC can achieve in an absolute in-
terference free environment (see previous section). This shows
that consideration of interference patterns in a deployment area
are essential to estimate lifetime of a deployment.

Prediction of the duty cycle is fairly accurate if the level
of interference in the deployment region in known. As can
be seen from Figure 5 and Figure 6 interference in the
deployment region is not constant but relatively stable over
long time periods. One could use the worst case interference
level observed as input for duty cycle (and hence energy)
estimation to obtain an upper bound on energy consumption.

C. Experiment 3: Background Traffic

So far we have demonstrated that our energy consump-
tion prediction method is relatively accurate if interference
levels can be estimated and the assumption holds that the
dominant energy cost is idle listening. In the previous two
experiments nodes consume energy (or contribute to the duty
cycle) only due to periodic listening for incoming packets; data
is not transmitted. However, additional packet transmission
will invalidate model assumptions and may make energy
consumption prediction inaccurate.
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Figure 7: ContikiMAC’s duty cycle in dependence of artificially
induced WiFi Interference for CCR =8. The channel busy probability
p ranges from 0% to 23% which corresponds to 8000kbit/s. The
measured duty cycle with varying transmission rates and the predicted
duty cycle via the Monte Carlo solver are shown.

In this experiment a sensor node transmits periodic packets
to another node while being subjected to varying levels of
WiFi interference. The experiment setup is similar to the first
with the addition of packet transmissions.

The results of these experiments are depicted in Figure 7.
For very low data rates (e.g. one packet per minute, 1ppm)
measured duty cycle and predicted duty cycle are very close
for all levels of interference. For high traffic rates such as
240ppm the predicted duty cycle does not match the observed
duty cycle as our initial assumption does not hold: idle
listening is not the dominant cost. However, this is only true
for low levels of interference; when interference is high false
receiver wake ups are the dominant cost. This experiment
shows that duty cycle predictions are feasible with present
traffic in most scenarios.

VII. CONCLUSION

For commercial WSN deployments it is necessary to es-
timate network lifetime in order to judge if an application
scenario is viable. Lifetime depends in most cases on the
transceiver duty cycle which, as we have shown, depends
heavily on the interference environment in which the node
is operated. For the popular ContikiMAC protocol the duty
cycle can range from 0.47% (no interference) to 5.211%
(interference signal is always present). Hence, lifetime may
be up to 11 times shorter when deploying a node in heavy
interference environments. We have described the methods and
tools necessary to estimate duty cycle (and therefore energy
consumption) before a node is deployed. The effectiveness of
the proposed methods was demonstrated, using ContikiMAC
as an example. However, we believe the described approach
can also be used to analyse other MAC protocols such as
LPL used in TinyOS. Our next step will be to use the
described analysis tools to optimise ContikiMAC’s procedures
for operations in noisy environments.
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