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Abstract

We present a column generation algorithm for solving the bi-objective multi-
commodity minimum cost flow problem. This method is based on the bi-
objective simplex method and Dantzig-Wolfe decomposition. The method is
initialised by optimising the problem with respect to the first objective, a sin-
gle objective multi-commodity flow problem, which is solved using Dantzig-
Wolfe decomposition. Then, similar to the bi-objective simplex method,
our algorithm iteratively moves from one non-dominated extreme point to
the next one by finding entering variables with the maximum ratio of im-
provement of the second objective over deterioration of the first objective.
Our method reformulates the problem into a bi-objective master problem
over a set of capacity constraints and several single objective linear frac-
tional sub-problems each over a set of network flow conservation constraints.
The master problem iteratively updates cost coefficients for the fractional
sub-problems. Based on these cost coefficients an optimal solution of each
sub-problem is obtained. The solution with the best ratio objective value out
of all sub-problems represents the entering variable for the master basis. The
algorithm terminates when there is no entering variable which can improve
the second objective by deteriorating the first objective. This implies that
all non-dominated extreme points of the original problem are obtained. We
report on the performance of the algorithm on several directed bi-objective
network instances with different characteristics and different numbers of com-
modities.
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1. Introduction

The multi-commodity minimum cost flow problem (MCMCF ) is a net-
work optimisation problem where several commodities need to be sent from
their source nodes to their sink nodes. Individual commodities share arcs and
compete for the capacity of the arcs. The MCMCF problem can be modelled
as a linear optimisation problem with two sets of constraints: The flow con-
servation constraints and the capacity constraints which tie the commodities
together. These constraints have a special block diagonal shape. Taking
advantage of this special structure, several decomposition approaches for
solving the problem have been developed (see [1] and references therein).
In many application contexts of network models such as transportation, as-
signment, transshipment and location problems, there is more than one ob-
jective that has to be taken into account. These objectives include time,
cost, risk, environmental concerns etc. Thus, multi-objective flow models are
more appropriate for modelling real-world decision making situations than
single objective models [2, 3, 4, 5, 6, 7, 8]. In this paper we consider the
bi-objective multi-commodity minimum cost flow problem (BMCMCF ). We
propose a decomposition algorithm that is based on the bi-objective simplex
algorithm and employs a new generalisation of Dantzig-Wolfe decomposition
to bi-objective linear programmes.

Let G := (V ,A) be a directed network with a set of nodes or vertices
V := {1, 2, . . . , n} and a set of arcs A ⊆ V × V with |A| = m. Furthermore,
let
(
c1,ka , c2,ka

)
be the pair of unit flow costs on arc a ∈ A for commodity

k and xka represent the amount of flow of commodity k going through arc
a ∈ A. Let E be the node arc incidence matrix of the network and let
xk := (xka for a ∈ A) be the flow vector for commodity k. Let bk be the
demand vector for each commodity k and u be the vector of arc capacities.
By defining cost vectors c1,k := (c1,ka for a ∈ A) and c2,k := (c2,ka for a ∈ A)
the BMCMCF problem can be written as the following bi-objective linear
programme
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min z (x) :=


z1 (x) :=

q∑
k:=1

(c1,k)Txk

z2 (x) :=

q∑
k:=1

(c2,k)Txk


s.t. Ex1 = b1

Ex2 = b2

. . .
Exq = bq

Ix1+ Ix2+ · · ·+ Ixq+ Is = u

xk, s = 0, for all k := 1, 2, . . . , q,

(1)

where I is an m × m identity matrix and s is a vector of slack variables.
We assume that

∑n
i:=1 b

k
i = 0, k := 1, 2, . . . , q, otherwise the problem is

infeasible. The first q sets of constraints represent flow conservation at the n
nodes for all q commodities. A value bki > 0, bki < 0, or bki = 0, respectively,
indicates that node i is a supply node, a demand node, or a transshipment
node for commodity k. The next set of m constraints ensures that the overall
flow of commodities along each arc amounts to at most the arc capacities.

The BMCMCF problem (1) is a bi-objective linear optimisation problem
which can be solved by existing bi-objective linear programming algorithms
[9], such as the bi-objective simplex method, see e.g. [10] and Section 3.1.
The specially structured block diagonal constraint matrix of problem (1)
permits the application of the Dantzig-Wolfe decomposition method. This
has been done in the single objective case, see Section 3.2, In this paper,
we generalise this approach to the bi-objective case. We demonstrate how
Dantzig-Wolfe decomposition can be used to generate columns of the BM-
CMCF problem in the context of the bi-objective simplex method, thereby
extending our preliminary results in [11].

By integrating the bi-objective simplex method with the Dantzig-Wolfe
decomposition method we present a new method for solving the BMCMCF
problem which we shall refer to as the bi-objective simplex decomposition
(BOSD) method.

This paper is organised as follows: Recent literature is briefly discussed
in Section 2. Necessary mathematical background as well as the bi-objective
simplex method and standard Dantzig-Wolfe decomposition method are ex-
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plained in Section 3. In Section 4, we introduce our proposed BOSD method.
Finally numerical results are illustrated in Section 5.

2. Literature

There does not exist a lot of research on multi-objective MCMCF prob-
lems, so we also review research conducted on multi-objective minimum cost
flow problems with only a single commodity. The most recent survey on
multi-objective minimum cost flow problems is by Hamacher et al. [12]. We
will therefore briefly mention only newer published work on multi-objective
network flow problems, one of which considers multiple commodities.

Sedeño-Noda et al. [13] present a change of variables method to solve the
bi-objective undirected two-commodity minimum cost flow problem. They
formulate the problem as follows:

min z (x) :=


z1 (x) :=

∑
k:=1,2

∑
(i,j)∈A

ckijx
k
ij

z2 (x) :=
∑
k:=1,2

∑
(i,j)∈A

dkijx
k
ij


s.t.

∑
{j: (i,j)∈A}

xkij −
∑

{j: (j,i)∈A}
xkji =


bk if i = sk

0 if i ∈ V −
{
sk, tk

}
,

−bk if i = tk
k := 1, 2

|x1ij|+ |x2ij| 5 uij, for all (i, j) ∈ A.
(2)

By using absolute values for the amount of flow in the last set of con-
straints of (2), the values of the flow can be negative for each edge. The
method by Sedeño-Noda et al. splits the problem into two bi-objective min-
imum cost flow problems with a single commodity and uses the parametric
network simplex method to solve these problems. This method cannot be
extended to more than two commodities and also works only for undirected
two-commodity problems.

Eusébio et al. [14] develop a primal–dual bi-objective simplex algorithm
for the bi-objective single commodity network flow problem that is based
on the bi-objective primal–dual simplex algorithm of Ehrgott et al. [15] but
uses reduced cost information to avoid redundancy. They report that their
method does not perform efficiently on large scale instances.
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Raith and Ehrgott [16] present an algorithm to compute a complete set
of efficient solutions for the bi-objective (single commodity) integer mini-
mum cost flow (BIMCF ) problem based on the the two-phase method, see
[17] for a recent survey on the two-phase method. In Phase 1 they use a
parametric network simplex algorithm [18] to compute all integer solutions
the images of which are extreme points of the boundary of conv(Z), where
conv(·) is the convex hull of its argument and Z is the image in objective
space of the feasible set. Since they solve an integer bi-objective optimisation
problem, the images of some of the efficient solutions lie in the interior of
conv(Z). In Phase 2, these remaining efficient solutions are computed using
a k best flow algorithm [19] on single objective weighted sum problem. Since
multi-objective integer problems are harder than continuous ones, BIMCF
instances solved in literature all have small size and all algorithms mentioned
here perform well only for small and medium sized instances.

Eusébio and Figueira [20] present and implement an algorithm for finding
all supported efficient solutions to the BIMCF. Their method is based on a
negative-cycle algorithm used in single objective minimum cost flow problems
[21] applied to a sequence of parametric problems. They prove that all sup-
ported efficient solutions are connected via a chain of zero-cost cycles in the
incremental graph constructed from basic feasible solutions corresponding to
extreme efficient solutions.

Eusébio and Figueira [22] solve a sequence of ε-constraint problems [23]
in the context of finding all the non-dominated solutions of the BIMCF prob-
lem. The integer optimal solutions to the ε-constraint problems are obtained
by a branch-and-bound method. Similar to [14], this method performs well
only on small or medium size instances.

With the exception of work on undirected bi-objective two-commodity
MCMCF problem [13] there does not exist any research on the multi-objective
MCMCF problems, in particular there is no published research on Dantzig-
Wolfe decomposition for multi-objective network flow problems.

3. Background

In this section, the necessary mathematical background is introduced. We
also summarise the bi-objective simplex method and the application of stan-
dard Dantzig-Wolfe decomposition to the single objective MCMCF problem.
Consider a bi-objective linear optimisation problem (BLP)
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min z (x) :=

(
z1(x) := (c1)Tx
z2(x) := (c2)Tx

)
s.t. Ax = b,

x = 0,

(3)

where (c1)T , (c2)T ∈ Rn are 1× n objective or criteria vectors. The feasible
set in decision space X := {x ∈ Rn : Ax = b, x = 0} is defined by the m×n
constraint matrix A and right hand side vector b ∈ Rm.

Let Z := {(z1(x), z2(x)) : x ∈ X} be the image of X under the objective
functions. A feasible solution x̂ ∈ X of BLP (3) is efficient and if only if there
does not exist any x′ ∈ X with (z1(x′), z2(x′)) 5 (z1(x̂), z2(x̂)) and z(x′) 6=
z(x̂). The image of an efficient solution z(x̂) := (z1(x̂), z2(x̂)) is called a
non-dominated point. Since model (3) is a linear model, the images of all
the efficient solutions lie on the boundary of conv(Z). These solutions are
called supported efficient solutions and can be obtained by solving (single
objective) weighted sum problems [24]

min
x∈X

λz1(x) + (1− λ)z2(x)

for some 0 < λ < 1. The supported efficient solutions which define an
extreme point of Z are called extreme efficient solutions. By Xex and Zex we
denote the set of all extreme efficient solutions and non-dominated extreme
points.

3.1. Bi-objective simplex method

Modelling the BMCMCF problem (1) as a linear programme permits
the use of the standard bi-objective simplex method. Ehrgott [10] gives a
comprehensive explanation of this method and we use the same notation
here. The bi-objective simplex method initially starts by optimising the
problem with respect to the first objective. The method then iteratively
moves from one non-dominated extreme point to the next one by finding
entering variables with the maximum ratio of improvement of the second
objective over the deterioration of the first objective, see also selection of t
in step 5 of Algorithm 1. The method stops when all the non-dominated
extreme points are obtained. The initial solution may be weakly efficient
and the algorithm may find some efficient solutions that do not define non-
dominated extreme points. These solutions can be easily discarded at the
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end of the algorithm. Note that the resulting set might still contain solutions
which map to the same point in objective space. All non-dominated points
can then be obtained as convex combinations of the obtained extreme non-
dominated points. The procedure is stated as Algorithm 1.

Algorithm 1 (Parametric simplex for BLP)

1: Input: Data A, b, c1 and c2 for a BLP.
2: Obtain an optimal solution xo and an optimal basis B with respect to

the first objective component and set Xex := {xo}.
3: Compute N := {1, . . . , n} \ B, Ã := A−1B A, b̃ := A−1B b and (c̃j)T :=

(cj)T − (cjB)T Ã for j := 1, 2.
4: while I := {i ∈ N : c̃2i < 0, c̃1i = 0} 6= ∅ do
5: t ∈ argmax

{
i ∈ I :

−c̃2i
c̃1i−c̃2i

}
. // Entering variable selection

6: r ∈ argmin
{
l ∈ B : b̃l

Ãtl
, Ãtl > 0

}
. // Leaving variable selection

7: B ← (B \ {r}) ∪ {t} and update N , Ã, b̃, c̃j for j := 1, 2.
8: Compute new efficient solution xnew and set Xex ← Xex ∪ {xnew}.
9: end while

10: Discard from Xex any points the images of which are not extreme.
11: Output: Xex, a set of pre-images of all non-dominated extreme points.

3.2. Dantzig-Wolfe decomposition method for the MCMCF problem

Tomlin [25] has devised an algorithm for solving the MCMCF problem
based on the Dantzig-Wolfe decomposition method. In the Dantzig-Wolfe
decomposition method the original problem, a single objective version of (1),
is reformulated into a master problem (MP) over a set of capacity (compli-
cating) constraints, and q sub-problems, each over a set of flow conservation
constraints, Exk = bk for k := 1, 2, . . . , q. The MP MCMCF can be written
as follows:

min z1 (x) := (c1)Tx

s.t. Ahardx + Is = u, (4)

xk ∈ Xk,

x, s = 0,
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where Xk := {xk : Exk = bk}, x := [x1, . . . ,xq] and Ahard := [I, . . . , I]
is composed of q identity matrices of size m × m. Starting with a basic
feasible solution, the MP (4) iteratively updates cost coefficients for the
sub-problems. Based on these cost coefficients an optimal solution of each
sub-problem is obtained. These solutions are the most improving columns
(corresponding to non-basic variables) to enter the MP basis. This method
continues until no sub-problem can find a column to improve the MP and
it is guaranteed that the optimal solution of the MCMCF problem is ob-
tained. Let Yk := {yk

1 ,y
k
2 , ...,y

k
nk
} be the extreme points of feasible set Xk

Xk := {xk : Exk = bk} for k := 1, 2, ...q of the single objective version of
problem (1). Then any feasible xk can be expressed as a convex combination
of the elements of Yk as follows:

xk :=

nk∑
j:=1

λkjy
k
j ,

nk∑
j:=1

λkj = 1, λkj = 0, j := 1, 2, ..., nk. (5)

Substituting (5) for xk in the MCMCF (1) with the single objective z1,
we get the following problem MP (6), where we indicate the dual variables
on the right hand side of the vertical line.

min z1 (λ) :=

q∑
k:=1

nk∑
j:=1

λkj ((c1,k)Tyk
j )

dual

s.t.

n1∑
j:=1

λ1j = 1 α1

n2∑
j:=1

λ2j = 1 α2

. . .
nq∑
j:=1

λqj = 1 αq

n1∑
j:=1

λ1j(Iy
1
j )+

n2∑
j:=1

λ2j(Iy
2
j )+ · · ·+

nq∑
j:=1

λqj(Iy
q
j)+ Is = u. w

λkj = 0, for all j := 1, 2, ..., nk, k := 1, 2, . . . , q. (6)

Suppose that we have a basic feasible solution for problem (6), in terms
of the λkj variables. Let (α,w) be the vector of dual variables for this basic
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feasible solution where α has q components and w has m components. For
this solution to be optimal, it must also be feasible for the dual problem.
This condition is called dual feasibility and for problem (6) can be stated as:

1. −wa = 0 for each arc a ∈ A, and
2. (c1,k − w)Tyk − αk = 0 for each λkj , for all j := 1, 2, ..., nk, k :=

1, 2, . . . , q.

If the first condition is violated for any arc the related slack variable sa will
be introduced into the basis of the MP. If the second condition is violated
the corresponding λkj variable is a candidate to enter the basis of the MP.
For commodity k the most improving column yk

j (non-basic λkj variable) to
enter the basis can be found by solving the sub-problem

min g(yk) := (c1,k −w)Tyk − αk

s.t. Eyk = bk,

yk = 0.

(7)

If we consider the case in which the network has a single source and
sink for each commodity k := 1, 2, . . . , q, which we may do without loss of
generality, then the sub-problem (7) requires finding a minimum cost flow in
a network with no capacity on arcs and with arc costs (c1,k−w). By adding
all slack variables sa with negative −wa to the basis of the MP, we ensure
−wa = 0 for all a ∈ A; see step 5 in Algorithm 2. Therefore, (c1,k − w) is
positive for all arcs a ∈ A. In this case sub-problem (7) is a shortest path
problem which can be solved by many efficient shortest path algorithms [26].
If the optimal solution yk

j of problem (7) has a negative objective value,
non-basic variable λkj is an entering variable for the basis of the MP. After
finding the entering variable, it is added to the basis of the MP and the
leaving variable is determined in the usual way in the simplex algorithm. By
pivoting, the basis inverse, dual variables, and right-hand-side are updated.
The method continues until the dual feasibility conditions are satisfied, which
means there does not exist any candidate variable to enter the basis and an
optimal solution of the MCMCF problem is obtained. This procedure is
stated as Algorithm 2

4. Bi-objective simplex decomposition method

In this section we present the proposed BOSD method for solving the BM-
CMCF problem. The BOSD method reformulates the BMCMCF problem
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Algorithm 2 (Dantzig-Wolfe decomposition method for the MCMCF prob-
lem)

1: Input: Data c1, E, b, u, m and q for a linear MCMCF problem.
2: Ahard := [Im, . . . , Im] ∈ Rm×mq. Find an initial feasible solution for the

MP (6), in which the constraints are expressed as A

(
λ
s

)
=

(
1
u

)
=: u′,

and obtain the master basis B.
3: Compute Ãhard := A−1hard, BA, ũ := A−1hard, Bu and (α,w) := ĉ1BA

−1
hard, B,

Compute Ã := A−1B A, ũ′ := A−1B u′ and (α,w) := ĉ1BA
−1
B , where ĉ1,kj :=

(c1)Tyk
j for λkj variables.

4: T : = ∅. // T is the set of entering variable candidates
5: if −wa < 0, a ∈ A then
6: T ← T ∪ {sa}.
7: else
8: For each commodity k (k := 1, 2, ..., q) solve sub-problem (7) and find

the optimal solution yk
j .

9: if g(yk
j ) < 0 then

10: T ← T ∪
{
λkj
}

.
11: end if
12: end if
13: if T 6= ∅ then
14: Choose t ∈ T and find Ãhard, t Ãt as an entering column. // Entering

variable selection
15: r ∈ argmin

{
l ∈ B : ũl

Ãhard, tl
, Ãhard, tl > 0

}
.

r ∈ argmin
{
l ∈ B :

ũ′
l

Ãtl
, Ãtl > 0

}
. // Leaving variable selection

16: B ← (B \ {r}) ∪ {t} and update Ãhard Ã, ũ′, and (α,w).
17: Go to step 3.
18: end if
19: Compute optimal solution xopt from B.
20: Output: An optimal solution xopt of the MCMCF problem.
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into a bi-objective master problem (BMP) over a set of capacity constraints
and q sub-problems, each over a set of network flow conservation constraints,
Exk = bk for k := 1, 2, . . . , q. The BMP BMCMCF can be written as
bi-objective linear problem (8)

min z (x) :=

(
z1 (x) := (c1)Tx
z2 (x) := (c2)Tx

)
s.t. Ahardx + Is = u,

xk ∈ Xk,

x, s = 0,

(8)

where Xk := {xk : Exk = bk}, x := [x1, . . . ,xq] and Ahard := [I, . . . , I] is
composed of q identity matrices of size m × m. The BOSD method works
with the BMP, while sub-problems generate the columns to move from one
non-dominated extreme point to the next one.

Applying the change of variables (5), the BMCMCF problem (1) can be
written as BMP (9). Notice that each constraint now has two dual variables,
one associated with each of the two objective functions. These are listed to
the right hand side of the vertical line.

min z (λ) :=


z1 (λ) :=

q∑
k:=1

nk∑
j:=1

λkj ((c1,k)Tyk
j )

z2 (λ) :=

q∑
k:=1

nk∑
j:=1

λkj ((c2,k)Tyk
j )


dual

s.t.

n1∑
j:=1

λ1j = 1 α1,1 α2,1

n2∑
j:=1

λ2j = 1 α1,2 α2,2

. . .
nq∑
j:=1

λqj = 1 α1,q α2,q

n1∑
j:=1

λ1j(Iy
1
j )+

n2∑
j:=1

λ2j(Iy
2
j )+ · · ·+

nq∑
j:=1

λqj(Iy
q
j)+ Is = u. w1 w2

λkj = 0, for all j := 1, 2, ..., nk, k := 1, 2, . . . , q. (9)
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The BOSD method initially starts by obtaining a solution which is min-
imal with respect to the first objective component. In this step, problem
(9) becomes a single objective MCMCF problem, and the standard Dantzig-
Wolfe decomposition method, as explained in Section 3.2, can be applied.
Suppose that we have an initial extreme efficient solution of (9) and let B,
(α1,w1) and (α2,w2) respectively, be the corresponding basis for MP and
the vectors of dual variables for the first and second objective. Vectors α1

and α2 have q components and w1 and w2 have m components. The BOSD
method then iteratively generates entering variables which have a maximal
ratio of improvement of the second objective function over deterioration of
the first. This ratio is analogous to the ratio needed in the entering variable
selection in step 5 of Algorithm 1. Slack variable sa (a ∈ A) is a candidate
for introduction to the master basis if

−w2
a < 0 and − w1

a = 0.

Non-basic variable λkj is a candidate for introduction to the master basis if

(c2 −w2)Tyk − α2,k < 0

(c1 −w1)Tyk − α1,k = 0.

The ratio for slack variable sa can be easily obtained from

µa :=
−w2

a

w1
a − w2

a

. (10)

For commodity k the most improving column yk
j (variable λkj ) can be gener-

ated by solving the following fractional optimisation sub-problem:

max gk(yk) :=
−((c2 −w2)Tyk − α2,k)

(c1 −w1)Tyk − α1,k − ((c2 −w2)Tyk − α2,k)

s.t. Eyk = bk,

(c2 −w2)Tyk − α2,k < 0,

(c1 −w1)Tyk − α1,k = 0,

yk = 0.

(11)

Here, an optimal solution of the linear fractional sub-problem (11) is
obtained by applying the Charnes-Cooper variable transformation method
[27].
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Applying the Charnes-Cooper transformation as follows,

Lk :=
1

(c1 −w1)Tyk − α1,k − ((c2 −w2)Tyk − α2,k)
· yk,

r :=
1

(c1 −w1)Tyk − α1,k − ((c2 −w2)Tyk − α2,k)
;

translates the fractional sub-problem (11) to an equivalent linear programme
(12)

max −((c2 −w2)TLk − α2,kr)

s.t. ELk = bkr,

(c2 −w2)TLk − α2,kr < 0,

(c1 − (w1)TLk − α1,kr = 0,

(c1 −w1)TLk − α1,kr − ((c2 −w2)TLk − α2,kr) = 1,

r = 0.

(12)

If the optimal solution yk
j of problem (11) has a positive objective value,

non-basic variable λkj is a candidate to enter the basis. Among the entering
variable candidates we choose the one with maximum ratio, i.e. maximum
value of (10) or maximum objective function value of (11). The identified
entering variable is added to the basis of the MP and the leaving variable is
determined according to standard simplex rules as in step 12 of Algorithm 3.
The BOSD method continues until there does not exist any entering variable
which can improve the second objective by deteriorating the first objective,
which implies that all non-dominated extreme points are obtained. Note
that the resulting set might still contain solutions that map to the same
point in objective space, as in Algorithm 1. The BOSD Algorithm is stated
as Algorithm 3.

5. Computational results

In this section, we perform computational experiments with the BOSD
method on several directed bi-objective network instances with different char-
acteristics and different numbers of commodities. All numerical tests are
performed on a Microsoft Windows 7 Enterprise Service Pack 1 computer
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Algorithm 3 (Bi-Objective Simplex Decomposition Algorithm )

1: Input: Data E, b, c1, c2, m and q for a BMCMCF problem.
2: Ahard := [Im, . . . , Im] ∈ Rm×mq. Obtain an optimal solution xo and an

optimal master basis B with respect to the first objective of problem

(9), in which the constraints are expressed as A

(
λ
s

)
=

(
1
u

)
=: u′, by

standard Dantzig-Wolfe decomposition and set Xex := {xo}.
3: Compute Ãhard := A−1hard, BA, ũ := A−1hard, Bu, (α1,w1) := ĉ1BA

−1
hard, B and

(α2,w2) := ĉ2BA
−1
hard, B,

Compute Ã := A−1B A, ũ′ := A−1B u′, (α1,w1) := ĉ1BA
−1
B and (α2,w2) :=

ĉ2BA
−1
B , where ĉ1,kj := c1,kyk

j and ĉ2,kj := c2,kyk
j for λkj variables.

4: T := ∅ and I := {a ∈ {1, 2, . . . ,m} : −w2
a < 0, −w1

a = 0}. // T is the
set of entering variable candidates

5: if I 6= ∅ then
6: t1 ∈ argmax

{
i ∈ I : µi =

−w2
i

w1
i−w2

i

}
, T ← T ∪ {st1}.

7: end if
8: For each commodity k solve fractional optimisation problem (11) and

find an optimal solution yk
j .

9: t2 ∈ argmax
{
k ∈ {1, 2, . . . , q} : gk(yk

j ) > 0
}

, T ← T ∪
{
λt2j
}

.
10: if T 6= ∅ then
11: Choose t ∈ T with the maximum ratio and find Ãhard, t as an entering

column. // Entering variable selection

12: r ∈ argmin
{
l ∈ B : ũl

Ãhard, tl
, Ãhard, tl > 0

}
.

r ∈ argmin
{
l ∈ B :

ũ′
l

Ãtl
, Ãtl > 0

}
. // Leaving variable selection

13: B ← (B \ {r}) ∪ {t} and update Ãhard Ã, ũ′, (α1,w1) and (α2,w2).
14: Compute new efficient solution xnew and set Xex ← Xex ∪ {xnew}.
15: Go to step 3.
16: end if
17: Discard from Xex any points the images of which are not extreme.
18: Output: Xex, a set of pre-images of all non-dominated extreme points.
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with Intel (R) Xeon(R) CPU, 2.67 GHz, 6.00 GB RAM and 64-bit Operat-
ing System. The method is implemented in MATLAB R2013b. All single
objective linear sub-problems were solved by GUROBI 5.6 [28]. We provide
computational results obtained from several types of directed bi-objective
network instances with one, two, three and five commodities.

We consider four groups of directed network instances. Instances N01–
N12, F01–F12 and G01–G12 have the same structure as the bi-objective
single commodity instances used in [16], which we modify to include sev-
eral commodities. Instances of groups B01–B05 and G13–G15 have a larger
number of nodes and arcs compared to the instances used in [16]. Instances
of groups N01–N12, F01–F12 and B01–B05 are directed network instances
generated by the NETGEN [29] generator which is modified to include a sec-
ond objective function and multiple commodities. Table 1 shows NETGEN
parameters for the generation of each set of networks, such as number of
nodes, arcs, sources and sinks, etc. There are 30 instances for each set of
parameters. Groups N01–N12 have varying total supply

∑
i∈V:bi>0 bi, which

increases as the number of nodes in the network increases. Groups F01–F12
have fixed total supplies of 500 and groups B01–B12 have fixed total supplies
of 2100. Finally, instances of groups G01–G15 consist of networks with a grid
structure. In these networks, nodes are arranged in a rectangular grid with
given parameters height h, width w, maximum cost cmax, maximum capacity
umax and a total supply

∑
i∈V:bi>0 bi. All grid instances are listed in Table 2.

Again there are 30 instances for each set of parameters.
Figure 1 shows the non-dominated extreme points for one instance of class

F12, with 80 nodes and 400 arcs, for one, two, three and five commodities
which illustrates the trade-off between objective functions. This is typical
for all examples. The large number of points for each commodity clearly
illustrates the non-dominated set in objective space in each case, without ad-
ditional lines to indicate the convex combinations of non-dominated extreme
points. From Figure 1 we can also see that the number of non-dominated
extreme points increases with the number of commodities. We note that
curves do not exhibit a monotonic translation in any particular direction as
the number of commodities increases.

In Table 3 the average CPU time tavg as well as the average number of
non-dominated extreme points |Zex| for different numbers of commodities are
presented. For the groups comprised of small and medium sized instances,
the average CPU times for solving the instances are between 0.06 and 19.45
seconds. For instances of groups B01–B05 and G13–G15, the average CPU

15



Table 1: NETGEN test instances.

Total supply Transshipment Transshipment
Name Nodes Arcs Sources Sinks

∑
i∈V:bi>0 bi sources sinks

N01/F01 20 60 9 7 450/500 4 3
N02/F02 20 80 9 7 450/500 4 3
N03/F03 20 100 9 7 450/500 4 3

N04/F04 40 120 18 14 900/500 9 7
N05/F05 40 160 18 14 900/500 9 7
N06/F06 40 200 18 14 900/500 9 7

N07/F07 60 180 27 21 1350/500 14 10
N08/F08 60 240 27 21 1350/500 14 10
N09/F09 60 300 27 21 1350/500 14 10

N10/F10 80 240 35 38 1750/500 17 14
N11/F11 80 320 35 38 1750/500 17 14
N12/F12 80 400 35 38 1750/500 17 14

B01 100 400 40 50 2100 25 35
B02 200 800 40 50 2100 25 35
B03 300 1200 40 50 2100 25 35
B04 400 1600 40 50 2100 25 35
B05 500 2000 40 50 2100 25 35

time is between 12.90 and 648.58 seconds. The average number of non-
dominated extreme points |Zex| increases logarithmically for both increases
in the number of nodes and the number of arcs, as shown in Figures 2.
The average CPU time tavg increases quadratically, for both increases in
the number of nodes and the number of arcs, as shown in Figures 3. By
comparing the average CPU time tavg between the groups N01–N12 and the
groups F01–F12 we can see that tavg increases as the total supply

∑
i∈V:bi>0 bi

increases.
Although there is a positive correlation between the number of non-

dominated extreme points |Zex| and the number of commodities, the average
CPU time does not always increase when the number of commodities in-
creases, which can be seen for instances of groups N08, N10, N11, N12 and
F12. This may be due to the fact that by increasing the number of commodi-
ties there is a larger number of edges incident on each extreme point of the
feasible polyhedron in decision space, hence it is more likely that we find an
adjacent point with distinct objective value, i.e. the problem tends to have
less degeneracy for our instances with two and three commodities compared
to single commodity instances. To illustrate this, Table 4 presents tavg, |Zex|,
the average number of iterations Iavg and the ratio Iavg/|Zex| for instances
N08, N10, N11, N12 and F12. One iteration refers to generation of an en-
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Figure 1: Non-dominated extreme points of one instance of class F12.
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Figure 2: The average number of non-dominated extreme points |Zex| increases logarith-
mically as the number of nodes and the number of arcs increases.
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Table 2: Grid test instances.

Total supply
Name h w Nodes Arcs cmax umax

∑
i∈V:bi>0 bi

G01 4 5 20 62 100 250 500
G02 5 8 40 134 100 250 500
G03 6 10 60 208 100 250 500
G04 8 10 80 284 100 250 500
G05 6 10 60 208 100 375 500
G06 6 10 60 208 100 500 500
G07 6 10 60 208 25 250 500
G08 6 10 60 208 50 250 500
G09 8 10 80 284 100 375 500
G10 8 10 80 284 100 500 500
G11 8 10 80 284 25 500 500
G12 8 10 80 284 50 500 500
G13 10 10 100 360 50 50 500
G14 15 20 300 1130 50 50 500
G15 20 25 500 1910 50 50 500

tering column and updating the master problem, see step 14 of Algorithm 3.
It is possible that updating the master problem does not change the current
efficient solution and therefore Iavg can be bigger than |Zex|. In Figure 4 we
compare tavg, |Zex|, Iavg and Iavg/|Zex| of one of the sets of instances, N12,
with different numbers of commodities. The figure is typical for the other
sets. From Table 4 and Figure 4 it can be seen that tavg does not always
increase when the number of commodities increases. This happens as the ra-
tio Iavg/|Zex| decreases sharply when the number of commodities increases.
Therefore, the main factors influencing the computation time are the size of
the network and the total supply.
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Table 3: Results for different sets of network instances.

1 commodity 2 commodities 3 commodities 5 commodities

Name tavg (s) |Zex| tavg (s) |Zex| tavg (s) |Zex| tavg (s) |Zex|
N01 0.13 16.52 0.26 29.07 0.38 38.25 0.69 57.26
N02 0.17 17.73 0.25 35.27 0.40 47.93 0.87 72.97
N03 0.18 21.83 0.27 38.67 0.46 55.50 1.02 85.60
N04 0.56 34.61 0.73 60.04 1.06 82.48 2.00 119.96
N05 0.77 43.66 1.04 76.66 1.47 107.93 2.78 158.56
N06 1.09 49.73 1.28 89.20 1.88 124.43 4.01 189.27
N07 2.14 53.10 2.17 97.10 3.22 128.65 4.74 181.27
N08 2.96 68.59 2.72 123.54 3.59 167.25 6.46 245.54
N09 3.67 82.04 3.88 145.50 4.87 203.31 9.18 298.21
N10 4.96 72.91 4.50 137.08 5.04 179.77 8.23 251.39
N11 6.13 93.81 5.88 167.77 7.45 228.08 13.00 331.46
N12 11.22 111.21 10.25 200.60 11.55 271.10 19.45 398.03

F01 0.11 15.57 0.21 26.62 0.32 37.79 0.90 58.41
F02 0.19 20.30 0.33 34.80 0.42 47.83 0.96 74.20
F03 0.20 21.30 0.39 40.63 0.61 55.50 1.03 89.43
F04 0.54 30.90 0.90 54.24 0.96 72.44 1.60 102.80
F05 0.62 38.57 1.61 69.27 1.24 93.53 2.18 139.83
F06 0.76 48.13 2.27 81.40 1.56 112.83 2.78 160.10
F07 1.40 47.16 2.44 77.92 2.19 96.10 2.94 124.33
F08 1.53 62.07 2.45 105.93 2.96 132.52 4.23 175.90
F09 2.31 71.79 2.99 118.17 3.99 152.38 5.84 201.55
F10 2.72 55.04 3.59 86.65 3.92 103.62 4.84 128.64
F11 3.77 73.11 4.27 116.39 5.62 145.18 7.60 179.50
F12 7.26 89.54 6.76 143.93 8.21 176.48 12.18 221.36

B01 12.90 117.50 14.70 204.67 17.42 280.17 24.15 398.67
B02 22.05 157.83 27.31 285.83 36.32 367.17 56.41 516.17
B03 77.43 174.50 94.09 314.17 109.62 427.83 154.06 596.50
B04 219.05 187.67 241.30 342.17 267.33 443.83 337.36 645.17
B05 483.29 192.00 510.60 347.33 558.47 447.00 648.58 652.00

G01 0.06 9.90 0.12 15.97 0.20 21.00 0.41 30.47
G02 0.18 19.67 0.36 35.23 0.54 45.53 1.15 59.77
G03 0.48 30.57 0.69 50.33 1.11 65.40 2.23 86.63
G04 1.12 40.37 1.43 66.63 1.99 82.60 3.79 113.17
G05 0.52 30.73 0.72 52.77 1.04 64.27 2.11 86.87
G06 0.50 31.77 0.72 52.23 1.05 65.57 1.92 87.57
G07 0.47 29.70 0.70 46.57 1.07 55.70 1.82 72.93
G08 0.46 31.83 0.71 49.17 1.35 64.53 1.95 83.63
G09 1.12 40.73 1.43 65.83 2.15 81.87 3.48 110.50
G10 1.01 40.17 1.39 64.80 1.99 82.47 3.57 110.53
G11 1.00 37.00 1.36 57.80 1.95 72.07 3.31 91.53
G12 0.99 40.50 1.45 66.43 2.56 82.87 3.46 103.53
G13 2.35 51.33 3.02 77.07 4.09 97.10 6.45 125.97
G14 70.45 108.27 79.86 160.30 89.53 196.47 108.37 262.87
G15 411.96 101.83 429.69 153.27 453.41 155.43 534.41 236.27
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6. Conclusion and future work

In this paper, by integrating Dantzig-Wolfe decomposition with the bi-
objective simplex method, we present a new method for solving the BM-
CMCF problem. The method is the first application of ration (Dantzig-Wolfe
decomposition) in bi-objective optimisation. The method reformulates the
problem into a bi-objective master problem over a set of capacity constraints
and several single objective linear fractional sub-problems each over a set
of network constraints. After finding an optimal solution of the problem
with respect to the first objective, the linear fractional sub-problems gener-
ate entering columns for the basis of the master problem to move from one
extreme non-dominated point to the next one. We investigate the perfor-
mance of our method on different sets of bi-objective network instances with
several commodities. According to our computational results, the number
of commodities has a positive correlation with the average number of non-
dominated extreme points and has a strong negative correlation with the
ratio of the number of iterations over the number of non-dominated extreme
points (Iavg/|Zex|).

This means that increasing the number of commodities does not neces-
sarily increase the average CPU time.

In the literature on Dantzig-Wolfe decomposition for single objective
multi-commodity flow problems, it is generally assumed that the problems are
structured with a single source and single sink for each commodity [25]. The
sub-problems are then shortest path problems. For our BMCMCF problem
we can also assume we have a single source and single sink for each com-
modity. In the bi-objective case, the sub-problem (11) involves finding a
minimum cost flow in a network with no capacity on arcs and with fractional
objective function

(c2 −w2)Tyk − α2,k

(c1 −w1)Tyk − α1,k − ((c2 −w2)Tyk − α2,k)
.

Due to the fractional objective function, and due to the fact that the column
generation sub-problem needs to find variables with reduced cost that are
negative for one and positive for the other objective the arising sub-problems
are no longer easily solved as shortest path problems. In the future, we will
address the application of methods, which are able to exploit the network
structure of the sub-problems.
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Since the proposed method is based on the bi-objective simplex method,
an extension of the approach to three or more objectives may be possible by
investigating the multi-objective simplex method. However, finding entering
variables to the basis in the multi-objective simplex method requires the
solution of single objective linear programmes that do not necessarily have
a network structure, see e.g. [10]. Such a potential extension to more than
two objectives is also the subject of further research.
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[15] M. Ehrgott, J. Puerto, A. Rodŕıguez-Ch́ıa, Primal dual Simplex Method
for Multiobjective Linear Programming, Journal of Optimization The-
ory and Applications 134 (3) (2007) 483–497.

[16] A. Raith, M. Ehrgott, A two-phase algorithm for the biobjective integer
minimum cost flow problem, Computers & Operations Research 36 (6)
(2009) 1945–1954.

24



[17] A. Przybylski, X. Gandibleux, M. Ehrgott, The two-phase method for
multiobjective combinatorial optimization problems, in: A. R. Mahjoub
(Ed.), Progress in Combinatorial Optimization, ISTE Wiley, London,
559–596, 2011.
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